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Symbolic solution of polynomial equation 

systems with symmetry -

Karin Gatermann 

February 28, 1990 

A b s t r a c t 

Systems of polynomial equations often have symmetry. The Buchberger 
algorithm which may be used for the solution ignores this symmetry. It is 
restricted to moderate problems unless factorizing polynomials are found 
leading to several smaller systems. Therefore two methods are presented 
which use the symmetry to find factorizing polynomials, decompose the 
ideal and thus decrease the complexity of the system a lot. 

In a first approach projections determine factorizing polynomials as input 
for the solution process, if the group contains reflections with respect to 
a hyperplane. Two different ways are described for the symmetric group 
Sm and the dihedral group Dm- While for Sm subsystems are ignored if 
they have the same zeros modulo G as another subsystem, for the dihedral 
group Dm polynomials with more than two factors are generated with the 
help of the theory of linear representations and restrictions are used as well. 
These decomposition algorithms are independent of the finally used solution 
technique. We used the REDUCE package Groebner to solve examples 
from CAPRASSE, D E M A R E T and NOONBURG which illustrate the efficiency 
of our REDUCE program. A short introduction to the theory of linear 
representations is given. 

In a second approach problems of another class are transformed such 
that more factors are found during the computation; these transformations 
are based on the theory of linear representations. 

Examples illustrate these approaches. The range of solvable problems is 
enlarged significantly. 
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1 Introduction 

We are concerned with systems of polynomial equations with symmetry. Such 
problems often arise in physics, chemistry and mathematical models (see [2], [7], 
[8], [10]). Because one is interested in exact solutions the program Groebner is used 
which is available in Computer Algebra Systems like REDUCE (see [5]) and which 
computes Groebner bases with the Buchberger algorithm (for a brief introduction 
see [1]). This may need a lot of cpu time and storage. But if factorizations of 
polynomials are used the computation needs less time and storage. That's why 
even larger systems become solvable. Such a version of Groebner using factorizing 
polynomials was developed at the Konrad-Zuse-Zentrum (see [6],[7]). 

Unfortunately, the classical Buchberger algorithm cannot use the special structure 
of a system of polynomial equations with symmetry. But the symmetry can be 
used to find factorizing polynomials. For groups with reflections with respect 
to a hyperplane factorizing polynomials are generated with projections. Thus 
only subsystems need to be solved. This reduces the computing time enormously. 
Two different ways are described for the symmetric group Sm and the dihedral 
group Dm. Groups without reflections have to be treated in a different way. The 
coordinates are transformed based on the theory of linear representations. During 
the computation of the Groebner basis the transformed problem leads to much 
more factorizing polynomials than the original problem and thus saves a lot of 
time. 

Some group theoretical facts are given, but more theoretical background may be 
found in SERRE [11] or STIEFEL and FÄSSLER [13]. 

The ideas are coded in a REDUCE program which was used for the calculation of 
the examples given here. 

2 Definitions concerning symmetry 

In this section we define systems with symmetry. A typical example is 

1 — CX\ — X\x\ — X\x\ = 0 

1 — cx2 — x2x\ — x2x\ = 0 (1) 

1 — C#3 — X$XX — I3X2 = 0 

which is given in NOONBURG [8]. c is an independent parameter and Xi,x2,X3 are 
the variables. The variables X\,x2, x3 may be cyclic rotated or two of them may be 
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interchanged without changing the system itself. The solution is given in section 
4.2.2. 

Whenever we are concerned with problems with symmetry there is a group G. In 
the following G is the dihedral group 

Dm = {id,r,r2,...,rm-\s,s-r,...,s-rm-1} 

or Sm, the group of permutations of 771 elements. We are interested in realizations 
of these groups. However that means an example of a linear representation 

p : G -> GL{<Cn) with p(ti)p{t2) = p{hh) 

and' *i 7Ä t2 = • /»(tx) ^ (2) 

which is treated in section 4.2.1. GL(€n) is the group of isomorphisms. Because 
of condition (2), the group {p(t) : t 6 G} may be identified with G. The linear 
mappings p(t) may be represented (concerning the canonical basis) by matrices T. 
This gives a group of matrices T which we identify with G itself. In the system of 
equations (1) the group of interest is 

