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Abstract

Due to its many applications in control theory, robust optimization, combinatorial opti-
mization and eigenvalue optimization, semidefinite programming had been in wide spread use
even before the development of efficient algorithms brought it into the realm of tractability.
Today it is one of the basic modeling and optimization tools along with linear and quadratic
programming. Our survey is an introduction to semidefinite programming, its duality and
complexity theory, its applications and algorithms.
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1 Introduction

Semidefinite programming is linear programming over positive semidefinite matrices. The beautiful
properties of symmetric positive semidefinite matrices and their associated convex quadratic forms
have fascinated mathematicians since the discovery of conic sections. Many properties of nonlinear
objects have therefore been related to the behavior of convex quadratic functions (see, e.g., the
references in [7] for early applications in control theory or [12] for applications in combinatorial
optimization). The development of interior point methods for semidefinite programming in the
late eighties [30] made it possible to optimize over this set. That aroused much interest and
lead to heavy activity in this field. Since then, many new algorithms have been proposed. For
some of them, high quality implementations are now available. They allow to use semidefinite
programming as a standard optimization tool, even though large scale problems in the style of
linear programming are still out of reach. With the availability of optimization software, more
and more problems are modeled as semidefinite programs. In fact, semidefinite programming
has become one of the basic modeling and optimization tools along with linear and quadratic
programming.

This survey wants to provide an easy access to the fundamental concepts of semidefinite pro-
gramming, to illustrate the wide variety of its applications, and to give a basic understanding of its
currently most successful algorithms. In order to compensate for unavoidable omissions we point
to other surveys wherever possible. Current standard references for semidefinite programming are
[30, 43]; both contain a large collection of applications. A comprehensive book, dealing with all
aspects of semidefinite programming, is currently in preparation [40] and should be available soon.

The paper is organized as follows. In Section 2, we review some basic notions from linear
algebra and fundamental properties of the cone of positive semidefinite matrices. Semidefinite
programs and their duals are introduced in Section 3. We also discuss their relation to linear
programs and some nonlinear convex optimization problems. The semidefinite cone is not finitely
generated and thus not polyhedral. This makes duality theory slightly more involved than in linear
programming; this is the topic of Section 4. In Section 5, we briefly investigate the geometry of
semidefinite sets and survey some complexity results. The wide range of applications is one of the
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main attractions of semidefinite programming. We present a small selection in Section 6. In Section
7, we sketch the algorithms which, in our opinion, dominate in current implementational efforts,
namely, primal-dual interior point algorithms [19, 26, 32, 1], a potential reduction algorithm[5],
and the spectral bundle method[18]. We also provide some guidelines on what classes of problems
they might best be employed. We conclude by giving a short outlook in Section 8.

2 The Cone of Positive Semidefinite Matrices

We first review some basic notions form linear algebra. Unless stated otherwise, we refer to [20, 21]
for proofs. The set Mm,n of m × n real matrices can be interpreted as a vector space in �mn .
The set of square matrices of dimension n is denoted by Mn. The operator vec() : Mm,n → �mn

will be used to explicitly transform matrices into vectors by stacking the columns on top of each
other. A natural inner product between two elements A,B ∈ Mm,n is

〈A,B〉 = vec(B)T vec(A) =

m∑
i=1

n∑
j=1

aijbij = tr(BTA). (1)

The trace tr(·) is the sum of the diagonal elements of a square matrix. It is a linear function. The
trace of A ∈ Mn equals the sum of the eigenvalues of A. The norm associated with inner product
(1) is the Frobenius norm, ‖A‖F =

√〈A,A〉. If the argument of the trace is a product of matrices,
the matrices may be “rotated” without affecting the result,

〈AB,C〉 = tr(CTAB) = tr(BCTA) =
〈
A,CBT

〉
.

We will usually work with the set of symmetric matrices Sn, a vector space in �(
n+1
2 ). All results

on the positive semidefinite cone will be stated with respect to this
(
n+1
2

)
-dimensional space. It is

convenient to use the inner product of Mm,n for Sn, as well. For A,B ∈ Sn, 〈A,B〉 = tr(BTA) =
tr(AB). The Schur Theorem implies that all eigenvalues λi(A) of A ∈ Sn are real. Furthermore,
there is an orthonormal matrix P ∈ Mn that diagonalizes A, PTAP = ΛA.

We will use positive semidefiniteness exclusively in connection with symmetric matrices.

Definition 2.1
A ∈ Sn is positive semidefinite (A ∈ S+

n , A � 0) if xTAx ≥ 0 ∀x ∈ �
n .

A ∈ Sn is positive definite (A ∈ S++
n , A 
 0) if xTAx > 0 ∀x ∈ �n \ {0}.

The next proposition follows directly from the definition and will used throughout this text.

Proposition 2.2 Let B ∈ Mn be a nonsingular matrix. Then A ∈ S+
n if and only if BTAB ∈ S+

n

and A ∈ S++
n if and only if BTAB ∈ S++

n .

There are several equivalent characterizations for positive definite matrices.

Theorem 2.3 (Characterizations of positive definite matrices)
For A ∈ Sn the following statements are equivalent:
1. A is positive definite.
2. λi(A) > 0 i = 1, . . . , n.
3. There exists C ∈ Mn with rank(C) = n so that A = CTC.
4. det(Ai) > 0 for a nested sequence1 Ai, i = 1, . . . , n, of principal submatrices of A.

Because the eigenvalues of the inverse A−1 of A are 1/λi(A), the inverse A
−1 is positive definite

if and only if A is positive definite.
For positive semidefinite matrices almost the same characterizations are valid.

1A nested sequence is determined by a sequence of proper subsets J1 ⊂ J2 ⊂ . . . ⊂ Jn = {1, . . . , n} of indices
with |Ji| = i for i = 1, . . . , n
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Theorem 2.4 (Characterizations of positive semidefinite matrices)
For A ∈ Sn the following statements are equivalent:
1. A is positive semidefinite.
2. λi(A) ≥ 0 i = 1, . . . , n
3. There exists C ∈ Mm,n so that A = CTC. For any such C, rank(C) = rank(A).
4. 〈A,B〉 ≥ 0 for all B ∈ S+

n .

An intriguing interpretation of a factorization A = CTC � 0 is obtained by viewing the
columns of C as vectors vi. The elements aij are the scalar products 〈vi, vj〉 of the vectors vi
and vj . A is referred to as the Gram matrix of the vectors v1, . . . , vn. Factorizations can be
determined algorithmically, e.g., by Cholesky-, LDLT -, or eigenvalue factorizations (see [14]).

The set of positive semidefinite matrices S+
n is a full dimensional, closed pointed cone in �(

n+1
2 ).

Since the eigenvalues are the roots of the characteristic polynomial, they depend continuously on
the matrix elements. Therefore, the set of positive definite matrices S++

n forms the interior of the
cone S+

n . The boundary of S+
n consists of the positive semidefinite matrices having at least one

zero eigenvalue.
The cone of positive semidefinite matrices S+

n is self-polar or self-dual, i.e., the polar cone
(S+

n )∗ = {A ∈ Sn : 〈A,B〉 ≥ 0 for all B ∈ S+
n } satisfies (S+

n )∗ = S+
n . This is equivalent to Theo-

rem 2.4(4). Since the polar cone may be interpreted as the set of tight valid linear inequalities for
S+
n or, equivalently, as the set of tangent planes to S+

n , we speak of (S+
n )∗ as the dual cone to S+

n .
A convex set F ⊆ C is called a face of a convex set C if for any two elements x, y ∈ C

with αx + (1 − α)y ∈ F for some α ∈ (0, 1) we have x, y ∈ F . The following theorem gives a
characterization of the faces of the semidefinite cone.

Theorem 2.5 ([2]) F is a face of S+
n if and only if F = {0n×n} or

F = {X : X = PWPT , W ∈ S+
k }

for some k ∈ {1, . . . , n}, P ∈ Mn,k with rank(P ) = k.

In the theorem, the columns of P span, within �n , the subspace of all eigenvectors to nonzero
eigenvalues of matrices in the face. The faces of S+

n have dimension
(
k+1
2

)
, so there are considerable

jumps in dimension. The extremal rays of S+
n are the faces

{
λxxT : λ ≥ 0

}
for ‖x‖ = 1, x ∈ �n .

By eigenvalue decomposition, these rays form a minimal generating system for S+
n . In contrast to

polyhedral cones, S+
n cannot be generated by a finite set.

The cone of semidefinite matrices induces a partial order on the set of symmetric matrices by
defining, for A,B ∈ Sn, A � B (A 
 B) if A−B ∈ S+

n (A− B ∈ S++
n ). This is the origin of the

notation A � 0 (A 
 0) in Definition 2.1.

3 Semidefinite Programs

Semidefinite programming is linear programming over the cone of positive semidefinite matrices.
In comparison to standard linear programming, the vector x ∈ �n

+ of variables (the nonnegative
orthant, a polyhedral cone) is replaced by a matrix variable X ∈ S+

n (the nonpolyhedral cone of
semidefinite matrices). In order to pronounce this similarity, we first formulate the problem with
respect to the vector representation vec(X) of X ,

min cT vec(X) s.t. A vec(X) = b, X � 0,

for given vectors c ∈ �n2

, b ∈ �m , and a constraint matrix A ∈ Mm,n2 .
Usually, semidefinite programs arise in a natural way from problems whose data is given by

matrices. The use of the vec-operator tends to hide the obvious and complicates the formulation.
It pays to use a more agreeable notation by interpreting the vector c and the rows of A as matrices.

Let C ∈ Mn denote the matrix corresponding to c, i.e., c = vec(C). Then the inner product
cT vec(X) in vector space can equivalently be written as the inner product 〈C,X〉 in matrix space.
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Since X is a symmetric matrix, the skew-symmetric part of C is of no influence in this inner
product. Without loss of generality we thus require C to be a symmetric matrix.

Likewise, we interpret row Ai,· as a symmetric matrix Ai ∈ Sn, rewrite the i-th constraint
Ai,· vec(X) as 〈Ai, X〉, and collect the constraints in a linear operator A : Sn → �m ,

AX =

⎛⎜⎝ 〈A1, X〉
...

〈Am, X〉

⎞⎟⎠ .

With this notation we arrive at our standard formulation of a semidefinite program,

(PSDP)
min 〈C,X〉
s.t. AX = b

X � 0.

In order to derive the dual of this program we need the adjoint operator to A, which we denote by
AT : �m → Sn. Since 〈AX, y〉 =∑m

i=1 yi 〈Ai, X〉 = 〈∑m
i=1 yiAi, X〉 for all X ∈ Sn and y ∈ �m , it

has the form

ATy =

m∑
i=1

yiAi.

With respect to the initial vector formulation, ATy is simply a different representation of AT y,
emphasizing the fact that we are working with matrices.

The dual is obtained via a Lagrange approach by interchanging inf and sup,

inf
X�0

sup
y∈�m

〈C,X〉+ 〈b−AX, y〉 ≥ sup
y∈�m

inf
X�0

〈b, y〉+ 〈X,C −ATy
〉
. (2)

The supremum on the right hand side is bounded from below if and only if the inner minimization
over X � 0 remains finite for some ŷ ∈ �m . This requires C −ATŷ to be in the dual cone to S+

n ,
i.e., C −ATy ∈ S+

n (Theorem 2.4(4)). We write this condition by introducing a slack matrix Z,

(DSDP)
max 〈b, y〉
s.t. ATy + Z = C

y ∈ �m , Z � 0.

This is the standard formulation of the dual semidefinite program to (PSDP).
The use of the free variables y in (DSDP) may raise doubts whether (DSDP) is indeed a semidef-

inite program. To remove these doubts, we give a slightly different representation of (PSDP) and
(DSDP) that highlights their common structure [30]. To this end we assume that the system
AX = b is consistent, i.e., there exists an X̂ ∈ Sn satisfying AX̂ = b. In this case, all y variables
in (DSDP) can be eliminated. We first express the cost function in terms of Z = C −ATy,

〈b, y〉 = 〈AX̂, y〉 = 〈X̂,ATy〉 = 〈X̂, C − Z〉.
Now variables y only serve to span the feasible set of Z-values. Let R(AT) denote the range space
of AT, let N (A) denote the null space of A, and observe that these two subspaces are orthogonal
complements, R(AT) = N (A)⊥. The dual (primal) equality constraints require a feasible Z (X) to
be contained in the affine subspace {C +N (A)⊥} ({X̂ +N (A)}). In these terms the primal-dual
pair of problems takes the following form,

min 〈C,X〉
s.t. X ∈ (S+

n ∩ {X̂ +N (A)})
max 〈X̂, C − Z〉
s.t. Z ∈ (S+

n ∩ {C +N (A)⊥}). (3)

Thus, (PSDP) and (DSDP) have indeed the same structure: Optimize a linear cost function over
a convex set defined by the intersection of an affine subspace with the semidefinite cone. Any
property holding for the primal formulation has its analogue in the dual formulation.
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So far we have been considering just one semidefinite variable. We may also formulate problems
that contain several semidefinite variables,

min
∑k

i=1 〈Ci, Xi〉 max 〈b, y〉
s.t.

∑k
i=1 AiXi = b s.t. AT

i y + Zi = Ci i = 1, . . . , k
X1 ∈ S+

n1
, . . . , Xk ∈ S+

nk
y ∈ �

m , Z1 ∈ S+
n1
, . . . , Zk ∈ S+

nk
.

(4)

In many practical applications such a structure arises naturally and it is important to exploit it
to obtain efficient implementations. For theoretical purposes, however, the standard primal-dual
pair of problems is sufficient. In fact, any semidefinite program in several semidefinite variables
of varying dimensions can be formulated equivalently as a standard (PSDP), because

X1 � 0, X2 � 0, . . . , Xk � 0 ⇐⇒

⎡⎢⎢⎢⎣
X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xk

⎤⎥⎥⎥⎦ � 0.

It is now easy to see that linear programming is a special case of semidefinite programming:
Interpret each single component xi ≥ 0 as a 1× 1 positive semidefinite matrix in (4).

Several other convex optimization problems may be formulated as semidefinite programs. A
standard tool in such reformulations is the following theorem. It gives a characterization of the
positive definiteness of a matrix via the positive definiteness of the Schur complement with respect
to a block partitioning of the matrix.

Theorem 3.1 (Schur Complement) Let A ∈ S++
r , B ∈ Sq, and C ∈ Mr,q. Then[

A C
CT B

]
� 0 ⇐⇒ B � CTA−1C.

We illustrate its use for a convex quadratic constraint:

xTQx ≤ qTx+ c. (5)

Here, x ∈ �n is the vector of variables and Q ∈ S+
n , q ∈ �n , c ∈ � are given constants. Since Q

may be singular, we factorize it, Q = CTC, and use the identity I in xTCT ICx as the positive
definite matrix A in the Schur complement. The theorem allows to reformulate the quadratic
constraint as [

I Cx
xTCT qTx+ c

]
� 0. (6)

The nonlinear constraint on x is transformed into a linear constraint over the cone of positive
semidefinite matrices. This proves that quadratically constrained convex quadratic programming
problems can be formulated as semidefinite programs.

Monotone linear complementarity problems are a popular generalization of linear program-
ming. In semidefinite programming, linear complementarity problems over the semidefinite cone
are covered by standard semidefinite programs and do not add further generality, see [25]. In
consequence, convex quadratic semidefinite programming is included in linear semidefinite pro-
gramming.

Sometimes it is useful, for numerical or structural reasons, to transform one representation of
a semidefinite program into another. This is achieved by transformations of the type W = QXQT

for nonsingular Q ∈ Mn (see Proposition 2.2). These transformations are referred to as scaling
and belong to the automorphism group of the semidefinite cone, i.e., they are bijective linear maps
on the set of symmetric matrices, leaving the semidefinite cone invariant. Since X = Q−1WQ−T

and, for arbitrary A ∈ Sn,

〈A,X〉 = 〈A,Q−1WQ−T
〉
=
〈
Q−TAQ−1,W

〉
,
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the correct transformation of a coefficient matrix A is Q−TAQ−1, which is the adjoint to the
inverse transformation of QXQT . With

C̄ = Q−TCQ−1, Āi = Q−TAiQ
−1 i = 1, . . . ,m,

and the corresponding linear operators ĀW and ĀTȳ we obtain the transformed primal-dual pair

(PQ)
min

〈
C̄,W

〉
s.t. ĀW = b

W � 0
(DQ)

max 〈b, ȳ〉
s.t. ĀTȳ + Z̄ = C̄

Z̄ � 0.

Proposition 3.2 X is a feasible solution of (PSDP) if and only if the associated W = QXQT is
a feasible solution of (PQ). Furthermore, X and W satisfy 〈C,X〉 = 〈C̄,W

〉
. (y, Z) is a feasible

solution of (DSDP) if and only if the associated (ȳ, Z̄) = (y,Q−TZQ−1) is a feasible solution of
(DQ). Trivially, 〈b, y〉 = 〈b, ȳ〉.

4 Duality

We derived the dual to (PSDP) by a Lagrange approach in (2). The construction implies that the
dual objective value cannot exceed the value of the primal. This is called weak duality. The gap
between a dual feasible solution (y, Z) and a primal feasible solution X is

〈C,X〉 − 〈b, y〉 = 〈ATy + Z,X
〉− 〈AX, y〉 = 〈Z,X〉 ≥ 0. (7)

If 〈Z,X〉 turns out to be zero, then this primal-dual pair is an optimal solution. In contrast to
linear programming, it is no longer true that optimality implies 〈Z,X〉 = 0. We illustrate the
basic difficulty by analyzing an example of [43] in detail.

Example 4.1 Consider the following primal semidefinite program,

min x12 s.t.

⎡⎣ 0 x12 0
x12 x22 0
0 0 1 + x12

⎤⎦ � 0.

In order to set up the dual program we write cost and constraint coefficients in matrix form,

C =

[
0 1

2
0

1
2

0 0
0 0 0

]
, A1 =

[
0 − 1

2
0

− 1
2

0 0
0 0 1

]
, A2 =

[
1 0 0
0 0 0
0 0 0

]
, A3 =

[
0 0 1
0 0 0
1 0 0

]
, A4 =

[
0 0 0
0 0 1
0 1 0

]
.

The right hand side vector reads b = (1, 0, 0, 0)
T
. Dualizing by the standard procedure yields

max y1 s.t. Z = C − y1A1 − y2A2 − y3A3 − y4A4 � 0.

The dual program can be written in the form

max y1 s.t. Z =

⎡⎣ −y2
1+y1

2 −y3
1+y1

2 0 −y4
−y3 −y4 −y1

⎤⎦ � 0.

A necessary condition for the primal matrix to be positive semidefinite is that x12 is zero, because
x11 = 0. Likewise, we obtain from z22 = 0 that z12 = 0 and hence y1 = −1 in the dual program.
The gap between any pair of primal and dual optimal solutions is one.

This insufficiency of the primal-dual pair is due to the dualization procedure (2) which is purely
algebraic and does not take into account the actual geometry of the feasible sets. In this particular
example, the primal equality constraints imply that any feasible X � 0 has a zero eigenvalue
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with eigenvector (1, 0, 0)
T
. By Theorem 2.5, the primal feasible set is contained in a face of the

semidefinite cone that has the following form,

F =
{
PWPT : W � 0

}
with P =

[
0 0
1 0
0 1

]
.

The particular choice of P is convenient, but any P whose columns form a basis of the space
orthogonal to the nullspace of the feasible set will do as well. If we replace the condition X � 0
by X ∈ F in the primal problem, the primal problem remains unchanged. Constructing the dual
in analogy to (2) yields that the corresponding Z must be positive semidefinite with respect to the
subspace spanned by P . Applying this to the current example we obtain

[
0 1 0
0 0 1

]⎡⎣ −y2
1+y1

2 −y3
1+y1

2 0 −y4
−y3 −y4 −y1

⎤⎦⎡⎣ 0 0
1 0
0 1

⎤⎦ =

[
0 −y4

−y4 −y1

]
� 0.

For this specialized dual problem the optimal solution is attained for y1 = 0 and the gap between
the optimal values of the primal problem and the specialized dual problem has disappeared.

The gap between optimal primal and dual objective value is guaranteed to be zero (strong
duality holds) if at least one of (PSDP) and (DSDP) has a strictly feasible point.

Definition 4.2
A point X is strictly feasible for (PSDP) if it is feasible for (PSDP) and satisfies X 
 0.
A pair (y, Z) is strictly feasible for (DSDP) if it is feasible for (DSDP) and satisfies Z 
 0.
A semidefinite program is strictly feasible if it has strictly feasible solutions.

The assumption of the existence of such a point is a Slater-type regularity condition that form
sufficient conditions for strong duality in general convex programming (see, e.g., [39]).

Theorem 4.3 (Strong Duality)
Let p∗ = inf {〈C,X〉 : AX = b,X � 0} and d∗ = sup

{〈b, y〉 : ATy + Z = C,Z � 0
}
.

(i) If (PSDP) is strictly feasible with p∗ finite, then p∗ = d∗ and this value is attained for (DSDP).
(ii) If (DSDP) is strictly feasible with d∗ finite, then p∗ = d∗ is attained for (PSDP).
(iii) If (PSDP) and (DSDP) are both strictly feasible, then p∗ = d∗ is attained for both problems.

The following folklore example illustrates that the primal optimal solution may not be attained if
there is no strictly feasible dual solution.

Example 4.4

min x11 s.t.

[
x11 1
1 x22

]
� 0 max 2y1 s.t.

[
1 −y1

−y1 0

]
� 0.

The primal problem has a strictly feasible solution (x11 = 2, x22 = 2), the dual optimal solution
0 is attained for y1 = 0 which is also the only feasible solution. Because of the semidefiniteness
constraint, the determinants of the primal principal submatrices must be nonnegative: x11 ≥ 0,
x22 ≥ 0, x11x22 − 1 ≥ 0. This yields the lower bound x11 ≥ 1

x22
which is zero for x22 → ∞. The

primal optimal value is not attained. Note, that the dual does not have a strictly feasible solution
and that the primal feasible set is not polyhedral.

What can we do if the semidefinite program at hand is not strictly feasible? If we know the
minimal face of the positive semidefinite cone that contains the feasible set, then we can project
the problem onto this face as described in Example 4.1 and obtain a well posed problem [44]. The
minimal cone can be constructed explicitly if a point in the relative interior of the feasible set is
known.

7



Proposition 4.5 Let X ∈ X = {X � 0 : AX = b} with eigenvalue decomposition X = PΛPT ,
PTP = I and Λ 
 0 diagonal. Denote by SP =

{
PV PT : V � 0

}
the face of S+

n spanned by P .
Then X is in the relative interior of X if and only if SP is the smallest face of S+

n containing X .

If we do not know this minimal face, then there is no obvious way to arrive at an equivalent well
posed problem. In theory it is possible to construct, via an algebraic description of the minimal
face, an extended dual semidefinite program. This dual, called the extended Slater dual, guarantees
that the gap between primal optimal value and dual optimal value is zero [38]. The construction is
quite involved and requires the introduction of several additional semidefinite variables. Although
the extended Slater dual can be obtained in polynomial time, the computational burden is too
high for practical applications.

5 Geometry and Complexity

Next, we study the facial structure of feasible sets. A feasible set of a semidefinite program is
the intersection of an affine subspace with the semidefinite cone. The faces of intersections of
convex sets are the intersections of the faces of the convex sets. Consequently, the facial structure
of the semidefinite cone has a strong influence on the facial structure of the feasible set. One
such consequence is that in general feasible sets are not polyhedral. Another one is that optimal
solutions are likely to have small rank, because the low dimensional faces of the semidefinite
cone have small rank. The following lemma gives a mathematically precise formulation of this
phenomenon.

Theorem 5.1 ([35])
(i) Let F be a face of dimension k of the feasible set of (PSDP). For X ∈ F the rank r = rank(X)
is bounded by

(
r+1
2

) ≤ m+ k.

(ii) Let F be a face of dimension k of the set
{
Z � 0 : ∃y ∈ �m : Z +ATy = C

}
of feasible Z-

values of (DSDP). For Z ∈ F the rank r = rank(Z) is bounded by
(
r+1
2

) ≤ (n+1
2

)−m+ k.

Sensitivity analysis in semidefinite programming is considerably more involved than in linear
programming and out of the scope of this survey. We refer the interested reader to [6] and
references therein.

It is well known that “under reasonable assumptions” convex programming is of polynomial
complexity. In particular, if a full dimensional compact convex set is given by a weak violation ora-
cle with its “interesting region” contained in a ball centered at the origin with radius R, then there
exists an oracle polynomial time algorithm that solves the weak optimization problem [15]. In the
case of semidefinite programming, a polynomial violation oracle is Gaussian elimination pivoting
on diagonal elements. The next two examples illustrate why the radius R and the “weakness” of
the optimization problem are needed for semidefinite programming.

Example 5.2 ([38])

min xm s.t. (x1 − 4) � 0,

[
1 x1

x1 x2

]
� 0,

[
1 x2

x2 x3

]
� 0, . . . ,

[
1 xm−1

xm−1 xm

]
� 0.

The encoding length of this program is O(m). The primal feasible set can also be described by

x1 ≥ 22, x2 ≥ x2
1 ≥ (22)2 = 2(2

2), x3 ≥ x2
2 ≥ 2(2

3), . . . , xm ≥ x2
m−1 ≥ 2(2

m). A strictly feasible
solution exists and the optimal solution is obtained by setting all variables to their respective
lower bounds. But the optimal solution is doubly exponential in m and the feasible region is doubly
exponentially far away from the origin, i.e., R grows doubly exponentially in m. Thus, the encoding
length of any feasible solution is Ω(2m) if binary encoding is used.

Example 5.3

min x12 s.t.

[
1 x12

x12 2

]
� 0.
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Although all coefficients are integers, the optimal solution is x12 = −√
2. In contrast to linear

programming we cannot expect solutions to be rational numbers when coefficients are restricted to
integers.

Strong bounds on the complexity of semidefinite programming were obtained by employing com-
plexity results of the first order theory over the reals, where solutions may be described as the
roots of polynomials with integral coefficients.

Theorem 5.4 ([37]) For integral A : Sn → �m and b ∈ �m let X = {X � 0 : AX ≤ b}, and let
l denote the maximum length of a binary encoding of the coefficients in A and b.

1. If X �= ∅, then there exists an X ∈ X satisfying ‖X‖ ≤ R with logR = l · nO(min{m,n2}). If,
in addition, X is bounded, then ‖X‖ ≤ R for all X ∈ X .

2. It can be tested in mnO(min{m,n2})arithmetic operations over l · nO(min{m,n2}) bit numbers
whether X is empty.

Thus, for fixed m, the feasibility problem can be solved in polynomial time.
Another important result, due to the same authors, states that integer semidefinite program-

ming is polynomially solvable in fixed dimensions. In this case, the coefficients of A and b may be
algebraic numbers, i.e., roots of polynomials.

Theorem 5.5 ([23]) For fixed n there exists a polynomial time algorithm that finds an integral
X ∈ S+

n satisfying AX ≤ b or decides that no such matrix exists.

Note that the result does not depend on the number of constraints m, but only on the dimension
of X .

In the Turing model of computation, semidefinite programming is either in NP∩co-NP or
outside NP∪co-NP. In the real number model of computation it is, in fact, in NP∩co-NP . It is
not known, however, whether in the Turing model semidefinite programming is in NP or not [38].

6 Applications

Extensive lists of applications from various areas have been compiled in [30] and [43]. We pick out
four basic examples.

6.1 Control Theory

The book [7] contains a wealth of applications in control theory, the following example among
others.

A polytopic linear differential inclusion is described by

(PLDI) ẋ = A(t)x with A(t) ∈ conv{A1, . . . , Ak} ⊂ Mn.

The symbol ẋ denotes d
dtx(t), as usual; the function x(t) can be interpreted as the state of the

system over time. A (PLDI) allows to model linear systems where the matrix A(t) is uncertain
over time, but is known to remain in the convex hull of matrices A1 to Ak. A (PLDI) is called
stable, if all trajectories of (PLDI) converge to zero as t → ∞. This is certainly satisfied if there is

a norm ‖x‖H =
√
xTHx with H 
 0 so that d

dt‖x(t)‖2H < 0 on all trajectories. The system is then
called quadratically stable, and the function xTHx is called a quadratic Lyapunov function. Since
d
dtx

THx = xT (A(t)TH +HA(t))x, the condition on the derivative is equivalent to the existence
of a feasible solution in the open semidefinite set

H 
 0, AT
i H +HAi ≺ 0 for i = 1, . . . , k. (8)

9



Interior point methods (see Section 7.1) allow to solve these problems directly. Alternatively, a
corresponding semidefinite program (in fact, an eigenvalue optimization problem, see Section 6.3)
could read

max λ s.t. H � λI, AT
i H +HAi � −λI for i = 1, . . . , k.

Now consider the case, that one would like to force the state of the system to zero by linear
state-feedback control, i.e., by a control term B(t)u where the control variables u ∈ �m depend
linearly on the state x, u = Kx. Then we are dealing with a closed-loop PLDI,

ẋ = (A(t) +B(t)K)x with A(t) ∈ conv{[A1, B1] , . . . , [Ak, Bk]} ⊂ Mn,n+m. (9)

The system ẋ = A(t)x+B(t)u is called quadratically stabilizable via linear state-feedback if there
exists a K so that (9) is quadratically stable. Scaling (8) for matrices Ai + BiK by Q = H−1

gives rise to the necessary and sufficient condition

Q 
 0, Q(Ai +BiK)T + (Ai +BiK)Q ≺ 0 for i = 1, . . . , k.

In order to remove the bilinear terms in Q and K we substitute KQ = Y ,

Q 
 0, QAT
i +AiQ+ Y BT

i +BiY ≺ 0 for i = 1, . . . , k.

If this system is feasible, appropriate Q and Y can be determined algorithmically. The matrix K
is then reconstructed by K = Y Q−1.

6.2 Combinatorial Optimization

A comprehensive survey on combinatorial applications is given in [12]. Probably the most impor-
tant is quadratic {−1, 1} programming,

max
x∈{−1,1}n

xTCx ⇐⇒ max
x∈{−1,1}n

〈
C, xxT

〉
.

For x ∈ {−1, 1}n the matrix xxT is positive semidefinite of rank one. All its diagonal el-
ements are equal to one, diag(xxT ) = e (e denoting the vector of all ones). In fact, these
properties describe the discrete set of matrices that are dyadic products of {−1, 1} vectors,
{X � 0 : diagX = e, rank(X) = 1} =

{
xxT : x ∈ {−1, 1}n}. By dropping the rank one constraint,

one enlarges the discrete set in order to obtain a polynomially solvable convex relaxation,

max
x∈{−1,1}n

〈
C, xxT

〉 ≤ max 〈C,X〉 s.t. diag(X) = e,X � 0.

The semidefinite relaxation on the right first appears in [41, 10] and forms the basis of an intriguing
approximation algorithm, due to Goemans and Williamson [13]: A feasible solution X̂ of the
semidefinite program is interpreted as the Gram matrix X̂ = V TV of the columns vi of V . A
random vector h is drawn according to the standard normal distribution in �n . Using h, the
columns of V are rounded to {−1, 1}-values, x̄i = sgn(hT vi).

The probability that two vectors vi and vj give rise to different values is proportional to the

angle arccos(vTi vj) between vi and vj . Notice, ‖vi‖ = 1 because diag(X̂) = e. This leads to
an expected value of E(x̄TCx̄) = 2

π

∑
i,j cij arcsin(v

T
i vj) = 2

π

∑
i,j cij arcsin(x̂ij). Even though

arcsin(x̂ij) is easily upper and lower bounded by affine functions in xij , the dependence on the

signs of the cij makes it difficult to bound E(x̄TCx̄) in terms of the objective value 〈C, X̂〉. For this,
special properties of the cost matrices have to be exploited. In the case of cost matrices correspond-
ing to the max-cut problem on graphs with nonnegative edge weights, Goemans and Williamson
showed that the expected value is at least 0.878 times the objective value, E(x̄TCx̄) > 0.878〈C, X̂〉.
Applying this rounding procedure to the optimal solution X∗ of the semidefinite relaxation, yields
an approximation algorithm for max-cut with performance guarantee of 0.878. The approach was
extended to max-k-cut and max-bisection [11], coloring [22], and inspired much further work.

The semidefinite relaxation is equivalent, via scaling [16], to the semidefinite relaxation of
quadratic {0, 1}-programming of Lovász and Schrijver [28] that forms the basis of a generic proce-
dure for deriving semidefinite relaxations of constrained quadratic {0, 1}-programming problems.
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6.3 Eigenvalue Optimization

Eigenvalue optimization is a field in its own right and has many practical applications, see [27]
for a survey. Several basic problems in eigenvalue optimization may be formulated as semidefinite
programs. For example, minimizing the maximum eigenvalue over an affine matrix function is a
semidefinite programming problem,

min
y∈�m

λmax(C −ATy) + bT y ⇐⇒ min
λ∈�,y∈�m

λ+ bT y s.t. λI � C −ATy. (10)

Conversely, the dual of any semidefinite program with constant trace trX = 〈I,X〉 = a > 0 on the
feasible set {X � 0 : AX = b} can be formulated as an eigenvalue optimization problem, because
(w.l.o.g. assume a = 1)

max
AX=b
X�0

〈C,X〉 = max
AX=b

〈I,X〉=1
X�0

〈C,X〉 = inf
C − λI −ATy � 0
λ ∈ �, y ∈ �

m

λ+ bTy = inf
y∈�m

λmax(C −ATy) + bT y.

The second equality follows from strong duality (Theorem 4.3), because the dual has a strictly
feasible point (choose λ large enough). It can be worked out that any semidefinite programming
problem with bounded feasible set can be scaled to a program with constant trace on the feasible
set. The construction of this scaling requires some knowledge about the problem and the scaling
will in general destroy sparsity of the coefficient matrices.

6.4 Robust Optimization

The optimal solutions of real world optimization problems may be quite sensitive to changes in
the data. If such a solution is computed on basis of slightly perturbed data or if the solution can-
not be implemented with the necessary precision in practice, then the solution may be worthless.
In robust optimization a solution is sought that is optimal among all solutions that are feasible
for all reasonable perturbations of the data. In fact, the approach described for polytopic linear
differential inclusions above may also be interpreted in this vein and is often referred to as robust
control. In [4], Ben-Tal and Nemirovski investigate robust formulations of several standard opti-
mization problems for data with ellipsoidal uncertainties. For example, in the case of quadratically
constrained convex quadratic programming they show that the robust version

min cTx

s.t. xTATAx + 2bTx+ γ ≤ 0 ∀(A, b, γ) ∈
m⋃
i=1

Ui

with

Ui =

⎧⎨⎩(A, b, γ) = (Ai0, bi0, γi0) +

k∑
j=1

ui(Aik, bik, γik) : uTu ≤ 1

⎫⎬⎭ for i = 1, . . . ,m

can be solved via semidefinite programming. Similarly, a particular case of robust semidefinite
programming is itself a semidefinite program, namely the case of “rank 2” ellipsoidal uncertainties
of the form

min 〈b, y〉
s.t. C +ATy + h(y)dT + dTh(y) � 0 ∀h(·) ∈

{∑k
i=1 uihi(·) : uTu ≤ 1

}
where hi(·) : �m → �n is an affine function of y for i = 1, . . . , k. This special class of problems
arises in robust truss topology design, where the truss should not only be as stiff as possible with
respect to one particular load, but should also withstand small forces in arbitrary directions acting
on the nodes (see [3]). The transformations of the robust formulations to semidefinite programs
are outside the scope of this survey and we refer the reader to [4] for details.
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7 Algorithms

7.1 Interior Point Methods

Interior point methods are currently the most efficient approach for solving general semidefinite
programs. The basic idea is to compute a Newton step in each iteration with respect to an
auxiliary barrier problem that keeps the iterates inside the positive semidefinite cone. Since
Newton’s method exploits second order information and works particularly well on this class of
barrier problems, the algorithms converge very fast. An approximately optimal solution is obtained
within a polynomial number of iterations. On the other hand, the computation of a single step is
computationally rather expensive and structural properties of the constraint matrices are difficult
to exploit. Within current technology this limits these methods to problems of moderate size, of
about 10000 constraints, say.

Throughout this section we work under the following assumption.

Assumption 7.1 There exists a strictly feasible X0 for (PSDP) and a strictly feasible pair
(y0, Z0) for (DSDP).

A point satisfying Assumption 7.1 can always be constructed for a so called skew-symmetric
embedding of the original problem, we refer to [9] for details.

Interior point algorithms start off at an interior point of the cone of positive semidefinite ma-
trices. The iterates are determined as approximate minimizers of a sequence of auxiliary problems
that contain an additional barrier term −μ log det(X) in the cost function, where μ > 0 is the so
called barrier parameter and − log det(X) is the barrier function. The auxiliary problem reads

min 〈C,X〉 − μ log det(X) s.t. AX = b, X 
 0.

Since det(X) =
∏n

i=1 λi(X), we have − log det(X) = −∑n
i=1 logλi(X) (in linear programming,

the matrix is diagonal, X = Diag(x) with x ∈ �n
+ , and the barrier function reads −∑n

i=1 log xi).
The barrier function grows to infinity if an eigenvalue of X tends to zero, i.e., if X approaches
the boundary of the semidefinite cone. Hence, the barrier parameter μ controls the distance of
the optimal solution of the auxiliary problem (if it exists it is unique by the strict convexity of the
barrier function) to the boundary. For a sequence of barrier problems with μ → 0, the original
cost function eventually dominates on the interior of the feasible set, except within an ε distance
of the boundary, and the sequence of minimizers of the barrier problems converges to an optimizer
of the original problem.

Remark 7.2 The barrier function − log det(X) belongs to the class of strongly self concordant
functions (see [30]) which harmonize with Newton’s method. Intuitively, Newton’s method ap-
proximates a function by a quadratic model and solves the minimization problem exactly within
this model. The resulting descent direction is the better the less the function deviates from this
quadratic model. For strongly self concordant functions the change of the second derivative is
bounded by a Lipschitz condition, therefore the quadratic model is of good quality for comparatively
large regions.

Remark 7.3 If the feasible set is bounded and C = 0, then the optimum is independent of the
choice of μ > 0 and is called the analytic center of the feasible set. In contrast to a geometric
definition of center ( e.g., the center of gravity) the analytic center depends on the description of
the feasible set. To see this, consider the case where an inequality is given twice. The barrier
terms will then push the analytic center farther away from this inequality.

The barrier problem is transformed into an unconstrained problem for X 
 0 by introducing a
Lagrange multiplier y for the the equality constraints,

Lμ(X, y) = 〈C,X〉 − μ log det(X) + 〈y, b−AX〉 .
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An optimal solution of the barrier problem is a saddle point of the Lagrange function Lμ. Saddle
points satisfy the KKT-conditions, or first order necessary conditions, for Lμ. By matrix calculus
the gradient of log det(X) is ∇X log det(X) = X−1, so we arrive at the system

∇XLμ = C − μX−1 −ATy = 0

∇yLμ = b−AX = 0.

In a primal-dual formulation we set Z = μX−1 and rewrite the KKT-conditions in the following
form (starting from the dual barrier problem one would arrive at the same system),

AX = b, X 
 0
ATy + Z = C, Z 
 0

XZ = μI.
(11)

The first line requires primal feasibility, the second dual feasibility, and the third is a perturbed
complementarity condition. In linear programming, X and Z are both diagonal matrices, and
the perturbed complementarity condition reduces to xizi = μ for i = 1 . . . , n. For semidefinite
programming the full matrix product XZ is needed. The solution of the system is unique with
respect to X and Z, but not necessarily for y. By Assumption 7.1, however, the system AX = b
is consistent and it is possible to eliminate all y-variables as explained in (3). The sole purpose of
y is to span the feasible set of Z. Therefore we will concentrate on the variables X and Z, and
use y only if it is convenient.

We denote the solution of system (11) for some fixed μ by (Xμ, Zμ). Xμ and Zμ are the unique
optimal solutions of the respective barrier problems. They are feasible points of the original
problems with a gap of 〈Z,X〉 = nμ between the objective values, cf. (7). The set of solutions
(Xμ, Zμ) for μ > 0 forms the so called central path which is a smooth curve. For μ → 0 it converges
to a point (X∗, Z∗) with X∗ an optimal solution of the original primal and Z∗ an optimal solution
of the original dual problem.

In linear programming the central path converges to a strictly complementary solution, i.e.,
a primal-dual pair of optimal vectors x, z ∈ �n with either xi = 0 or zi = 0 (but not both)
for i = 1 . . . n. In order to compare this to semidefinite programming we have to clarify what
complementarity means in this setting. For this, we have to introduce the following concept. Two
matrices A,B ∈ Mn are simultaneously diagonalizable if A and B share a common basis S ∈ Mn

so that S−1AS and S−1BS are both diagonal.

Theorem 7.4 (see [20]) A,B ∈ Mn(� ) are simultaneously diagonalizable if and only if A and B
commute ( i.e., if AB = BA). In particular, for A,B ∈ Sn, the product AB ∈ Sn if and only if
there is an orthonormal matrix P that diagonalizes A and B.

For any primal-dual pair of optimal solutions (X̂, Ẑ), the inner product 〈X̂, Ẑ〉 is zero. Via eigen-
value decomposition this implies that X̂Ẑ = 0 and so X̂ and Ẑ are simultaneously diagonalizable.
The non-zero eigenvectors of any optimal primal solution X̂ are in the null space of any optimal
dual solution Ẑ and vice versa. In other words, the two minimal faces of the semidefinite cone con-
taining the respective convex sets of primal and dual optimal solutions are spanned by orthogonal
subspaces of �n . This motivates the following definition.

Definition 7.5 A pair of optimal solutions (X∗, Z∗) is maximally complementary if X∗ and Z∗

have maximal rank among all optimal solutions.
An optimal pair (X∗, Z∗) is strictly complementary if rank(X∗) + rank(Z∗) = n.

In contrast to linear programming, the existence of strictly complementary solutions is not guar-
anteed. However, the central path gets as close to strict complementarity as possible. The point
to which the central path converges for μ → 0 is maximally complementary.

Theorem 7.6 ([9]) For a sequence μk > 0, k ∈ �, with μk → 0, the corresponding solutions
(Xμk

, Zμk
) of (11) converge to a maximally complementary, optimal pair (X∗, Z∗) of (PSDP) and

(DSDP).
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In other words, the central path converges to a point in the relative interior of the optimal face.
We would like to compute an approximate solution of (11), i.e., a solution to

Fμ(X, y, Z) =

⎛⎝ AX − b
ATy + Z − C
XZ − μe

⎞⎠ = 0.

Newton’s method computes a step direction (ΔX,Δy,ΔZ) by solving Fμ+∇Fμ·(ΔX,Δy,ΔZ)
T
=

0. Here, the step direction can be determined by the linearized system

A(ΔX) = −(AX − b) (12)

AT(Δy) + ΔZ = −(ATy + Z − C) (13)

ΔXZ +XΔZ = μI −XZ. (14)

Unfortunately, X and Z do not commute, XZ �= ZX , and the same is true in the linearization
of the complementarity condition (quite in contrast to the case of linear programming, where
all matrix variables are diagonal). In general we cannot expect that there exist symmetric ΔX
and ΔZ that solve (12) to (14). Solving the system for square matrices ΔX,ΔZ ∈ Mn yields
a symmetric ΔZ because of (13) but (in general) an unsymmetric ΔX . Since the next iterate
X + αΔX has to be a symmetric positive definite matrix this is a serious problem. A number of
approaches have been proposed to get around this difficulty. We present only three (see [42] for a
survey on search directions).

The first approach [19, 26] allows ΔX to be unsymmetric in order to guarantee that the system
is solvable. The skew-symmetric part of ΔX is then ignored and the symmetric part constitutes
the new step direction,

ΔX̂Z +XΔZ = μI −XZ, ΔX =
ΔX̂ +ΔX̂T

2
. (15)

The second approach is based on the concept of self-scaled barrier functions for self-scaled
cones [32, 31]. A special scaling matrix W = X

1
2 (X

1
2ZX

1
2 )−

1
2X

1
2 ∈ S+

n satisfying W− 1
2XW− 1

2 =

W
1
2ZW

1
2 is used to reformulate the complementarity condition,

W−1ΔXW−1 +ΔZ = μX−1 − Z. (16)

Any solution to this system is guaranteed to be symmetric.
In a third approach [1], the complementarity condition (14) is modified so as to allow for

symmetric updates only. Consider the linearization of XZ + ZX − μI,

ΔXZ +XΔZ + ZΔX +ΔZX = 2μI −XZ − ZX. (17)

Symmetrization is implicit, the existence of symmetric solutions ΔX and ΔZ is guaranteed if X
and Z are “close” to the central path.

The three search directions presented can be generalized by introducing a symmetrization
operator [45]

HP (M) =
1

2
(PMP−1 + (PMP−1)T ) (18)

with a given nonsingular matrix P ∈ Sn. Symmetrizing the complementarity condition by this
operator yields

HP (XZ +ΔXZ +XΔZ) = μI. (19)

The choice P = I corresponds to search direction (17). For P = Z
1
2 it is equivalent to (15). It

can be worked out that (16) is obtained by choosing P so that PTP = W .
The search directions (15), (16), and (17) are currently the most popular in practical imple-

mentations. Other interesting choices may show up in the future. The algorithmic framework for
all these methods or even hybrid methods is the same.
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Algorithm 7.7

Input: A, b, C, and some starting point (X0, y0, Z0) with X0 
 0 and Z0 
 0 (usually this
starting point will have to satisfy some additional conditions).

1. Choose μ.

2. Compute (ΔX,Δy,ΔZ) by solving (12), (13) together with a variant of (14).

3. Choose some α ∈ (0, 1] so that X + αΔX and Z + αΔZ remain positive definite.

4. Set (X, y, Z) := (X + αΔX, y + αΔy, Z + αΔZ).

5. If ‖AX − b‖ and ‖ATy + Z − C‖F and 〈X,Z〉 are small enough then stop, else goto 1.

In order to prove polynomial iteration complexity for a particular scheme of search directions,
rather strong restrictions must be imposed on the starting point and the specific choices of μ and
α. The best complexity results are obtained for feasible methods that closely trace the central
path. For these methods, a primal-dual feasible pair (X, y, Z) with 〈X,Z〉 < ε can be found
within O(

√
n log(

〈
X0, Z0

〉
/ε)) iterations, where (X0, y0, Z0) is a feasible starting point close to

the central path (see, e.g., [29]).
The amount of work per iteration depends on the search direction. We explain the main steps

of method (15). System (12)-(14) is solved by expressing ΔX in terms of ΔZ in (14) and ΔZ in
terms of Δy in (13). Now it remains to solve (12) for Δy,

A(XAT(Δy)Z−1) = b−A(μZ−1 +X(C −ATy − Z)Z−1). (20)

The matrix M = A(XAT(·)Z−1) ∈ Sm is positive definite if X 
 0, Z 
 0, and A has full row
rank. Its elements are determined by Mij = tr(XAiZ

−1Aj). In general, the construction of M
takes O(mn3 + m2n2) operations, but structural properties of the Ai can be exploited to speed
up this step for particular inputs. Since either X or Z−1 is dense, M is typically dense even in
the case of sparse data; The factorization of M needs m3/3 operations and is usually the most
expensive step in each iteration. If n is of the same order of magnitude as m, then the line search
in step 3 of Algorithm 7.7 is as important as the factorization of M .

For a large but structured Z, Benson, Ye, and Zhang [5] pointed out that a dual potential
reduction method, i.e., a pure dual method, may help to save work. Linearizing X = μZ−1

(instead of XZ = μI) yields

X +ΔX = μZ−1 − μZ−1ΔZZ−1 (21)

in (14). For this choice and strictly feasible Z = C −AT(y) 
 0, (20) transforms to

A(Z−1AT(Δy)Z−1) = b/μ−A(Z−1). (22)

The resulting Δy is the Newton step for the dual barrier problem. The primal matrix X does not
appear and it is not necessary to compute Z−1 explicitly. Indeed, any product W = Z−1Ai can be
computed by solving ZW = Ai and this allows to exploit the structure of a sparse factorization of
Z. In the line search, sparse factorizations are also sufficient to test for positive semidefiniteness
of Z. By (21), a feasible X +ΔX is obtained if Z− 1

2ΔZZ− 1
2 � I. A sufficient condition for this

is that

1 ≥ ‖Z− 1
2ΔZZ− 1

2 ‖2F = ‖Z− 1
2AT(Δy)Z− 1

2 ‖2F = A(Z−1AT(Δy)Z−1)TΔy = [b/μ−A(Z−1)]TΔy.

If this is the case, then the primal objective value can be computed by 〈C,X +ΔX〉 = bT y +
〈X +ΔX,Z〉 = bTy + μn − μ

〈AT(Δy), Z−1
〉
= bT y + μn − μΔyTA(Z−1) (use (7), (21), and

ΔZ = ATΔy). This yields a reliable stopping criterion at no additional cost.
Unfortunately, M̄ = A(Z−1AT(·)Z−1) of (22) with M̄ij = tr(Z−1AiZ

−1Aj) is still dense, so
the approach is again limited to a moderate number of constraints, say m not larger than 10000
on current workstations.
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7.2 The Spectral Bundle Method

The spectral bundle method of [18] is a specialization of the proximal bundle method of [24] to
eigenvalue optimization problems of the form (cf. Section 6.3)

(E) min
y∈�m

f(y) with f(y) = λmax(C −ATy) + bT y.

The main purpose of formulating certain semidefinite programs as eigenvalue optimization prob-
lems is to open possibilities for exploiting structure. If the matrix C−ATy is well structured in the
sense that multiplication of this matrix with a vector is inexpensive, then Lanczos methods allow
to compute the maximum eigenvalue and a corresponding eigenvector efficiently. Eigenvectors
to the maximal eigenvalue give rise to subgradients of f . The subgradients are used to form a
simplified model of f that is easier to solve. The solutions of the model yield new candidates at
which f is again evaluated. In the case of a better objective value the algorithm moves on to the
new point, otherwise the new subgradient is used to improve the model. Subgradient methods are
an attractive choice for large scale problems (with n and m above 1000 and 10000, respectively)
whenever the value of f and a corresponding eigenvector can be determined quickly. They are first
order methods and require little memory. They show fast improvement in the beginning but slow
down significantly as the optimal solution is approached. Therefore they should best be employed
if a rough estimate of the optimal solution is sufficient.

We start by investigating f . Since λmax(A) = maxvT v=1 v
TAv, vTAv =

〈
A, vvT

〉
, and

conv{vvT : vT v = tr(vvT ) = 1} = {W � 0 : trW = 1} =: W , the maximum eigenvalue func-
tion may equivalently be formulated as a semidefinite program,

λmax(A) = max{〈A,W 〉 : W ∈ W}. (23)

Therefore, any subset Ŵ ⊂ W gives rise to a model function f
̂W minorizing f ,

f
̂W(y) := max

W∈̂W

〈
C −ATy,W

〉
+ bT y with f

̂W(y) ≤ fW(y) = f(y).

Since f is the maximum of the linear functions 〈b −AW, y〉+ 〈C,W 〉 over W ∈ W , the function
f is convex and the subdifferential of f at y is generated by all maximizers W at y,

∂f(y) =
{
b−AW : W ∈ W ,

〈
C −ATy,W

〉
= λmax(C −ATy)

}
(24)

In particular, any eigenvector v of λmax(C −ATy) gives rise to a subgradient b −A(vvT ) of f at
y. A point y is optimal if and only if 0 ∈ ∂f(y), i.e., there is a W∗ ∈ ArgmaxW∈W

〈
C −ATy,W

〉
with AW = b.

We now explain the proximal bundle approach within our specialized setting. At iteration k,
a new candidate yk+1 is determined as the minimizer of f

̂Wk(y) +
u
2 ‖y − ŷk‖2, where Ŵk ⊂ W is

formed from accumulated subgradient information. The quadratic term ‖y − ŷk‖2 keeps the new
candidate close to the last successful iterate ŷk (sometimes called the stability center). The weight
u provides some indirect control on this distance. In the evaluation step, λmax(C −ATyk+1) and
a corresponding eigenvector v (or some W k+1

s ∈ ArgmaxW∈W
〈
C −ATyk+1,W

〉
) giving rise to a

subgradient are computed. If f(yk+1) satisfies a sufficient decrease criterion then the algorithm
moves to yk+1 by setting ŷk+1 = yk+1. This is a descent step. Otherwise yk+1 is ignored,
ŷk+1 = ŷk, but the subgradient information is used to improve the model at yk+1 in Ŵk+1. This
is a null step.

In the spectral bundle method of [18], the set Ŵk is restricted to the form

Ŵk =
{
PkV PT

k + αW k : trV + α = 1, V ∈ S+
rk
, α ≥ 0

}
, (25)

where Pk ∈ Mn,rk is an orthonormal matrix and W k ∈ W . For this Ŵk,

f
̂Wk(y) = max

{
λmax(P

T
k (C −ATy)Pk),

〈
C −ATy,W k

〉}
+ bT y ≤ f(y). (26)
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Thus, for small rk, the value of the cutting plane model can be determined efficiently. In order to
obtain a large value of f

̂Wk in the vicinity of the current minimizer y, the matrix Pk should span
the eigenspaces of the largest eigenvalues of C −ATy.

Without W k the set Ŵk corresponds to a
(
rk+1

2

)
dimensional face of the semidefinite cone

(Theorem 2.5), which might be too small to contain an optimal W∗. The matrix W k allows Ŵk

to reach into the interior of S+
n without significantly increasing the cost of computing the next

trial point.
Using the strong duality theorem, it can be worked out that solving the augmented model

f
̂Wk(y) +

u
2 ‖y − ŷk‖2 is equivalent to solving its dual,

min
y∈�m

max
W∈̂Wk

〈
C −ATy,W

〉
+ bT y +

u

2
‖y − ŷk‖2 =

= max
W∈̂Wk

min
y∈�m

〈C,W 〉+ 〈b−AW, y〉+ u

2
‖y − ŷk‖2.

(27)

The inner minimization over y is unconstrained and can be solved explicitly,

ykmin(W ) = ŷk +
AW − b

u
.

By substituting ykmin(W ) into the dual, the dual reduces to a quadratic semidefinite programming
problem in small dimension with variables V ∈ Srk and α ∈ �+ ,

(QSP)

min 1
2u‖b−AW‖2 − 〈W,C −ATŷk

〉− bT ŷk

s.t. W = PkV PT
k + αW k

trV + α = 1
V � 0, α ≥ 0.

The dimension of the original problem (the size of n and m) has no influence on subproblem (QSP)
except in the computation of the cost coefficients. An optimal (not necessarily unique) solution
W k+1 to (QSP) can be computed by interior point methods and gives rise to the candidate
yk+1 = ykmin(W

k+1).

Algorithm 7.8

Input: y0 ∈ �m , ε ≥ 0, κ ∈ (0, 1), a weight u > 0.

1. Set k = 0, ŷ0 = y0, compute f(y0) and Ŵ0.

2. (Trial point finding). Compute W k+1 and yk+1 = ykmin(W
k+1).

3. (Stopping criterion). If f(ŷk)− fWk+1(yk+1) ≤ ε(|f(ŷk)|+ 1) then stop.

4. (Evaluation). Find W k+1
S ∈ ArgmaxW∈W

〈
C −ATyk+1, ·〉 and determine f(yk+1).

5. (Descent test). If f(ŷk)− f(yk+1) ≥ κ[f(ŷk)− fWk+1(yk+1)] then set ŷk+1 = yk+1 (descent
step); otherwise set ŷk+1 = ŷk (null step).

6. (Model updating). Choose a Ŵk+1 ⊃ {W k+1,W k+1
S

}
of the form (25).

7. Increase k by one and goto 2.

The proof of convergence of the algorithm relies heavily on W k+1,W k+1
S ∈ Ŵk+1 (see step 6). In

the case of a null step, the presence of W k+1 in Ŵk+1 ensures that the value of the augmented
model has to increase for y �= yk+1 by (27), whereas W k+1

S guarantees that the value increases in
yk+1 itself. Since the minimal value of the augmented model is at most f(ŷk), one can work out
that a descent step has to occur after finitely many null steps if ŷk is not optimal. This is one of
the main ingredients to the proof of the following theorem.
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Theorem 7.9 ([24]) Let ε = 0. Either ŷk → ȳ ∈ Argminy∈Y f(y), or Argminy∈Y f(y) = ∅ and

‖ŷk‖ → ∞. In both cases f(ŷk) ↓ infy∈Y f .

The minimal choice of the form (25) for Ŵk+1 in step 6 is to set W k+1 = W k+1 and Pk+1 = v,
where v is a normalized eigenvector to λmax(C − ATyk+1). Hence, rk+1 = 1 already ensures
convergence. A more realistic update strategy is given in [18]. It is possible to incorporate bounds
on y in the spectral bundle method without significant loss in efficiency [17].

Another subgradient approach to problems of the form (E) is investigated in [33]. The local
second order method of Overton [34] is combined with a global ε-descent method. The descent

method determines a step direction on basis of f
̂Wδ

(y), where Ŵδ is the face spanned by the

eigenvectors to eigenvalues within some δ > 0 of the maximal eigenvalue (cf. [8, 36]). This choice
guarantees a certain minimal descent in the subsequent line search. It is not yet clear whether
this approach will be efficient in practice, because each iteration requires the computation of a
large fraction of the spectrum of C − ATy and the structure of the system for local quadratic
convergence resembles that of (20).

8 Conclusion and Outlook

Semidefinite programming is rich in theory and in applications. Research is still very active in
the development and study of algorithms but several implementable options are already avail-
able. Demand for efficient solvers is currently highest within control and signal processing, but
interest is also increasing in other areas, such as truss topology and material design, statistics,
and combinatorial optimization. Available primal-dual interior point codes solve problems with
matrix variables of order n ≤ 200 and m ≤ 3000 constraints within reasonable time. For large
scale problems, subgradient methods like the spectral bundle method are, so far, the only choice;
unfortunately, a general purpose code is still missing. For pointers to recent papers and software
on the world wide web we refer to

http://www.zib.de/helmberg/semidef.html
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