
Technische Berichte Nr. 82

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Extending a Java Virtual

Machine to Dynamic

Object-oriented

Languages

Tobias Pape, Arian Treffer, Robert Hirschfeld,
Michael Haupt

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 82

Tobias Pape | Arian Treffer | Robert Hirschfeld | Michael Haupt

Extending a Java Virtual Machine to
Dynamic Object-oriented Languages

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2013
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2013/6743/
URN urn:nbn:de:kobv:517-opus-67438
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67438

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-266-7

mailto:verlag@uni-potsdam.de
http://info.ub.uni-potsdam.de/verlag.htm

Abstract

There are two common approaches to implement a virtual machine (ѣњ)
for a dynamic object-oriented language. On the one hand, it can be imple-
mented in a C-like language for best performance and maximum control
over the resulting executable. On the other hand, it can be implemented in
a language such as Java that allows for higher-level abstractions. These ab-
stractions, such as proper object-oriented modularization, automatic mem-
ory management, or interfaces, are missing in C-like languages but they can
simplify the implementation of prevalent but complex concepts in ѣњs, such
as garbage collectors (єѐs) or just-in-time compilers (їіѡs). Yet, the implemen-
tation of a dynamic object-oriented language in Java eventually results in
two ѣњs on top of each other (double stack), which impedes performance.

For statically typed languages, the Maxine ѣњ solves this problem; it is
wriĴen in Java but can be executed without a Java virtual machine (їѣњ).
However, it is currently not possible to execute dynamic object-oriented lan-
guages in Maxine.

This work presents an approach to bringing object models and execution
models of dynamic object-oriented languages to the Maxine ѣњ and the ap-
plication of this approach to Squeak / Smalltalk. The representation of ob-
jects in and the execution of dynamic object-oriented languages pose cer-
tain challenges to the Maxine ѣњ that lacks certain variation points neces-
sary to enable an effortless and straightforward implementation of dyna-
mic object-oriented languages’ execution models. The implementation of
Squeak / Smalltalk in Maxine as a feasibility study is to unveil such missing
variation points.

ū

Contents

ū. Introduction ūū
ū.ū. Contributions . ūŬ
ū.Ŭ. Outline . ūŬ

Ŭ. Maxine and Dynamic Object-oriented Languages ūŮ
Ŭ.ū. Introduction to Maxine . ūŮ
Ŭ.Ŭ. Challenges for Dynamic Languages on Maxine ūű

ŭ. Representing Squeak Objects in Memory ŬŪ
ŭ.ū. Object Models . ŬŪ
ŭ.Ŭ. Squeak Layout . ŬŮ
ŭ.ŭ. Mapping Squeak to Maxine . ŬŰ
ŭ.Ů. Tagged Integers . ŭŬ

Ů. Mapping Execution Models to Maxine ŭŮ
Ů.ū. Execution Models and Virtual Machines ŭŮ
Ů.Ŭ. Interaction with Object Models . Ůū
Ů.ŭ. Implementation Process Concept ŮŮ
Ů.Ů. Built-in Behavior . Ůű
Ů.ů. Stack Access . ŮŲ

ů. Objects in SqueakMaxine ůū
ů.ū. Configuration with Schemes . ůū
ů.Ŭ. The Squeak Layout Approach . ůű
ů.ŭ. The Maxine Layout Approach . Űů
ů.Ů. Tagged Integers . űŮ

Ű. Execution in SqueakMaxine űű
Ű.ū. Architecture of SqueakMaxine . űű
Ű.Ŭ. Runtime Object Access . űŲ
Ű.ŭ. Bytecode Compilation . Ųū

ŭ

Contents

Ű.Ů. Garbage Collection in the Presence of Executing Code ųū
Ű.ů. Implementing Built-in Behavior . ųŬ
Ű.Ű. Runtime Execution Information and Call Stacks ūŪū

ű. Variation Points of a Virtual Machine Framework ūūŪ
ű.ū. From Configurability to Extensibility ūūū
ű.Ŭ. Heap and Garbage Collector . ūūŮ
ű.ŭ. Layout . ūūŰ
ű.Ů. Other Subsystems . ūŬŪ

Ų. Maxine Variation Points: An Evaluation ūŬŬ
Ų.ū. Instruction Set Abstractions . ūŬŬ
Ų.Ŭ. The Template-based Just-In-Time Compiler ūŬŮ
Ų.ŭ. Re-usability of Maxine’s Compilation Infrastructure ūŬŰ
Ų.Ů. Implementing Built-in Behavior . ūŬŲ
Ų.ů. Stack Manipulation . ūŬų
Ų.Ű. Applicability to Other Dynamic Languages ūŭŪ

ų. Related Work ūŭŭ
ų.ū. Virtual Machines in Higher-level Languages and Metacircular Vir-

tual Machines . ūŭŭ
ų.Ŭ. Virtual Machine Product Lines, Platforms, and Frameworks ūŭŮ
ų.ŭ. Java Virtual Machines . ūŭŮ
ų.Ů. Squeak Virtual Machines . ūŭů
ų.ů. Dynamic Languages on Java Virtual Machines ūŭŰ

ūŪ. Summary and Future Work ūŭű

A. Key to Figures in Chapters ŭ and ů ūŮů

B. Extended Interfaces ūŮű

C. Squeak Essential Primitives ūůū

D. SqueakMaxine Primitive Implementation Overview ūůŮ

E. Key for Virtual Machine Structure Diagram ūůŰ

F. Code Examples for S1X ūůű

Ů

List of Figures

ŭ.ū. The Java Object Model . Ŭū
ŭ.Ŭ. The Squeak Object Model . Ŭŭ
ŭ.ŭ. The Squeak Layout . ŬŮ
ŭ.Ů. Compiled Method Layout . ŬŰ
ŭ.ů. The Maxine Actor Hierarchy . Ŭű
ŭ.Ű. Relations of the Dynamic Hub . ŬŲ
ŭ.ű. The ќѕњ Layout Hierarchy . Ŭų
ŭ.Ų. The ќѕњ and ѕќњ Layouts . Ŭų
ŭ.ų. Linking Instance and Class Object in Maxine ŭŪ
ŭ.ūŪ. The Ѧќѕњ Layout Hierarchy . ŭŬ

Ů.ū. Process virtual machine building blocks. ŮŬ
Ů.Ŭ. Object model and execution model in a ѣњ Ůŭ

ů.ū. GC Step on the Semi-space Heap ůŰ
ů.Ŭ. Implementations of the Squeak Layout Űū
ů.ŭ. The Squeak Class Actor Hierarchy Űű
ů.Ů. Compiled Method Layout Conversion űū
ů.ů. Allocating a Cell for a Squeak Object űū
ů.Ű. Squeak Object Converted into the Ѧќѕњ layout űŭ

Ű.ū. Maxine Execution Model Implementation Architecture űŲ
Ű.Ŭ. SqueakMaxine Execution Model Implementation űų
Ű.ŭ. Default Java compilation broker behavior ŲŬ
Ű.Ů. T1X templates overview . ŲŮ
Ű.ů. Illustration of native code after compilation by T1X. Ųů
Ű.Ű. T1X classes overview. ŲŰ
Ű.ű. Squeak compilation broker behavior ŲŲ
Ű.Ų. T1X frame layout . ūŪŬ
Ű.ų. Married contexts . ūŪů

ů

List of Figures

Ű.ūŪ. S1X frame layout . ūŪŰ

ű.ū. Parallel Environments . ūūū
ű.Ŭ. Integrated Environments . ūūŬ
ű.ŭ. Garbage Strategy . ūūŮ

Ų.ū. Factorization of the template-based їіѡ compilers. ūŬů
Ų.Ŭ. Template compiler proposal . ūŬŰ

Ű

List of Tables

ů.ū. GeneralLayout Methods Implemented for the Squeak Layout . . ůų
ů.Ŭ. SpecificLayout Methods Implemented for the Squeak Layout . . . ŰŪ
ů.ŭ. The Image Loading Process . Űų

Ű.ū. Differences between bytecode and primitive behavior ųŰ
Ű.Ŭ. Implementation levels of primitives in SqueakMaxine ūŪŪ

Ų.ū. Possible locations of bytecode functionality implementations . . . ūŬů

B.ū. Additions to Scheme Interfaces . ūŮű

C.ū. Essential Squeak Primitives . ūůū

D.ū. Primitive implementation status in SqueakMaxine ūůŮ

ű

List of Listings

Ů.ū. Source of Object>>at: . Ůū

ů.ū. Origin to Cell Conversion in the ѕќњ layout ůŭ
ů.Ŭ. The ќѕњ Array Layout Implementation ůŮ
ů.ŭ. Origin to Cell for the Squeak Layout ůŲ
ů.Ů. ImageIO Example . Űū
ů.ů. ImageAccess Example . ŰŬ
ů.Ű. ImageLoader Example . ŰŬ
ů.ű. Printing a Stack Trace . Űŭ
ů.Ų. Ѧќѕњ Tuple Layout Changes . ŰŰ
ů.ų. Finding the Behavior Class . űŪ
ů.ūŪ. SqueakObject#hashCode() . űů
ů.ūū. Tagged References in Java Code űů

Ű.ū. T1X parts relevant for the IADD bytecode. Ųŭ
Ű.Ŭ. S1X parts relevant for the PRIM_EQUIVALENT bytecode. Ųų
Ű.ŭ. SqueakTemplateSource, Excerpt . ųŪ
Ű.Ů. Native Methods in java.lang.Object ųŮ
Ű.ů. java.lang.Object intrinsics’ definitions ųů
Ű.Ű. S1X parts relevant for the Squeak primitive ūūŪ. ųŲ
Ű.ű. Squeak primitive failure handling ųų
Ű.Ų. Example use of thisContext . ūŪŭ
Ű.ų. ContextPart>>pc source code . ūŪű
Ű.ūŪ. ContextPart>>pc bytecodes . ūŪű
Ű.ūū. Prefixed push instance variable . ūŪű
Ű.ūŬ. Runtime part for variableInContext() ūŪŲ
Ű.ūŭ. Visitor to ensure that the caller frame is married ūŪų

ű.ū. Scanning an Object During Garbage Collection ūūů
ű.Ŭ. Object Scanning Deferred to Layout ūūŰ

Ų

List of Listings

ű.ŭ. Visit References . ūūŲ

F.ū. Squeak/Smalltalk source of Behavior>>new as of Squeak Ů.ŭ. ūůű
F.Ŭ. Squeak bytecode of Behavior>>new as of Squeak Ů.ŭ. ūůű
F.ŭ. S1X generated native code for Behavior>>new. ūůŲ

ų

List of Abbreviations

юѝі application programming interface
юѠѡ abstract syntax tree
ѐљќѠ Common Lisp object system
ѐџі compiler–runtime interface
ѓѓі foreign function interface
єѐ garbage collector
ѕќњ header-origin-mixed
іёђ integrated development environment
їѠќћ JavaScript Object Notation
їёј Java development kit
їіѡ just-in-time compiler
їљѠ Java language specification [ūů]
їѣњ Java virtual machine
їѣњѠ Java virtual machine specification [Ŭů]
їћі Java native interface
їџђ Java runtime environment
їѠџ Java specification request
њљѣњ multi-language virtual machine
њќѝ metaobject protocol
ќѕњ origin-header-mixed
ќќ object-oriented
ќќѝ object-oriented programming
ѝіѐ polymorphic inline cache
ѡљюя thread-local allocation buffer
Ѣњљ unified modeling language
ѣњ virtual machine
Ѧќѕњ origin-header-dummy-mixed
іџ intermediate representation
љіџ lower-level intermediate representation
ѥіџ compiler and runtime independent intermediate representation

ūŪ

ū. Introduction

The traditional way of implementing dynamically typed, object-oriented lan-
guages is to write a virtual machine (ѣњ) in a language like C or C++ [Ű].
Also, statically typed, object-oriented languages such Java or C# are avail-
able as C / C++-based ѣњ implementations. Nevertheless, writing ѣњs in lan-
guages without higher-level abstractions—such as proper object-oriented
modularization, automatic memory management, or interfaces—has an im-
pact on their maintainability, especially since ѣњs typically include features
that are rather complex to express, e.g., automatic memory management
with garbage collector (єѐ), threading implementations, or just-in-time com-
pilers (їіѡs). Hence, dynamic object-oriented languages are also wriĴen in
languages like Java that provide higher-level abstractions to simplify their
implementation [Ű]. Consequently, this typically results in one ѣњ, for the
dynamic object-oriented language, running on top of another ѣњ, e.g., the
Java virtual machine (їѣњ) (double stack).