D3 = {I,R,R\S,S-R,S-R2} 

with 
0 1 0 \ / 0 1 0 

R= I 0 0 1 I , S = 
1 0 0 

1 0 0 
V 0 0 1 

A tuple v € C n is called G-invariant if Tv = v VT € G. A vector space V C € n 

is called G-invariant if 

TveV VTeGVveV. 
For example the tuple v = (1,1,1)T is J?3-invariant and the vector spaces span(u) 
and C 3 itself are D3-invariant. 

The group G operates also on the ring of polynomials C [ x i , . . . , xn]. For p(x) € 
<D[s] a polynomial p(Tx) is given for every T eG. This is another example of a 
linear representation which will be used in sections 4.2.2 and 5. 

Definition 1 : 
A vector space V = span(pi,.. .,pd) C C[xJ and the corresponding ideal A = 
(Pi? • • • > Pd) C C[xj are called G-invariant if 

P(Tx)ev vreGVpev, 
P(Tx)eA V T € G V p € A , 

respectively. 
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In general it is hard to verify that an ideal is G-invariant. But obviously if V = < 
Pi? • • • 5 Pd > C C [x] is a G-invariant vector space then the generated corresponding 
ideal A = (pi,..,Pd) is G-invariant. 

The important fact is that a G-invariant ideal A = (pi,... ,pd) has a G-invariant 
set of zeros. 

Now we are able to define a problem with symmetry. A system of polynomial 
equations 

P i (x i , . . . , x„ ) = 0 
ft(x!,...,xB) = 0 

: : ^ ' 

Pd(xu...,xn) = 0 

Pi € € [x], i = 1 , . . . , d is called G-invariant if p,-, i = 1 , . . . , d span a G-invariant 
vector space. The solutions of (3) are the zeros of the G-invariant ideal A = 
(pi,.. • -,Pd) and thus build a G-invariant set. The system (1) for example is Z)3-
in variant. 

A special case of G-invariant systems are the G-equivariant systems. Let G be 
the group of matrices T € € n , n . Let / : <Dn —> C n with /,• € C[xj,i = l , . . . , n 
and 

f(Tx) = T/(x). 

Then the system /(x.) = 0 is called G-equivariant. 

3 Efficient check for symmetry 

First we have to make sure that the system of polynomial equations is G-invariant. 
But the check of a vector space V to be symmetric may be time consuming. Thus 
the following well-known proposition is useful. 

Propos i t ion 2 : Let G be a group which is generated byT\,...,Tv. Let V c C [ i ] 
be a vector space of polynomials and p^ i = 1 , . . . , d a basis ofV. If 

PiiTjXjeV Vi = l,...,d Vj = l,...,v 

holds, then V is G-invariant. 

In table 1 the generators are given for some groups. 
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G Generators 

'-'m 

the m — 1 neighboured transpositions 
( l , 2 ) , ( 2 , 3 ) , . . . , ( m - l , m ) 

or 
all m • (m — l ) /2 transpositions 

or 
the transposition (1,2) and 
the cyclic permutation (1,2,3... m) 

Dm 
the rotation r and 
the reflection s 

Table 1: Generators of some groups G 

4 Splitting the system 

The main idea is the following. Because factorizing polynomials in the system 
of polynomial equations (3) lead to a decomposition of the system into several 
smaller systems factorizing polynomials in the corresponding ideal are searched 
systematically. This is done with the help of symmetry and the following well-
known lemma. 

Lemma 3 : Let T € Cn 'n be a reflection with respect to a hyperplane. Letp € C[x] 
be a polynomial with 

p(Tx) = -p(x). 

then exists qx 6 C[z] of degree one and q2 € €[x] with p = qi • q2. 

Proof : As T is a reflection there exist linear independent vectors vx,...,vn £ <Dn 

with Tvi = Vi, i = 1 , . . . , n — 1 and Tvn = —vn. 

Thus for u € < v i , . . . ,.un-i > we have 

p(v) — p(Tv) = —p(v) = ^ p(v) = 0. 

