
Technische Berichte Nr. 81

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Babelsberg: Specifying
and Solving Constraints
on Object Behavior
Tim Felgentreff, Alan Borning, Robert Hirschfeld

ISBN 978-3-86956-265-0
ISSN 1613-5652

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 81

Tim Felgentreff | Alan Borning | Robert Hirschfeld

Babelsberg

Specifying and Solving Constraints on Object Behavior

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2013
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2013/6729/
URN urn:nbn:de:kobv:517-opus-67296
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67296

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-265-0

mailto:verlag@uni-potsdam.de

Abstract

Constraints allow developers to specify desired properties of systems in a
number of domains, and have those properties be maintained automatically.
This results in compact, declarative code, avoiding scattered code to check
and imperatively re-satisfy invariants. Despite these advantages, constraint
programming is not yet widespread, with standard imperative programming
still the norm.

There is a long history of research on integrating constraint programming
with the imperative paradigm. However, this integration typically does not
unify the constructs for encapsulation and abstraction from both paradigms.
This impedes re-use of modules, as client code written in one paradigm
can only use modules written to support that paradigm. Modules require
redundant definitions if they are to be used in both paradigms.

We present a language – Babelsberg – that unifies the constructs for en-
capsulation and abstraction by using only object-oriented method definitions
for both declarative and imperative code. Our prototype – Babelsberg/R –
is an extension to Ruby, and continues to support Ruby’s object-oriented se-
mantics. It allows programmers to add constraints to existing Ruby programs
in incremental steps by placing them on the results of normal object-oriented
message sends. It is implemented by modifying a state-of-the-art Ruby virtual
machine. The performance of standard object-oriented code without con-
straints is only modestly impacted, with typically less than 10% overhead
compared with the unmodified virtual machine. Furthermore, our architec-
ture for adding multiple constraint solvers allows Babelsberg to deal with
constraints in a variety of domains.

We argue that our approach provides a useful step toward making con-
straint solving a generic tool for object-oriented programmers. We also provide
example applications, written in our Ruby-based implementation, which use
constraints in a variety of application domains, including interactive graphics,
circuit simulations, data streaming with both hard and soft constraints on
performance, and configuration file management.

1

Contents

1 Introduction 4

2 Background and Related Work 8
2.1 Constraint Satisfaction Libraries . 9

2.2 Domain-specific Languages for Constraints 10

2.3 Dataflow Constraints and FRP . 11

2.4 Integrating Constraints with a Programming Language 12

3 Object Constraint Programming 15
3.1 Restrictions on Constraints . 17

3.2 Constraints and Control Structures 18

3.3 Solvers . 19

3.4 Read-only Variables . 20

3.5 Constraint Durations and Activation 20

3.6 Soft Constraints and Stay Constraints 21

3.7 Incrementally Re-satisfying Constraints 22

3.8 Constraints on Object Identity, Class, and Message Protocol 23

4 Implementation 24
4.1 Constrained Variables . 25

4.2 Execution Contexts . 25

4.3 Implementing Edit Constraints . 29

4.4 Adding new Solvers . 30

5 Evaluation 32
5.1 Performance Evaluation . 32

5.2 Comparison with Related Approaches 37

6 Conclusion and Future Work 40

Appendix 46
1 About the Name . 46

2

Contents

2 Support for Multiple Cooperating Solvers 46

3 Initializing and Manipulating Constraints 47

3.1 Initializing a Constraint . 47

3.2 Methods for the Class Constraint . 48

4 Constraint Durations . 49

5 Constraint Priorities . 50

6 Example Programs . 50

6.1 Electrical Circuit Examples . 50

6.2 Cryptarithmetic . 52

3

1 Introduction

Constraints and constraint programming occur in a variety of application do-
mains within computer science and related fields, including graphics, CAD/-
CAM, planning and operations research, artificial intelligence, user interface
toolkits, and programming languages. A constraint in these domains is a re-
lation that should hold, for example: that there be a minimum of 10 pixels
horizontal space between two buttons on a screen, that a resistor in an electri-
cal circuit simulation obey Ohm’s Law, that a maximum of 10 parts per hour
can be produced by a machine in a factory, that all of the digits in a row or
column or subregion of a Sudoku puzzle must be different, or that the height
of a bar in a bar chart correspond to a value produced by a simulation. Con-
straints are declarative: they specify what should be the case rather than how
to achieve it. They thus provide flexibility in the way they can be employed,
since a single constraint can typically be used in multiple ways.

A number of features are desirable in constraint programming to solve a
useful set of problems. Unfortunately it is in general much easier to state
constraint problems than to solve them — some problems are extremely diffi-
cult, and others are undecidable. (For example, suppose we have a constraint
that xn + yn = zn for integers x, y, and z, with n > 2. Waiting 358 years
for the solver to determine that the constraint is unsatisfiable is problematic.
Or as another example, a language that allows the programmer to state the
Post Correspondence Problem as a constraint would thus allow undecidable
constraints to be specified.) On the other hand, for some restricted but very
useful classes of constraints, quite efficient solvers are available. Therefore,
practical solvers solvers impose restrictions on the kinds of constraints they
can solve, for example, by supporting only floats and not integers or requiring
numeric equalities to be linear.

So, in general, a variety of solvers are needed, depending on the type
domain and particular characteristics of the constraints. It is also useful to
have these solvers interoperate to find a solution to a particular problem.
Furthermore, in some application domains, it is useful to support soft as well
as hard constraints, that is, constraints that should be satisfied if possible

4

and constraints that must be satisfied. Finally, in the presence of frequent
changes incremental solvers are required that can efficiently re-solve a set of
constraints. Interactive graphical systems are an example of all of these: they
include constraints on complex objects such as points and areas as well as
floats and integers, soft constraints to express preferences regarding the layout,
and require incremental solvers to efficiently re-solve constraints repeatedly
as a part of the figure is moved.

There are two main options how to use constraints in imperative programs.
The most common way is via a constraint satisfaction library. This means that
no changes are required to the underlying programming language, but has
the disadvantage that, besides writing the constraints, the solver needs to be
invoked explicitly at appropriate times during the execution. If it is not, the
programmer may inadvertently ignore or bypass the constraints. An alternate
technique is to support constraints directly in the underlying programming
language. This addresses the problem of inadvertently bypassing the con-
straint system, because the programming language ensures that the solver is
invoked whenever neccessary. This approach also typically provides a more
convenient syntax for writing constraints, either using a separate domain spe-
cific language (dsl) embedded in the host language (with the drawback of
having to learn essentially two programming languages), or (as in the work
reported here) by allowing constraints to be written in the host language itself,
of course at the cost of having to support a new or extended programming
language.

Prior approaches of the latter kind typically provide a unified runtime, a
semantics for the interactions between declarative and imperative code, and a
linguistic symbiosis. As an extension of these, this work additionally unifies
the programming constructs for encapsulation and abstraction by using only
object-oriented methods, classes, and inheritance for defining behavior and
structure in both the imperative and declarative paradigm.

We present our design for integrating constraints with a standard object-
oriented language that preserves a familiar imperative programming model,
called Babelsberg, and describe an implementation of that design as an
extension to Ruby [13], called Babelsberg/R. Key contributions for Ba-
belsberg with respect to language design are as follows.

• The semantic model for Babelsberg is a direct extension of a standard
object-oriented model (with dynamic typing, object encapsulation, and
standard classes, instances, methods, and message sends). It supports

5

1 Introduction

placing constraints on the results of message sends rather than just on
object attributes — thus, we argue, being more compatible with object-
oriented encapsulation and abstraction.

• The syntax of Babelsberg is a strict superset of that of the base lan-
guage, with only one minor extension, making it easy for the program-
mer to write and read constraints and object-oriented code.

• Babelsberg includes constructs that allow specifying soft as well as
hard constraints, and that support incremental solving.

Additional contributions with respect to implementation techniques are as
follows.

• We present a technique for implementing object constraint languages,
which uses a primitive to switch the interpreter between imperative
evaluation, constraint construction, and constraint solving modes. In
imperative evaluation mode, the interpreter operates in the standard
fashion, except that load and store operations on variables with
constraints obtain the value from the constraint solver or send the new
value to the solver (which may trigger a cascade of other changes to
satisfy the constraints). In constraint construction mode, the expression
that defines the constraint is evaluated, not for its value, but rather to
build up a network of primitive constraints that represent the constraint
being added. The interpreter keeps track of dependencies in the process,
so that, as needed, the solver can be activated or the code to construct
the constraint can be re-evaluated.

• Babelsberg provides an architecture for constraint solvers that sup-
ports multiple constraint solvers, which makes it straightforward to add
new solvers, and that does not privilege the solvers provided with the
basic implementation (they are simply the solvers that are in the initial
library).

• We describe a working prototype system, integrated with a state of
the art Ruby virtual machine and just-in-time (jit) compiler. In the
absence of constraints, the performance of a program written in the host
language (Ruby) is only modestly impacted.

Babelsberg/R is a general-purpose object constraint language, and we
have implemented a variety of example programs, including a video streaming

6

example with both hard and soft constraints on performance, interactive
graphical layout examples (which exercise soft constraints and incrementality),
electrical circuit simulations, and solvers for puzzles such as Eight Queens
and cryptarithmetic.

7

2 Background and Related Work

Programs frequently have some set of constraints that should hold. For stan-
dard imperative languages, the usual approach to dealing with such con-
straints is to leave it entirely up to the programmer to ensure that they are
satisfied — the constraints are either just in comments and documentation,
or perhaps in the form of machine-checkable assertions. For the latter case,
programmers typically write assertions to fail early if these constraints are
unexpectedly not satisfied [31].

Consider a rectangle implemented as a pair of points, as in the following
code. The rectangle is displayed in an application window which the user can
resize. Suppose this rectangle encompasses some information that we want to
make sure remains visible. We want to make sure the area of the rectangle is
never less than 100 square pixels and that its origin is always within display
bounds, i.e., non-negative. (It would be straightforward to include two ad-
ditional tests that corner.x<=DISPLAYWIDTH and corner.y<=DISPLAYHEIGHT; these are
omitted for simplicity since the visible? method already demonstrates conjunc-
tive constraints.)

class Rectangle
attr_accessor : origin, : extent

def visible?
origin. x >= 0 and origin.y >= 0

end

def area
extent. x * extent. y

end
end

Imperatively, we can use, for example, aspects to satisfy these constraints
explicitly whenever the rectangle changes:

8

2.1 Constraint Satisfaction Libraries

class RectAspect < Aspect
def ensure_constraints(method, rect, status, *args)

rect . origin. x = 0 if rect . origin. x < 0

rect . origin. y = 0 if rect . origin. y < 0

rect . extent. x = 100.0 / rect . extent. y if rect . area < 100

end
end

RectAspect.new.wrap(Rectangle, :postAdvice, /(origin|extent)=/)

However, the above code has a number of problems:

• The original constraints are expressed in a form that makes them harder
to understand.