Like dynamic object-oriented languages, statically typed languages can
also benefit from the advantages of higher-level–language ѣњ implementa-
tions [ūŬ]. For instance, Maxine [ŬŰ] implements a їѣњ in Java. Maxine has
a strong focus on maintainability and tries to leverage the features of Java,
such as the automatic memory management or the elaborate annotations
system. Maxine can be bootstrapped to machine code and, subsequently, be
run without another їѣњ as host. Therefore, a possible loss of performance
due to a double stack is avoided.

For dynamic object-oriented languages implemented in Java and running
on top of a їѣњ, this double stack actually exist. Moreover, running on top
of Java bytecode poses a semantic mismatch for dynamic languages. The
Java bytecode and їѣњs are designed and optimized for the statically typed
nature of Java and do not anticipate the dynamic features of dynamic ob-
ject-oriented languages such as late binding, the notion of “everything is an
object” [ŬŬ], or changing an object’s structure at runtime. While approaches
that alleviate these problem exist, e.g., a bytecode designed especially for
dynamic languages [ŭų], they do not meet the full extent of the semantics of

ūū

ū. Introduction

dynamic object-oriented languages; a їѣњ’s assumptions about, e.g., object
layout or object access are bound to the static nature of Java. This can affect
the performance of dynamic object-oriented languages on їѣњs.

We propose to run a dynamic object-oriented language within a їѣњ to cir-
cumvent this downsides, i.e., the language implementation is treated as part
of the ѣњ and does not target Java bytecodes. This should be feasible with
Maxine, as several dynamic object-oriented languages already exist in Java
implementations that could be re-used and extended to run inside Maxine.
However, to facilitate this on the Maxine part, variation points within Max-
ine itself are necessary. That way, Maxine should become a virtual machine
framework for dynamic object-oriented languages.

ū.ū. Contributions

The aim of this work is to identify missing variation points in Maxine. These
would be necessary to enable dynamic object-oriented languages being im-
plement in Maxine with reasonable effort. Squeak/Smalltalk serve as a feasi-
bility study. This work is concerned with how to execute behavior of dynamic
object-oriented languages within Maxine.
The contributions of this work are as follows:

• the object model of Squeak and its representation in memory, and a maping
to a layout closer to what Maxine natively supports.

• execution models for Java and Squeak/Smalltalk and the conceptual process
of mapping execution models to implementations in Maxine;

• an implementation of Squeak’s object and execution model in Maxine;
• the identification of variation points in Maxine that are neccesary to make

Maxine a ѣњ framework for dynamic object-oriented languages.

ū.Ŭ. Outline

The following chapter Ŭ gives an overview of Maxine and its relation to dyna-
mic object-oriented languages. Then, chapter ŭ presents a definiton of object
models and discusses the representation of objects in memory. Accordingly,
chapter Ů defines what an execution model constitutes in the context of dy-
namic object-oriented languages and ѣњs, and explains, how to map such
models to Maxine.

ūŬ

ū.Ŭ. Outline

Then, chapter ů presents the implementation of object models and chap-
ter Ű reports on the implementation of Squeak in Maxine, carried out as an
application of the tasks given in chapter Ű. Chapter Ų evaluates the findings
of this application. After the presentation of related work in chapter ų, this
work closes with a summary and conclusion in chapter ūŪ.

ūŭ

Ŭ. Maxine and Dynamic
Object-oriented Languages

This chapter presents an overview of Maxine and its concepts with special
aĴention drawn to the question how execution happens in Maxine. The chal-
lenges that dynamic object-oriented languages might pose for an implemen-
tation in Maxine follow subsequently.

Ŭ.ū. Introduction to Maxine

Maxine is a ѣњ for the Java language and is wriĴen in Java. It is developed at
Oracle Labs (former Sun Labs) and the project members understand Maxine
as a “Platform for Virtual Machine Research” [ŮŬ].

The Maxine ѣњ aims to provide a ѣњ that is usable in place of the standard
їѣњ [Ŭů]. It shares the same format for code and uses the same class library.
Unlike the standard їѣњ, Maxine does not provide interpreted execution of
Java bytecode but only just-in-time compilation.

Ŭ.ū.ū. Maxine as a Java Superset

Implementing a virtual machine (ѣњ) usually requires access to low-level
data structures, notably, means to address memory. One of the core parts
of a ѣњ is the memory management, which is dependent on such structures.
Moreover, execution infrastructure, like їіѡs, need these structures, e.g., to
provide entry points to compiled methods or to compile memory accessing
functionality. The Java language deliberately abstracts from such low-level
structures, providing automatic memory management instead. To enable
the implementation of the Maxine ѣњ in Java, Maxine augments the stan-
dard Java class library by a machine word data type hierarchy. These types
are handled in a special way by Maxine’s compilers, yielding machine code
suitable for pointer manipulation or memory addressing purposes. In this
sense, the Maxine platform offers a superset of the Java language.

ūŮ

Ŭ.ū. Introduction to Maxine

Ŭ.ū.Ŭ. Bootstrapping

The Maxine ѣњ is wriĴen in Java, nevertheless, it does not need another їѣњ
to run. This is achieved by bootstrapping the ѣњ from within a їѣњ. Currently,
only the Java HotSpot ѣњ is supported for this task. The process of bootstrap-
ping consists of the following steps:

• Start the їѣњ with the bootstrapping program.
• Load the Maxine modules that are necessary to run the Maxine ѣњ. This in-

cludes єѐ, їіѡs, and startup sequences, among others. The respectively cho-
sen implementations depend on the configuration of schemes and brokers
as described below.

• Create Maxine’s internal object representation of the just loaded modules,
their classes, and methods.

• Compile all methods that are reachable from the loaded modules.
• The previous two steps are repeated with all new entities and methods encountered
during compilation steps until a pre-defined boundary is encountered, e.g., a certain
call depth or certain methods of the class library.

• Write all collected objects and compiled methods to an image file.
Together with a small, platform-dependent loader program wriĴen in C,

the image now constitutes a Maxine ѣњ. Executing the loader program just
loads the image file into memory and jumps into the startup scheme that was
specified at bootstrap time. From this point, compiled Java code is executed
natively; a host їѣњ is no longer necessary.

Depending on the bounds for the image, the Maxine ѣњ possibly has to
load other Java code—excluding the actual Java application code. Hence,
the Java їіѡs always are part of the Maxine image and a Maxine ѣњ always
will act as a їѣњ, regardless of what language, object model, or execution
model is actually implemented.

Ŭ.ū.ŭ. Variability through Schemes

One of the main goals of the Maxine project is to provide compile-time con-
figuration of the Maxine ѣњ by employing standard Java features. Maxine
uses schemes for that purpose [ůū]. A scheme is a Java interface defining
how the Maxine ѣњ interacts with the described component, e.g., the heap
management/єѐ. During boot image generation, concrete implementations
for schemes can be selected, e.g., a copying єѐ or a mark-and-sweep єѐ.

ūů

Ŭ. Maxine and Dynamic Object-oriented Languages

Employing variability through schemes allows Maxine to act as a software
product line [Ų]; certain coarse grain functional aspects can be exchanged
prior to generating the product, in this case a ѣњ, more accurately, a specific
Maxine ѣњ. This specific ѣњ consists of a small loader and the Maxine boot
image.

Currently, the following schemes exist in Maxine: the Layout scheme de-
fines the layout of Maxine ѣњ objects in the memory; theHeap scheme defines
the layout of the ѣњ’s heap and the kind of єѐ to use; the Reference scheme de-
fines the access to objects for manipulation; the Monitor scheme defines how
synchronization and locking is implemented; and theRun scheme defines the
start-up procedure right after the ѣњ initialization.

Ŭ.ū.Ů. Pluggability through Brokers

Besides compile-time configuration, Maxine has a runtime variability facil-
ity, called brokers. A broker comes into effect, when several components pro-
vide a similar feature, but the decision which to choose is runtime bound.
The currently sole instance of this technique is the choice of the їіѡ for a
method. While there are several їіѡs available, it is infeasible to determine
at compile-time of the Maxine ѣњ, which one should be used throughout
the built ѣњ. This is due to the characteristics the different їіѡs have; be it
optimization or compatibility to the original bytecode, some methods call
for a different їіѡ than others. Hence, all necessary compilers are included at
compile-time and a broker is used to determine the їіѡ necessary for a certain
method in a certain state. This broker is called the Compilation broker.

There is only one instance of brokers currently present in Maxine, but this
concept can be extended as needed.

Ŭ.ū.ů. Execution in Maxine

Maxine’s primary task as ѣњ clearly is executing Java programs. Such pro-
grams typically are pre-compiled as Java bytecode with which ѣњs have to
deal. Unlike the standard HotSpot™ based їѣњ, Maxine does not have any
interpreter but їіѡs. These transform bytecode into native machine code.

Although Maxine has more than one їіѡ, the execution behavior of Maxine
is the same for them. When a Java method is to be executed, Maxine looks
up the method’s internal representation. Depending on the method’s state,

ūŰ

Ŭ.Ŭ. Challenges for Dynamic Languages on Maxine

the bytecode of the method is compiled using one of Maxine’s їіѡs, if neces-
sary. Either way, Maxine uses the method’s native machine code to continue
execution.

Maxine has a few hand-crafted machine code parts to facilitate calls be-
tween optimized and non-optimized methods and a handful of C-wriĴen
functions that perform platform dependent operations, such as initial mem-
ory allocation. Apart from these functions, all functionality within Maxine
is provided by їіѡ-compiled Java methods.

Ŭ.Ŭ. Challenges for Dynamic Languages on Maxine

Implementing dynamic object-oriented languages in Maxine might face cer-
tain difficulties that are either due to the properties of the languages them-
selves or due to the current state of Maxine regarding its design choices and
their implementation. While the former kind of difficulties can be identified
by analyzing the languages, the laĴer needs a more in-depth investigation
of Maxine’s implementation to identify difficulties or, more appropriately,
missing variation points.