Thus either p = 0 or p is linear or has a linear factor. I 
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The projection ILT : C[x] — • <C\x\ 

UT(p(x)) := \(p(x) - p(Tx)) (4) 

computes polynomials P := U.x(p) with P(Tx) = —P(x). From Lemma 3 follows 
that P = 0 or P is linear or has a linear factor. 

Although Lemma 3 predicts a linear factorization in the domain C the examples 
in practice have factorizations in TL. 

4.1 Splitting in case of the symmetric group 

Assume a system (3) which is 5m-invariant with transpositions corresponding to 
reflections. A factorizing polynomial Pi = q\q\ € A = (pi,...,p<*) is computed 
with the help of the projection corresponding to the transposition (1,2) € Sm. 
Other factorizing polynomials are computed by symmetry: 

Pi := tiiPi-!) = q{qi, i = 2 , . . . , m - 1 

where U G Sm are the m — 2 remaining neighbouring transpositions. Then 

A J} M 

where Al,i = ( i 1 } . . . , im_i) are 2 m _ 1 ideals with the bases 

Pi, • • • > Pd, q\, q*2, • • •, ?£"} , «i € {1,2} 

Thus the system of polynomial equations is split into 2 m _ 1 smaller systems. 

If the zeros of A- are known, the zeros of 

< ( ^ ) = ( P l (x ) , . . . , p d (x ) , qUTx),...,qZZ\(Tx)) 

are known by symmetry as well. This reduces the number of ideals A1 which have 
to be investigated. Such a symmetry check can't be done without a Groebner basis 
in general and might be time consuming. We implemented the following check: 
Let 

V * : = < 9 i , . . . , C : I > . «> € {1,2}. 

If we find a transposition t €' Sm and a space V- with 

qUTxJeV*- j = l,...,m-l 
J i 
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then t(A-) C A- and A- is ignored. For the remaining ideals a Groebner basis is 
computed with factorizing Buchberger algorithm. 

Example : CAPRASSE, DEMARET [2] gave the following S^-invariant system: 

Pi(x) '•— 3xf — x ^ X i a i -f 3ai + 3a2 — 6) + a2 — a3 = 0, 
P2(x) '•= 3xf - x2(3x2Oi + 3ax + 3a2 — 6) + a2 — a3 = 0, 
p3(x) := 3x3 - 0:3(3x30! -I- 3ax + 3a2 - 6) + a2 - a3 = 0, 
P4(x.) := 3X4 — x4(3x4ai + 3ai + 3a2 — 6) + a2 — a3 = 0, 
Ps(sL) := 3xf - x5(3x5ai -f- 3ax + 3a2 - 6) + a2 - a3 = 0, 

Qj t — Xj "f* X2 "T X3 *•{- X4 -j~ Xg , t ^ 1 , Z, o . 

There are 6 subsystems generated which split further during the Groebner com
putation. There are still Groebner bases left which are equal modulo G (see figure 
1). The Groebner bases were computed for generalizations of this problem with 
6,7,8 and 9 variables, which were unsolvable before. 

4.2 Splitting in case of the dihedral group 

For the dihedral group Dm polynomials with more than two factors may be gen
erated with linear representations. First we give a short survey on the theory of 
linear representations of a group G. The details can be found in [11] and [13]. 

4.2.1 Linear representations 

Definition 4 : Let G be a finite group. A linear representation 1? is a mapping 

ti:G^ GL(V) , i?(*i W 2 ) = mt2) , 

where V is a complex vector space and GL(V) is the group of isomorphisms. The 
dimension ofV is the dimension ofd. 