• Advice code is required to capture all modifications that may invali-
date the constraints — if the advice is insufficient or not executed at
the correct times, the constraints may be violated through parts of the
execution.

• There are actually multiple possible solutions to the constraints, but
which one should be selected is not represented explicitly, but instead is
implicit in the code. (For example, a rectangle with area 200 instead of
100 would also satisfy the minimum area constraint.) Since there isn’t a
declarative specification of what an optimal solution is, it is nontrivial to
decide whether the solution is optimal. In the presence of competing soft
constraints, i.e., multiobjective optimizations, this becomes even harder.

2.1 Constraint Satisfaction Libraries

Thus, it is usually clearer to express and satisfy the constraints explicitly. One
approach is to use a library that provides one or more constraint solvers, and
that can be called directly from the imperative code. There is a huge range
of such solvers. One way of classifying solvers is by the type domain of the
constraints (for example, real numbers or finite domains or arbitrary objects);
whether the solver can use the constraints in a general way (e.g., for c = a+b,
to solve for any of a, b, or c; or as a dataflow constraint, i.e., to only use
the constraint to find a value for c); and whether the solver supports soft
constraints as well as hard (required) ones.

A few solvers of particular note for the programming language community
are Z3 [8], a state-of-the-art SMT solver from Microsoft Research designed

9

2 Background and Related Work

for theorem proving (e.g., for program verification), and kodkod [35] for con-
straints over finite domains. Solvers for use in interactive graphics systems
include Cassowary [2], an incremental solver for linear equality and inequality
constraints that supports soft constraints as well as hard ones, the Aukland
Layout Editor [26], which includes support for a GUI builder using constraints,
and earlier work on DeltaBlue [16], which supports multi-way local propa-
gation constraints and soft constraints. There is also a range of commercial
solvers and applications, such as the CPLEX optimizer for mathematical pro-
gramming [28].

For example, the following code rewrites the previous, purely imperative
solution to use the Z3 constraint solver to solve our constraints:

class RectAspect < Aspect
def ensure_constraints(method, rect, status, *args)

ctx = Z3:: Context.new
ctx ≪ Z3::Variable.new("extent_x", rect . extent. x)
ctx ≪ Z3::Variable.new("extent_y", rect . extent. y)
ctx ≪ Z3::Constraint.new("extent_x * extent_y >= 100")
... same for origin constraint
ctx. solve
rect . extent. x = ctx["extent_x"]
rect . extent. y = ctx["extent_y"]

end
end
boilerplate code as for purely imperative approach

Using a solver allows programmers to express constraints about the system
in terms of a solver-specific type domain (e.g., reals, booleans, uninterpreted
function symbols) the solver understands. If the problem is expressible in
a type domain for which a solver is available (as the above code is) the
constraints can be written clearly.

2.2 Domain-specific Languages for Constraints

For specialized application domains such as user interface layout, constraints
are sometimes available via a separate dsl that describes relations between
visible objects that can be automatically maintained by the runtime. Exam-
ples of such dsls are css [21], the Mac OS X [1] layout specification lan-
guage (which uses Cassowary to solve the constraints), and the Python GUI
framework Enaml [11]. These allow programmers to express relations such as
distances between objects or parent/child alignments. These constraints are

10

2.3 Dataflow Constraints and FRP

automatically re-satisfied by the runtime when imperative code changes the
user interface.

The following is an example of an Enaml specification for our problem:

enameldef Main(Window):
Container:

constraints = [
the rectangle area is called contents in enamel
contents_top >= 0, contents_left >= 0,
(contents_bottom − contents_top) *

(contents_right − contents_left) >= 100

]

This approach allows programmers to specify constraints and avoid boiler-
plate code to trigger constraint solving, and has found widespread adoption
and renewed interest recently in particular through the Mac OS X layout
system.

2.3 Dataflow Constraints and FRP

Some languages have built-in support for data flow, which allows program-
mers to express unidirectional constraints between objects and their parts.
Examples of such systems are Scratch [29], LivelyKernel/Webwerkstatt [22],
and KScript [27].

The following uses LivelyKernel connections to observe changes to origin
and extent in a Rectangle rect. On each change, the transformation function
is executed with the current and the previous value and returns the new value
for the field. Programmers can thus directly express relations between objects.

connect(rect, "origin", rect , "origin",
function(origin, prevOrigin) {

if (this . isVisible ()) return prevOrigin;
else return origin;

})
connect(rect, "extent", rect , "extent",

function(extent, prevExtent) {
if (this . area() < 100) return prevExtent;
else return extent;

})

Although these systems are not constraint solvers, programmers can use
constraint solvers (in the hook function passed to connect) to calculate new
values and some systems, like KScript, already integrate a constraint solver to

11

2 Background and Related Work

use in the connection. These approaches provide one answer to the question
of when to trigger constraint solving.

2.4 Integrating Constraints with a Programming
Language

Another approach to supporting constraints — and the one adopted in the
work reported here — is to integrate this support with the programming
language itself. Again, there is a substantial body of prior work in this area.

One of the most widely known of these approaches evolved from logic
programming, for example the Constraint Logic Programming scheme [19]
and instances of this scheme such as CLP(R) [20] (which provides constraints
over real numbers). The CLP languages are in the logic programming family,
and in their standard form have no notion of state or state change. Other
languages of this kind include Concurrent Constraint Programming [34].

Such languages have significant advantages, such as a clean semantics, but
at the same time sacrifice familiar capabilities and programming style. Our
goal here is to support a more standard object-oriented, imperative program-
ming style and syntactic integration of constraint and imperative program-
ming. With these goals, Babelsberg follows the work by Freeman-Benson,
Lopaz, and Borning on constraint imperative programming (cip) [15, 23, 24,
25] and the Kaleidoscope language. Systems related to Kaleidoscope include
Siri [18], Turtle [17], and Soul [10]. BackTalk [32] is another system that aims
to integrate a rich set of constraint solvers with imperative languages, but
without syntactic integration.

There is also a body of work that uses constraints in other ways in standard
programming languages. For example, in Plan B, Samimi, Aung, and Millstein
[33] use specifications as “reliable alternatives” to implementations, so that if
an assertion fails, the system can use the specification as input to a constraint
solver and continue execution. Similarly, Demsky and Rinard [9] use constraint
solvers to correct a faulty program state automatically and continue running.
(Thus, by replacing assertions with constraints, undesirable program states
can be corrected by the runtime.)

12

2.4 Integrating Constraints with a Programming Language

Constraint Imperative Programming in Kaleidoscope

Because the current work shares many of its motivations with Kaleidoscope,
it also shares important design aspects that were developed over the iterations
of the Kaleidoscope language.

Kaleidoscope supported standard classes and instances, and in addition,
integrated constraints with the language itself. To support this, it included
built-in constraints over primitive objects (such as floats) and constraints over
user-defined objects, which were provided by constraint constructors. For exam-
ple, the + constraint for Points could be defined using a constraint constructor
a+b=c that then expanded this into constraints on the x and y instance variables
of the three points a, b, and c. Separately, the language also provided methods.
Both constraint constructors and standard methods were selected using multi-
method semantics. This accommodated, for example, the case of a constraint
constructor call a+b=c in which b and c were known and a was unknown.

In contrast to Kaleidoscope, Babelsberg provides a simpler semantic
model, directly extending a standard object-oriented model with ordinary
methods using standard object-oriented message dispatch, rather than special
constraint constructors and multi-methods. The implementation includes an
integration with a state of the art virtual machine and jit, so that in the
absence of constraints, the performance of a program written in the host
language is only modestly impacted.

This work’s treatment of mutable state and time in Babelsberg is very
similar to the later incarnations of Kaleidoscope. The first version of Kalei-
doscope, Kaleidoscope’90 [14], used a refinement model, in which variables
held a stream of values, related to each other by constraints. Variables typi-
cally had a low-priority stay constraint so that they retained their value over
time, e.g., xt = xt−1?. (The question mark is a read-only annotation: the con-
straint solver wasn’t allowed to change the past to satisfy constraints on the
present.) There were facilities to access both the current and previous states
of a variable. Object identity was only an implementation issue in Kaleido-
scope’90, and not semantically significant. Later versions of the language (e.g.,
Kaleidoscope’93) [23, 24] switched to a perturbation model, in which destruc-
tive assignment can change the state of objects (perhaps making previously
satisfied constraints unsatisfied), and the system perturbs or adjusts values
to reach a new state that best satisfies the constraints. Instead of streams of
values, a variable in Kaleidoscope’93 referred to a single object, as in a more
conventional languages. Kaleidoscope’93 also made object identity a part of

13

2 Background and Related Work

the language semantics, including support for identity constraints as well as
equality constraints.

The rest of this paper is structured as follows. In chapter 3, we present the
features of the language; how these features are implemented is described in
chapter 4. chapter 5 presents our performance evaluation, applications written
in Babelsberg/R, and a comparison of Babelsberg’s features with related
approaches. chapter 6 describes future work and concludes.

14

3 Object Constraint Programming

Babelsberg is an object constraint programming (ocp) language — the
term object constraint programming is chosen to emphasize the integration with
standard object-oriented programming ideas, in particular methods, messages,
and object encapsulation.

Our goals for Babelsberg include a syntax that is compatible with the base
language. In Babelsberg/R, the base language is Ruby, and the extensions
are almost all semantic extensions, with only one minor syntactic extension.
The semantic model is also an extension of Ruby’s, and supports all of the
existing Ruby constructs such as classes, instances, methods, message sends,
and blocks (closures).

As a first example, consider the following class TemperatureConverter, which
maintains the appropriate relation between instance variables holding Centi-
grade and Fahrenheit values.

class TemperatureConverter
attr_accessor : centigrade, : fahrenheit
def initialize

set the temperatures to well−known values
@centigrade = 100.0
@fahrenheit = 212.0
always { centigrade * 1.8 == fahrenheit − 32.0 }
constraint added and solver triggered after block

end
end

If we make a new instance of TemperatureConverter and change either the Centi-
grade or Fahrenheit temperature, the other value will be changed as well to
keep the constraint satisfied.

t = TemperatureConverter.new
t . centigrade = 0.0 # triggers solver
now t. fahrenheit will be 32.0

The constraint is labeled as always, indicating that it should hold indefinitely.
We need to assign floating-point numbers to the two fields, so that Babels-
berg/R uses a solver for floats based on their run-time type. However, we

15

3 Object Constraint Programming

didn’t need to give them values that satisfy the constraints — for example if
we had set both of them to 0.0, one or the other would have been changed to
keep the constraint satisfied. (We didn’t specify which — if it mattered, this
could be specified as well.)

There may be multiple constraints that together specify the desired solution.
For example, here is a constraint from a Resistor class that represents Ohm’s
Law:

always { lead1.voltage − lead2.voltage == resistance*lead1.current }

In combination with other constraints on the behavior of batteries, wires,
and grounds, and Kirchhoff’s Law constraints for the connections among
them, these serve to specify the behavior of electrical circuits such as a Wheat-
stone bridge. In this case, finding a solution involves solving a set of linear
equations. (See subsection 6.1 in the appendix for a listing of these classes,
along with example circuits.)

In the TemperatureConverter example, the constraints are on the results of send-
ing the messages centigrade and fahrenheit. Here these are just accessors to the
corresponding fields. However, constraints can also include methods that per-
form other computations. For example, the rectangle from chapter 2 exposes
its area as a computed property via the area method. In Babelsberg/R, we
can use existing Ruby methods from the Rectangle class to specify constraints:

rect = Rectangle.new
always { rect . area >= 100 }
always { rect . visible? }

The first constraint says that the result returned from calling the area method
should always be greater than or equal to 100, and if, for example, another
part of the program assigns to the height of the rectangle, if necessary the
width will be adjusted automatically to keep the constraint satisfied. Similarly,
if a negative location is assigned to the origin, it will be moved back to keep
the rectangle visible.1

By placing the constraint on the result of sending messages rather than on
fields, the system also respects object encapsulation. The values returned from

1There are multiple possible locations that satisfy the rect . visible? constraint; here the system
will move the origin as little as possible from the assigned location but so that the constraint
is satisfied. The same holds for the area constraint. This behavior is a result of soft “stay”
constraints that specify that, if it is necessary to change the value of a variable to satisfy
other constraints, it should be changed as little as possible. These are left implicit in this
example, but can also be stated explicitly if desired. See Section 3.6.

16

3.1 Restrictions on Constraints

the message sends in the rectangle example are both primitive types (float
and boolean), but they can also be arbitrary objects. For example, we could
add a constraint on the rectangle’s center (a computed rather than a stored
value, and a point rather than a primitive type):

always { rect . center == Point.new(100,100) }

3.1 Restrictions on Constraints

When the programmer uses a method in Babelsberg in a constraint, the un-
derlying implementation generates a corresponding set of (generally simpler)
constraints that can in turn be handed to an appropriate solver. Different lan-
guage constructs in the methods can give rise to different sets of constraints,
which may be more or less difficult for the solver. For example, conjunctions
and disjunctions in the method give rise to conjunctions and disjunctions in
the constraints handed to the solver, and of the currently provided solvers,
only Z3 can accommodate these.

There are however three important restrictions on constraints that apply to
all solvers.

First, evaluating the expression that defines the constraint should return a
boolean — the constraint is that the expression evaluates to true.

Second, the constraint expression should either be free of side effects, or
if there are side effects, they should be benign (for example, doing caching).
Also, repeatedly evaluating the block should return the same thing (so an
expression involving a random number generator wouldn’t qualify). This
restriction is needed to provide the correct semantics for constraints.

Third, variables used in methods that will be called in a constraint must be
used in a single-assignment fashion. As an example of why this restriction is
needed, consider the following method:

def bad_method(x)
sum = x
sum = sum+2

sum
end

Suppose we try to satisfy the constraint 10==bad_method(a). The system would
then construct a constraint sum==x for the first line in the method, and sum==sum+2

for the second (which is unsatisfiable).

17

3 Object Constraint Programming

Babelsberg tracks assignments during constraints, so instead of a general
error, it can report if a variable is assigned multiple times in a constraint. A
way to address this issue would be treat multiply assigned variables in con-
straints as distinct variables (e.g., xt, xt+1, etc.), which are connected through
equality constraints, similar to the original Kaleidoscope’90 refinement ap-
proach. However, we believe that the additional complexity of keeping track
of successive versions of a variable outweighs the additional expressiveness,
and have not supported such a feature. (Note that for straight-line code it’s
easy to add additional variables to satisfy this restriction. Loops with such
multiply assigned variables need to be converted to recursions — see the
following section for an example.)

3.2 Constraints and Control Structures

Expressions to create constraints are simply statements in the host language,
and so can appear in conditionals, loops, recursive methods, and so forth, just
as with any other statement. Constraints themselves can also include iterations
and conditionals. For example, here is a definition of the sum method for arrays
that creates a set of addition constraints relating the array elements and their
sum, using partial sums as intermediate variables.2

class Array
def sum

inject (0) { |partial_sum, x| partial_sum + x }
end

end

Similar constructs can be used in representing more complicated structures.
For example, the Kirchhoff’s Law constraint in the electrical circuit examples
listed in subsection 6.1 uses inject to constrain the sum of the currents in n

connected leads to be 0.
Constraints on the elements interact correctly with other constraints on the

sum and values. For example, the programmer can use the solver to find a
value for one element, given the sum and values for the others:

2The sum method makes of the inject method instead of, for example, a call to each that
repeatedly assigns to a local variable, so that we satisfy Babelsberg’s single assignment
rule for variables used in constraints. Because each block activation creates a separate scope,
each partial sum is a separate variable.

18

3.3 Solvers

a = [0.0, 0.0, 0.0]
always { a[0] == 10 }
always { a[2] == 20 }
always { a. sum == 60 }

This gives the solution a[1] = 30. We also have constraints on the length of an
array, and the array as a whole. For example, for arrays a and b:

always { a. length == 10 }
always { a == b } # == is content equality for Ruby arrays

3.3 Solvers

Given a set of constraints, we need to find a solution to them. Babelsberg

provides an architecture that supports multiple constraint solvers, that makes
it straightforward to add new solvers, and that doesn’t privilege the solvers
provided with the basic implementation. (They are simply the solvers that
are in the initial library.) In the current implementation of Babelsberg/R,
the available solvers are Cassowary, Z3, a solver for float and integer array
elements that maps to Z3 and Cassowary, and DeltaBlue.

Currently, the programmer must explicitly indicate which solvers are avail-
able for a given program. The solver for a given constraint is chosen eagerly,
based on the run-time type of the variables that occur in the constraint, and
only one solver can be registered for a particular type. In cases where differ-
ent solvers can handle the same types (for example, both Z3 and Cassowary
handle constraints on floats), the programmer has to decide which solver to
use by activating only the desired one. In some cases, this choice may simply
be a matter of preference, however, other restrictions apply. For example, Cas-
sowary cannot solve nonlinear equations. To solve nonlinear constraints, the
developer has to know about this restriction and choose Z3. For interactive
graphical applications where constraint priorities are needed, Cassowary has
to be used.

Developers can write constraints that are too difficult to solve, or for which
no solver exists. In that case, the constraint expression is simply evaluated as
a test that is repeatedly checked by the runtime whenever a variable changes
that may change the result of the test. If the test fails, an exception is raised
explaining that no solver for the constraint was available.

19

3 Object Constraint Programming

We are currently working on adding support for cooperating constraint
solvers, so that several solvers can work together to find a solution to the
constraints. See section 2.

3.4 Read-only Variables

Babelsberg includes support for read-only variables, expressed by send-
ing the question-mark method (?) to a value in a constraint expression. The
implementation of this method asserts an additional equality constraint in
the active solver. A read-only variable can only be changed by other solvers
upstream of the constraint with the read-only variable, or imperatively, but
not to satisfy the constraint in which it occurs. (See reference [6] for a formal
definition of read-only variables. While the formal definition allows cycles
through read-only variables, in practice we haven’t found use cases for this,
and it is confusing for programmers, so in Babelsberg we disallow this.)

Read-only variables are useful, for example, for parameterized constraints
so the solver knows not to change the parameter to satisfy the constraint:

class Rectangle
def fix_size (desiredsize)

always { self . area == desiredsize.? }
end

end

Without the annotation, a solver could choose to change the local variable
desiredsize rather than the receiver.

Read-only variables also play a central role in our architecture for cooper-
ating constraint solvers, serving as “gateways” to control information flow
among the solvers. See section 2.

3.5 Constraint Durations and Activation

Constraints have durations during which they are active. So far, we’ve been us-
ing the always duration, which declares that its constraint becomes active when
the always statement is evaluated and remains active indefinitely after that. A
once constraint is activated, satisfied, and then retracted. Finally, an assert−during

constraint is active for the duration of the evaluation of its associated block.
A related issue is when constraint satisfaction is invoked. Babelsberg’s

default behavior is that constraints are immediately satisfied or re-satisfied

20

3.6 Soft Constraints and Stay Constraints

whenever there is a change to one of the constrained variables. Sometimes
this is not the desired behavior, for example, when there is a sequence of
assignments that change the state of an object, with the object being in a
temporarily inconsistent state in the midst of the assignments. To handle this,
Babelsberg includes a construct to allow a sequence of assignments to be
made, with solving invoked only after all the assignments have been made.
Ruby provides multi-assignments to store values into multiple variables in
a single statement, and this is used in Babelsberg/R to implement this
construct. If multiple variables that have constraints on them are assigned
using multi-assignment, all values are assigned before the solver is triggered.

3.6 Soft Constraints and Stay Constraints

The concept of a constraint has been extended to include soft constraints as
well as hard (required) ones, and a number of constraint solvers, including
Cassowary and DeltaBlue, support them. Soft constraints are useful, for ex-
ample, in interactive graphical applications to represent a requirement that
two icons be separated by a minimum of 10 pixels (a required constraint)
and the desire that they be 50 pixels apart if possible (a soft constraint). Soft
constraints can have different priorities, with the higher-priority constraints
satisfied in preference to lower-priority ones. There are a variety of ways
of trading off two soft constraints of the same priority that cannot both be
satisfied; see [6] for details.

As an example, a soft constraint a+ b = c, with priority high, would be
written in Babelsberg/R as

always(priority: :high) {a+b==c}

Only some constraint solvers support soft constraints, so whether soft con-
straints can be handled depends on which solver is in use. Also, in Babels-
berg the choice of how soft constraints are traded off is a property of the
selected solver.

An important application of soft constraints is to express the desire that
parts of a system should remain the same unless there is some reason they
should change (for example to satisfy some higher priority constraints). This
is a central issue when combining constraints with imperative programming,
since in such a language we need to specify how constraints interact with state
change. For example, in interactive graphical applications, when moving one

21

3 Object Constraint Programming

part of a constrained figure, the user generally expects other parts to remain
where they are unless there is some reason for them to change to satisfy the
constraints. A desire that something remain the same if possible is represented
as a stay constraint, which may have an associated priority. For example, this
stay constraint says that we prefer that x keep its value, if possible, when
satisfying other constraints:

always { x. stay(:low) }

For those solvers that support soft constraints, Babelsberg automatically
adds a lowest-priority stay constraint to every constrained variable so that it
keeps its old value if possible when satisfying the other constraints.

3.7 Incrementally Re-satisfying Constraints

Some applications involve repeatedly re-satisfying the same set of constraints
with differing input values. A common such case is an interactive graphi-
cal application with a constrained figure, where we move some part of the
figure with the mouse. For such applications, it is important to re-solve the
constraints efficiently, and a number of constraint solvers support this using
so-called edit constraints that allow a new value for a variable to be repeatedly
input to the solver. Babelsberg also supports incrementally re-satisfying
constraints with an edit method that takes a variable to be edited, a stream
(that responds to next) that provides the new values, and optionally a priority.
For example, suppose we make an instance of TemperatureConverter. Then we can
give 100 new values to centigrade, and have fahrenheit change correspondingly
each time:

converter = TemperatureConverter.new
enumerator = (0..99). each
edit(enumerator) {converter.centigrade}

The stream need not contain only primitive types — a common case in
interactive graphics is a stream of new point values for a location of some-
thing being moved. Babelsberg/R takes advantage of incremental solvers
when available, so that the constraints can be re-satisfied very quickly. The
implementation of edit constraints is discussed in section 4.3.

22

3.8 Constraints on Object Identity, Class, and Message Protocol

3.8 Constraints on Object Identity, Class, and Message
Protocol

We can also write constraints on properties of objects such as their identity,
class, and the messages that it responds to. For example:

x. equal?(y) # an identity constraint
some constraints on the class or message protocol of an object :
a. class==Point
a. kind_of?(Point)
a. instance_of?(Point)
a. respond_to?(:theta)

If we are only using such constraints as tests, it is straightforward to check
them. Satisfying identity constraints is straightforward, but should be han-
dled with a specialized solver. In our current implementation, identity con-
straints are supported through the provided DeltaBlue library. For a. class and
a. instance_of?, if a is already bound, the constraint is just a test; if it is unbound,
then the constraint could be satisfied by creating a new instance of the appro-
priate class, binding it to a, and calling the allocate method of the appropriate
class. Finally, a. kind_of? and a. respond_to? are only available as tests. (One could
imagine satisfying a. kind_of? by backtracking through the possible classes of
which a is an instance, but this seems complicated and without a clear use
case. The situation for a. respond_to? is similar.)

Note that a nice benefit of this design is that type declarations or their
equivalent are just constraints.

23

4 Implementation

We first provide an overview of the key features of the implementation before
plunging into the details. The interpreter normally operates in imperative
evaluation mode. In the absence of constraints, this is a standard Ruby virtual
machine (vm). However, if the interpreter encounters a store instruction for
a variable with a constraint on it, rather than directly storing into the variable,
it calls the appropriate constraint solver to solve an equality constraint be-
tween the variable and the new value; and if it encounters a load instruction
for a constrained variable with a constraint, it gets the value from the solver
for that variable. Constraints in Babelsberg/R are written as ordinary Ruby
expressions that return true or false depending on whether the constraint is
satisfied. When a constraint is being added (using for example always), the
interpreter switches to constraint construction mode. It continues to evaluate
expressions using message sends, but rather than computing the result, it
instead builds up a network of primitive constraints that represent the con-
straint being added. In the process, it keeps track of all the dependencies. If
later a variable is assigned to that is involved in that constraint, its solver will
be activated, or if there is none, the constraint expression will be re-evaluated
(in constraint construction mode) to update the stored constraint network.

Going now into more detail, the Ruby vm we use as a basis for Babels-
berg/R is Topaz [12], an experimental vm built using the PyPy/RPython
toolchain [30]. This has allowed us to extend the interpreter and use RPython’s
vm-generation toolchain to create a vm including a fast jit and garbage col-
lector.

The changes we made to the Topaz vm are two-fold. First, we added an
interpreter mode for constraint construction (cf. section 4.2) and a primitive to
enter this mode. Second, we extended the interpreter to support constrained
variables (cf. section 4.1) by allowing the same name to refer to multiple
objects, one for use in imperative evaluation mode and the other for constraint
construction mode. (Note that this use of the same name to refer to multiple
objects is a feature of the implementation only — it is not visible to the
programmer.)

24

4.1 Constrained Variables

4.1 Constrained Variables

Ruby provides 5 types of variables: locals, instance variables, class variables,
globals, and constants. (While constants are supposed to be assigned only
once, it is not an error condition to re-assign a constant in Ruby.) Of these, we
allow 3 as constrained variables: locals, instance variables, and class variables.

Variables are constrained by using them in a constraint expression. In Topaz,
all locals are stored in closure cells and we simply had to add a second field
for constraint values. Instance and class variables are stored in an array and
Topaz uses map transitions [7] to access them efficiently. For Babelsberg/R,
have added a transition to store constraint values as well as object-oriented
(oo) values in these maps.

4.2 Execution Contexts

To implement the different execution contexts — imperative execution, constraint
construction, and constraint solving — we added ConstraintInterpreter as a subclass
of Interpreter that changes how locals, instance variables, and class variables are
accessed. We also changed the default interpreter to be aware of changes from
solvers.

Imperative Execution

During imperative execution, the load bytecodes check whether a variable
also refers to a constraint value and if so, copy the value the solver has
determined to the oo value. For immutable objects (such as small integers),
the vm replaces the reference to the oo value and returns the new object.
For mutable objects, the vm calls assign_constraint_value with the solver-supplied
value. The object must then adjust itself, before it is returned.

store instructions similarly check whether the assigned variable has a
constraint value. There are two situations in which this will be the case. In the
first, the variable itself is in use by an active solver. In that case, the interpreter,
instead of storing the supplied value directly, calls the suggest_value method
on the constraint value, with the new value as argument. This will in turn
invoke the associated solver. In the second, the variable is on the path of a
constraint, but is itself not used by a solver. In this case, all constraint blocks
that encountered this value during their execution must be invalidated and
re-executed with the new value.

25

4 Implementation

As described in section 3.5, in Babelsberg/R, if multiple variables that
have constraints on them are assigned using multi-assignment, all values are
assigned before the solver is triggered.

Constraint Construction

The initializer for constraint objects — usually called through always — acti-
vates an execution context for constraint construction. In this mode, load

instructions find or create a constraint marker for each value that is accessed.
These markers send for_constraint to the value, which is expected to return an
object that responds to value and suggest_value (where during execution of the
latter it would use a solver to re-satisfy constraints). For values that do not
respond to for_constraint, the marker is left to recalculate the constraint when the
value changes. Otherwise, the object returned from for_constraint is permanently
associated with the variable as its constraint value (unless it becomes inacces-
sible and is garbage collected). The constraint value replaces the actual value
for the duration of the constraint construction.

A constraint value should respond to the subset of the interface of the
associated oo value that its solver can solve. For example, Cassowary can
solve linear constraints over float values, so the Cassowary variables returned
by Float#for_constraint respond to the methods +, −, *, and /, but not sin or **.
If a programmer tries to assert a constraint using those latter methods, an
exception will be raised.

store instructions in this mode create equality constraints. This is neces-
sary to support constructing new objects in the predicate that connect values.
However, this also means that all code blocks encountered during constraint
construction have to be in single assignment form (section 3.1).

Support to pass branches to solvers that support them (such as if ... then,
or, ...) is currently not available. We have added support for the conjunction
bytecode only by creating two (or more) primitive constraints that are collected
in the constraint object and can be enabled and disabled simultaneously.

Note that to support solvers written in the host language, the vm needs a
way to distinguish code that should be executed in this mode from code that
should not. We currently expect solvers to be subclasses of ConstraintObject. We
use this class as a marker to leave the constraint execution context when we
enter solver code.

26

4.2 Execution Contexts

Constraint Solving

This execution context is entered when storing into a constrained variable.
The vm sends suggest_value to the ConstraintObject for this variable. This context
prevents nested sends of suggest_value to avoid recursions in the solver.

Our current implementation of execution contexts uses Python’s with state-
ment to push a context onto the stack. At those points in the vm that need to
be adapted, we dispatch through the context. A new context is created when
a Constraint object is initialized, when a constrained variable is assigned and we
need to re-satisfy constraints, and when we send a message to an object that
inherits from ConstraintObject.1

Constraint Construction Example

To illustrate how our implementation supports the combination of objects and
constraints, consider the rectangle example in Babelsberg from chapter 3.
The code asserts that the area of the rectangle rect should always be greater
than or equal to 100. The assertion is expressed by sending the area method
and sending the >= method to the result. Explicitly named in the constraint
is only the variable rect, but there are other variables that play a role in this
constraint.

A constraint in our system is a predicate expression passed unevaluated in
form of a block closure to the primitive method always. The closure is executed
in a constraint interpreter mode that resolves variables to constraint values
instead of oo values. The constraint interpreter otherwise executes the code
using normal oo semantics.

In our example above, the rect variable is replaced with a placeholder, be-
cause no rectangle-solver exists and the class Rectangle does not implement
the method for_constraint. The placeholder delegates the message area to the oo

value. During the execution of area a number of float values are encountered
— the instance variables of the points that form the rectangle (cf. Figure 4.1).
These instance variables are resolved to constraint values, for example Cas-
sowary variables, and the messages between them, instead of calculating the
current area of the rectangle, return a linear constraint expression. This linear

1If we wanted to support other cooperating paradigms in addition to constraint-oriented
programming, we would need to extend this to support different execution contexts in a
more general way.

27

4 Implementation

Figure 4.1: Objects are connected through instance variables. When a constraint is
constructed, objects become connected through constraints as well.

expression is then sent the message >= with 100 as its argument and returns
an inequality constraint that can be solved by Cassowary.

The constraint construction is complete when block passed to always returns.
Any constraint values and combinations thereof created during the execution
are gathered into a Constraint. These provide a meta-level interface to enable
or disable the entire constraint (and thus all participating values), query and
change its priority (cf. subsection 3.2), and access the block that was passed to
always, as well as each constraint value that participates in the constraint.

The constraint then includes a) primitive values that are in the type domain
of the solver and are connected in a constrainable way (e.g., through equalities
or inequalities, arithmetic, boolean logic) and b) a number of marked values
for complex objects that invalidate the constraint if their identity changes.

The constraint solvers operate on primitive constraint values directly to
solve the constraint. Changes made by the solver to the variables show up in
the oo view on the next access to the variables from imperative code, at which
point the constraint values are copied to their oo counterparts. Assignments
to any variable encountered during the constraint construction will trigger

28

4.3 Implementing Edit Constraints

the solver to re-satisfy the constraint (and potentially raise an error if the
assignment is inconsistent with the constraint).

Placeholder constraint values invalidate the constraint if the identity of the
oo value changes through imperative assignment. This invalidation retracts
all constraint values created during constraint construction and re-executes
the block to create new constraint values. This means that the block may
be re-executed multiple times during the run-time of the program, and any
side-effects should be benign (cf. section 3.1).

4.3 Implementing Edit Constraints

Edit constraints are used to support incremental constraint satisfaction, and
are important to achieve good performance in interactive applications. The
edit method adds an edit constraint on the edit variables that are in the block,
and then repeatedly calls the solver’s suggest_value method with each new value
from the stream. When the stream is empty, it removes the edit constraint and
returns. The priority defaults to the highest non-required one. (If : required is
used, the system raises an exception if the new edit value can’t be used.) Note
that this works if the stream is being fed from another process that provides
new values only when available — the process that has the edit constraint
should just block until one is available.

Babelsberg does not support edit constraints at a language level. Instead,
the definition of the edit method is part of the Cassowary solver library that
is included in the current version of Babelsberg/R. The library uses the
application programming interface (api) of the Constraint class to access the
constraint values associated with variable names, creates edit constraints for
them, and feeds the stream into the resulting edit variables.

Cassowary as shipped in the Babelsberg/R standard library allows the
variables and stream to hold user-defined objects, not just primitive types. To
use Cassowary as the solver, we need to convert these into edit constraints on
Floats or other primitive objects (e.g., the x and y values of the midpoint), but
we also want to do this in an object-oriented way that respects encapsulation.
Further, updating the solution with each new value should continue to be
very fast.

To support this, the client passes an array of accessor method names for
the return values that should be updated in the edit constraint. Cassowary
internally creates external variables that it uses as edit variables. Those ex-

29

4 Implementation

ternal variables are equality constrained to the return values of the accessor
methods, so the internal storage layout of the class does not matter. In the
following example, the mouse locations or the mouse point might store their x
and y values directly, or might be points represented using polar coordinates.
In either case, the edit constraints apply to the return values of their respective
x and y methods:

edit(stream: mouse.locations.each,
accessor: [:x, :y]) { mouse_point }

For DeltaBlue, the edit constraints returned could be simpler, e.g., the point
would be simply updated rather than dealing with its x and y coordinates
separately.

4.4 Adding new Solvers

During constraint construction, the vm sends for_constraint to each variable
encountered during the execution. User code can add solvers to the system by
dynamically adding a for_constraint method to those classes that the solver can
work with, making use of Ruby’s open classes. This method takes the name
under which the variable is accessed as an argument, and should return an
object that implements a subset of the interfaces that the solver can reason
about. For Cassowary, we extended the Float class:

def for_constraint(name)
v = Cassowary::Variable.new(name: name, value: self)
Cassowary::SimplexSolver.instance.add_stay(v)
v

end

This method creates a new variable, adds a low-priority stay so the solver
attempts to keep the value stable, and returns the constraint object. The vm

then sends messages to this object instead of the Float object in the context of
the constraint execution.

We expect the objects returned from a for_constraint method to respond to two
messages:

suggest_value When imperative code stores into a variable that participates
in constraints, the vm instead sends this message to the associated
constraint object. This method triggers the solver, raising an exception if
a required constraint can no longer be satisfied.

30

4.4 Adding new Solvers

value Whenever the vm accesses a variable that participates in a constraint,
it sends this message to the associated constraint object to determine
whether the variable was updated by the solver.

In the case of immutable objects (such as floats and integers), the vm up-
dates the reference for the variable directly. However, for mutable objects,
solver libraries should provide the method assign_constraint_value to update the
object. We provide such a method for the Array class, which replaces the
array’s contents with the contents suggested by the solver:

def assign_constraint_value(new_ary)
self . replace(new_ary)

end

This illustrates how the solvers provided by Babelsberg/R are simply
constraint solver libraries that extend core classes.

31

5 Evaluation

We evaluate Babelsberg and Babelsberg/R first with respect to perfor-
mance, and second with respect to how well the language supports desirable
semantic properties for an object constraint language.

5.1 Performance Evaluation

There are three questions we are interested in regarding performance: a) how
does constraint solving performance compare to writing imperative code to
satisfy constraints, b) how is object-oriented performance affected by our
extensions to the vm, and c) how does a practical application perform if
refactored to use constraints.

Constraint Solving

Toward answering the first question, we used an example from [25] and
adapted it to Babelsberg/R. In this example, the user drags the upper end
of the mercury in a thermometer using the mouse. However, the mercury
cannot go outside the bounds of the thermometer, even if the user tries to
drag it out. Additionally, a gray and white rectangle on the screen should be
updated to reflect the new mercury position, and a displayed number should
reflect the integer value of the mercury top.

Note that the object-constraint version may be written in two ways: one
that is more like the imperative version and assigns new mouse locations in a
loop; and a more constraint-oriented version that declares mouse.location_y as an
edit variable that triggers incrementally re-satisfying the constraints. In our
benchmarks we have run both variants.

Table 5.1 shows that the naive object-constraint version is usually many
hundred times slower than the purely imperative solution. As the iteration
count grows, the naive version also does not seem to benefit as much from
the jit as the imperative version. Using edit constraints, repeated solving of
constraints is much faster. Keep in mind that these results use a solver that is

32

5.1 Performance Evaluation

Iterations . times do |i|
mouse.location_y = i
old = mercury.top
mercury.top = mouse.location_y
if mercury.top > thermometer.top

mercury.top = thermometer.top
end
temperature = mercury.height
if old < mercury.top

moves upwards (draws over the white)
gray.top = mercury.top

else
moves downwards (draws over the gray)
white.bottom = mercury.top

end
display.number = temperature

end

(a) Imperative version

always { temperature == mercury.height }
always { white.top == thermometer.top }
always { white.bottom == mercury.top }
always { gray.top == mercury.top }
always { gray.bottom == mercury.bottom }
always { display.number == temperature }
always(:high) { mercury.top == mouse.location_y }
always { mercury.top <= thermometer.top }
always { mercury.bottom == thermometer.bottom }
always { thermometer.bottom == 0 }
always { thermometer.top == 200 }

Iterations . times do |i|
mouse.location_y = i

end
edit (Iterations . times) { mouse.location_y }

(b) Object-constraint version

Figure 5.1: Interactive thermometer example from [25]

Iterations Imperative Constraints Edit Constraints
100 1(σ0.241) 36.1(σ3.14) 6.24(σ0.828)

10,000 1(σ0.14) 629(σ6.91) 7.72(σ0.526)
1,000,000 1(σ0.12) 45137(σ458) 52.5(σ2.24)

Table 5.1: Thermometer benchmark (normalized against imperative version)

also written in pure Ruby, which is by itself orders of magnitude slower than a
C++ based version. Considering that Babelsberg/R is aimed at imperative
programmers, we expect that most of the time the vm will not be solving
constraints in tight loops, but running mostly imperative code intermingled
with constraint re-satisfaction.

Object-oriented Performance

For imperative code performance, we ran a number of tests from the meta-
tracing vms experiment [4] against the unmodified Topaz Ruby vm and the
JRuby vm.

For purely imperative code, Babelsberg/R is consistently less 1.5 times
slower in these benchmarks than the unmodified vm (Figure 5.2). The only
benchmark where we are doing significantly worse than Topaz is Binarytrees.

33

5 Evaluation

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

dhrystone 50000

dhrystone 5000000

m
andelbrot 500

m
andelbrot 5000

binarytrees 14

binarytrees 17

E
xe

cu
tio

n
tim

e
(n

or
m

al
iz

ed
 a

ga
in

st
 u

nm
od

ifi
ed

 V
M

)

>25 >3.9 >33 >10

Topaz
JRuby

Babelsberg/R

Figure 5.2: Metatracing vm benchmark run on an Intel i7 Quad-Core CPU with 3.4
GHz

Binarytrees is a strongly recursive benchmark, which Topaz’ (and thus Ba-
belsberg/R’s jit) is bad at optimizing (which is why JRuby does better
in this benchmark). The overhead in Babelsberg/R is mostly due an ad-
ditional test each time a variable is accessed, to check whether this variable
participates in a constraint. An annotation in the vm [3] allows the jit to
remove this test when there are no constraints on variables in the loop, but in
Binarytrees, we do not generate machine code for a large part of the code (due
to its recursive nature), and the test incurs some overhead. For code where
we generate a sufficient amount of machine code, though, Babelsberg/R is
generally around 10% slower than Topaz (or less than 20% including standard
deviation).

Considering that JRuby and Topaz are, for these benchmarks, currently the
fastest Ruby vms, we consider Babelsberg/R to be very performant for
purely imperative code.

Application Example

We have written a simple video streaming application. This application reads
a folder with bitmaps and streams raw video to a video player. The quality
with which the video is streamed depends on a number of variables:

User Preference Users may decide not to overload their systems and explic-
itly choose a lower quality. This should be an upper bound for the
quality of the streaming.

34

5.1 Performance Evaluation

Encoding Time The program has only 1/25 second to encode a frame. If
it takes longer, the quality should be automatically reduced to ensure
smooth playback.

System Load The overall system load of the encoding system should be less
than 80%, to retain enough resources for other tasks.

Quality Bounds Whatever users choose as preferred quality, the quality can-
not be below 0 or above 100%.

In the imperative version of the application, these constraints were explicitly
checked and re-satisfied after each frame. The object-constraint solution uses
custom solvers for File contents and method execution time:

def recalculate_quality
if @quality + encoding_time < 90

@quality = @quality + encoding_time
elsif @quality + encoding_time > 100 + FrameMsMax

@quality = 100 + FrameMsMax
end

if cpuload > 0.8 * NumberOfProcessors
diff = 100 * (NumberOfProcessors − cpuload)
if diff > 0

@quality −= diff
else

@quality += diff
end

end

if @quality > user_preference
@quality = user_preference

end
@quality = 0 if @quality < 0

@quality = 100 if @quality > 100

end

(a) Imperative version

always { @quality >= 0 }
always { @quality <= 100 }
always { @quality <= user_preference }
always(:high) { @quality == user_preference }
always { @quality + cpuload * 100 <=

100 + 80 * NumberOfProcessors }
always(:high) { @quality + encoding_time >= 90 }
always { @quality + encoding_time <=

100 + FrameMsMax }

(b) Object-constraint version

Figure 5.3: Quality constraints in video streaming

Both versions could stream video at the highest quality setting to up to
8 clients on an Intel i5 2.4 GHz CPU. Both reduced the quality afterwards.
Because most of the time was spent encoding and streaming video, both
versions performed equivalently well.

35

5 Evaluation

VM Hooks for Customizing Constraint Construction

The vm hook methods for_constraint and assign_constraint_value are useful not only
for solvers, but also when users want to provide a particular interpretation
of certain application domain objects in their constraints. In Figure 5.3 we
use the contents of a preference file and the last execution time of the frame
encoding method in our constraints.

The effort to allow Cassowary to work with file content and method execu-
tion time was minimal. The following class definition was enough for us to be
able to use the execution time of a method in a constraint:

class MethodTimer
def initialize (klass, symbol)

time = 0

@constrained_time = Constraint.new { time }

old_method = klass.instance_method(symbol)
klass. define_method(symbol) do |*args, &block|

start = Time.now
res = old_method.bind(self).call(*args, &block)
time = Time.now − start
res

end
end

def for_constraint(name)
@constrained_time.?

end
end

A MethodTimer can be instantiated with a class and the name of a method, and
wraps this method to record its last execution time. When used in a constraint,
a read-only constraint object is returned that was associated with the time local
variable. Because it is read-only, the assign_constraint_value method is omitted. For
the configuration file object, the assign_constraint_value method is as follows:

def assign_constraint_value(float)
if float != @content.to_f

raise "cannot assign to read−only file" unless @writable
@file . truncate(0)
@file . rewind
@file . write(float)

end
end

36

5.2 Comparison with Related Approaches

Libraries dsl Dataflow/frp cip ocp

Unified Language Constructs x
Automatic Solving x x x x
Linguistic Symbiosis x x x
Extensible Solvers x (x) (x) x
Suitably Expressive Constraints x x x x
Performant Pure-oo code x x x x

Table 5.2: Comparison of OCP with related work

This illustrates that our vm hooks for constraint construction provide a
limited local propagation mechanism to interpret complex objects in the type
domain of a particular solver.

5.2 Comparison with Related Approaches

Babelsberg has a number of properties that we think are desirable for an
object-constraint programming language. Table 5.2 shows these properties and
compares ocp to related approaches presented in chapter 2. As a continuation
of cip, ocp shares most properties with the languages like Kaleidoscope and
Turtle.

Unified Language Constructs

Programs in Babelsberg appear as ordinary oo programs if no constraints
are used, but can be easily adapted to use constraints where it makes sense. If
constraints are used, they respect encapsulation and re-use the object-oriented
method definitions. Furthermore, techniques such as inheritance and dynamic
typing operate correctly with constraints.

In contrast, library and dsl based approaches separate constraints from
imperative code through a different syntax and semantics. For example, func-
tional reactive programming (frp) and cip languages use propagation hooks
and constraint constructors respectively to support constraints. Here, propa-
gation hooks are the functions connecting variable that are called when one
variable changes to compute a new value for the downstream variable. Con-
straint constructors are the concept in Kaleidoscope to build higher order
constraints. In the simplest case these are rewrite rules to convert constraints
on complex objects into primitive constraints for a solver. In Kaleidoscope,

37

5 Evaluation

messages in constraint expressions are dispatched to constraint constructors
using multi-method lookup semantics, where the receiver and all arguments
participate in the method selection.

Automatic Solving

Using libraries for constraint satisfaction allows programmers to write code
that (intentionally or unintentionally) circumvents previously asserted con-
straints. Approaches that integrate constraints at a language level do not allow
such circumvention, and attempt to re-satisfy constraints whenever they are
violated during program execution.

Linguistic Symbiosis

D’Hondt et al. [10] argue that linguistic symbiosis between different program-
ming paradigms is required to support the evolution of programs from the
object-oriented paradigm to a constraint-oriented solution and vice versa. dsl

and library based approaches do not support such incremental refactoring
between paradigms as well as approaches in which constraints are written in
the host language.

Extensible Solvers

Libraries provide the most flexibility for choosing different solvers depending
on programmer needs. frp languages can, to some extent, be combined with
solver libraries to achieve a comparable flexibility. cip languages also provide
a more controlled way for developers to use different solvers by writing
constraint constructors that reformulate constraints using a different solver.

In Babelsberg, all solvers use the same interface to communicate with the
vm so developers can add new solvers and replace existing ones to support
new type domains, or to use solvers that give better results or performance
for a particular problem.

Suitably Expressive Constraints

To take advantage of the constraint paradigm, the language should allow a
rich set of constraints to be written and solved. Multi-directional constraints
are important for some applications, while others additionally require solvers

38

5.2 Comparison with Related Approaches

that can accommodate simultaneous equations and inequalities. (For exam-
ple, the Wheatstone bridge example requires solving simultaneous equations,
while the video streaming example needs inequalities as well as equalities,
and both hard and soft constraints.) On the other hand, given an overly pow-
erful but slow solver, it becomes all too easy to write constraints that take
a very long time indeed to solve or that are intractable. We believe that Ba-
belsberg strikes an appropriate balance here, by providing an expressive
set of constraints with the solvers in the initial library, and by allowing more
powerful solvers to be added if desired. However, much more experience is
needed to test whether in fact this is an appropriate balance, and to adjust
it as needed; and as noted in the “Conclusion and Future Work” section, an
important direction will be adding better support for debugging, explanation,
and benchmarking.

Performant Pure OO Code

Kaleidoscope provided a declarative semantics for assignment, type decla-
ration, and subclassing. However, this declarative semantics was also used
if no actual constraints are in the program. Our implementation approach
in Babelsberg/R uses different execution contexts for constraint construc-
tion/solving and imperative code. Combined with a state of the art jit, this
gives performance for pure oo code that is generally comparable to a standard
oo vm as used for other approaches.

39

6 Conclusion and Future Work

We have presented Babelsberg, an object constraint language that extends a
standard object-oriented language to support constraints, along with an imple-
mentation as an extension to Ruby using a state of the art virtual machine. In
contrast to other approaches, Babelsberg unifies the constructs for encapsu-
lation and abstraction for both the declarative constraint parts of the language
and the traditional imperative parts by using only object-oriented method
definitions for both declarative and imperative code. Our implementation
is integrated with an existing object-oriented virtual machine, and provides
a standard imperative evaluation mode, a constraint evaluation mode that
accumulates constraints to hand off to the solver as expressions are evaluated,
and a constraint solver mode.

This work is recent and there are a number of directions for future work.
One is to exercise the system on a wider variety of programs, and also to
work on improving the performance of the constraint evaluation and sat-
isfaction. Another direction is to add additional solvers to the library, for
example a finite domain solver or solvers that support constraints on other
primitive storage types such as arrays, strings, and hashes, and to implement
the design for cooperating solvers. The multi-assignment semantics described
in section 3.5 provides a clean and simple way to control when constraint
satisfaction is invoked. However, more experience with writing programs in
Babelsberg/R is needed to decide whether this construct is sufficiently
expressive, or whether additional ways are needed to control when constraint
solving is invoked. Yet another direction regarding solvers is to introduce a
“meta-solver” that can automatically select one or more applicable solvers for
the given set of constraints.

Another important focus will be adding better support for debugging, ex-
planation, and benchmarking. (If the constraint solver is unable to satisfy the
constraints, why is this? Or if the solver produces an unexpected answer, how
was this answer arrived at? If the solver is slow, why, and are there ways to
make it faster? Is there a more appropriate solver available?)

40

Our initial implementation extends Ruby, but the ideas are applicable to
other dynamic object-oriented languages, and an implementation in Javascript
is currently underway.

Acknowledgments

We would like to thank all of the members of the Software Architecture Group
at Hasso Plattner Institute and of Viewpoints Research Institute for comments
and suggestions on the work, in particular Bastian Steinert at HPI, and Yoshiki
Ohshima and Hesam Samimi at VPRI. Alan Borning’s visit to HPI was funded
in part by Viewpoints Research Institute and SAP Labs.

41

Bibliography

[1] Apple Inc. Cocoa Auto Layout Guide, September 2012.

[2] Greg J Badros, Alan Borning, and Peter J Stuckey. The Cassowary linear
arithmetic constraint solving algorithm. ACM Transactions on Computer-
Human Interaction (TOCHI), 8(4):267–306, 2001.

[3] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, Michael Leuschel,
Samuele Pedroni, and Armin Rigo. Runtime feedback in a meta-tracing
jit for efficient dynamic languages. In Proceedings of the 6th Workshop
on Implementation, Compilation, Optimization of Object-Oriented Languages,
Programs and Systems, page 9. ACM, 2011.

[4] Carl Friedrich Bolz and Laurence Tratt. The impact of meta-tracing on
VM design and implementation. Science of Computer Programming, 2013.

[5] Alan Borning. Architectures for cooperating constraint solvers. Technical
Report VPRI Memo M-2012-003, Viewpoints Research Institute, Glendale,
California, May 2012.

[6] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint
hierarchies. Lisp and Symbolic Computation, 5(3):223–270, September 1992.

[7] Craig Chambers, David Ungar, and Elgin Lee. An efficient implemen-
tation of self a dynamically-typed object-oriented language based on
prototypes. ACM SIGPLAN Notices, 24(10):49–70, 1989.

[8] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[9] B. Demsky and M.C. Rinard. Goal-directed reasoning for specification-
based data structure repair. Software Engineering, IEEE Transactions on,
32(12):931–951, 2006.

42

Bibliography

[10] M. D’Hondt, K. Gybels, and V. Jonckers. Seamless integration of rule-
based knowledge and object-oriented functionality with linguistic sym-
biosis. In Proceedings of the 2004 ACM Symposium on Applied Computing,
pages 1328–1335. ACM, 2004.

[11] Enthought Inc. Enaml 0.6.3 documentation, 2013.

[12] Tim Felgentreff. Ruby Topaz. wroc_love.rb, March 2013.

[13] David Flanagan and Yukihiro Matsumoto. The ruby programming language.
O’Reilly, 2008.

[14] Bjorn Freeman-Benson and Alan Borning. The design and implementa-
tion of Kaleidoscope’90, a constraint imperative programming language.
In Proceedings of the IEEE Computer Society International Conference on Com-
puter Languages, pages 174–180, April 1992.

[15] Bjorn Freeman-Benson and Alan Borning. Integrating constraints with
an object-oriented language. In Proceedings of the 1992 European Conference
on Object-Oriented Programming, pages 268–286, June 1992.

[16] Bjorn Freeman-Benson and John Maloney. The DeltaBlue algorithm: An
incremental constraint hierarchy solver. In Proceedings of the Eighth Annual
IEEE Phoenix Conference on Computers and Communications, Scottsdale,
Arizona, March 1989. IEEE.

[17] Martin Grabmüller and Petra Hofstedt. Turtle: A constraint imperative
programming language. In Research and Development in Intelligent Systems
XX, pages 185–198. Springer, 2004.

[18] Bruce Horn. Constraint patterns as a basis for object-oriented con-
straint programming. In Proceedings of the 1992 ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages 218–233,
Vancouver, British Columbia, October 1992.

[19] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In
Proceedings of the Fourteenth ACM Principles of Programming Languages
Conference, Munich, January 1987.

[20] Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The CLP(R)
language and system. ACM Transactions on Programming Languages and
Systems, 14(3):339–395, July 1992.

43

Bibliography

[21] Håkon Wium Lie and Bert Bos. Cascading style sheets: Designing for the
web, 1997.

[22] Jens Lincke, Robert Krahn, Dan Ingalls, Marko Roder, and Robert
Hirschfeld. The lively partsbin–a cloud-based repository for collabo-
rative development of active web content. In System Science (HICSS), 2012
45th Hawaii International Conference on, pages 693–701. IEEE, 2012.

[23] Gus Lopez, Bjorn Freeman-Benson, and Alan Borning. Constraints and
object identity. In Proceedings of the 1994 European Conference on Object-
Oriented Programming, pages 260–279, July 1994.

[24] Gus Lopez, Bjorn Freeman-Benson, and Alan Borning. Implementing
constraint imperative programming languages: The Kaleidoscope’93 vir-
tual machine. In Proceedings of the 1994 ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 259–271, October
1994.

[25] Gus Lopez, Bjorn Freeman-Benson, and Alan Borning. Kaleidoscope: A
constraint imperative programming language. In Brian Mayoh, Enn
Tyugu, and Jaan Penjam, editors, Constraint Programming. Springer-
Verlag, 1994. NATO Advanced Science Institute Series, Series F: Com-
puter and System Sciences, Vol. 131. Also published as UW CSE Technical
Report 93-09-04.

[26] Christof Lutteroth and Gerald Weber. End-user GUI customization. In
Proceedings of the 9th ACM SIGCHI New Zealand Chapter’s International
Conference on Human-Computer Interaction: Design Centered HCI, pages 1–8.
ACM, 2008.

[27] Yoshiki Ohshima, Bert Freudenberg, Aran Lunzer, and Ted Kaehler. A
report on KScript and KSWorld. VPRI Research Note 2012-008, 2012.

[28] CPLEX Optimization. Using the cplex callable library and cplex mixed
integer library. CPLEX Optimization, Incline Village, 1993.

[29] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum,
Jay Silver, Brian Silverman, et al. Scratch: programming for all. Commu-
nications of the ACM, 52(11):60–67, 2009.

44

Bibliography

[30] Armin Rigo and Samuele Pedroni. Pypy’s approach to virtual machine
construction. In Companion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and applications, pages 944–953.
ACM, 2006.

[31] M. Rinard, C. Cadar, and H.H. Nguyen. Exploring the acceptability
envelope. In Companion to the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, pages
21–30. ACM, 2005.

[32] P. Roy and F. Pachet. Reifying constraint satisfaction in Smalltalk. JOOP,
10(4):43–51, 1997.

[33] Hesam Samimi, Ei Darli Aung, and Todd Millstein. Falling back on
executable specifications. In ECOOP 2010 – Object-Oriented Programming,
volume 6183 of Lecture Notes in Computer Science, pages 552–576. Springer
Berlin Heidelberg, 2010.

[34] Vijay A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

[35] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder.
In Tools and Algorithms for the Construction and Analysis of Systems, pages
632–647. Springer, 2007.

45

Appendix

This appendix contains material not published in the journal article, including
a design for additional language features not yet implemented, and example
programs. All the example programs are fully functional with the current
implementation.

1 About the Name

Babelsberg is a district of Potsdam, in which HPI is located. It is also the
location of Studio Babelsberg, the historical center of the German film industry
(Fritz Lang’s Metropolis and Josef von Sternberg’s The Blue Angel were filmed
there), and still active, primarily for high-budget feature films.

2 Support for Multiple Cooperating Solvers

The current implementation supports multiple solvers, and a protocol for
solvers so that it is convenient to add new ones. However, for a given program
only one solver is used. This is a significant limitation, since richer sets of
constraints can be written and solved using multiple cooperating solvers.
The Viewpoints note “Architectures for Cooperating Constraint Solvers” [5]
describes one technique for supporting this, which fits well with Babelsberg.
Briefly, in the “Architectures for Cooperating Constraint Solvers” approach,
we view the constraints and constrained variables as a bipartite graph. For
the top level, we partition the constraints into regions, based on the following
requirements:

• each constraint belongs to exactly one region

• the different regions can share variables (but not constraints)

• for each variable shared by two or more regions, that variable must be
read-only for all but one of the regions

46

3 Initializing and Manipulating Constraints

• the graph of the different top-level regions must be acyclic

• it isn’t possible to divide any region into two regions and still maintain
the other requirements

We can always partition the constraint graph this way. (In the limit, there is
a single region.) The partitioning is unique.

Given this partitioning, and a solver for the constraints in each region, it is
easy to solve the constraint system as a whole: it is just a dataflow problem.
We find an order for solving the regions, so that region B is solved after region
A if B is downstream from A in terms of the read-only variables.

3 Initializing and Manipulating Constraints

This subsection describes the protocol for initializing constraints and the
methods available on constraint objects.

Formally, a constraint is just a predicate that we want to have hold. In
the implementation, it is represented as an instance of Constraint. Minimally, a
constraint can be defined just as a predicate, written as a Ruby block. The
block should meet the following criteria:

• Evaluating the block returns a boolean — the constraint is that it evaluate
to true.

• The expression in the block should either be free of side effects, or if there
are side effects, they should be benign (for example, doing caching).

• Repeatedly evaluating the block should return the same thing (so an
expression involving a random number generator wouldn’t qualify).

There should be other available attributes for Constraint. Constraints that
will be satisfied using a local propagation solver need a set of propagation
methods, soft constraints need a priority, and so forth.

3.1 Initializing a Constraint

Here is a list of attributes that can be supplied when initializing a constraint
object. The predicate is the only required one, and as described below can be
either an argument or a block after the arguments. All of the other attributes
are specifiable as optional arguments to always or once.

47

Appendix

predicate A block that evaluates to true or false.

priority Defaults to : required.

weight Defaults to 1.

error A block that evaluates to the error in satisfying that constraint. The error
value is 0 iff the constraint is satisfied. Defaults to a simple 0/1 function.

methods (optional) A dictionary of local propagation methods, indexed by
the variable whose value is computed by the corresponding method.

The local propagation methods are only needed for local propagation
solvers like DeltaBlue. Each method is a block, that if evaluated, will set the
index variable to a value that satisfies the constraint. The constraint should
be functional for the writable variables, i.e., the value for the index variable
should be unique given values for the other constrained variables. If a con-
straint is read-only in some variable, then there isn’t a corresponding block
for that variable in the dictionary.

always can be used to define compound constraints. This happens, for exam-
ple, if a predicate method checks two conditions and conjoins them (as, for
example, in a CartesianPoint#== method). All arguments apply to all constraint
parts that are created during the execution of always. So a : low priority com-
pound constraint will be added to the solver as multiple primitive constraints
that are all : low priority. If local propagation methods are provided, evaluating
a method must satisfy all of the component constraints of a compound con-
straint. The error for a compound constraint is likely to be problematic unless
it is a simple 0/1 function.

3.2 Methods for the Class Constraint

The Constraint class provides the following methods in Babelsberg/R. (Here
we are referring to ordinary Ruby methods provided by the class, not the
constraint methods for local propagation.)

enable Enable all constraints that were asserted in the block. (If the constraint
is a compound constraint added to the solver as multiple primitive
constraints, all of these primitive constraints are enabled.)

disable Disable all constraints that were asserted in the block.

48

4 Constraint Durations

priority Returns the constraint block priority.

priority= Setter for the constraint block priority. This retracts all constraints
and re-enables them using the new priority.

constraint_block Returns the block object that was passed to always.

solver_constraints Returns an array with the solver-specific constraint ob-
jects. For Cassowary constraints, this is a list of LinearEqualities, for Z3 it is
a list of Z3Asts.

4 Constraint Durations

A constraint may not necessarily be active for the entire life of the program.
Babelsberg provides the following options: always, once, and assert {}. during {}

(for constraints that are enforced while a block is executing and then removed).
The return value of a call to always is an object of type Constraint. If the con-

straint has no solver, but the expression already evaluates to true, a warning
is printed; if it is false, an exception is raised.

Note that currently all assertions that we want to continuously check, but
cannot solve (yet), are implemented in this way. For example, without enabling
any string solvers in the system, always { stringA == stringB } will return true if indeed
the two strings are equal, and whenever any of the strings is assigned, the
block is re-executed to check if the condition still holds. If it doesn’t (the
boolean returned is be false or nil), an error is raised.

This same mechanism is used when complex objects for which we have
no solver occur in the constraint expression (even if a primitive constraint
is created in the block). Consider equality between two Cartesian points,
pt1 and pt2: the constraint expression will create two primitive constraints,
namely that pt1. x == pt2.x and pt1. y == pt2.y. Whenever an @x or a @y of either p1

or pt2 is assigned, the constraint solver will just calculate new values for the
other instance variables. However, if pt1 is assigned a new object, the two
primitive constraints are removed from the solver and the constraint block is
executed again, to find the new meaning of pt1. x == pt2.x. Because pt1 may now
be a different class, the equality may be expressed differently. So whenever a
complex object occurs in the execution of a constraint expression, the entire
block is kept alive as long as the object is, so that the block can be re-executed
later when the object is assigned a new value.

49

Appendix

5 Constraint Priorities

All arguments to always (except for the block), are simply passed on to the
enable method of the solver specific primitive constraint objects asserted during
the execution of the block. Babelsberg/R does not know about constraint
priorities (or weights, local propagation methods, or anything else that a
particular solver may use). DeltaBlue and Cassowary—the two solvers that
we currently provide that support priorities—simply map a set of named
priorities to internal priority values: required, high, medium, and low. We currently
require that all the solver libraries use the same priority names. (Adding a
more general mechanism that allows arbitrarily many priorities, and different
names in different libraries, is a possible extension. However, in practice we’ve
found that the fixed set of priorities has been sufficient, because the priorities
tend to be used in stylized ways, e.g., high for edit constraints and low for
stays.)

6 Example Programs

This part of the appendix provides a set of example programs in Babels-
berg/R that illustrate various features of the language

6.1 Electrical Circuit Examples

Here is a complete listing of the classes for building simple electrical circuits
with batteries, resistors, wires, and grounds, along with some sample circuits
using them. Note in particular the clean way constraints such as Ohm’s Law
can be expressed, and the integration of constraints with control structures
for the Kirchhoff’s Law constraint on n connected leads that their currents
sum to 0.

class Lead
attr_reader : voltage, : current
def initialize

set voltage and current to 0.0 for now so that they are of type Float
(constraints may change them later)
@voltage = 0.0
@current = 0.0

end
end

class TwoLeadedObject
attr_reader : lead1, : lead2

50

6 Example Programs

def initialize
@lead1 = Lead.new
@lead2 = Lead.new
constrain currents to be equal magnitude and opposite
always { lead1.current + lead2.current == 0.0 }

end
end

class Resistor < TwoLeadedObject
attr_reader : resistance
def initialize (resistance)

super()
@resistance = resistance
Ohm’s Law constraint. Note that the resistance is read−only.
always { lead1.voltage − lead2.voltage == resistance.?*lead1.current }

end
end

class Battery < TwoLeadedObject
attr_reader : supply_voltage
def initialize (supply_voltage)

super()
@supply_voltage = supply_voltage
always { lead2.voltage − lead1.voltage == @supply_voltage.? }

end
end

class Ground
attr_reader : lead
def initialize

@lead = Lead.new
constrain the voltage and current to be 0
always { lead.voltage == 0.0 }
always { lead.current == 0.0 }

end
end

class Wire < TwoLeadedObject
def initialize

super()
always { lead1.voltage == lead2.voltage }

end
end

def connect(*leads)
return if leads. empty?
all voltages should be equal
leads[1..−1]. each { |a| always { a.voltage == leads[0]. voltage } }
sum of currents has to be 0
always { leads. map(\&:current).sum == 0 }

end

def battery_resistor
build a circuit with a battery and a resistor , and return the current in one of the leads

51

Appendix

r = Resistor. new(resistance)
b = Battery. new(voltage)
connect g.lead, r. lead1, b. lead1

connect r. lead2, b. lead2

return r. lead1.current
end

def wheatstone_bridge
build a Wheatstone bridge , and return the current through the
galvanometer (represented as a wire in this version)
g = Ground.new
b = Battery. new(5.0)
r1 = Resistor. new(100.0)
r2 = Resistor. new(100.0)
r3 = Resistor. new(100.0)
r4 = Resistor. new(100.0)
w = Wire.new
connect g.lead, b.lead1, r3. lead2, r4. lead2

connect b.lead2, r1. lead1, r2. lead1

connect r1. lead2, r3. lead1, w.lead1

connect r2. lead2, r4. lead1, w.lead2

return w.lead1.current
end

6.2 Cryptarithmetic

Here is the well known cryptarithmetic puzzle send+more=money, which
Babelsberg/R can solve using Z3. (Later, we should also have an efficient
finite-domain solver such as kodkod available.)

initialize each variable to an integer so that the solver knows its type
s, e, n,d,m,o,r, y = [0]*8

each letter represents a digit between 0 and 9
always { [s, e, n,d,m,o,r, y]. ins(0..9) }

each letter is mapped to a different digit
always { [s, e, n,d,m,o,r, y]. alldifferent ? }

the addition constraint
always { s*1000 + e*100 + n*10 + d +

m*1000 + o*100 + r*10 + e ==
m*10000 + o*1000 + n*100 + e*10 + y }

the leading digits can’ t be 0
always { s>0 }
always { m>0 }

puts ("solution: [s, e, n,d,m,o,r, y] = " + [s, e, n,d,m,o,r, y]. to_s)

52

6 Example Programs

Colophon

This report was typeset by LATEX 2ε with pdfTEX using KOMA-Script. The body
text is set 11/14

1⁄4 pt on a 30
1⁄4 pc measure. The body type face is Hermann

Zapf’s Palatino Linotype. The listing type face is DejaVu Sans Mono, based on
the Vera family by Bitstream, Inc. —Tobias Pape

53

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

80 978-3-86956-

264-3
openHPI: The MOOC Offer at Hasso
Plattner Institute

Christoph Meinel,
Christian Willems

79 978-3-86956-
259-9

openHPI: Das MOOC-Angebot des Hasso-
Plattner-Instituts

Christoph Meinel,
Christian Willems

78 978-3-86956-
258-2

Repairing Event Logs Using Stochastic
Process Models

Andreas Rogge-Solti, Ronny S.
Mans, Wil M. P. van der Aalst,
Mathias Weske

77 978-3-86956-
257-5

Business Process Architectures with
Multiplicities: Transformation and
Correctness

Rami-Habib Eid-Sabbagh,
Marcin Hewelt, Mathias Weske

76 978-3-86956-
256-8

Proceedings of the 6th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren des
HPI

75 978-3-86956-
246-9

Modeling and Verifying Dynamic Evolving
Service-Oriented Architectures

Holger Giese, Basil Becker

74 978-3-86956-
245-2

Modeling and Enacting Complex
Data Dependencies in Business
Processes

Andreas Meyer, Luise Pufahl,
Dirk Fahland, Mathias Weske

73 978-3-86956-
241-4

Enriching Raw Events to Enable Process
Intelligence

Nico Herzberg, Mathias Weske

72 978-3-86956-
232-2

Explorative Authoring of ActiveWeb
Content in a Mobile Environment

Conrad Calmez, Hubert Hesse,
Benjamin Siegmund, Sebastian
Stamm, Astrid Thomschke,
Robert Hirschfeld, Dan Ingalls,
Jens Lincke

71 978-3-86956-
231-5

Vereinfachung der Entwicklung von
Geschäftsanwendungen durch
Konsolidierung von Programmier-
konzepten und -technologien

Lenoi Berov, Johannes Henning,
Toni Mattis, Patrick Rein, Robin
Schreiber, Eric Seckler, Bastian
Steinert, Robert Hirschfeld

70 978-3-86956-
230-8

HPI Future SOC Lab - Proceedings 2011 Christoph Meinel, Andreas Polze,
Gerhard Oswald, Rolf Strotmann,
Ulrich Seibold, Doc D'Errico

69 978-3-86956-
229-2

Akzeptanz und Nutzerfreundlichkeit der
AusweisApp: Eine qualitative
Untersuchung

Susanne Asheuer, Joy
Belgassem, Wiete Eichorn, Rio
Leipold, Lucas Licht, Christoph
Meinel, Anne Schanz, Maxim
Schnjakin

68 978-3-86956-
225-4

Fünfter Deutscher IPv6 Gipfel 2012 Christoph Meinel, Harald Sack
(Hrsg.)

67 978-3-86956-
228-5

Cache Conscious Column Organization in
In-Memory Column Stores

David Schalb, Jens Krüger,
Hasso Plattner

66 978-3-86956-
227-8

Model-Driven Engineering of Adaptation
Engines for Self-Adaptive Software

Thomas Vogel, Holger Giese

65 978-3-86956-
226-1

Scalable Compatibility for Embedded
Real-Time components via Language
Progressive Timed Automata

Stefan Neumann, Holger Giese

Technische Berichte Nr. 81

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Babelsberg: Specifying
and Solving Constraints
on Object Behavior
Tim Felgentreff, Alan Borning, Robert Hirschfeld

ISBN 978-3-86956-265-0
ISSN 1613-5652

	Title
	Imprint

	Abstract
	Contents
	1 Introduction
	2 Background and Related Work
	2.1 Constraint Satisfaction Libraries
	2.2 Domain-specific Languages for Constraints
	2.3 Dataflow Constraints and FRP
	2.4 Integrating Constraints with a Programming Language

	3 Object Constraint Programming
	3.1 Restrictions on Constraints
	3.2 Constraints and Control Structures
	3.3 Solvers
	3.4 Read-only Variables
	3.5 Constraint Durations and Activation
	3.6 Soft Constraints and Stay Constraints
	3.7 Incrementally Re-satisfying Constraints
	3.8 Constraints on Object Identity, Class, and Message Protocol

	4 Implementation
	4.1 Constrained Variables
	4.2 Execution Contexts
	4.3 Implementing Edit Constraints
	4.4 Adding new Solvers

	5 Evaluation
	5.1 Performance Evaluation
	5.2 Comparison with Related Approaches

	6 Conclusion and Future Work
	Bibliography
	Appendix
	1 About the Name
	2 Support for Multiple Cooperating Solvers
	3 Initializing and Manipulating Constraints
	3.1 Initializing a Constraint
	3.2 Methods for the Class Constraint

	4 Constraint Durations
	5 Constraint Priorities
	6 Example Programs
	6.1 Electrical Circuit Examples
	6.2 Cryptarithmetic

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