Ŭ.Ŭ.ū. Relevant Characteristics of Dynamic Object-oriented
Languages

Of the well-known or popular programming languages, dynamic object-ori-
ented languages feature a combination of characteristics that are interesting
for implementation in Maxine. This includes characteristics that are both
present in, at least several, dynamic object-oriented languages and Maxine,
facilitating an implementation in the first place. However, this also includes
characteristics that are not currently present in Maxine, hence, implementing
these can enrich Maxine.

Similar characteristics Certain characteristics of dynamic object-oriented
languages match features Maxine provides for its Java implementation.
ѣњ яюѠђё Many dynamic object-oriented languages are already run on ѣњs,

e.g., Self, Lua, or JavaScript. Some designed that way, e.g., Smalltalk, some
just happen to be implemented for or as ѣњs but were not designed to, e.g.,
JavaScript. Nevertheless, it is not unnatural for dynamic object-oriented
languages to be run on ѣњs, which suits Maxine.

ūű

Ŭ. Maxine and Dynamic Object-oriented Languages

MђњќџѦ њюћюєђњђћѡ Most dynamic object-oriented languages use auto-
matic memory management with the requirement for garbage collection.
The challenge here is to integrate Maxine’s garbage collection with that of
the dynamic object-oriented language, even more so, to allow for garbage
collection during the execution of methods of the dynamic object-oriented
language. As indicated in section Ŭ.ū.Ŭ, a Maxine ѣњ will always be able
to operate a as їѣњ internally, regardless of which language is actually
implemented. Hence, methods of both the dynamic object-oriented langu-
age and Java may exist in a Maxine ѣњ for the dynamic object-oriented
language, both bound to interact with the єѐ.

Iћѡђџњђёіюѡђ џђѝџђѠђћѡюѡіќћѠ Dynamic object-oriented languages such as
Smalltalk or Lua, among others, have a distinct intermediate representa-
tion their source code is compiled to. The languages ѣњs ever only see
this intermediate representation, e.g., bytecode. This is similar to Java and,
hence, Maxine can work with bytecode representation. Note, however,
that other dynamic object-oriented languages like Ruby or Python do not
have such an intermediate representation exposed; their implementations
are expected to deal with source code directly.

Oяїђѐѡ њќёђљ Every dynamic object-oriented language has a distinct object
model. Such an object model can be different from the Java object model
implemented in Maxine.

Dissimilar characteristics Some characteristics of dynamic object-orient-
ed languages do not match with features present in Maxine and, thus, pose
a particular challenge for dynamic object-oriented languages on Maxine.
LќќјѢѝ The method lookup for dynamic object-oriented languages is nor-

mally unlike the method lookup for Java. Features like genuine polymor-
phism, e.g., in Smalltalk, or object-specific behavior, e.g., in JavaScript or
Self are challenges to be considered as there are no concepts present in
Maxine for them, yet.

CљќѠѢџђѠ Most dynamic object-oriented languages provide means to create
and invoke closures, be it blocks in Smalltalk, Self, or Ruby; λ-expressions
in Python or Ruby; or anonymous functions in JavaScript. Maxine has no
abstractions for closures, as Java does not have a true closure mechanism,
yet. However, upcoming releases of Java are said to include syntax and
semantics for closures. Hence, tackling closures in the process of bring-
ing dynamic object-oriented languages to Maxine can be beneficial to an
implementation of closures for Java later on.

ūŲ

Ŭ.Ŭ. Challenges for Dynamic Languages on Maxine

Rђѓљђѐѡіќћ юћё љіѣђ ѠѦѠѡђњѠ Most dynamic object-oriented languages pro-
vide means to introspect and intercede running programs. Inspecting and
creating classes and methods is possible in, e.g., Python and Ruby, and
also in Smalltalk, where this functionality is vital, as reflection is the only
means of introducing new behavior to the system. Self, on the other hand,
provides a sophisticated mirror system that, even more than in Smalltalk,
poses the means of program introspection, intercession, and maintenance.
While in Java reflection is limited to access to class and object fields and
invocation of methods, the creation and alteration of shape and behavior
like in most dynamic object-oriented languages is not possible. However,
the means for behavior and state creation are understandably present in
Maxine to support running programs in the first place. Yet, altering shape
and behavior of existing internal object is not supported, yet, and has to
be considered to allow for live systems on Maxine.

Ŭ.Ŭ.Ŭ. Maxine as a Virtual Machine Platform

At the time of writing, Maxine is a platform for Java virtual machines. As
pointed out, the guest language of any Maxine ѣњ is Java in its bytecode
form. The platform aspect is provided by the two configuration mechanisms,
schemes and brokers, that make it possible to produce differently laid out
ѣњs from the same code base, comparable to software product lines. This
makes Maxine a Java ѣњ platform.

Taking the idea of a ѣњ platform further, Maxine as a platform for dyna-
mic object-oriented languages seems reasonable. Are the current means of
configuration fit for the implementation of other languages than Java? More-
over, is it possible to extend Maxine to a dynamic object-oriented language
implementation framework? The difference here is, whether Maxine is just
used to implement a dynamic object-oriented language ѣњ or whether it is
capable of facilitating a dynamic object-oriented language ѣњ implementa-
tion by providing enough variation points and inversion-of-control points.
xIn the context of execution, this is evident when looking at possible imple-
mentations of, e.g., execution engines: A platform should provide a common
interface for all execution engine implementations, a framework should pro-
vide generic execution engines that can be specialized for a given language.
This holds for execution engine–garbage collection, too, among others.

ūų

ŭ. Representing Squeak Objects in
Memory

Even though many modern programming languages provide the familiar
concept of objects, the understanding of what an object is and can do differs
between languages. This is relevant when representing objects in memory;
the implementation should be efficient, yet reflect the languages semantics
of objects.

This chapter begins with a definition of the term “object model” and a
comparison of the object models of Java and Squeak. Then, we show how
object models can be mapped to memory, analyze how this was achieved
by Squeak for Smalltalk and Maxine for Java, and propose an adaption of
the laĴer to beĴer suit the needs of this project.

ŭ.ū. Object Models

Generally, the term “object model” can be used to describe different con-
cepts. While it can be used for any model that is composed of objects, in
the context of object-oriented programming languages and their ѣњs, the
term usually refers to how objects are modeled in the language. Neverthe-
less, there is no widely accepted definition of this term. Snyder [Ůů] used it as
a terminology to propose a generic object concept, but focused on language-
agnostic client-server systems. The definition used in this work is based on
a survey from ūųųű [ŭŪ], which was reduced to relevant aspects.

ŭ.ū.ū. Definition

In the context of ќќѝ languages, an object model defines the properties and
characteristics of objects of a language. All object-oriented programming
(ќќѝ) languages have a concept of relations between objects, internal state
of an object, behavior that works on an object’s state, and means to induce
the behavior. A language’s object model defines how relations and state are

ŬŪ

ŭ.ū. Object Models

a Point

2

5 + getX(): long
+ setX(long)
...

a Class

getClass()

.class

x

y

Position
+ getX(): long
+ getY(): long

internal
a Class

.class

internal

getInterfaces()

Point

java.lang.Object

java.lang.Class

- x: long
- y: long

logical relation, not accessible
to the application programmer

Key:

Figure ŭ.ū.: The representation of a point in Java. Language entities such as classes
and interfaces are accessible only through reflection objects. The diagram syntax
is explained in Appendix A.

conceptually represented, e.g., as indexed or named fields; where meta in-
formation is stored, e.g., in the object or its class; and which operations are
allowed at runtime, e.g., only reading from a constant field or adding new
fields to single objects. Furthermore, it describes where the behavioral ele-
ments of an object can be found, e.g., individual to an object, organized in
a class or globally available. Finally, the object model defines which meta
objects the language provides; this usually includes some reflection applica-
tion programming interface (юѝі).

Maxine already provides a fully working object model implementation
for Java. A comparison with the model that is to be realized can show which
parts of the implementation might be reusable and reveal potential incom-
patibilities.

ŭ.ū.Ŭ. The Java and Squeak Object Models

Java is a statically typed, class-based object-oriented language. As such,
classes define fields that store state and relations, and methods that imple-
ment behavior. Both can be declared to be either class-bound (static), which
means they are globally unique and can be accessed directly; or instance-
bound, in which case an instance of the defining class is required for access
or invocation. An object is an instance of a class and contains only its state,
i.e., its fields’ values. As a consequence, the class is required to actually ac-
cess fields or invoke methods.

Ŭū

ŭ. Representing Squeak Objects in Memory

Except for java.lang.Object, which is the inheritance root, every class ex-
tends exactly one class. A subclass may add fields and introduce new or
override existing methods. Furthermore, a class can implement an arbitrary
number of interfaces. An interface defines a set of method signature with-
out providing an implementation. They provide flexibility, as Java ensures
type-safety and supports no other means of multiple inheritance. Aside from
classes, Java also has primitive types for characters, integers and floating
point numbers. Language entities, such as classes, fields, or methods, have
no direct representation and can only be accessed through the reflection юѝі.

The example in figure ŭ.ū shows how the point (2, 5) can be represented
as a Java object. The point is instance of the Point class, which implements
the Position interface; both are represented by a class object, which can be
accessed by navigating from the point object or via their literals, Point.class
and Position.class, respectively.

Smalltalk uses an object model that is based on very few simple design
principles [ŮŰ, ūŮ]:

ū. Everything is an object.
Ŭ. Objects communicate via message passing.
ŭ. Classes describe in terms of state (instance variables) and behavior (meth-

ods) the objects they generate.
Ů. When an object receives a message, the corresponding method is looked up

in the class (and super class) of the receiver.
ů. Methods are public.
Ű. Instance variables are private.
ű. Classes inherit via single inheritance.

Smalltalk was the first pure object-oriented language, where “everything
is an object.” As such, there are no primitive types; every variable contains
a reference. Principles ŭ, Ů and ű describe the same concept of classes that
Java uses: an object is but a data storage and its class is required to inter-
pret the data or to invoke behavior. Behavior can be shared through single
inheritance only. As Smalltalk is dynamically typed, there is no need for in-
terfaces.

The dynamic aspect is strengthened further by the second rule, which in-
dicates that even though a message has a name, it is at the object’s very own
discretion to decide which method is invoked in response. Of course, the
default behavior is to look up a method of that name (cf. principle Ů), but

ŬŬ

ŭ.ū. Object Models

instances of Metaclass

a Point

2

5

x

y

Point
#x -> aMethod,

...

x, y

method
Dict

instance
Variables

......

Object

Point class

Object class

Behavior class

Class class

Metaclass class

Behavior

Class

Metaclass

Figure ŭ.Ŭ.: The representation of a point in Squeak. Classes are objects as well and
defined in Squeak’s meta-hierarchy.

if no such method is found, a callback method is invoked that receives the
message’s name and arguments as parameters. This way, any message can
be received and processed, without the necessity to implement a certain in-
terface; however, by default the object may chose to signal that the message
was not understood.

As messages contain no information about the sender, all methods are
public (principle ů). On the other hand, fields, as defined by principle Ű, are
always private, which automatically provides type-safety for field accesses.

Another difference to Java caused by the “everything is an object” princi-
ple is that classes and methods are affected as well. Shown in figure ŭ.Ŭ is
the same point-example as above, but for Squeak. On the left hand side, the
point object is shown, storing the field values, along with its class, defining
fields and methods. This time, however, the class is an object as well and
instance of another class. The right hand side shows a selection of Squeak’s
meta objects, which are necessary to implement this concept. All class ob-
jects are instances of subclasses of Class, which again are all direct instances
of Metaclass.

This means that some Squeak objects are not instances of a class, but of a
meta class. Thus, whenever a Squeak object’s class is mentioned in this work,
this actually refers the object’s behavior, regardless of whether it is a meta or
regular class.

Ŭŭ

ŭ. Representing Squeak Objects in Memory

base

60value

base

2

5

x

y

classa Character

a Point

base

2

5

1

2

class

an Array

size

......

Figure ŭ.ŭ.: The Squeak layout. Each Squeak object cell contains at least a base
header. Depending on the object’s properties, additional header words can be
prepended.

ŭ.ū.ŭ. Object Layout: The Physical Representation

As part of an object model implementation, the object layout defines how
objects are stored in memory, which includes the representation of state and
meta information. A full implementation further has to provide means to
locate the state and behavior of an object, a way to allocate new objects, and,
for many languages, a garbage collector.

There may be different implementations of the same object model. For
instance, Bacon, Fink, and Grove [Ů] have done four implementations of the
Java object model for the Jikes Research ѣњ. Note that they use term “object
model” for concrete memory layouts of an abstract object model.

ŭ.Ŭ. Squeak Layout

In Squeak, every object is represented as a piece of memory containing the
state, preceded by one to three header words. These additional words are
used by the Squeak ѣњ to obtain meta information.

ŭ.Ŭ.ū. Header Words

Given in figure ŭ.ŭ is an example for every possible header layout. Each block
represents one word of memory; text outside of blocks shows implicit infor-
mation. Header words are highlighted in gray. The arrow shows the origin
of each object, which is the address that is used when referencing an object.
In Squeak, an object’s origin is always the address of its base header. The base
header word can contain everything the ѣњ needs to know about an object.

ŬŮ

ŭ.Ŭ. Squeak Layout

As with every header word, the lowest two bits indicate the total number of
header words of the object. Other bits can store the size of the object cell in
bytes, the compact class id, garbage collector flags and the cell’s layout kind,
which will be explained in a moment.

Squeak maintains an array of the most frequently used classes, the com-
pact classes array. A class’s compact class ID is its index in this array, or zero.
Instances of compact classes have this index stored in the base header; for
all other objects an additional class header is required, which points to the
object’s class. For very large objects, the base header bits reserved for cell
size are not sufficient. In this case, a third header word is required. Just as
the base header, the size header contains the object size in bytes, not including
the two optional header words.

ŭ.Ŭ.Ŭ. Nine Layout Kinds

Squeak distinguishes between nine types of objects with different layouts.
The type is chosen by the class, but is, for performance reasons, also repre-
sented by a Ů-bit number in the base header. These layouts are as follows:
Nќ FіђљёѠ is used by Objects with no state beyond their identity. The most

prominent examples are nil, true and false.
Fіѥђё FіђљёѠ objects have a fixed number of named fields, which are defined

by the class.
Iћёђѥюяљђ FіђљёѠ indicates a simple object array. The array length can be

calculated from the cell size.
HѦяџіё begins with a fixed, named part, followed by indexable fields.
Wђюј HѦяџіё works just like hybrid, but the єѐ treats references as weak.
Wќџё AџџюѦ is used for arrays of ŭŬ-bit words. Unlike with the indexed

fields layout, the object cannot contain references.
Lќћє AџџюѦ is the ŰŮ-bit variant of word array.
BѦѡђ AџџюѦ indicates an array of bytes. There are four values representing

the byte array layout, with the lower two bits indicating the number of
alignment bytes.

Cќњѝіљђё Mђѡѕќё are byte arrays with a more complex internal structure,
as shown in figure ŭ.Ů. Its first content word acts as an additional header
and encodes, amongst other technical information, the number of literals
in the method. The literals are references; the remaining bytes are relevant
for the methods execution and contain bytecode.

Ŭů

ŭ. Representing Squeak Objects in Memory

Base Header Method Header Literal 1 Literal 2 Byte Code Byte Code

Cell Size
Byte Array LengthOrigin

Object Header # of Literals,
Flags, ...

References Bytes

Byte Code

Alignment

Figure ŭ.Ů.: Compiled method layout. A CompiledMethod, shown here in ŰŮ-bit lay-
out, contains a reference and a byte array part. The length of the reference part
is encoded in the method header field.

ŭ.Ŭ.ŭ. The Squeak Heap

All Squeak objects are allocated on the heap, which includes all classes and
even the integrated development environment (іёђ). At any point, the cur-
rent ѣњ state can be saved, by storing the entire heap in a file, preceded by
some header data. The image header also references the main entry point
of the application: the special objects array. At predefined indices, it contains
important objects, such as nil, true and false, the class dictionary, and the
active process. The laĴer stores a stack and the last active execution context,
from which the execution of the image can be continued. To load an image,
the file is mapped into memory. With a single iteration all object references
are adjusted to fit the new memory address range. After that, the execution
can be continued exactly where it was stopped.

A direct implementation of this layout in Maxine could support image
loading and saving easily. Such an implementation was started and will be
presented in section ů.Ŭ; it was, however, not completed for reasons that will
be discussed there as well.

ŭ.ŭ. Mapping Squeak to Maxine

To allow for a beĴer reuse of Maxine’s infrastructure of class and method
management, a layout was needed that is closer to Maxine’s default lay-
out, while still being flexible enough to support Squeak specific features not
present in Java. This section will first explain how Maxine natively handles
objects and then propose an extension to this layout that is able support ob-
jects with Squeak-specific properties.

ŬŰ

ŭ.ŭ. Mapping Squeak to Maxine

ClassActor

MethodActor

FieldActor

Compiled
Code

superclass,
interfaces

1

*

*

*

1

fields

class

* methods

*

java.lang.Class

java.lang.
reflect.Field

java.lang.
reflect.Method

VirtualMethod
Actor

StaticMethod
Actor

Figure ŭ.ů.:The Maxine actor hierarchy. Maxine’s actors represent language entities
and can be accessed by the client program through the reflection API.

ŭ.ŭ.ū. Hubs and Actors

Unlike classes in Squeak, Java classes are no objects. Thus, the object model
does not specify how language entities are to be represented by the ѣњ.

In Maxine, every class and interface, method, and field is represented by
an actor. Actors are first-class objects that “act” for their corresponding Java
entities by carrying out the underlying actions of Java instructions. The client
application can access actors only indirectly via the Java reflection юѝі. A
part of the actor architecture and how it interacts with Java’s reflection юѝі
is shown in figure ŭ.ů.

Associated to each class are two more helper objects: the static and the
dynamic hub. As figure ŭ.Ű shows, every object references its class’s dynamic
hub in a header field and thereby indirectly knows its class. One important
task of the hub is to maintain the vTable. The vTable is a hash table referencing
the entry point of each of the class’s instance or static methods, depending
on the hub type, and allows to resolve virtual method calls in constant time.
A dynamic hub further maintains the iTable and mTable, to resolve interface
method calls in constant time, too.

The details of these tables’ functionality are not relevant here; nevertheless,
they add an interesting property to hub objects. Usually, all Java objects are

Ŭű

ŭ. Representing Squeak Objects in Memory

"Point" ClassActor

"Point" DynamicHub

compiled
code

class

* instance
methods

*

a VirtualMethod
Actorhub

misc

2

4

a Point

vTable

x

y
*

compilations

Figure ŭ.Ű.: Relations of the dynamic hub. Every object references a dynamic hub,
which is used to resolve method calls and to perform other meta operations, such
as type checks.

either tuples of fixed size determined by the class or arrays of variable length.
Hubs, however, are hybrids and begin with fields, e.g., for the class actor and
the layout, followed by a reference array taken up by the three tables.

ŭ.ŭ.Ŭ. The ќѕњ Layout

Just as Squeak, Maxine knows different layout kinds. In Maxine, a layout
implementation has to provide a general layout, which can read and write
header fields without knowing details about an object. Maxine by default
uses the following header fields:
HѢя Each object stores a reference to its class’s dynamic hub in the hub
header.

MіѠѐ Every Java object can be used as a synchronization monitor, as defined
by Hoare [ūŲ], with a corresponding wait queue. The misc header encodes
details of the locking state and stores the identity hash code, obtainable
via System.identityHashCode().

Lђћєѡѕ For variable sized objects, the length header stores the number of con-
tained elements.

Additionally, a Maxine layout implementation has three specific layouts: a
tuple layout for instances of regular classes, a hybrid layout for hubs, and
an array layout. The array layout is further specialized into a general array
layout, agnostic of the element type, a reference array layout for all object
arrays, and one array layout for each primitive type.

ŬŲ

ŭ.ŭ. Mapping Squeak to Maxine

GeneralLayout

SpecificLayout

TupleLayout

ArrayLayout

HybridLayout

OHMGeneralLayout

OHMTupleLayout

OHMArrayLayout

OHMHybridLayout

Figure ŭ.ű.: The ќѕњ layout Hierarchy. The ќѕњ layout provides a simple imple-
mentation of the layout interface hierarchy and is instantiate by the ќѕњ layout
scheme.

misc

2

5

x

y

hub

a Point

length

2

5

1

2

misc

an Array

hub

......

+8

+16

+24

+8

+16

+24

+32

hub

2

5

x

y

misc

a Point

hub

2

5

1

2

misc

an Array

length

......

+8

-8

-16

+8

-8

-16

-24

OHM HOM

Figure ŭ.Ų.: The ќѕњ and ѕќњ layouts. Maxine’s two layout implementations differ
in the placement of the origin and the ordering of the header fields.

This leads to a hierarchy of interfaces, as shown in figure ŭ.ű along with
the default implementation, the origin-header-mixed (ќѕњ) layout. In fig-
ure ŭ.Ų, it is compared with a second layout implementation, the header-
origin-mixed (ѕќњ) layout. By placing the origin behind the header, the ѕќњ
layout provides easier access to array elements and is closer to Squeak. The
ќѕњ layout allows for a quicker access of the hub.

Field access work the same for both layouts: the corresponding field actor
knows the field’s offset from the origin, which is then compiled directly into
assembler code before a method is executed the first time.

Ŭų

ŭ. Representing Squeak Objects in Memory

"Point" ClassActor"Point" DynamicHub

hub

classActor

dynamicHub

classObject

Figure ŭ.ų.: Linking instance and class object in maxine. The hub and class actor can
be used to create a bridge between an instance and its class object.

At the time SqueakMaxine was developed, full support was guaranteed
only for the ќѕњ layout, whereas the ѕќњ layout was considered deprecated.
Thus, any extension of existing layout mechanisms would have to be based
on the ќѕњ layout.

ŭ.ŭ.ŭ. A Compromise

To present Squeak objects in a way Maxine is already familiar with, the dif-
ferent kinds of Squeak layouts have to be mapped to the existing ќѕњ layout
kinds. As a precondition, the header fields have to be converted appropri-
ately: the length header value for variable sized objects can be calculated
from the object and element size, the misc header is Maxine specific and is
initialized just as it is for every regular Java object, and the hub has to handle
everything else that was stored in the class and base header in Squeak, i.e.,
the specific layout, the class and the fixed tuple size.

Consequently, an appropriate hub is required for each Squeak class. Since
hubs are created and initialized by their class actors, this already points the
way to how Squeak classes can be introduced to Maxine: every Squeak class
must have its own class actor. This class actor has to mirror the Squeak class.
Thus, it is initialized with information about all of the classes’ fields and
methods, which leads to the creation of the according field and method ac-
tors as well. Finally, as the hub has to be used to find an object’s Squeak
class and is, on the other hand, required to create new instances of a class, a
bidirectional association between class actor and Squeak class object has to
be established (cf. figure ŭ.ų).

Here, it comes as an advantage that the implementation of Java classes is
not defined by the object model. This way, it is easy to subclass the existing
class actor implementation to introduce a field which references the Squeak
class object. On the Squeak side, things are a bit more complicated: it is not

ŭŪ

ŭ.ŭ. Mapping Squeak to Maxine

possible to add a field as this could violate assumptions in the ѣњ or in meta-
programs, especially since this field would not reference a Squeak object.

Java requires that all classes inherit from java.lang.Object, an assump-
tion that thus is made in several parts of the ѣњ. In consequence, Squeak’s
inheritance root ProtoObject needs a Java super class. To provide some ba-
sic type-safety when handling Squeak objects in the ѣњ, the abstract class
SqueakObject was created. This allows for variables in the ѣњ code which
can contain Squeak objects only and enables the identification of Squeak ob-
jects with instanceof.

ŭ.ŭ.Ů. Introducing New Layout Kinds

Now that the hub is in place, other parts of the ѣњ, such as the єѐ, can use it
to get the object’s specific layout and access the object’s content. However,
as mentioned before, appropriate specific layouts have to be provided. For
SqueakMaxine, the origin-header-dummy-mixed (Ѧќѕњ) layout was intro-
duced. To test the flexibility and extensibility of the ќѕњ layout, the Ѧќѕњ
layout was to reuse as much existing code as possible, being modified only
where it had to support features not present in Java.

For six of Squeak’s nine layout kinds, the mapping was rather simple. The
no-fields and fixed-fields layouts directly match Maxine’s tuple layout: the
object size is the same for all instances and defined by the class. Further,
Squeak’s reference, word, long and byte array layouts can be mapped to
their respective array implementations easily. For Squeak’s two hybrid lay-
out kinds, it was beneficial that Maxine already supported hybrid objects in
the form of hubs. However, in hubs the array part contains integers only,
whereas Squeak hybrids contain references. Since both versions of the hy-
brid layout are required, support for reference hybrids was introduced as a
modified copy of the original variant. Compiled methods, although super-
ficially equivalent to byte arrays, require special support for the integrated
literal references arrays, and thus require a dedicated layout as well. This
leads to the layout hierarchy shown in figure ŭ.ūŪ.

Until now, the existing specific layouts were not modified at all, but there
is one requirement of Squeak that is not yet supported. In Maxine, all hy-
brid classes extend com.sun.max.vm.object.Hybrid, which has no fields and
is a direct subclass of java.lang.Object. In Squeak, however, it is possible
for every tuple class to have a hybrid subclass. The resulting layout switch,
adding the length header to the object cell, would invalidate the field offsets

ŭū

ŭ. Representing Squeak Objects in Memory

GeneralLayout

SpecificLayout

TupleLayout

ArrayLayout

HybridLayout

YOHMGeneral
Layout

YOHMTupleLayout

YOHMArrayLayout

YOHMHybridLayout

YOHMHybrid
ReferenceLayout

YOHMCompiled
MethodLayout

CompiledMethod
Layout

Figure ŭ.ūŪ.: The Ѧќѕњ layout hierarchy. The Ѧќѕњ layout implements the regular
layout hierarchy, but also provides additional classes.

of the super class’s fields. When code compiled for the super class tries to ac-
cess the first field at +16, it would now find the length header (cf. figure ŭ.Ų).

To avoid this problem, an additional header word was introduced for tu-
ples. The dummy header field, represented by the additional leĴer in the
newly named “Ѧќѕњ layout”, originally served no purpose other than align-
ing the tuple fields. Later, it found its application in storing the class actor
reference for Squeak class objects, implementing the missing link shown in
figure ŭ.ų. Therefore, it is also known as the class actor header field. Using the
adjusted tuple layout, the Ѧќѕњ layout can now map every kind of Squeak
object into memory.

ŭ.Ů. Tagged Integers

Squeak’s object model poses a particular challenge with respect to imple-
menting integers.

First of all, an integer object somehow has to represent a value. It cannot,
like Java’s java.lang.Integer, have a field that stores its value as a primitive.
In Squeak, this value would have to be an object, i.e., the integer object itself.

ŭŬ

ŭ.Ů. Tagged Integers

Secondly, integer operations are a frequent task in computation, much
more than floating point operations (except maybe in physical simulations
and similar tasks). If every operation with an integer result would require an
object instantiation, the execution would be slow and inefficient, once for the
additional memory allocations and once because of the increased frequency
of garbage collector runs. The only workaround seems to be a huge cache
of reusable integer instances, which would require a lot of memory and still
could cover only integers in a relatively small range.

Both problems can be avoided by exploiting a property of memory archi-
tecture: A pointer value specifies a memory offset in bytes, even though it is
not possible to read or write individual bytes, but only entire words. Thus,
pointers have to be word aligned, which means their lowest two or three bits
are always zero. As objects are stored in memory, the same constraint of
course also holds true for object references. Thus, it is possible to tag a refer-
ence, i.e., mark it as somehow special, by seĴing one or more of these bits
to one. Squeak uses this mechanism to implement tagged integers. If the
lowest bit of a reference is set, it indicates that the other ŭū bits do not refer-
ence a valid memory address, but directly encode the numeric value of the
object. Thus, every time the class of an object is required, e.g., to resolve a
late-bound method invocation, the lowest bit of the object reference has to
be checked. If it is set, the object is an instance of SmallInteger; otherwise,
the address can be accessed to read the object’s header fields.

To perform mathematical operations on small integers, the values have
to be left-shifted by one first. Afterwards, it has to be checked whether the
result still fits into ŭū bits. Larger integers and floating point numbers can be
implemented as full objects now, using multiple small integers to store their
data. Bringing tagged references to Maxine would create a small overhead
every time the hub is accessed. Nevertheless, it still provides an efficient
solution to the problems described above and probably should be included
in any Squeak implementation.

** *

Both layout solutions presented in this chapter are a possible way to repre-
sent Squeak objects in Maxine. As an addition, a new way to handle refer-
ences to special objects was introduced. An implementation of these three
ideas will help to evaluate the decoupling of Maxine’s subsystems, and show
the overall flexibility of the code.

ŭŭ

Ů. Mapping Execution Models to
Maxine

This chapter introduces the notion of execution models and gives the execu-
tion models of Java and Squeak, the laĴer in anticipation of the implemen-
tation to be described in chapter Ű. This is followed by the execution model
parts to be minded when implementing an execution model in Maxine. For
each such part, the conceptual mapping process is given.

Ů.ū. Execution Models and Virtual Machines

To be able to describe the mapping of an execution model to Maxine, first,
a working definition for execution model is given, followed by the execution
models of Java and Squeak in the sense of that definition.

Ů.ū.ū. Working Definition in the Context of Virtual Machines

Considering process virtual machines for object-oriented programming lan-
guages, an execution model of a language denotes the semantics of method
execution and method lookup defined by built-in behavior and by intermedi-
ate representations (іџѠ), formal or informal semantics, or the combination of the
aforementioned, whichever is regarded canonical for the respective language.
This excludes implementations details.

For clarification, the language’s semantics—whether formal, informal, or
merely given by a reference implementation—always contain language-level
semantics and may contain іџ-level semantics. When a canonical version for the
laĴer exists for a language, it is considered to be sufficient for the languages
execution model.

ŭŮ

Ů.ū. Execution Models and Virtual Machines

Built-in Behavior All operations that cannot be expressed in the language
and are crucial for the language to operate properly or are canonically ex-
pected to be provided by a ѣњ form the built-in behavior of a language and
are part of its execution model.
Eѥюњѝљђ: SўѢђюј ќяїђѐѡ ѐџђюѡіќћ In Squeak, the method #basicNew: rep-

resents the primitive with the number űū and deals with the allocation of
memory in the course of object creation. The method cannot be expressed
in Squeak itself but is vital for Squeak to work properly and, hence, be-
longs to Squeak’s execution model.

Eѥюњѝљђ: Jюѣю љќѐјіћє Every Java object can be used as a condition variable
for locking purposes. The methods notify(), notifyAll(), and wait() pro-
vide this locking behavior. However, this cannot be expressed in Java for
arbitrary objects, e.g., a plain, filed-less object that has no state that used to
store in the information necessary for the locking behavior. Hence, these
three methods contribute to Java’s execution model.

Intermediate Representations (іџs) Processed, non-code representations
of methods of the language form intermediate representations of those meth-
ods. This includes, but is not limited to, bytecode representations. When re-
garded as canonical, intermediate representations might be part of the lan-
guage’s execution model. If such an intermediate representation specifies a
certain machine model, the machine model itself becomes part of the execu-
tion model.
Eѥюњѝљђ: SўѢђюј яѦѡђѐќёђ In Squeak, the intermediate representation for

methods is the Squeak bytecode which is emiĴed by Squeak’s runtime
compiler. For any ѣњ that should be regarded a Squeak ѣњ it is canoni-
cally expected to support Squeak bytecodes, the Squeak bytecode is part
of Squeak’s execution model.

Eѥюњѝљђ: Jюѣю яѦѡђѐќёђ Java classes and methods are compiled to class files
that contain, among other data, bytecodes for Java methods. This is nor-
mally done by the javac compiler. Any ѣњ that should be regarded a Java
ѣњ has to adhere to the Java virtual machine specification [Ŭů] (їѣњѠ), and
hence is canonically expected to support Java bytecodes; the Java bytecode
is part of Java’s execution model.

Eѥюњѝљђ: PѦѡѕќћ яѦѡђѐќёђ The CPython implementation of Python (canon-
ical for at least Python ū and Ŭ) generates Python bytecodes for the meth-
ods it interprets. However, this fact is regarded as implementation detail

ŭů

Ů. Mapping Execution Models to Maxine

and is not canonically expected to be supported in all Python implemen-
tations. Hence, the Python bytecodes are not part of Python’s execution
model.

Eѥюњѝљђ: RѢяѦ юѠѡ џђѝџђѠђћѡюѡіќћ The MRI implementation of Ruby (ca-
nonical until version ū.Ų) uses an abstract syntax tree (юѠѡ) representation
for the interpreted Ruby methods prior to method execution. This is an im-
plementation detail and not canonically expected of all Ruby implemen-
tations, hence not part of the execution model of Ruby. In fact, the юѠѡ
representation has vanished in Ruby version ū.ų.

Semantics Specified formal or informal semantics for execution of meth-
ods in the language may be part of a languages execution model, if canoni-
cally expected. Informal semantics include language standards.
Eѥюњѝљђ: Sњюљљѡюљј ѓќџњюљ ѠђњюћѡіѐѠ Although semantics for Smalltalk

exist [ůŬ], they are not canonically expected to be followed in Smalltalk
implementations. Hence, these semantics are not part of Smalltalk’s exe-
cution model, and neither Squeak / Smalltalk’s.

Eѥюњѝљђ: Sѐѕђњђ ѓќџњюљ ѠђњюћѡіѐѠ While only mediately object-oriented
via implementations of the Common Lisp object system (ѐљќѠ), the execu-
tion of Scheme is specified formally in the quasi-standard for Scheme Rů by
Adams et al. [ū, § ű.Ŭ] The formal semantic hence contributes to Scheme’s
execution model.

Eѥюњѝљђ: PѦѡѕќћ ќѝђџюѡќџ ќѣђџљќюёіћє The fact that the expression a + b
results in the method a.__add__(other) being called is part of the seman-
tics of Python method execution.ū This is not implementation specific and
canonically expected of all Python implementations and, hence, part of
Python’s execution model.

Canonically Expected The phrase ‘canonically expected’ used above de-
scribes the circumstance that a certain execution specification is regarded
as required to be fulfilled by implementations of the language. This can be
either convention, specified standard, or both.
Eѥюњѝљђ: SўѢђюј The relevant specifications for Squeak are the set of primi-

tives an the semantics of the Squeak bytecode and are followed by the ma-
jor existing Squeak implementations like the Squeak interpreter ѣњ, the

ūNote that while the Python Reference treats this circumstance as part of the data model [ŭű],
by the definition given here, it belongs to the execution model.

ŭŰ

Ů.ū. Execution Models and Virtual Machines

Cog ѣњ, or the RoarVM, to name a few. Although formal semantics for
Smalltalk exist that might be applicable for Squeak [ůŬ], none of the men-
tioned implementations claim to fulfill the semantics. Hence, primitives,
i.e., built-in behavior, and bytecode, i.e., intermediate representation, be-
long to the Squeak execution model, as opposed to semantics.

Eѥюњѝљђ: PѦѡѕќћ The Python execution model comprises built-in behav-
ior [ŭŰ] and, additionally, semantics of certain operations [ŭű]. Existing
bytecode specifications [ŭů], however, explicitly are implementation de-
tails, hence not part of the execution model.

Eѥюњѝљђ: JюѣюSѐџіѝѡ The execution of JavaScript is defined in the respective
ђѐњю standard [ūū].

Eѥюњѝљђ: Jюѣю For Java, especially the ѣњ part, a specification exists [Ŭů],
which among other ѣњ aspects defines bytecode meanings and, hence, at
least parts of the execution model. Java ѣњs are expected to adhere to the
specification.

Language-level and іџ-level Semantics If the language has however spec-
ified intermediate representation-level semantics in addition to its language-
level semantics, the intermediate representation-level semantics contribute
to the languages execution model; the language-level semantics do not need
to. If there is no іџ-level semantics, the language-level semantics contribute
to the execution model.
Eѥюњѝљђ: SўѢђюј / Sњюљљѡюљј As pointed out, the Squeak bytecode is part

of Squeak’s execution model. This does not withstand that the language
Squeak / Smalltalk has semantics, e.g., as specified by the Blue book [ūŮ]
or the ūųųŲ standard [ŭ]. However, from the execution model’s point of
view, the bytecode is sufficient as the language-level semantics does not
add any value to the execution model; a Squeak / Smalltalk ѣњ normally
does not even “see” semantic elements of the language, i.e., source code
in this case.

Eѥюњѝљђ: Jюѣю Java as a whole is defined by two specifications, the Java lan-
guage specification [ūů] (їљѠ), e.g., in its third version [ūů] and the Java
virtual machine specification [Ŭů] (їѣњѠ), e.g., in its first edition [Ŭů] (Adap-
tions to these exist for nearly each respective Java version). The distinction
made for language-level and іџ-level semantics is quite evident here: the
їљѠ contains specifications at the language level, the їѣњѠ at ѣњ level. The
laĴer also contains a full specification of the Java bytecode. The semantics

ŭű

Ů. Mapping Execution Models to Maxine

as specified by the їѣњѠ suffice to execute Java, therefore, only the їѣњѠ is
necessary for the execution model.

Eѥюњѝљђ: PѦѡѕќћ Python is neither formally nor informally specified using
іџ-level semantics. As already pointed out, the existence of bytecodes for
CPython is an implementation detail. That is why the language-level se-
mantics of Python contribute to its execution model.

Ů.ū.Ŭ. The Java Execution Model

The Java execution model consists of a specified intermediate representation
and built-in behavior. For Java, both a language-level semantics—specified by
the їљѠ—and an іџ-level semantics—specified in the їѣњѠ—exist.
іћѡђџњђёіюѡђ џђѝџђѠђћѡюѡіќћ The intermediate representation of Java is its

bytecode set as specified by the їљѠ.
яѢіљѡ-іћ яђѕюѣіќџ The minimum set of indispensable nativemethods in the

Java runtime environment (їџђ) constitute the built-in behavior of Java.
N.B.: It is evident, that the execution model of Java changes whenever either
of the specifications changes or the native methods of the їџђ change their se-
mantics between releases. Hence, there are different Java execution models;
this work assumes the execution model of Java ū.Ű as specified by the їљѠ in
the third edition, the їѣњѠ in the second edition—both with respective up-
dates from Java specification request (їѠџ) ŬűŪŬ—, and the Java development
kit (їёј) in version ū.Ű.Ū_ŬŰ.

Java intermediate representation Java’s іџ is its bytecode or instruction
set [Ŭů]. Method bytecodes are fed to the їѣњ via class files, also specified in
the їѣњѠ. Java class files contain information on classes, their relationships
to other classes, and the classes methods. These methods, in turn, consist of
some information, like class membership and access control, and the code
of the method expressed as a list of said bytecodes.

Java Built-in behavior The Java execution behavior is not only defined by
the semantics of the Java bytecodes but also by the functionality of the classes
of Java’s standard library, or more specifically, the standard library’s core.
This core is shipped as Java archive (commonly rt.jar), a combination of

Ŭhttp://jcp.org/en/jsr/detail?id=270

ŭŲ

rt.jar
http://jcp.org/en/jsr/detail?id=270

Ů.ū. Execution Models and Virtual Machines

the standard Java packages and classes. Those classes mostly contain byte-
code compiled methods. However, several methods are not expressed by
bytecode but are rather native methods, especially those that cannot be ex-
pressed with Java bytecode. Depending on the platform, between ca. ū,ŬůŪ
methods (Mac OS X) and ca. ū,ųŪŪ methods (Linux) in the core Java archive
are native methods. We assume that several methods that are native in the
core Java archive are actually expressible by Java bytecode but are imple-
mented natively, e.g., for performance reasons. OmiĴing methods that are
in theory expressible as Java bytecode, only the indispensable native meth-
ods remain, forming the built-in behavior of Java.

Ů.ū.ŭ. The Squeak / Smalltalk Execution Model

The Squeak / Smalltalk execution model consists of an intermediate representa-
tion and built-in behavior. The specification, influenced by the Blue Book [ūŮ]
and the standard [ŭ], is chiefly given by the reference implementation as of
the official VMMakerŭ package.
іћѡђџњђёіюѡђ џђѝџђѠђћѡюѡіќћ The intermediate representation of Squeak /

Smalltalk is its bytecode set.
яѢіљѡ-іћ яђѕюѣіќџ All “Essential” Squeak / Smalltalk primitives constitute

the built-in behavior of Squeak / Smalltalk.
N.B.: The VMMaker used as reference for SqueakMaxine is VMMaker Ů.Ŭ.Ŭ, and
for selected parts of context handling VMMaker.oscog Ů.Ű.Ū (Cog).

Squeak / Smalltalk intermediate representation Squeak / Smalltalk’s іџ is
its bytecode set. It is a stack-based, object centric bytecode set that is docu-
mented in the Blue Book [ūŮ], but vastly augmented in the VMMaker Squeak
ѣњ generation application. There is no standard body defining the actual set
of bytecodes for Squeak / Smalltalk; rather, community decisions or pioneer-
ing ѣњ implementations have impact on what bytecode set is canonical.

Squeak / Smalltalk bytecodes are contained in instances of CompiledMethod
that are generated by the Squeak / Smalltalk compiler in a Squeak image.

Smalltalk Build-in Behavior Smalltalk and, hence, Squeak / Smalltalk has
the notion of primitives that may provide functionally that is not—or not

ŭhttp://wiki.squeak.org/squeak/2105, source accessible via http://source.squeak.org/
VMMaker.html

ŭų

http://wiki.squeak.org/squeak/2105
http://source.squeak.org/VMMaker.html
http://source.squeak.org/VMMaker.html

Ů. Mapping Execution Models to Maxine

as fast—possible in Smalltalk on its own. Most of the Smalltalk primitives
are described in the Smalltalk implementation description by Goldberg and
Robson (called the Blue Book) [ūŮ], with Squeak providing an extended, al-
tered set of the original Smalltalk primitives. However, not all primitives
contribute to the built-in behavior of Squeak / Smalltalk as many of the prim-
itives exist mainly for performance reasons. Squeak / Smalltalk knows of a
maximum of ůűů primitives by index, of which about ŬŬŪ–ŬŭŪ, depending on
version and ѣњ implementation, are actually used in Squeak. The remaining
indices are either unused, unimplemented, or used for special quick return
optimizations. In the unused and unimplemented case, the primitive invoca-
tion just fails. In the special quick return case, methods that, e.g., just imple-
ment the return of the receiver or an instance variable, are given certain un-
used primitive indices for optimization purposed. Hence the difference be-
tween the number of indices and the number of actually implemented prim-
itives. The Blue Book specifies ūŬŲ primitives, all primitive indices higher
than ūŬŲ denote Squeak / Smalltalk specific primitives in the above sense,
i.e., including quick return indices.

A number of primitives have a special comment in the methods using
them, stating that this primitive be essential, and these primitives consti-
tute the Squeak built-in behavior. An example of an essential primitive is
Object>>at: as given in listing Ů.ū. Only the “Essential.” marking in line Ů
identifies this method’s primitive as being part of the built-in behavior. The
compiler-directive in line ű specifies which primitive to invoke when #at: is
sent to an object. The method body specifies the code to execute in case the
primitive fails or is unimplemented.

As of Squeak version Ů.ŭ, Űů unique primitives are marked as being essen-
tial in the Squeak image. However, the reliability of the essential set is hence
not well tested; this definition of the built-in behavior of Squeak / Smalltalk
remains therefore disputable in this regard.

Since the same indexed primitive can be invoked by different methods,
more than Űů methods bear the “Essential.” marking. This makes a total of
Ųų marked methods that map to the Űů essential primitives. For reference,
please refer to table C.ū in Appendix C.

Besides primitives that are identified by index, there are primitives that
can be called by readable identifiers, called named primitives. Much more
named primitives than indexed ones exist, yet they all do not contribute to
the built-in behavior of Squeak / Smalltalk.

ŮŪ

Ů.Ŭ. Interaction with Object Models

ū Object>>at: index
Ŭ ”Primitive. Assumes receiver is indexable. Answer the value of an
ŭ indexable element in the receiver. Fail if the argument index is not an
Ů Integer or is out of bounds. Essential. See Object documentation
ů whatIsAPrimitive.”
Ű
ű <primitive: 60>
Ų index isInteger ifTrue:
ų [self class isVariable

ūŪ ifTrue: [self errorSubscriptBounds: index]
ūū ifFalse: [self errorNotIndexable]].
ūŬ
ūŭ index isNumber
ūŮ ifTrue: [↑self at: index asInteger]
ūů ifFalse: [self errorNonIntegerIndex]

Listing Ů.ū: Source of Object>>at: in a Squeak Ů.ŭ image. The method is declared
to try the indexed primitive ŰŪ and provides functionality in case the primitive
fails. Note the statement “Essential.” in the documenting comment.

Ů.Ŭ. Interaction with Object Models

Throughout this work, we use a model of ѣњ that divides a ѣњ into two main
parts, an object model implementation and an execution model implemen-
tation, based on the assumption that both, an object model and an execution
model exist for the language provided by the ѣњ. This twofold model is an
abstraction of the process ѣњ structure as given by Smith and Nair [ŮŮ].

Seeing that it is possible to divide a dynamic object-oriented language into
its object model and its execution model, making the same distinction for
a ѣњ implementation for such a dynamic object-oriented language seems
reasonable. Hence the abstraction of the Smith and Nair-based process ѣњ
building blocks as in figure Ů.ū into an object model implementation and an
execution model implementation as depicted in figure Ů.Ŭ.

Note that the term guest (language), as used in figure Ů.ū, denotes the lan-
guage that is provided by the ѣњ, while the term host (language) would refer
to the language that is used to implement the ѣњ itself.

Object model implementations are most important for objects of the ѣњ’s
guest language. As pointed out, in Maxine as a meta-circular ѣњ, such an
implementation has an impact on the whole ѣњ’s memory management. Ob-
jects of the host language are subject to the same mechanisms as object of the
guest language. They are hard to tell apart. Actually, in Maxine, they are just
the same.

Ůū

Ů. Mapping Execution Models to Maxine

Loader Memory
Manager

Initialization

OS Call
Emulator

Execution
Emulation

Host Operating System

Emulation Engine Code Cache
Manager

Guest Memory Image Application Meta-
Data

Code Cache

Profile Data Exception Side
Tables

Interpreter

Translator

Figure Ů.ū.: Process virtual machine building blocks [ūŰ, slides Ů, ūŲ], based on [ŮŮ],
with model boundaries added. Key: see Appendix E.

Storing Non-guest Information For some aspects of ѣњ implementations,
it is desirable to store more information in a guest object than visible to the
guest language. Such non-guest information has to be accessible from the ѣњ
itself but not from the guest language. An example for this is locking in Java.
Every object can act as a condition variable, however, the state information
required to achieve this is to be hidden from Java. There is no field in the
Java Object class exposing this locking state, it is internal to the ѣњ. Another
example would be the class of an object for many class based dynamic ob-
ject-oriented languages and Java.

An approach is to have a lookup table mapping from an object to the re-
quested information, but this is cumbersome and quite inefficient. Object
tables as in the original Smalltalk-ŲŪ are an example of this approach, ex-
tended to the lookup of the object itself and not just properties for it.

A more typical approach for storing non-guest information is the use of
header fields. Considering the locking example, the information required to

ŮŬ

Ů.Ŭ. Interaction with Object Models

Object Model implementation

Memory
Management

Loading and
Initialization

OS Interface

Host Operating System

Emulation Engine Stack
Managemet

Guest Memory

Stack

Execution Model implementation

Non-Object Model auxiliary data

Code
Managemet Code

…

Garbage
Collection

Figure Ů.Ŭ.:Object model and execution model in a ѣњ, abstracted from a ѣњ’s build-
ing blocks (cf. figure Ů.ū). Key: see Appendix E.

determine whether an object is currently a condition variable it is encoded
as a header field in Maxine.

A third approach is to use specially tagged values in an object, such that
the ѣњ can store associations to internal data structures. This approach is
taken by the Squeak stack ѣњ in order to maintain a link between a guest
object representing a context and its accompanying actual stack frame. This
approach is feasible if there is no other way left; it has an impact on the un-
derstandability of the object model implementation as possibly many checks
are necessary when accessing the respective values in an object.

However, depending on the language implemented, it might be necessary
to support more non-guest information associated with an object.
N.B.: The question of how or where to store non-guest information might
seem to be of interest for object models and object model implementations
only. Despite that, the implementation of an execution model might require
non-guest information to be present in certain guest object, which cannot be
anticipated by an object model implementation. In general, this is always

Ůŭ

Ů. Mapping Execution Models to Maxine

the case, when data that belongs to the “Non-Object Model auxiliary data”
like in figure Ů.Ŭ must be associated with guest object. Object model imple-
mentation an execution model implementation hence have to overlap in this
very respect.

Maxine and Non-guest Information Maxine’s approach to provide non-
guest information in guest objects is the use of header fields. Providing more
non-guest information than currently done for Java, hence, requires the ad-
dition of header fields to an object. That additional header field is used for
non-guest information in SqueakMaxine’s guest class objects. Using that
non-guest information, it is possible to draw the connection between the
guest class object and the SqueakMaxine class actor object that represents
the respective class.

For any implementation of non-guest information in Maxine, it is hence
subject to the object model information to provide such storage, in order to
be used by an execution model implementation.

Ů.ŭ. Implementation Process Concept

The heart of an execution model implementation in ѣњs for dynamic object-
oriented languages is the part that actually carries out execution. This part,
called emulation engine in figure Ů.Ŭ, is responsible for transforming guest
language instructions in such a way that they have actual effect in the host
environment. The most prominent techniques for such a transformation are
interpreters and just-in-time compilers. Interpreters directly take instructions
in form of an іџ from guest language code and carries out these instructions
in the host environment in place of the guest code. Think of interpreters
as proxies between semantics of the guest code and semantics of the host
environment. On the other hand, just-in-time compilers do not themselves
take actions in place of the guest code but rather map guest code semantics
to host environment semantics. They do not act as man-in-the-middle as
interpreters do.

Maxine deliberately only contains їіѡs and no interpreters, as opposed
to, e.g., the standard їѣњ that has both an interpreter and a їіѡ. Hence, the
process of implementing intermediate representations in Maxine can safely
omit interpreter-related considerations and focus on їіѡs.

ŮŮ

Ů.ŭ. Implementation Process Concept

Ů.ŭ.ū. Transformation Requirements

The assumptions Maxine makes about їіѡs and the native code they are ex-
pected to produce, are actually modest.
ёюѡю ѠѡџѢѐѡѢџђ юѠѠѢњѝѡіќћѠ Guest code that is contiguous and forms a se-

mantic grouping, e.g., methods or functions, has to be represented as actor.
Maxine has method actors for all entities that represent executable compo-
nents. A method actor is expected to be able to access the іџ of the method
it is acting for.

єѢђѠѡ ѐќёђ юћё ћюѡіѣђ ѐќёђ џђљюѡіќћ If guest code has a native code rep-
resentation, i.e., if it has successfully been compiled, a method actor is
expected to keep track of and hold onto that native code. A method actor
is expected to expose whether or not it holds onto native code.

ѡџюћѠѓќџњюѡіќћ ѝџќѐђѠѠ іћёѢѐѡіќћ The transformation process from inter-
mediate representation to native code of the host environment is initiated
by a Maxine compilation broker and does not need to be initiated manually.
Once a method actor, representing certain guest code, is to be executed
the broker checks whether the method actor bears native code, and if not,
requests the method actor to be compiled.
The broker has to have knowledge about the method actors it is making
decisions for.

ѡџюћѠѓќџњюѡіќћ ѓѢћѐѡіќћѠ The compilation broker of Maxine will call reg-
istered transformation functions for method actors without native code. The
transformation functions are the entry-points for їіѡs and expected to take
no more information than the method actor to generate native code for.

ћюѡіѣђ ѐќёђ џђўѢіџђњђћѡѠ Maxine provides abstractions for entities of na-
tive code, called target methods. These should contain native machine code
for their respective target, i.e., processor type. The code a їіѡ generates
and puts into a target method may provide different entry points when
called from methods with a different calling convention.Adapters then can
convert between these conventions; Maxine already provides adapters for
calls between Java baseline-compiled methods, Java optimized-compiled
methods, pure C functions, and Java native interface (їћі) function calls.

To subsume, the interface between Maxine and a guest language is a compi-
lation broker that knows of a method actor specialized for the guest language.

In addition to these requirements, Maxine has the notion of the nature of
a target method. A baseline method is not expected to execute fast but to be
able to execute every control flow path of the method it was compiled for.

Ůů

Ů. Mapping Execution Models to Maxine

Moreover, if the іџ of that method was bytecode, a baseline method should
also provide a mapping between the original bytecode and locations in the
generated machine code, especially for debugging purposes. An optimized
method does not have these restrictions but is supposed to execute faster.

Ů.ŭ.Ŭ. Possible Implementation Process

The requirements of Maxine to їіѡs and native machine code as well as the
facilities provided by Maxine to aid the creation of їіѡs suggest the following
modus operandi for implementing them.

First, the entities of the guest language that represent execution should
be represented by new Maxine internal actors, which can be achieved by
subclassing the Maxine MethodActor. Note that this holds for anonymous be-
havior like closures, too, as instantiation of such actors typically happens at
runtime. It is necessary that these actors expose their nature as either baseline
or optimizing, and that they contain the guest language’s іџ. Likewise, target
methods should be created in the same manner, holding onto the to be cre-
ated machine code and providing information about how the stack should
look like for such a target method. The existing target method classes can
serve as blue print here.

Next, the actual їіѡ is needed. Maxine does not place more restrictions on it
than that it generates proper machine code, is invocable like the other їіѡs in
Maxine, and consumes instances of MethodActor subclasses. However, Max-
ine provides utilities for їіѡs, like re-usable template code, called Snippets
that can be used for common tasks such as compiling call instructions. An
existing їіѡ such as T1X can be used as template here. Eventually, the new їіѡ
should fill a target method with the appropriate native machine code and
associate the provided method actor with the new target method.

Then, the existing compilation broker should be replaced by an augmented
one capable of distinguishing between Maxine’s own method actors and the
guest language’s ones. This broker then should call the new їіѡ whenever a
guest language’s method actor is to be compiled, and hand on to the original
one in any other case.

Finally, at boot-image-creation time, the new compilation broker can be
set as the default broker in the Maxine ѣњ, at which point the compilation
infrastructure for the guest language should ready to use.

ŮŰ

Ů.Ů. Built-in Behavior

Ů.Ů. Built-in Behavior

In Java and dynamic object-oriented languages, execution semantics are not
only defined by bytecode or similar іџs. Certain semantics are provided by
built-in behavior. Such behavior is language dependent and might effect, e.g.,
specialized interpretation of certain method calls (cf. section Ů.ū.ū).

Ů.Ů.ū. Instances of Built-in Behavior

The manifestation of built-in behavior of dynamic object-oriented languages
might differ vastly. As an example, consider Smalltalk, where built-in behav-
ior is explicitly requested from the ѣњ by method that have a primitive tag.
Note that multiple methods in Smalltalk can bear a primitive tag. Similarly,
in Python, a set of built-in functions exist, e.g., map(), reduce() and eval().
Along with the basic object hierarchy, such built-in behavior in Python is
found in its __builtin__ module, making Pythons built-in behavior explicit
even by naming. Contrarily, Ruby’s built-in behavior is hard to tell apart
from normal behavior a ѣњ is dealing with at іџ level. In the reference imple-
mentation, some functionality “just happen” to be implemented in C when
not expressible in Ruby or when performance is critical.

Ů.Ů.Ŭ. Maxine and Built-in Behavior

The variety in built-in behavior manifestation demands a quite generic im-
plementation approach. Not yet anticipated in Maxine, there is no general
handling of built-in behavior of different languages. For Java, Maxine takes
an practical approach. Maxine re-uses the standard їёј, including its (C++
based) implementation of Java’s built-in behavior. By means of the standard-
ized Java foreign function interface (ѓѓі), the їћі, Maxine is able to call any
native method of the їёј. However, not all implementations of built-in be-
havior in the їёј fit Maxine. For methods, that need a different implementa-
tion in Maxine that in the standard їёј, Maxine provides means to substitute
the їёј behavior with Maxine-specific behavior.

Hence, Maxine’s way of providing Java’s built-in behavior is using the
їћі, i.e., a foreign function interface (ѓѓі), and substituting the default external
behavior when necessary.

Ůű

Ů. Mapping Execution Models to Maxine

Ů.Ů.ŭ. Providing General Built-in Behavior in Maxine

While not directly facilitated by Maxine, it is possible to derive a general
implementation approach.

First, it is necessary to provide the actual behavior in a way Maxine can
access it. This means that the functionality required has to be either imple-
mented in Java or accessed via їћі. Considering the former, several locations
for such implementation are imaginable. It is possible to provide the func-
tionality as part of Snippets—small re-usable code fragments for common,
low-level functionality like method lookup—for inclusion of built-in behav-
ior into methods that are compiled at runtime. Alternatively, the functional-
ity can be implemented in Runtime classes, that are compiled ate bootstrap-
ping time (cf. section Ŭ.ū.Ŭ). Invoking functionality implemented this way
requires only a liĴle native code calling a method in the runtime class.

Second, there has to be a mapping of the language elements that represent
the built-in behavior and the functionality as implemented in Maxine. As
pointed out, for the Java implementation in Maxine, this part is done via ѓѓі
and substitution. However, other mapping mechanisms are imaginable, e.g.,
by including checks into the lookup mechanisms to deviate from the default
lookup when certain methods are to be executed. This would be a feasible
way for, e.g., Python’s built-in functions. Another way is to intercept the
іџ parts that represent invocation, e.g., invoke...-bytecodes in Java or send-
bytecodes in Smalltalk. At that point, the requested built-in behavior can
be looked up and inlined directly into the method to be compiled. A third
imaginable way is possible, when the language’s built-in behavior supports
treatment as if the behavior was, e.g., yet another bytecode. An example
for this is Smalltalk: its built-in behavior, i.e., primitives, is numbered and
only one per method is allowed. Hence, it is possible to view the primitive
number as the “zeroth” bytecode of a method, treating Smalltalk bytecodes
and primitives equally.

Ů.ů. Stack Access

To maintain the reflective properties present in many dynamic object-orient-
ed languages and to support debugging in the first place, it is necessary that
implementations of execution models have access to the execution stack.

ŮŲ

Ů.ů. Stack Access

Ů.ů.ū. Stack Access in Dynamic Object-oriented Languages

Dynamic object-oriented languages often include functionality supporting
introspection of the execution stack, if not even its modification. The most
prominent Language with support for both is Smalltalk with an explicit no-
tion of the execution stack as linked list of contexts. This list, and each in-
dividual context as well, is both inspectable and modifiable during execu-
tion. This allows different execution paths to be induced directly from the
language level. Other dynamic object-oriented languages also require stack
access, at least to read from it. Consider Python, where stack trace can be in-
spected at language level. A dedicated library, traceback, is available to ease
the handling of such stack trace objects, but, obviously, needs access to the
execution stack. In the same sense, Lua supports the creation and inspection
of tracebacks by means of the debug.traceback() function. In Lua versions
prior to ů.Ŭ, it was even possible to modify the current stack frame by means
of the getfenv() / setfenv() functions.

Another functionality requires stack access; closures with non-local re-
turns have to have access to the stack to determine their enclosing lexical
context. Language supporting closure with non-local returns include, first
and foremost, Smalltalk, Self, and Ruby. Similarly, Pythons nonlocal key-
word for accessing variables of the same name in the enclosing context needs
stack access when implemented, too.

Ů.ů.Ŭ. Maxine Stack Walking

The requirements for stack access in Java are modest, akin to that in Python,
i.e., stack traces must be possible. Hence, Maxine does not provide more
stack access than necessary to Java, which is actually only in two places,
Throwable.getOurStackTrace() and Throwable.fillInStackTrace(). Yet, Max-
ine internally needs a more powerful access to the stack, especially in cer-
tain operations of the object model implementation and within that, mainly
in the part of the єѐ that is responsible for detecting objects within the ar-
guments of currently running functions. These are present on the execution
stack. Another internal application of stack access is the deoptimization [Ŭŭ,
ūų] of currently executed methods, that have a frame in the current execu-
tion stack. In the course of deoptimizing such methods, their corresponding
stack frames have to be replaced, or at least patched, with a version fiĴing
the new nature of the method.

Ůų

Ů. Mapping Execution Models to Maxine

To provide a uniform approach for both the Maxine-internal and the Java-
stack-trace stack access, Maxine provides stack walkers with a visitor-based
interface. That way, the operation of introspecting the current execution
stack is solved generically by visiting all frames of the stack with a given
closure. For єѐ on the one hand and Java stack traces on the other, only the
action carried out on each stack frames differs.

Maxine has two kinds of stack walkers. One provides an object-oriented
view on the call stack and each frame and is called stack frame walker. As it
allocates during its operations, it is merely used in Maxine’s tools, as the
Inspector. The other stack walker does not provide an object-oriented view,
but passes the raw memory pointers for the relevant registers, i.e., stack-
and frame-pointer and the program counter. This walker is hence called raw
stack frame walker, and as it does not allocate during its operation, it is used
for all stack access currently necessary in Maxine.

Ů.ů.ŭ. Implementation Approaches

Given a way to induce stack access from the language, i.e., by means of an іџ
node or certain build-in behavior, providing read-only stack access is com-
paratively easy. A visitor handed to a stack frame walker can collect all in-
formation necessary for the aforementioned languages’ stack accessing func-
tions. Such information only has to be processed to fit the guest languages
needs. This operation is straightforward.

However, providing write access to the execution stack has not been done
up to now. Write access in this sense does not mean changing, e.g., locals
in a stack frame but changing the stack altogether, e.g., forking the stack by
modifying frame- and stack pointers. These operations are not accessible in
the default stack walker implementation in Maxine. Other means than the
default stack walkers have to be devised when stack modification is neces-
sary.

** *

Having laid out the conceptual implementation approaches for execution
models in Maxine, the next chapter will exemplary apply these approaches
to one dynamic object-oriented language.

ůŪ

ů. Objects in SqueakMaxine

Before the implementation of the concepts introduced in the last chapter
can be discussed, this chapter gives an introduction to Maxine’s configura-
tion mechanism and explains the relevant subsystems, especially the layout
and heap scheme. Then, the implementation of the two layout approaches
is presented. Even though only one was completed to the point that it al-
lows to execute code, important insights to improve Maxine’s extensibility
were gained from both approaches. Finally, this chapter shows how tagged
integers have been realized, and how they were integrated in both layout
implementations.

ů.ū. Configuration with Schemes

As a research ѣњ, Maxine was developed with a strong focus on configurabil-
ity. Logical parts of the ѣњ are encapsulated in so called schemes. A scheme
is a “Java interface that defines the interaction between a subsystem and the
rest of the VM” [Ůū]. Concrete scheme implementations are selected when
the build process is triggered and are instantiated and initialized during the
boot image generation.

This design allows for multiple implementations for each aspect of the
ѣњ, for instance with different performance characteristics. For this project,
schemes were used to introduce the object model of another programming
language. Since there was no need to rewrite or change the Java-related func-
tionality of Maxine, new schemes were introduced by sub-classing or copy-
ing existing implementations. To given an impression of how ѣњ internals
are realized in Maxine, the remainder of this section presents Maxine’s ex-
isting schemes and explains parts of their implementation, as much as they
are relevant for the object model realization.

ůū

ů. Objects in SqueakMaxine

ů.ū.ū. The Layout Scheme

Most important for the object model is the layout scheme, which defines how
the content of an object cell has to be interpreted. This is done by providing
an implementation of the layout hierarchy, as already shown in figure ŭ.ű.
Unlike all other schemes, which are defined as interfaces, LayoutScheme is an
abstract class. By default, Maxine uses the ќѕњ layout, which already was
conceptually explained in section ŭ.ŭ.Ŭ. Here, we show how a layout can be
implemented, using the Maxine pointer юѝі.

In listing ů.ū.ū, the implementations of some methods in the ќѕњ general
layout are shown. In lines ŭ to ų, the offsets of the header fields are calculated.
The hub header is located directly at the origin, the misc header follows by
one word. The general layout includes only header fields that are present in
every object, which means the length header for arrays and hybrids is not
defined here.

ū public class OhmGeneralLayout
Ŭ extends AbstractLayout implements GeneralLayout {
ŭ
Ů final int hubOffset = 0;
ů final int miscOffset;
Ű
ű public OhmGeneralLayout() {
Ų this.miscOffset = hubOffset + Word.size();
ų }

ūŪ
ūū public final Reference readHubReference(Accessor a) {
ūŬ return a.readReference(hubOffset);
ūŭ }
ūŮ
ūů public final void writeHubReference(Accessor a, Reference hub) {
ūŰ a.writeReference(hubOffset, hub);
ūű }
ūŲ
ūų public final Word readMisc(Accessor a) {
ŬŪ return a.readWord(miscOffset);
Ŭū }
ŬŬ
Ŭŭ public final void writeMisc(Accessor a, Word value) {
ŬŮ a.writeWord(miscOffset, value);
Ŭů }
ŬŰ
Ŭű public final SpecificLayout specificLayout(Accessor a) {
ŬŲ return getHub(a).specificLayout;
Ŭų }

ůŬ

ů.ū. Configuration with Schemes

ŭŪ public final void writeForwardRef(Accessor a, Reference fwdRef) {
ŭū a.writeReference(hubOffset, fwdRef.marked());
ŭŬ }
ŭŭ
ŭŮ public final Reference readForwardRef(Accessor a) {
ŭů final Reference forwardRef = a.readReference(hubOffset);
ŭŰ if (forwardRef.isMarked()) {
ŭű return forwardRef.unmarked();
ŭŲ }
ŭų // no forward reference has been stored
ŮŪ return Reference.zero();
Ůū }
ŮŬ }

Accessors to the header fields are defined in lines ūū to Ŭů. The Accessor
interface, which is implemented by the Pointer class, makes these low-level
operations easy to implement. Furthermore, the general layout can be used
to determine an object’s specific layout, which can, for instance, be obtained
from its hub (cf. line ŬŲ). The method getHub is not shown here, it simply
converts the result of readHubReference into a Hub, using an unsafe cast.

Another important layout functionality that cannot be deferred to specific
layouts is storing forward references (cf. lines ŭū–ŮŬ), specially tagged refer-
ences indicating that an object was moved by the garbage collector. Using
the pointer юѝі, the ќѕњ layout defines that forward references are stored
in the hub header field. