

Karin Gatermann

Symbolic solution of polynomial equation systems with symmetry

Veröffentlichungen des Konrad-Zuse-Zentrum für Informationstechnik Berlin Technical Reports

TR 86-1. H. J. Schuster. Tätigkeitsbericht (vergriffen)
TR 87-1. Hubert Busch; Uwe Pöhle; Wolfgang Stech. CRAY-Handbuch. - Einführung in die Benutzung der CRAY.
TR 87-2. Herbert Melenk; Winfried Neun. Portable Standard LISP Implementation for CRAY X-MP Computers. Release of PSL 3.4 for COS.
TR 87-3. Herbert Melenk; Winfried Neun. Portable Common LISP Subset Implementation for CRAY X-MP Computers.
TR 87-4. Herbert Melenk; Winfried Neun. REDUCE Installation Guide for CRAY 1 / X-MP Systems Running COS Version 3.3
TR 87-5. Herbert Melenk; Winfried Neun. REDUCE Users Guide for the CRAY 1 / X-MP Series Running COS. Version 3.3
TR 87-6. Rainer Buhtz; Jens Langendorf; Olaf Paetsch; Danuta Anna Buhtz. ZUGRIFF - Eine vereinheitlichte Datenspezifikation für graphische Darstellungen und ihre graphische Aufbereitung.
TR 87-7. J. Langendorf; O. Paetsch. GRAZIL (Graphical ZIB Language).
TR 88-1. Rainer Buhtz; Danuta Anna Buhtz. TDLG 3.1 - Ein interaktives Programm zur Darstellung dreidimensionaler Modelle auf Rastergraphikgeräten.
TR 88-2. Herbert Melenk; Winfried Neun. REDUCE User's Guide for the CRAY 1 / CRAY X-
MP Series Running UNICOS. Version 3.3.
TR 88-3. Herbert Melenk; Winfried Neun. REDUCE Installation Guide for CRAY 1 / CRAY XMP Systems Running UNICOS. Version 3.3.
TR 88-4. Danuta Anna Buhtz; Jens Langendorf; Olaf Paetsch. GRAZIL-3D. Ein graphisches Anwendungsprogramm zur Darstellung von Kurven- und Funktionsverläufen im räumlichen Koordinatensystem.
TR 88-5. Gerhard Maierhöfer; Georg Skorobohatyj. Parallel-TRAPEX. Ein paralleler, adaptiver Algorithmus zur numerischen Integration ; seine Implementierung für SUPRENUMartige Architekturen mit SUSI.

TR 89-1. CRAY-HANDBUCH. Einführung in die Benutzung der CRAY X-MP unter UNICOS.
TR 89-2. Peter Deuflhard. Numerik von Anfangswertmethoden für gewöhnliche Differentialgleichungen.
TR 89-3. Artur Rudolf Walter. Ein Finite-Element-Verfahren zur numerischen Lösung von Erhaltungsgleichungen.
TR 89-4. Rainer Roitzsch. KASKADE User's Manual.
TR 89-5. Rainer Roitzsch. KASKADE Programmer's Manual.
TR 89-6. Herbert Melenk; Winfried Neun. Implementation of Portable Standard LISP for the SPARC Processor.
TR 89-7. Folkmar A. Bornemann. Adaptive multilevel discretization in time and space for parabolic partial differential equations.
TR 89-8. Gerhard Maierhöfer; Georg Skorobohatyj. Implementierung des parallelen TRAPEX auf Transputern.

TR 90-1. Karin Gatermann. Gruppentheoretische Konstruktion von symmetrischen Kubaturformeln.
TR 90-2. Gerhard Maierhöfer; Georg Skorobohatyj. Implementierung von parallelen Versionen der Gleichungslöser EULEX und EULSIM auf Transputern.

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Heilbronner Strasse 10
1000 Berlin 31
Verantwortlich: Dr. Klaus André
Umschlagsatz und Druck: Rabe KG Buch- und Offsetdruck Berlin

Symbolic solution of polynomial equation systems with symmetry

Karin Gatermann

February 28, 1990

Abstract

Systems of polynomial equations often have symmetry. The Buchberger algorithm which may be used for the solution ignores this symmetry. It is restricted to moderate problems unless factorizing polynomials are found leading to several smaller systems. Therefore two methods are presented which use the symmetry to find factorizing polynomials, decompose the ideal and thus decrease the complexity of the system a lot.

In a first approach projections determine factorizing polynomials as input for the solution process, if the group contains reflections with respect to a hyperplane. Two different ways are described for the symmetric group S_{m} and the dihedral group D_{m}. While for S_{m} subsystems are ignored if they have the same zeros modulo G as another subsystem, for the dihedral group D_{m} polynomials with more than two factors are generated with the help of the theory of linear representations and restrictions are used as well. These decomposition algorithms are independent of the finally used solution technique. We used the REDUCE package Groebner to solve examples from Caprasse, Demaret and Noonburg which illustrate the efficiency of our REDUCE program. A short introduction to the theory of linear representations is given.

In a second approach problems of another class are transformed such that more factors are found during the computation; these transformations are based on the theory of linear representations.

Examples illustrate these approaches. The range of solvable problems is enlarged significantly.

Contents

1 Introduction 3
2 Definitions concerning symmetry 3
3 Efficient check for symmetry 5
4 Splitting the system 6
4.1 Splitting in case of the symmetric group 7
4.2 Splitting in case of the dihedral group 8
4.2.1 Linear representations 8
4.2.2 Subsystems in case of the dihedral group 11
5 Transformation of the problem 13
References 18

1 Introduction

We are concerned with systems of polynomial equations with symmetry. Such problems often arise in physics, chemistry and mathematical models (see [2], [7], [8], [10]). Because one is interested in exact solutions the program Groebner is used which is available in Computer Algebra Systems like REDUCE (see [5]) and which computes Groebner bases with the Buchberger algorithm (for a brief introduction see [1]). This may need a lot of cpu time and storage. But if factorizations of polynomials are used the computation needs less time and storage. That's why even larger systems become solvable. Such a version of Groebner using factorizing polynomials was developed at the Konrad-Zuse-Zentrum (see [6],[7]).
Unfortunately, the classical Buchberger algorithm cannot use the special structure of a system of polynomial equations with symmetry. But the symmetry can be used to find factorizing polynomials. For groups with reflections with respect to a hyperplane factorizing polynomials are generated with projections. Thus only subsystems need to be solved. This reduces the computing time enormously. Two different ways are described for the symmetric group S_{m} and the dihedral group D_{m}. Groups without reflections have to be treated in a different way. The coordinates are transformed based on the theory of linear representations. During the computation of the Groebner basis the transformed problem leads to much more factorizing polynomials than the original problem and thus saves a lot of time.

Some group theoretical facts are given, but more theoretical background may be found in Serre [11] or Stiefel and Fässler [13].
The ideas are coded in a REDUCE program which was used for the calculation of the examples given here.

2 Definitions concerning symmetry

In this section we define systems with symmetry. A typical example is

$$
\begin{align*}
& 1-c x_{1}-x_{1} x_{2}^{2}-x_{1} x_{3}^{2}=0 \\
& 1-c x_{2}-x_{2} x_{1}^{2}-x_{2} x_{3}^{2}=0 \tag{1}\\
& 1-c x_{3}-x_{3} x_{1}^{2}-x_{3} x_{2}^{2}=0
\end{align*}
$$

which is given in Noonburg [8]. c is an independent parameter and x_{1}, x_{2}, x_{3} are the variables. The variables x_{1}, x_{2}, x_{3} may be cyclic rotated or two of them may be
interchanged without changing the system itself. The solution is given in section 4.2.2.

Whenever we are concerned with problems with symmetry there is a group G. In the following G is the dihedral group

$$
D_{m}=\left\{i d, r, r^{2}, \ldots, r^{m-1}, s, s \cdot r, \ldots, s \cdot r^{m-1}\right\}
$$

or S_{m}, the group of permutations of m elements. We are interested in realizations of these groups. However that means an example of a linear representation

$$
\begin{gather*}
\rho: G \rightarrow G L\left(\mathbb{C}^{n}\right) \text { with } \rho\left(t_{1}\right) \rho\left(t_{2}\right)=\rho\left(t_{1} t_{2}\right) \\
\text { and } t_{1} \neq t_{2} \Longrightarrow \rho\left(t_{1}\right) \neq \rho\left(t_{2}\right), \tag{2}
\end{gather*}
$$

which is treated in section 4.2.1. $G L\left(\mathbb{C}^{n}\right)$ is the group of isomorphisms. Because of condition (2), the group $\{\rho(t): t \in G\}$ may be identified with G. The linear mappings $\rho(t)$ may be represented (concerning the canonical basis) by matrices T. This gives a group of matrices T which we identify with G itself. In the system of equations (1) the group of interest is

$$
D_{3}=\left\{I, R, R^{2}, S, S \cdot R, S \cdot R^{2}\right\}
$$

with

$$
R=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad S=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

A tuple $v \in \mathbb{C}^{n}$ is called G-invariant if $T v=v \forall T \in G$. A vector space $V \subset \mathbb{C}^{n}$ is called G-invariant if

$$
T v \in V \quad \forall T \in G \forall v \in V
$$

For example the tuple $v=(1,1,1)^{T}$ is D_{3}-invariant and the vector spaces $\operatorname{span}(v)$ and \mathbb{C}^{3} itself are D_{3}-invariant.
The group G operates also on the ring of polynomials $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. For $p(\underline{x}) \in$ $\mathbb{C}[\underline{x}]$ a polynomial $p(T \underline{x})$ is given for every $T \in G$. This is another example of a linear representation which will be used in sections 4.2 .2 and 5 .

Definition 1 :

A vector space $V=\operatorname{span}\left(p_{1}, \ldots, p_{d}\right) \subset \mathbb{C}[\underline{x}]$ and the corresponding ideal $A=$ $\left(p_{1}, \ldots, p_{d}\right) \subset \mathbb{C}[\underline{x}]$ are called G-invariant if

$$
\begin{array}{ll}
p(T \underline{x}) \in V & \forall T \in G \forall p \in V, \\
p(T \underline{x}) \in A & \forall T \in G \forall p \in A,
\end{array}
$$

respectively.

In general it is hard to verify that an ideal is G-invariant. But obviously if $V=<$ $p_{1}, \ldots, p_{d}>\subset \mathbb{C}[\underline{x}]$ is a G-invariant vector space then the generated corresponding ideal $A=\left(p_{1}, . ., p_{d}\right)$ is G-invariant.
The important fact is that a G-invariant ideal $A=\left(p_{1}, \ldots, p_{d}\right)$ has a G-invariant set of zeros.
Now we are able to define a problem with symmetry. A system of polynomial equations

$$
\begin{array}{ccc}
p_{1}\left(x_{1}, \ldots, x_{n}\right) & = & 0 \\
p_{2}\left(x_{1}, \ldots, x_{n}\right) & = & 0 \\
\vdots & \vdots & \vdots \tag{3}\\
p_{d}\left(x_{1}, \ldots, x_{n}\right) & = & 0
\end{array}
$$

$p_{i} \in \mathbb{C}[\underline{x}], i=1, \ldots, d$ is called G-invariant if $p_{i}, i=1, \ldots, d$ span a G-invariant vector space. The solutions of (3) are the zeros of the G-invariant ideal $A=$ (p_{1}, \ldots, p_{d}) and thus build a G-invariant set. The system (1) for example is D_{3} invariant.

A special case of G-invariant systems are the G-equivariant systems. Let G be the group of matrices $T \in \mathbb{C}^{n, n}$. Let $f: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ with $f_{i} \in \mathbb{C}[\underline{x}], i=1, \ldots, n$ and

$$
f(T \underline{x})=T f(\underline{x}) .
$$

Then the system $f(\underline{x})=0$ is called G-equivariant.

3 Efficient check for symmetry

First we have to make sure that the system of polynomial equations is G-invariant. But the check of a vector space V to be symmetric may be time consuming. Thus the following well-known proposition is useful.

Proposition 2: Let G be a group which is generated by T_{1}, \ldots, T_{ν}. Let $V \subset \mathbb{C}[\underline{x}]$ be a vector space of polynomials and $p_{i}, i=1, \ldots, d$ a basis of V. If

$$
p_{i}\left(T_{j} \underline{x}\right) \in V \quad \forall i=1, \ldots, d \quad \forall j=1, \ldots, \nu
$$

holds, then V is G-invariant.
In table 1 the generators are given for some groups.

G	Generators
S_{m}	the $m-1$ neighboured transpositions $(1,2),(2,3), \ldots,(m-1, m)$ orall $m \cdot(m-1) / 2$ transpositions the transposition $(1,2)$ and the cyclic permutation $(1,2,3 \ldots \mathrm{~m})$ $D_{m}$$\quad$the rotation r and the reflection s

Table 1: Generators of some groups G

4 Splitting the system

The main idea is the following. Because factorizing polynomials in the system of polynomial equations (3) lead to a decomposition of the system into several smaller systems factorizing polynomials in the corresponding ideal are searched systematically. This is done with the help of symmetry and the following wellknown lemma.

Lemma 3: Let $T \in \mathbb{C}^{n, n}$ be a reflection with respect to a hyperplane. Let $p \in \mathbb{C}[\underline{x}]$ be a polynomial with

$$
p(T \underline{x})=-p(\underline{x}) .
$$

then exists $q_{1} \in \mathbb{C}[\underline{x}]$ of degree one and $q_{2} \in \mathbb{C}[\underline{x}]$ with $p=q_{1} \cdot q_{2}$.
Proof: As T is a reflection there exist linear independent vectors $v_{1}, \ldots, v_{n} \in \mathbb{C}^{n}$ with $T v_{i}=v_{i}, i=1, \ldots, n-1$ and $T v_{n}=-v_{n}$.
Thus for $v \in<v_{1}, \ldots, v_{n-1}>$ we have

$$
p(v)=p(T v)=-p(v) \Longrightarrow p(v)=0
$$

Thus either $p \equiv 0$ or p is linear or has a linear factor.

The projection $\Pi_{T}: \mathbb{C}[\underline{x}] \longrightarrow \mathbb{C}[\underline{x}]$

$$
\begin{equation*}
\Pi_{T}(p(\underline{x})):=\frac{1}{2}(p(\underline{x})-p(T \underline{x})) \tag{4}
\end{equation*}
$$

computes polynomials $P:=\Pi_{T}(p)$ with $P(T \underline{x})=-P(\underline{x})$. From Lemma 3 follows that $P \equiv 0$ or P is linear or has a linear factor.

Although Lemma 3 predicts a linear factorization in the domain \mathbb{C} the examples in practice have factorizations in \mathbb{Z}.