An example was already mentioned in section 2: 

ti:G->GL(C[x\), m{p(z)) = P(T3L) , (5) 

where T € Cn 'n are the matrices corresponding to a linear representation p : G —> 
GL(€n) with h ^t2=^ p(h) ^ p(t2). 
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{Xi — X5, 
932x2 - 923x| + 11835x^ - 32526x1 + 10724x1 
+2474x5 - 76,932x3 - 923x^ + 11835x5* - 32526x| + 10724x1 + 2474x5 - 76, 
x4 -x 5, 
13xf - 172x1; + 528x| - 356xf + 36x1 + 8x5 + 4} 
{2xi + 5xg - 6,x2 + 2:5,2:3- x5,x4 + x5, 
5x£ - 10x1 + 8} 
{Xi - 1,X2,X3,X4,X5} 
{2xx + bx\ - 6, 
X2 -X5,X3 + X5,X4 + X5,5X5 - 10Xg + 8} 
{2xj + 5x2

5 - 6, 
X2 + X5, X3 + X5, X4 - X5, 5Xg - lOXg + 8} 

{6xi + 3x1 - 32x5 + 14,x2 - x5,x3-x5,x4 - x5, 
9xf - 120x1 + 358x1 - 224x5 + 40} 
{xi,X2 - 1,X3,X4,X5} 
{xi + x5,x2 + 2:5,2:3- x5, 
2x4 + 5x1 - 6,5x£ - 10x1 + 8} 
{Xi + X4,X2 + X4,X3 - X4, 
5x^ + 2x5-6,xl-X5 + 4} 
{xi + X5,X2 + X5,2X3 + 5Xg — 6,X4 — X5, 
5xj - 10x1 + 8}, 
{xi,x2,x3- l,x4,x5} 
{932xi - 923x| + 11835xt - 32526xf + 10724x1 
+2474x5 - 76, 
932x2 - 923x^ + 11835x5* - 32526x1 + 10724x1 + 2474x5 - 76, 
X3 — X5,X4 — X5, 
13xf - 172x5

5 + 528X5
1 - 356xf + 36x1 + 82:5 + 4} 

{xi — X5,X2 — 2:55X3 — X5,X4 — X5,xl — IOX5 + 3} 
{xi ,X2,X3,X 4 ,X 5} 

{I281xi - 1560x5* + 20067x^ - 55916xf + 12773x1 + 10350x5 + 2346, 
1281x2 - 1560x5 + 20067x1 - 55916xf + 12773x1 + 10350x5 + 2346, 
1281X3 - 1560x1 + 20067x2 - 55916x1 + 12773x1 + 10350x5 + 2346, 
x4 — X5, 
13xf - 176x| + 580x| - 432xf - 12x1 + 36x5 + 18} 
{X1,X2,X3,X4,X5 - 1} 
{xi,x2,x3,x4 - l,x5} 
{xi — X5, x2 — X5, X3 — X5,6x4 + 3x1 — 32x5 + 14, 
9x\ - 120xf + 358x1 - 224x5 + 40}. 

Figure 1: Solution of the system from Caprasse, Demaret 
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The system (1) in section 2 is D3-invariant.j, For G = D3 there are some special 
polynomials: 

ft (a) := (*i - x2)(xi - x3)(x2 - x3) , 

which behave like 
*(t)(Pi)=Pi, Vi € .D 3 but 
tiisr^fa) = -fr , t = 1,2,3 

for the reflections sr'. These are examples for the following definitions. 

Let i? be a linear representation of a finite group G o n a c7-dimensional vector space 
V. A subspace W\ C V is called G-invariant, if t9(i)(tu) € Wx, Viw € Wi, i € G. 

There exists always a second (?-invariant space W2 with V = Wi + W2. 

dw*:G->GL{W,), ^ ( 0 = ^ ) K 

is called a subrepresentation. Of course, two representations may be isomorphic. 
If the representation •d has only the two trivial subrepresentations •d^,'dv = t? 
then d and V are called irreducible. 

Theorem 5 (see [11],[IS]) : For every finite group G, there is a finite number h 
of nonisomorphic irreducible representations t?J. For every linear representation 
•d : G —• GL(V) of dimension d there is the so-called canonical decomposition 

v=£v. (6) 
i=i 

such that the subrepresentations i?VJ, Vj ^ {0} have only irreducible subrepresen
tations isomorphic to i?J. The canonical decomposition is unique but the further 
decomposition into irreducible spaces is not unique in general. 

We are interested in the isotypical components V* of the canonical decomposition. 
They may be computed by projections 

n'":V->V', j = l,...,h, 

(7) 

n'W = ftlW) WC*'1) • 
rij is the dimension of the corresponding irreducible representation i?J and VJ : 
G -> (D are characters. For the usual groups the characters i])3 corresponding to 
the irreducible representations are known (see for instance [11], [13]). 
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4.2.2 Subsystems in case of the dihedral group 

Now we are able to explain how a system with Z)m-symmetry may be split into 
smaller ones. Recall the following linear representation: 

p:Dm-> GL(<Cn) P{h) ± p(h) 

with corresponding matrices R, S, where SR\ i = l,...,m are reflections with 
respect to a hyperplane. Then 

* : Dm -> GL(€{x}), ti(t)(p(x)) = P(p(t)(x)) 

describes the corresponding group operations on the polynomials. 

Let pi,... ,pd of the system (3) span a Z)m-invariant vector space V. Our aim is to 
find factorizing polynomials in the isotypical components of V using the theory of 
linear representations. According to Lemma 3 a polynomial p has a linear factor if 
there is a reflection SR1 with p(SRlg£) = —p(x). The most important irreducible 
representations for Dm are the trivial representation 

^:Dm^GL((Pl)), ti1(t)(Pl)=Pl VteDm 

and 

^:Dm^GL((P2)), * V ' ) ( f t ) = ft. 
tf2(sr*)(p2) = -Pa ,* = l , . . . , m . 

Thus by Lemma 3 p2 either is zero or has m or more factors. 

V has the canonical decomposition 

v=f:vj 

i= i 

and thus a decomposition 
h 

V = V1 © V2 © Vr , Vr = j y j . (8) 
j=3 

As we have seen polynomials p2 € V2 factorizes. There exist factorizing polyno
mials pr € Vr \ {0}, because any p € Vr with the help of one of the projections 
IIx in (4) gives a factorizing polynomial. Otherwise with Proposition 2 the Dm-
invariance of p 6 VT is proven and with (8) p = 0 follows. 
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The computation of V1, V2, Vr in (8) may be done by the projections (7). But we 
have chosen a better way with 

m 

pc:=nc(p):=iX:K^), 

n1(p(aO):=K^a)+^(52))' 
U2(p(x)):=\(pc(x)-pc(Sx)), 

W(p):=p-W(p)-lP(p). 

Proposition 6 ; II1, IT2, W are projections onto V1, V2, Vr respectively. 

When a basis of Vr is computed by I IT factorizing polynomials are found. The 
Groebner bases of those ideals A- are computed with the program Groebner in RE
DUCE. The used version of Groebner uses factorization and has a third parameter, 
a list for restrictions. 

The mathematical idea is the following. Let 

A = A(Pl,...,pd), P = q1-q2eA, 
A = Aif)A2, Ai = (p1,...,pd,q1), 

If Ai = .4.2, it is nonsense to compute the Groebner basis twice. But A\ = A2 

normally is not obvious. If qi is detected in the computation of the Groebner basis 
of A2 then Ax C A2 and the zeros of A2 are zeros of A\. So the computation for 
A2 is cancelled. Therefore a new parameter was defined for the operator Groebner 
in REDUCE. 

Example : In [8] there is given a class of systems of polynomial equations with 
different symmetries. We mentioned already (1). The solution is 

{{C • xi + 2 • C • x3 + 2 • xl - 1, x2 - s3 , 
C2 + 3 • C • x\ + 2 • xi - 13}, 
{xi + x2 + x3, 
C + x%+ x2 • x3 + x\,C • x3 + xl + 1}, 
{*i - x3, 
C • x2 + 2 • C • x3 + 2 • x | - 1,C2 + 3 • C • xl + 2 • x% - x3}, 
{si - x3,x2-x3,C-x3 + 2-xl- 1}, 
{-C3 • x3 - 2 • C2 • xl - C2 + 4 • C • xl + 2 • xi - 2 • x3, 
- C 3 • x3 - 2 • C2 • xl - C2 + 4 • C • xl + 2 • x2 - 2 . x3, 
C2 • xl + 2 • C • xi + 2 • C • x3 - 2 • xl + 1}}, 

which is computed in 64 sec on a SUN4. 
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5 Transformation of the problem 

In [9] a model of a chemical reaction in a brusselator with several cells is introduced 
which is often treated numerically in bifurcation theory in several versions (see for 
example [3],[4]). For a brusselator with two cells the polynomials are 

PI{SL,T) = 2 - 7xi + x\x2 + T(X3 - Xi), 
= 6x! — x\x2 + 10r(x4 — X2), 
= 2 — 7x3 + Z3X4 + T(X1 — £3), 
= 6ar3 — £§£4 -f 10r(£2 — £4). 

(9) 

The system (9) is ^-equivariant, that means you may interchange £1 with £3 and 
£2 with £4. But the corresponding matrix T E IR4'4 is not a reflection with respect 
to a hyperplane. Thus the methods of section 4 don't work. 

Our suggestion is a linear transformation of the coordinates and the input poly
nomials for an arbitrary G-invariant system like (3). Remember the linear repre
sentations 

p:G—+OL(Cn), p(t){v) = Tv 

with representation matrices T 6 (Cn'n and 

tf:G — G L ( C b ] ) , m{pU)) = P(Tx). 

The variables xi,... ,xn correspond to the canonical basis of C n . But <Dn has a 
basis which fits better the symmetry. Compute the bases of the isotypical compo
nents W* of the canonical decomposition 

This may be done with the projections (7). Put the bases into the columns of 
M € € n ' " . Thus the matrices M~XTM are blockdiagonal (see [11],[13]). They 
are the representation matrices of p with respect to the basis of C n consisting of 
the bases of the isotypical components. If G has only onedimensional irreducible 
representations the matrices M~XTM are diagonal. 

Substitute £. = My_ into pi,...,Pd of the system (3). The group G operates also 
on the polynomials P%(y) :— pi(My) 6 C[y] in a way that the linear representation 
$ correspond to a new linear representation d : G —> GLfCMJ : 

m(P(y)) = m(p(My)) = tf(f)(p(£_)) 

- p(Tx) = P{MM-XTM^) = P(M-xTMy). 
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The vector space V = < p i , . . . ,pt >Q €[x\, G-invariant with respect to tf, corre
spond to the space V =< P\,..., P<* >C C[yj which is G-invariant with respect 
to ft and which has a canonical decomposition as well. Compute the bases of the 
isotypical components with the projections (7). 

This is a transformation of the system (3) p,(x) = 0,i = l,...,d to a system 
Qi(y) = 0, i = 1 , . . . , d which have by x. = My_ the same solutions. 

Theorem 7 : Let G be a finite group with onedimensional irreducible represen
tations only. Let Qi(y),i = l,...,d be a system which is invariant with respect 
to 

h.G-+ GL(G[yj), m(P(yj) = P(Ty_). 

Assume that T € C n ' n are the representation matrices of p : G —• GL(Cn) with 
respect to a basis which is the union of the bases of the isotypical components 
W3 C C", Let the polynomials Qi be elements of the isotypical components of 
y iCC[y] . 

If the system Qi = 0,i = l,...,d is treated with the Buchberger algorithm, all 
intermediate polynomials are elements of the isotypical components V3. 

Proof : The assumption that all irreducible representations of G are of dimension 
one gives that p operates on a vector w3 € W3 of an isotypical component W3 like 
p(t)(w3) = il>3\t)w3 with numbers ij>3(t) € C Vi € G. Because the matrices T are 
the representation matrices of p with respect to the special basis they are diagonal 
and thus each monomial is an element of one of the isotypical components Vof 

Cfe]-
If p € Vx and m € V3 then the product p • m is an element of another component 
V*. The argumentation is done with 

Hi) (p-m)= S(t) (p) • ti(t) (m) = V'(<) • P • i>j(t) • m = (ip>(t) • ^3{t)) -p-m. 

A 

Thus < p-m > ist G-invariant and by Theorem 5 the subrepresentation i?<Pm> is 
isomorphic to one of the irreducible representations •dk. This meens p- m £ Vk. If 
Pi € V", p2 € V3 and mi, m-i are monomials such that p\m\ and P2"i2 have the same 
leading monomial then mipi and m2p2 a r e elements of the same component Vk 

and thus also mipi — m2p2 ^ Vk- As the input polynomials Qi of the Buchberger 
algorithm are elements of the isotypical components and the algorithm consists 
of computations like pimi — pim-i with cancelling leading term all intermediate 
polynomials are elements of the isotypical components. I 
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A consequence of Theorem 7 is that for the transformed problem all intermediate 
polynomials are sparse. An intermediate polynomial is a linear combination of 
monomials in one of the components V . Monomials of components different from 
V* do not appear. 

Because the polynomials are homogenous in the isotypical components W3 ex
cept W1 which contains the G-invariant polynomials, monomial factors are found 
during the Groebner computation. 

Example : For the ^-invariant system (9) we choose 

M 

( 1 0 1 0 \ 
0 1 0 1 
1 0 - 1 0 

\ 0 1 0 - 1 / 

The polynomials are either even or odd in y3, y4. The Groebner basis is received 
in 2 sec on a SUN4: 

{{2/4,2/3,2/2-3,2/1 - 2 , r } , 
{2/4,2/3,1/2-3,2/1 - 2 } , 
{-100 • 2/2 • 2/3 • T + 50 • 2/2 • 2/3 • r2 

+215 • y2 • y3 • T + 20 • y2 • 2/3 - 20 • y3 • r2 - 54 • y3 • r - 22 • y3 + 20 • y4, 
-400 • y\ • T + 5 • 2/2 • vl + 200 • y2 • r

2 

+860 • 2/2 • T + 20 • y2 - 80 • r2 - 176 • r - 8, 
-80 • y2 • T + 2 • yl • r + y\ + 40 • r2 + 148 • r + 4, 
100 • y\ • T2 - 50 • 2/2 • r 3 - 215 • y2 • r2 - 20 • y2 • r + 20 • r 3 + 54 • r2 + 24 • r + 1, 
2/1-2}} 

The advantage of the transformation is that the system split into subsystems dur
ing the computation which saves time. We computed the basis of the brusselator 
with 3 cells in a linear array as well. This is even for numerical algorithm not an 
easy problem. 

Example 

Pa (2) 

P3(X) 

a2 

03 

SPEER [12] gave the following system of polynomial equations: 

= 4 • ß • (n + 2 • ax — 8 • xi) • (a2 — a3) — x2 • x3 • x4 + x2 + x4 = 0 

= A • ß • (n + 2 • a-i — 8 • x2) • (a2 — a3) — xi • X3 • x4 + xi + x3 = 0 

= A • ß • (n + 2 • ax — 8 • x3) • (a2 — a3) — x2 • Xi • x4 + x2 + x4 = 0 

= 4 • ß - (n + 2 • ax — 8 • x4) • (a2 - a3) — xx • x3 • x2 + xx + x3 = 0 

= £1 + X2 + £3 + X4 

= X\ • X2 • X3 • X4 

= Xj • X2 + X2 • X3 + X3 • £4 + X4 • Xj 

15 



It is invariant with respect to the Kleinian group consisting of 

(a?i, x2, x3, x4) —• (x3, x4, xi, x2) (xi, x2, x3, x4) 
(xi, x2, x3, x4) — • (x2, a?i, x4, x3) 

and the identity. For the transformation we choose 

(x 4 ,x 3 ,x 2 ,x i ) 

M-

( 1 1 1 1 \ 
1 - 1 1 - 1 
1 - 1 - 1 1 

V 1 1 - 1 - 1 J 

During the computation of the Groebner bases with respect to the ordering revgrad-
lex factors are detected. Then each Groebner basis is the input of a computation 
with the ordering lex (for explaination of the orderings see [6]). 

The final solution is given in figure 2. 

Acknowledgement : I like to thank Prof. H. M. Möller who draw my attention 
to this subject and H. Melenk, W. Neun for the discussions about this subject and 
Prof. P. Deuflhard for encouraging for this research. 
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{{y4.y2 + j /3,yi}, 
{-1400 •N2-y1-ß-768-N2-y4-ß + 16512 -N-yf-ß- 12288 -N-ß 
+79 • AT - 32256 • y3 • ß + 3584 • yx • ß - 952 • yi + 75264 • y4 • /? - 784 • y4, 
y2 + y3i 
616 -N3-yi-ß2- 9600 • AT2 • y2 • /?2 - 6144 • AT2 • y\ • ß2 + 6144 • N2 • /32 

- 2 9 • N2 • /? + 23040 -N-y3-ß2 + 35072 • N-yi • ß2+ 288 • N-yi • ß 
-215040 -y\-ß2 + 2240 • y2 • /? + 602112 -yl-ß2- 6272 • y^ • /? + 258048 • ß2 - 5376 • ß + 28, 
24 • Nz • yi • /?2 - 1216 • N2 • y2 • ß2 - 3 • N2 -ß + 16896 -N-y3-ß2 

-24576 • AT • yx • ß2 + 144 • N • Vl • ß- 36864 • y4 • ß2 + 65536 • y2 • ß2 

-1728 -yl-ß- 73728 • ß2 + 1536 • £ - 8}, 
{y4.y3.y2.y1}, 
{y4, y3, y2. - 4 • N • y3 • /? + 16 • N • Vl • ß + y2 - 2}, 
{_JV4 • /? + 128 • AT2 • y\ • ß + 256 • N2 • ß + 2 • W2 - 4096 • y\ • ß - 16384 • y\ • ß 
- 1 2 8 • yi - 256, 
y3.y2. 
-N + 8-yi}, 
{y4) —yi + ys, yj}, 
{1400 • AT2 • yi • ß - 768 • N2 • y4 • ß - 16512 -N -y2-ß+ 12288 • AT • /? 
- 7 9 • AT + 32256 • y? • ß - 3584 • yi • ß + 952 • yx + 75264 • y4 • ß - 784 • y4, 
—y2 + y3, 
- 616 • N3 • yi • ß2 + 9600 • AT2 • y2 • £2 + 6144 • W2 • y | • ß2 - 6144 • Af2 • /?2 

+29 • AT2 • ß - 23040 -N-y3-ß2- 35072 • N •yl-ß
2-288 • N • yi-ß 

+215040 -yl-ß2- 2240 • y2 • /? - 602112 • y\ • ß2 + 6272 • y | • ß - 258048 • ß2 + 5376 • /? - 28, 
2i-N3-yi-ß

2- 1216 -N2-y2-ß2-3-N2-ß+ 16896 -N-y3-ß2 

-24576 • AT • y t • ,32 + 144 • AT • yi • /? - 36864 • y? • /?2 + 65536 • y2 • ß2 

-1728 -yl-ß- 73728 • /?2 + 1536 • ß - 8}, 
{y4,y3,y2,yi>, 
{y4 .y3 . y 2 , - 4 • AT • y? •/? + 16 • AT • y i •/? + y2 - 2}, 
{y4.y3.y2.yl}, 
{y4 ,8 • N • yi • ß - 32 • y2 • ß - 32 • y\ • ß - 1, 
V2, 
8 • AT2 • yi • ß - 128 • AT • y2 • ß - N + 512 • y3 • /? - 512 • Vl • ß + 8 • yx}, 

{y4,y3,y2,j/i}. 
{y4) y3, 
8 • N • yi • ß - 32 • y2 • ß - 32 • y\ • ß - 1, 
8 • N2 • yi • ß - 128 • N • y\ • ß - N + 512 • yf • ß - 512 • Vl • ß + 8 • y i} , 
{-N • y4 + 24 • yi • y3, 
- 4 • N2 • ß + 1152 • yl • ß + 1152 • y | • ß - 864 • /? + 9, 
2 • AT4 • ß - 2304 • N2 • yj • ß - 288 • N2 • ß - 9 • N2 + 663552 • y4 • ß 
-497664 • y^-/? +5184-yf , 
-JV + 24-y i}} 

Figure 2: Solution of the system from Speer 
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