4.1 Splitting in case of the symmetric group

Assume a system (3) which is S_{m}-invariant with transpositions corresponding to reflections. A factorizing polynomial $P_{1}=q_{1}^{1} q_{2}^{1} \in A=\left(p_{1}, \ldots, p_{d}\right)$ is computed with the help of the projection corresponding to the transposition $(1,2) \in S_{m}$. Other factorizing polynomials are computed by symmetry:

$$
P_{i}:=t_{i}\left(P_{i-1}\right)=q_{1}^{i} q_{2}^{i}, \quad i=2, \ldots, m-1
$$

where $t_{i} \in S_{m}$ are the $m-2$ remaining neighbouring transpositions. Then

$$
A=\bigcap_{\underline{i}} A
$$

where $A^{\underline{i}}, \underline{i}=\left(i_{1}, \ldots, i_{m-1}\right)$ are 2^{m-1} ideals with the bases

$$
p_{1}, \ldots, p_{d}, q_{i_{1}}^{1}, q_{i_{2}}^{2}, \ldots, q_{i_{m-1}}^{m-1} \quad, i_{j} \in\{1,2\}
$$

Thus the system of polynomial equations is split into 2^{m-1} smaller systems.
If the zeros of A^{i} are known, the zeros of

$$
t\left(A^{\underline{i}}\right)=\left(p_{1}(\underline{x}), \ldots, p_{d}(\underline{x}), q_{i_{1}}^{1}(T \underline{x}), \ldots, q_{i_{m-1}}^{m-1}(T \underline{x})\right)
$$

are known by symmetry as well. This reduces the number of ideals A^{i} which have to be investigated. Such a symmetry check can't be done without a Groebner basis in general and might be time consuming. We implemented the following check: Let

$$
V^{i}:=<q_{i_{1}}^{1}, \ldots, q_{i_{m-1}}^{m-1}>, \quad i_{j} \in\{1,2\}
$$

If we find a transposition $t \in S_{m}$ and a space $V^{\underline{k}}$ with

$$
q_{k_{j}}^{j}(T \underline{x}) \in V^{\underline{i}} \quad j=1, \ldots, m-1
$$

then $t\left(A^{\underline{k}}\right) \subseteq A^{\underline{i}}$ and $A^{\underline{i}}$ is ignored. For the remaining ideals a Groebner basis is computed with factorizing Buchberger algorithm.
Example: Caprasse, Demaret [2] gave the following S_{5}-invariant system:

$$
\begin{gathered}
p_{1}(\underline{x}):=3 x_{1}^{3}-x_{1}\left(3 x_{1} a_{1}+3 a_{1}+3 a_{2}-6\right)+a_{2}-a_{3}=0, \\
p_{2}(\underline{x}):=3 x_{2}^{3}-x_{2}\left(3 x_{2} a_{1}+3 a_{1}+3 a_{2}-6\right)+a_{2}-a_{3}=0, \\
p_{3}(\underline{x}):=3 x_{3}^{3}-x_{3}\left(3 x_{3} a_{1}+3 a_{1}+3 a_{2}-6\right)+a_{2}-a_{3}=0, \\
p_{4}(\underline{x}):=3 x_{4}^{3}-x_{4}\left(3 x_{4} a_{1}+3 a_{1}+3 a_{2}-6\right)+a_{2}-a_{3}=0, \\
p_{5}(\underline{x}):=3 x_{5}^{3}-x_{5}\left(3 x_{5} a_{1}+3 a_{1}+3 a_{2}-6\right)+a_{2}-a_{3}=0, \\
\quad a_{i}:=x_{1}^{i}+x_{2}^{i}+x_{3}^{i}+x_{4}^{i}+x_{5}^{i}, \quad i=1,2,3 .
\end{gathered}
$$

There are 6 subsystems generated which split further during the Groebner computation. There are still Groebner bases left which are equal modulo G (see figure 1). The Groebner bases were computed for generalizations of this problem with $6,7,8$ and 9 variables, which were unsolvable before.

4.2 Splitting in case of the dihedral group

For the dihedral group D_{m} polynomials with more than two factors may be generated with linear representations. First we give a short survey on the theory of linear representations of a group G. The details can be found in [11] and [13].

4.2.1 Linear representations

Definition 4 : Let G be a finite group. A linear representation ϑ is a mapping

$$
\vartheta: G \rightarrow G L(V), \vartheta\left(t_{1}\right) \vartheta\left(t_{2}\right)=\vartheta\left(t_{1} t_{2}\right),
$$

where V is a complex vector space and $G L(V)$ is the group of isomorphisms. The dimension of V is the dimension of ϑ.

An example was already mentioned in section 2 :

$$
\begin{equation*}
\vartheta: G \rightarrow G L(\mathbb{C}[\underline{x}]), \quad \vartheta(t)(p(\underline{x}))=p(T \underline{x}), \tag{5}
\end{equation*}
$$

where $T \in \mathbb{C}^{n, n}$ are the matrices corresponding to a linear representation $\rho: G \rightarrow$ $G L\left(\mathbb{C}^{n}\right)$ with $t_{1} \neq t_{2} \Longrightarrow \rho\left(t_{1}\right) \neq \rho\left(t_{2}\right)$.

```
\(\left\{x_{1}-x_{5}\right.\),
\(932 x_{2}-923 x_{5}^{5}+11835 x_{5}^{4}-32526 x_{5}^{3}+10724 x_{5}^{2}\)
\(+2474 x_{5}-76,932 x_{3}-923 x_{5}^{5}+11835 x_{5}^{4}-32526 x_{5}^{3}+10724 x_{5}^{2}+2474 x_{5}-76\),
\(x_{4}-x_{5}\),
\(\left.13 x_{5}^{6}-172 x_{5}^{5}+528 x_{5}^{4}-356 x_{5}^{3}+36 x_{5}^{2}+8 x_{5}+4\right\}\)
\(\left\{2 x_{1}+5 x_{5}^{2}-6, x_{2}+x_{5}, x_{3}-x_{5}, x_{4}+x_{5}\right.\),
\(\left.5 x_{5}^{4}-10 x_{5}^{2}+8\right\}\)
\(\left\{x_{1}-1, x_{2}, x_{3}, x_{4}, x_{5}\right\}\)
\(\left\{2 x_{1}+5 x_{5}^{2}-6\right.\),
\(\left.x_{2}-x_{5}, x_{3}+x_{5}, x_{4}+x_{5}, 5 x_{5}^{4}-10 x_{5}^{2}+8\right\}\)
\(\left\{2 x_{1}+5 x_{5}^{2}-6\right.\),
\(\left.x_{2}+x_{5}, x_{3}+x_{5}, x_{4}-x_{5}, 5 x_{5}^{4}-10 x_{5}^{2}+8\right\}\)
\(\left\{6 x_{1}+3 x_{5}^{2}-32 x_{5}+14, x_{2}-x_{5}, x_{3}-x_{5}, x_{4}-x_{5}\right.\),
\(\left.9 x_{5}^{4}-120 x_{5}^{3}+358 x_{5}^{2}-224 x_{5}+40\right\}\)
\(\left\{x_{1}, x_{2}-1, x_{3}, x_{4}, x_{5}\right\}\)
\(\left\{x_{1}+x_{5}, x_{2}+x_{5}, x_{3}-x_{5}\right.\),
\(\left.2 x_{4}+5 x_{5}^{2}-6,5 x_{5}^{4}-10 x_{5}^{2}+8\right\}\)
\(\left\{x_{1}+x_{4}, x_{2}+x_{4}, x_{3}-x_{4}\right.\),
\(\left.5 x_{4}^{2}+2 x_{5}-6, x_{5}^{2}-x_{5}+4\right\}\)
\(\left\{x_{1}+x_{5}, x_{2}+x_{5}, 2 x_{3}+5 x_{5}^{2}-6, x_{4}-x_{5}\right.\),
\(\left.5 x_{5}^{4}-10 x_{5}^{2}+8\right\}\),
\(\left\{x_{1}, x_{2}, x_{3}-1, x_{4}, x_{5}\right\}\)
\(\left\{932 x_{1}-923 x_{5}^{5}+11835 x_{5}^{4}-32526 x_{5}^{3}+10724 x_{5}^{2}\right.\)
\(+2474 x_{5}-76\),
\(932 x_{2}-923 x_{5}^{5}+11835 x_{5}^{4}-32526 x_{5}^{3}+10724 x_{5}^{2}+2474 x_{5}-76\),
\(x_{3}-x_{5}, x_{4}-x_{5}\),
\(\left.13 x_{5}^{6}-172 x_{5}^{5}+528 x_{5}^{4}-356 x_{5}^{3}+36 x_{5}^{2}+8 x_{5}+4\right\}\)
\(\left\{x_{1}-x_{5}, x_{2}-x_{5}, x_{3}-x_{5}, x_{4}-x_{5}, x_{5}^{2}-10 x_{5}+3\right\}\)
\(\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}\)
\(\left\{1281 x_{1}-1560 x_{5}^{5}+20067 x_{5}^{4}-55916 x_{5}^{3}+12773 x_{5}^{2}+10350 x_{5}+2346\right.\),
\(1281 x_{2}-1560 x_{5}^{5}+20067 x_{5}^{4}-55916 x_{5}^{3}+12773 x_{5}^{2}+10350 x_{5}+2346\),
\(1281 x_{3}-1560 x_{5}^{5}+20067 x_{5}^{4}-55916 x_{5}^{3}+12773 x_{5}^{2}+10350 x_{5}+2346\),
\(x_{4}-x_{5}\),
\(\left.13 x_{5}^{6}-176 x_{5}^{5}+580 x_{5}^{4}-432 x_{5}^{3}-12 x_{5}^{2}+36 x_{5}+18\right\}\)
\(\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}-1\right\}\)
\(\left\{x_{1}, x_{2}, x_{3}, x_{4}-1, x_{5}\right\}\)
\(\left\{x_{1}-x_{5}, x_{2}-x_{5}, x_{3}-x_{5}, 6 x_{4}+3 x_{5}^{2}-32 x_{5}+14\right.\),
\(\left.9 x_{5}^{4}-120 x_{5}^{3}+358 x_{5}^{2}-224 x_{5}+40\right\}\).
```

Figure 1: Solution of the system from Caprasse, Demaret

The system (1) in section 2 is D_{3}-invariant. For $G=D_{3}$ there are some special polynomials:

$$
\begin{aligned}
& p_{1}(\underline{x}):=x_{1} x_{2} x_{3}, \\
& p_{2}(\underline{x}):=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right),
\end{aligned}
$$

which behave like

$$
\begin{aligned}
& \vartheta(t)\left(p_{1}\right)=p_{1}, \quad \forall t \in D_{3} \text { but } \\
& \vartheta\left(s r^{i}\right)\left(p_{2}\right)=-p_{2}, \quad i=1,2,3
\end{aligned}
$$

for the reflections $s r^{i}$. These are examples for the following definitions.
Let ϑ be a linear representation of a finite group G on a d-dimensional vector space V. A subspace $W_{1} \subseteq V$ is called G-invariant, if $\vartheta(t)(w) \in W_{1}, \forall w \in W_{1}, t \in G$.
There exists always a second G-invariant space W_{2} with $V=W_{1}+W_{2}$.

$$
\vartheta^{W_{1}}: G \rightarrow G L\left(W_{1}\right), \vartheta^{W_{1}}(t)=\vartheta(t)_{\mid W_{1}}
$$

is called a subrepresentation. Of course, two representations may be isomorphic. If the representation ϑ has only the two trivial subrepresentations $\vartheta^{\{0\}}, \vartheta^{V}=\vartheta$ then ϑ and V are called irreducible.

Theorem 5 (see [11],[13]) : For every finite group G, there is a finite number h of nonisomorphic irreducible representations ϑ^{j}. For every linear representation $\vartheta: G \rightarrow G L(V)$ of dimension d there is the so-called canonical decomposition

$$
\begin{equation*}
V=\sum_{j=1}^{h} V^{j} \tag{6}
\end{equation*}
$$

such that the subrepresentations $\vartheta^{V^{j}}, V^{j} \neq\{0\}$ have only irreducible subrepresentations isomorphic to ϑ^{j}. The canonical decomposition is unique but the further decomposition into irreducible spaces is not unique in general.

We are interested in the isotypical components V^{j} of the canonical decomposition. They may be computed by projections

$$
\begin{align*}
& \Pi^{j}: V \rightarrow V^{j}, \quad j=1, \ldots, h, \\
& \Pi^{j}(v)=\frac{n_{j}}{|G|} \sum_{t \in G} \vartheta(t)(v) \psi^{j}\left(t^{-1}\right) . \tag{7}
\end{align*}
$$

n_{j} is the dimension of the corresponding irreducible representation ϑ^{j} and ψ^{j} : $G \rightarrow \mathbb{C}$ are characters. For the usual groups the characters ψ^{j} corresponding to the irreducible representations are known (see for instance [11], [13]).

4.2.2 Subsystems in case of the dihedral group

Now we are able to explain how a system with D_{m}-symmetry may be split into smaller ones. Recall the following linear representation:

$$
\rho: D_{m} \rightarrow G L\left(\mathbb{C}^{n}\right) \quad \rho\left(t_{1}\right) \neq \rho\left(t_{1}\right)
$$

with corresponding matrices R, S, where $S R^{i}, i=1, \ldots, m$ are reflections with respect to a hyperplane. Then

$$
\vartheta: D_{m} \rightarrow G L(\mathbb{C}[\underline{x}]), \vartheta(t)(p(\underline{x}))=p(\rho(t)(\underline{x}))
$$

describes the corresponding group operations on the polynomials.
Let p_{1}, \ldots, p_{d} of the system (3) span a D_{m}-invariant vector space V. Our aim is to find factorizing polynomials in the isotypical components of V using the theory of linear representations. According to Lemma 3 a polynomial p has a linear factor if there is a reflection $S R^{i}$ with $p\left(S R^{i} \underline{x}\right)=-p(\underline{x})$. The most important irreducible representations for D_{m} are the trivial representation

$$
\vartheta^{1}: D_{m} \rightarrow G L\left(\left\langle p_{1}\right\rangle\right), \quad \vartheta^{1}(t)\left(p_{1}\right)=p_{1} \quad \forall t \in D_{m}
$$

and

$$
\begin{array}{ll}
\vartheta^{2}: D_{m} \rightarrow G L\left(\left\langle p_{2}\right\rangle\right), & \vartheta^{2}\left(r^{i}\right)\left(p_{2}\right)=p_{2}, \\
& \vartheta^{2}\left(s r^{i}\right)\left(p_{2}\right)=-p_{2}, i=1, \ldots, m
\end{array}
$$

Thus by Lemma $3 p_{2}$ either is zero or has m or more factors.
V has the canonical decomposition

$$
V=\sum_{j=1}^{h} V^{j}
$$

and thus a decomposition

$$
\begin{equation*}
V=V^{1} \oplus V^{2} \oplus V_{r}, V_{r}=\sum_{j=3}^{h} V^{j} \tag{8}
\end{equation*}
$$

As we have seen polynomials $p_{2} \in V_{2}$ factorizes. There exist factorizing polynomials $p_{r} \in V_{r} \backslash\{0\}$, because any $p \in V_{r}$ with the help of one of the projections Π_{T} in (4) gives a factorizing polynomial. Otherwise with Proposition 2 the $D_{m}-$ invariance of $p \in V_{r}$ is proven and with (8) $p=0$ follows.

The computation of V^{1}, V^{2}, V_{r} in (8) may be done by the projections (7). But we have chosen a better way with

$$
\begin{aligned}
& p_{c}:=\Pi^{c}(p):=\frac{1}{m} \sum_{i=1}^{m} p\left(R^{i} \underline{x}\right), \\
& \Pi^{1}(p(\underline{x})):=\frac{1}{2}\left(p_{c}(\underline{x})+p_{c}(S \underline{x})\right), \\
& \Pi^{2}(p(\underline{x})):=\frac{1}{2}\left(p_{c}(\underline{x})-p_{c}(S \underline{x})\right), \\
& \Pi^{r}(p):=p-\Pi^{1}(p)-\Pi^{2}(p) .
\end{aligned}
$$

Proposition $6: \Pi^{1}, \Pi^{2}, \Pi^{r}$ are projections onto V^{1}, V^{2}, V_{r} respectively.
When a basis of V_{r} is computed by Π_{T} factorizing polynomials are found. The Groebner bases of those ideals A^{i} are computed with the program Groebner in REDUCE. The used version of Groebner uses factorization and has a third parameter, a list for restrictions.
The mathematical idea is the following. Let

$$
\begin{array}{ll}
A=A\left(p_{1}, \ldots, p_{d}\right), & P=q_{1} \cdot q_{2} \in A, \\
A=A_{1} \cap A_{2}, & A_{1}=\left(p_{1}, \ldots, p_{d}, q_{1}\right), \\
& A_{2}=\left(p_{1}, \ldots, p_{d}, q_{2}\right) .
\end{array}
$$

If $A_{1}=A_{2}$, it is nonsense to compute the Groebner basis twice. But $A_{1}=A_{2}$ normally is not obvious. If q_{1} is detected in the computation of the Groebner basis of A_{2} then $A_{1} \subseteq A_{2}$ and the zeros of A_{2} are zeros of A_{1}. So the computation for A_{2} is cancelled. Therefore a new parameter was defined for the operator Groebner in REDUCE.
Example : In [8] there is given a class of systems of polynomial equations with different symmetries. We mentioned already (1). The solution is

$$
\begin{aligned}
& \left\{\left\{C \cdot x_{1}+2 \cdot C \cdot x_{3}+2 \cdot x_{3}^{3}-1, x_{2}-x_{3},\right.\right. \\
& \left.C^{2}+3 \cdot C \cdot x_{3}^{2}+2 \cdot x_{3}^{4}-x_{3}\right\}, \\
& \left\{x_{1}+x_{2}+x_{3},\right. \\
& \left.C+x_{2}^{2}+x_{2} \cdot x_{3}+x_{3}^{2}, C \cdot x_{3}+x_{3}^{3}+1\right\}, \\
& \left\{x_{1}-x_{3},\right. \\
& \left.C \cdot x_{2}+2 \cdot C \cdot x_{3}+2 \cdot x_{3}^{3}-1, C^{2}+3 \cdot C \cdot x_{3}^{2}+2 \cdot x_{3}^{4}-x_{3}\right\}, \\
& \left\{x_{1}-x_{3}, x_{2}-x_{3}, C \cdot x_{3}+2 \cdot x_{3}^{3}-1\right\}, \\
& \left\{-C^{3} \cdot x_{3}-2 \cdot C^{2} \cdot x_{3}^{3}-C^{2}+4 \cdot C \cdot x_{3}^{2}+2 \cdot x_{1}-2 \cdot x_{3},\right. \\
& -C^{3} \cdot x_{3}-2 \cdot C^{2} \cdot \cdot_{3}^{3}-C^{2}+4 \cdot C \cdot x_{3}^{3}+2 \cdot x_{2}-2 \cdot x_{3}, \\
& \left.\left.C^{2} \cdot x_{3}^{2}+2 \cdot C \cdot x_{3}^{4}+2 \cdot C \cdot x_{3}-2 \cdot x_{3}^{3}+1\right\}\right\},
\end{aligned}
$$

which is computed in 64 sec on a SUN4.

5 Transformation of the problem

In [9] a model of a chemical reaction in a brusselator with several cells is introduced which is often treated numerically in bifurcation theory in several versions (see for example [3],[4]). For a brusselator with two cells the polynomials are

$$
\begin{align*}
& p_{1}(\underline{x}, \tau):=2-7 x_{1}+x_{1}^{2} x_{2}+\tau\left(x_{3}-x_{1}\right), \\
& p_{2}(\underline{x}, \tau):=6 x_{1}-x_{1}^{2} x_{2}+10 \tau\left(x_{4}-x_{2}\right), \\
& p_{3}(\underline{x}, \tau):=2-7 x_{3}+x_{3}^{2} x_{4}+\tau\left(x_{1}-x_{3}\right), \tag{9}\\
& p_{4}(\underline{x}, \tau):=6 x_{3}-x_{3}^{2} x_{4}+10 \tau\left(x_{2}-x_{4}\right) .
\end{align*}
$$

The system (9) is S_{2}-equivariant, that means you may interchange x_{1} with x_{3} and x_{2} with x_{4}. But the corresponding matrix $T \in \mathbb{R}^{4,4}$ is not a reflection with respect to a hyperplane. Thus the methods of section 4 don't work.
Our suggestion is a linear transformation of the coordinates and the input polynomials for an arbitrary G-invariant system like (3). Remember the linear representations

$$
\rho: G \longrightarrow G L\left(\mathbb{C}^{n}\right), \quad \rho(t)(v)=T v
$$

with representation matrices $T \in \mathbb{C}^{n, n}$ and

$$
\vartheta: G \longrightarrow G L(\mathbb{C}[\underline{x}]), \quad \vartheta(t)(p(\underline{x}))=p(T \underline{x}) .
$$

The variables x_{1}, \ldots, x_{n} correspond to the canonical basis of \mathbb{C}^{n}. But \mathbb{C}^{n} has a basis which fits better the symmetry. Compute the bases of the isotypical components W^{j} of the canonical decomposition

$$
\mathbb{C}^{n}=\sum W^{j}
$$

This may be done with the projections (7). Put the bases into the columns of $M \in \mathbb{C}^{n, n}$. Thus the matrices $M^{-1} T M$ are blockdiagonal (see [11],[13]). They are the representation matrices of ρ with respect to the basis of \mathbb{C}^{n} consisting of the bases of the isotypical components. If G has only onedimensional irreducible representations the matrices $M^{-1} T M$ are diagonal.
Substitute $\underline{x}=M \underline{y}$ into p_{1}, \ldots, p_{d} of the system (3). The group G operates also on the polynomials $P_{i}(\underline{y}):=p_{i}(M \underline{y}) \in \mathbb{C}[\underline{y}]$ in a way that the linear representation ϑ correspond to a new linear representation $\hat{\vartheta}: G \rightarrow G L(\mathbb{C}[y])$:

$$
\left.\begin{array}{rl}
\hat{\vartheta}(t)(P(\underline{y})) & =\hat{\vartheta}(t)(p(M \underline{y}))
\end{array}\right)=\vartheta(t)(p(\underline{x})) .
$$

The vector space $V=<p_{1}, \ldots, p_{d}>\subseteq \mathbb{C}[\underline{x}], G$-invariant with respect to ϑ, correspond to the space $\hat{V}=<P_{1}, \ldots, P_{d}>\subseteq \mathbb{C}[y]$ which is G-invariant with respect to $\hat{\vartheta}$ and which has a canonical decomposition as well. Compute the bases of the isotypical components with the projections (7).
This is a transformation of the system (3) $p_{i}(\underline{x})=0, i=1, \ldots, d$ to a system $Q_{i}(\underline{y})=0, i=1, \ldots, d$ which have by $\underline{x}=M \underline{y}$ the same solutions.

Theorem 7 : Let G be a finite group with onedimensional irreducible representations only. Let $Q_{i}(\underline{y}), i=1, \ldots, d$ be a system which is invariant with respect to

$$
\hat{\vartheta}: G \rightarrow G L(\mathbb{C}[\underline{y}]), \quad \hat{\vartheta}(t)(P(\underline{y}))=P(T \underline{y})
$$

Assume that $T \in \mathbb{C}^{n, n}$ are the representation matrices of $\rho: G \rightarrow G L\left(\mathbb{C}^{n}\right)$ with respect to a basis which is the union of the bases of the isotypical components $W^{j} \subseteq \mathbb{C}^{n}$. Let the polynomials Q_{i} be elements of the isotypical components of $V^{j} \subseteq \mathbb{C}[\underline{y}]$.
If the system $Q_{i}=0, i=1, \ldots, d$ is treated with the Buchberger algorithm, all intermediate polynomials are elements of the isotypical components V^{j}.

Proof: The assumption that all irreducible representations of G are of dimension one gives that ρ operates on a vector $w^{j} \in W^{j}$ of an isotypical component W^{j} like $\rho(t)\left(w^{j}\right)=\psi^{j}(t) w^{j}$ with numbers $\psi^{j}(t) \in \mathbb{C} \forall t \in G$: Because the matrices T are the representation matrices of ρ with respect to the special basis they are diagonal and thus each monomial is an element of one of the isotypical components V^{i} of $\mathbb{C}[y]$.
If $p \in V^{i}$ and $m \in V^{j}$ then the product $p \cdot m$ is an element of another component V^{k}. The argumentation is done with

$$
\hat{\vartheta}(t)(p \cdot m)=\hat{\vartheta}(t)(p) \cdot \hat{\vartheta}(t)(m)=\psi^{i}(t) \cdot p \cdot \psi^{j}(t) \cdot m=\left(\psi^{j}(t) \cdot \psi^{j}(t)\right) \cdot p \cdot m .
$$

Thus $<p \cdot m>$ ist G-invariant and by Theorem 5 the subrepresentation $\hat{\vartheta}<p m>$ is isomorphic to one of the irreducible representations ϑ^{k}. This meens $p \cdot m \in V^{k}$. If $p_{1} \in V^{i}, p_{2} \in V^{j}$ and m_{1}, m_{2} are monomials such that $p_{1} m_{1}$ and $p_{2} m_{2}$ have the same leading monomial then $m_{1} p_{1}$ and $m_{2} p_{2}$ are elements of the same component V^{k} and thus also $m_{1} p_{1}-m_{2} p_{2} \in V^{k}$. As the input polynomials Q_{i} of the Buchberger algorithm are elements of the isotypical components and the algorithm consists of computations like $p_{1} m_{1}-p_{2} m_{2}$ with cancelling leading term all intermediate polynomials are elements of the isotypical components.

A consequence of Theorem 7 is that for the transformed problem all intermediate polynomials are sparse. An intermediate polynomial is a linear combination of monomials in one of the components V^{i}. Monomials of components different from V^{i} do not appear.
Because the polynomials are homogenous in the isotypical components W^{j} except W^{1} which contains the G-invariant polynomials, monomial factors are found during the Groebner computation.
Example: For the S_{2}-invariant system (9) we choose

$$
M=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right)
$$

The polynomials are either even or odd in y_{3}, y_{4}. The Groebner basis is received in 2 sec on a SUN4:

```
\(\left\{\left\{y_{4}, y_{3}, y_{2}-3, y_{1}-2, \tau\right\}\right.\),
\(\left\{y_{4}, y_{3}, y_{2}-3, y_{1}-2\right\}\),
\(\left\{-100 \cdot y_{2}^{2} \cdot y_{3} \cdot \tau+50 \cdot y_{2} \cdot y_{3} \cdot \tau^{2}\right.\)
\(+215 \cdot y_{2} \cdot y_{3} \cdot \tau+20 \cdot y_{2} \cdot y_{3}-20 \cdot y_{3} \cdot \tau^{2}-54 \cdot y_{3} \cdot \tau-22 \cdot y_{3}+20 \cdot y_{4}\),
\(-400 \cdot y_{2}^{2} \cdot \tau+5 \cdot y_{2} \cdot y_{3}^{2}+200 \cdot y_{2} \cdot \tau^{2}\)
\(+860 \cdot y_{2} \cdot \tau+20 \cdot y_{2}-80 \cdot \tau^{2}-176 \cdot \tau-8\),
\(-80 \cdot y_{2} \cdot \tau+2 \cdot y_{3}^{2} \cdot \tau+y_{3}^{2}+40 \cdot \tau^{2}+148 \cdot \tau+4\),
\(100 \cdot y_{2}^{2} \cdot \tau^{2}-50 \cdot y_{2} \cdot \tau^{3}-215 \cdot y_{2} \cdot \tau^{2}-20 \cdot y_{2} \cdot \tau+20 \cdot \tau^{3}+54 \cdot \tau^{2}+24 \cdot \tau+1\),
\(\left.\left.y_{1}-2\right\}\right\}\)
```

The advantage of the transformation is that the system split into subsystems during the computation which saves time. We computed the basis of the brusselator with 3 cells in a linear array as well. This is even for numerical algorithm not an easy problem.

Example : Speer [12] gave the following system of polynomial equations:

$$
\begin{aligned}
p_{1}(\underline{x}) & :=4 \cdot \beta \cdot\left(n+2 \cdot a_{1}-8 \cdot x_{1}\right) \cdot\left(a_{2}-a_{3}\right)-x_{2} \cdot x_{3} \cdot x_{4}+x_{2}+x_{4}=0 \\
p_{2}(\underline{x}) & :=4 \cdot \beta \cdot\left(n+2 \cdot a_{1}-8 \cdot x_{2}\right) \cdot\left(a_{2}-a_{3}\right)-x_{1} \cdot x_{3} \cdot x_{4}+x_{1}+x_{3}=0 \\
p_{3}(\underline{x}) & :=4 \cdot \beta \cdot\left(n+2 \cdot a_{1}-8 \cdot x_{3}\right) \cdot\left(a_{2}-a_{3}\right)-x_{2} \cdot x_{1} \cdot x_{4}+x_{2}+x_{4}=0 \\
p_{4}(\underline{x}) & :=4 \cdot \beta \cdot\left(n+2 \cdot a_{1}-8 \cdot x_{4}\right) \cdot\left(a_{2}-a_{3}\right)-x_{1} \cdot x_{3} \cdot x_{2}+x_{1}+x_{3}=0 \\
a_{1} & :=x_{1}+x_{2}+x_{3}+x_{4} \\
a_{2} & :=x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} \\
a_{3} & :=x_{1} \cdot x_{2}+x_{2} \cdot x_{3}+x_{3} \cdot x_{4}+x_{4} \cdot x_{1}
\end{aligned}
$$

It is invariant with respect to the Kleinian group consisting of

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}, x_{4}\right) \longrightarrow\left(x_{3}, x_{4}, x_{1}, x_{2}\right) \quad\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \longrightarrow\left(x_{4}, x_{3}, x_{2}, x_{1}\right) \\
& \left(x_{1}, x_{2}, x_{3}, x_{4}\right) \longrightarrow\left(x_{2}, x_{1}, x_{4}, x_{3}\right)
\end{aligned}
$$

and the identity. For the transformation we choose

$$
M=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1
\end{array}\right)
$$

During the computation of the Groebner bases with respect to the ordering revgradlex factors are detected. Then each Groebner basis is the input of a computation with the ordering lex (for explaination of the orderings see [6]).
The final solution is given in figure 2.
Acknowledgement : I like to thank Prof. H. M. Möller who draw my attention to this subject and H. Melenk, W. Neun for the discussions about this subject and Prof. P. Deuflhard for encouraging for this research.

```
\(\left\{\left\{y_{4}, y_{2}+y_{3}, y_{1}\right\}\right.\),
\(\left\{-1400 \cdot N^{2} \cdot y_{1} \cdot \beta-768 \cdot N^{2} \cdot y_{4} \cdot \beta+16512 \cdot N \cdot y_{1}^{2} \cdot \beta-12288 \cdot N \cdot \beta\right.\)
\(+79 \cdot N-32256 \cdot y_{1}^{3} \cdot \beta+3584 \cdot y_{1} \cdot \beta-952 \cdot y_{1}+75264 \cdot y_{4} \cdot \beta-784 \cdot y_{4}\),
\(y_{2}+y_{3}\),
\(616 \cdot N^{3} \cdot y_{1} \cdot \beta^{2}-9600 \cdot N^{2} \cdot y_{1}^{2} \cdot \beta^{2}-6144 \cdot N^{2} \cdot y_{2}^{2} \cdot \beta^{2}+6144 \cdot N^{2} \cdot \beta^{2}\)
\(-29 \cdot N^{2} \cdot \beta+23040 \cdot N \cdot y_{1}^{3} \cdot \beta^{2}+35072 \cdot N \cdot y_{1} \cdot \beta^{2}+288 \cdot N \cdot y_{1} \cdot \beta\)
\(-215040 \cdot y_{1}^{2} \cdot \beta^{2}+2240 \cdot y_{1}^{2} \cdot \beta+602112 \cdot y_{2}^{2} \cdot \beta^{2}-6272 \cdot y_{2}^{2} \cdot \beta+258048 \cdot \beta^{2}-5376 \cdot \beta+28\),
\(24 \cdot N^{3} \cdot y_{1} \cdot \beta^{2}-1216 \cdot N^{2} \cdot y_{1}^{2} \cdot \beta^{2}-3 \cdot N^{2} \cdot \beta+16896 \cdot N \cdot y_{1}^{3} \cdot \beta^{2}\)
\(-24576 \cdot N \cdot y_{1} \cdot \beta^{2}+144 \cdot N \cdot y_{1} \cdot \beta-36864 \cdot y_{1}^{4} \cdot \beta^{2}+65536 \cdot y_{1}^{2} \cdot \beta^{2}\)
\(\left.-1728 \cdot y_{1}^{2} \cdot \beta-73728 \cdot \beta^{2}+1536 \cdot \beta-8\right\}\),
\(\left\{y_{4}, y_{3}, y_{2}, y_{1}\right\}\),
\(\left\{y_{4}, y_{3}, y_{2},-4 \cdot N \cdot y_{1}^{3} \cdot \beta+16 \cdot N \cdot y_{1} \cdot \beta+y_{1}^{2}-2\right\}\),
\(\left\{y_{4}, y_{3}, y_{2},-4 \cdot N \cdot y_{1}^{3} \cdot \beta+\beta+N \cdot N^{2} \cdot N^{2} \cdot \beta+2 \cdot N^{2}-4096 \cdot y_{4}^{4} \cdot \beta-16384 \cdot y_{4}^{2} \cdot \beta\right.\)
\(-128 \cdot y_{4}^{2}-256\),
\(y_{3}, y_{2}\),
\(\left.-N+8 \cdot y_{1}\right\}\),
\(\left\{y_{4},-y_{2}+y_{3}, y_{1}\right\}\),
\(\left\{1400 \cdot N^{2} \cdot y_{1} \cdot \beta-768 \cdot N^{2} \cdot y_{4} \cdot \beta-16512 \cdot N \cdot y_{1}^{2} \cdot \beta+12288 \cdot N \cdot \beta\right.\)
\(-79 \cdot N+32256 \cdot y_{1}^{3} \cdot \beta-3584 \cdot y_{1} \cdot \beta+952 \cdot y_{1}+75264 \cdot y_{4} \cdot \beta-784 \cdot y_{4}\),
\(-y_{2}+y_{3}\),
\(-616 \cdot N^{3} \cdot y_{1} \cdot \beta^{2}+9600 \cdot N^{2} \cdot y_{1}^{2} \cdot \beta^{2}+6144 \cdot N^{2} \cdot y_{2}^{2} \cdot \beta^{2}-6144 \cdot N^{2} \cdot \beta^{2}\)
\(+29 \cdot N^{2} \cdot \beta-23040 \cdot N \cdot y_{1}^{3} \cdot \beta^{2}-35072 \cdot N \cdot y_{1} \cdot \beta^{2}-288 \cdot N \cdot y_{1} \cdot \beta\)
\(+215040 \cdot y_{1}^{2} \cdot \beta^{2}-2240 \cdot y_{1}^{2} \cdot \beta-602112 \cdot y_{2}^{2} \cdot \beta^{2}+6272 \cdot y_{2}^{2} \cdot \beta-258048 \cdot \beta^{2}+5376 \cdot \beta-28\),
\(24 \cdot N^{3} \cdot y_{1} \cdot \beta^{2}-1216 \cdot N^{2} \cdot y_{1}^{2} \cdot \beta^{2}-3 \cdot N^{2} \cdot \beta+16896 \cdot N \cdot y_{1}^{3} \cdot \beta^{2}\)
\(-24576 \cdot N \cdot y_{1} \cdot \beta^{2}+144 \cdot N \cdot y_{1} \cdot \beta-36864 \cdot y_{1}^{4} \cdot \beta^{2}+65536 \cdot y_{1}^{2} \cdot \beta^{2}\)
\(\left.-1728 \cdot y_{1}^{2} \cdot \beta-73728 \cdot \beta^{2}+1536 \cdot \beta-8\right\}\),
\(\left\{y_{4}, y_{3}, y_{2}, y_{1}\right\}\),
\(\left\{y_{4}, y_{3}, y_{2},-4 \cdot N \cdot y_{1}^{3} \cdot \beta+16 \cdot N \cdot y_{1} \cdot \beta+y_{1}^{2}-2\right\}\),
\(\left\{y_{4}, y_{3}, y_{2}, y_{1}\right\}\),
\(\left\{y_{4}, 8 \cdot N \cdot y_{1} \cdot \beta-32 \cdot y_{1}^{2} \cdot \beta-32 \cdot y_{3}^{2} \cdot \beta-1\right.\),
\(y_{2}\),
\(\left.8 \cdot N^{2} \cdot y_{1} \cdot \beta-128 \cdot N \cdot y_{1}^{2} \cdot \beta-N+512 \cdot y_{1}^{3} \cdot \beta-512 \cdot y_{1} \cdot \beta+8 \cdot y_{1}\right\}\),
\(\left\{y_{4}, y_{3}, y_{2}, y_{1}\right\}\),
\(\left\{y_{4}, y_{3}\right.\),
\(8 \cdot N \cdot y_{1} \cdot \beta-32 \cdot y_{1}^{2} \cdot \beta-32 \cdot y_{2}^{2} \cdot \beta-1\),
\(\left.8 \cdot N^{2} \cdot y_{1} \cdot \beta-128 \cdot N \cdot y_{1}^{2} \cdot \beta-N+512 \cdot y_{1}^{3} \cdot \beta-512 \cdot y_{1} \cdot \beta+8 \cdot y_{1}\right\}\),
\(\left\{-N \cdot y_{4}+24 \cdot y_{2} \cdot y_{3}\right.\),
\(-4 \cdot N^{2} \cdot \beta+1152 \cdot y_{2}^{2} \cdot \beta+1152 \cdot y_{3}^{2} \cdot \beta-864 \cdot \beta+9\),
\(2 \cdot N^{4} \cdot \beta-2304 \cdot N^{2} \cdot y_{2}^{2} \cdot \beta-288 \cdot N^{2} \cdot \beta-9 \cdot N^{2}+663552 \cdot y_{2}^{4} \cdot \beta\)
\(-497664 \cdot y_{2}^{2} \cdot \beta+5184 \cdot y_{2}^{2}\),
\(\left.\left.-N+24 \cdot y_{1}\right\}\right\}\)
```

Figure 2: Solution of the system from Speer

References

[1] B. Buchberger: Groebner-basis: an Algorithmic Method in Polynomial Ideal Theory. In: Multidimensional Systems Theory (ed.: N. K. Bose), D. Reidel Publishing Company, Dordrecht, pp. 184-232 (1985).
[2] H. Caprasse, J. Demaret : private communication.
[3] M. Dellnitz, B. Werner: Computational Methods for Bifurcation Problems with Symmetries - with special Attention to Steady State and Hopf Bifurcation Points. Hamburger Beiträge zur Angewandten Mathematik, Reihe A, Preprint 15 (1988).
[4] P. Deuflhard, B. Fiedler, P. Kunkel: Efficient Numerical Pathfollowing beyond Critical Points. SIAM J. Numer. Anal. 24, pp. 912-927 (1987).
[5] A. C. Hearn: REDUCE User's Manual, Version 3.3. The Rand Corporation, Santa Monica (1987).
[6] H. Melenk, H. M. Möller, W. Neun: GROEBNER A Package for Calculating Groebner Bases. (1990).
[7] H. Melenk, H. M. Moeller, W. Neun: Symbolic Solution of Large Stationary Chemical Kinetics Problems. Impact of Computing in Science and Engineering 1, pp. 138-167 (1989).
[8] V. W. Noonburg: A Neural Network Modeled by an Adaptive Lotka-Volterra System. accepted for publication in SIAM J. Appl. Math. (1988).
[9] I. Prigogine, R. Lefever: Symmetry breaking Instabilities in Dissipative Systems II. J. Chem. Phys. 48, pp. 1695-1701 (1968).
[10] K. Rimey: Problem Section (Rotating Fluids): A System of Polynomial Equations and a Solution by an Unusual Method. ACM SIGSAM Bulletin 18(1), pp. 30-32 (1984).
[11] J.-P. Serre: Linear Representations of Finite Groups. Springer-Verlag, New York (1977).
[12] E. R. Speer: private communication.
[13] E. Stiefel, A. Fässler: Gruppentheoretische Methoden und ihre Anwendung. B. G. Teubner, Stuttgart (1979).

Veröffentlichungen des Konrad-Zuse-Zentrum für Informationstechnik Berlin Preprints

SC 86-1. P. Deuflhard; U. Nowak. Efficient Numerical Simulation and Identification of Large Chemical Reaction Systems. (vergriffen) In: Ber. Bunsenges. Phys. Chem., vol. 90, 1986, 940-946
SC 86-2. H. Melenk; W. Neun. Portable Standard LISP for CRAY X-MP Computers.
SC 87-1. J. Anderson; W. Galway; R. Kessler; H. Melenk; W. Neun. The Implementation and Optimization of Portable Standard LISP for the CRAY.
SC 87-2. Randolph E. Bank; Todd F. Dupont; Harry Yserentant. The Hierarchical Basis Multigrid Method. (vergriffen) In: Numerische Mathematik, 52, 1988, 427-458.
SC 87-3. Peter Deufihard. Uniqueness Theorems for Stiff ODE Initial Value Problems.
SC 87-4. Rainer Buhtz. CGM-Concepts and their Realizations.
SC 87-5. P. Deuflhard. A Note on Extrapolation Methods for Second Order ODE Systems.
SC 87-6. Harry Yserentant. Preconditioning Indefinite Discretization Matrices.
SC 88-1. Winfried Neun; Herbert Melenk. Implementation of the LISP-Arbitrary Precision Arithmetic for a Vector Processor.
SC 88-2. H. Melenk; H. M. Möller; W. Neun. On Gröbner Bases Computation on a Supercomputer Using REDUCE. (vergriffen)
SC 88-3. J. C. Alexander; B. Fiedler. Global Decoupling of Coupled Symmetric Oscillators.
SC 88-4. Herbert Melenk; Winfried Neun. Parallel Polynomial Operations in the Buchberger Algorithm.
SC 88-5. P. Deufihard; P. Leinen; H. Yserentant. Concepts of an Adaptive Hierarchical Finite Element Codo.
SC 88-6. P. Deuthard; M. Wulkow. Computational Treatment of Polyreaction Kinetics by Orthogonal Polynomials of a Discrete Variable. (vergriffen)
SC 88-7. H. Melenk; H. M. Möller; W. Neun. Symbolic Solution of Large Stationary Chemical Kinetics Problems. I
SC 88-8. Ronald H. W. Hoppe; Ralf Kornhuber. Mult-Grid Solution of Two Coupled Stefan Equations Arising in Induction Heating of Large Steel Slabs.
SC 88-9. Ralf Kornhuber; Rainer Roitzsch. Adaptive Finite-Element-Methoden für konvektionsdominierte Randwertprobleme bei partiellen Differentialgleichungen.
SC 88-10. S -N. Chow; B. Deng; B. Fiedler. Homoclinic Bifurcation at Resonant Eigenvalues.
SC 89-1. Hongyuan Zha. A Numerical Algorithm for Computing the Restricted Singular Value Decomposition of Matrix Triplets.
SC 89-2. Hongyuan Zha. Restricted Singular Value Decomposition of Matrix Triplets.
SC 89-3. Wu Huamo. On the Possible Accuracy of TVD Schemes.
SC 89-4. H. Michael Moller. Multivariate Rational Interpolation: Reconstruction of Rational Functions.
SC 89-5. Ralf Kornhuber; Ralner Roitzsch. On Adaptive Grid Refinement in the Presence of Internal or Boundary Layers.
SC 89-6. Wu Huamo; Yang Shuli. MmB-A New Class of Accurate High Resolution Schemes for Conservation Laws in Two Dimensions.
SC 89-7. U. Budde; M. Wulkow. Computation of Molecular Weight Distributions for Free Radical Polymerization Systems.
SC 89-8. Gerhard Maierhöfer. Ein paralleler adaptiver Algorithmus für die numerische Integration. SC 89-9. Harry Yserentant. Two Preconditioners Based on the Multi-Level Splitting of Finite Element Spaces.
SC 89-10. Ronald H. W. Hoppe. Numerical Solution of Multicomponent Alloy Solidification by Multi-Grid Techniques.

SC 90-1. M. Wulkow; P. Deufihard. Towards an Efficient Computational Treatment of Heterogeneous Polymer Reactions.
SC 90-2. Peter Deufihard. Global Inexact Newton Methods for Very Large Scale Nonlinear Problems.
SC 90-3. Karin Gatermann. Symbolic solution of polynomial equation systems with symmetry.

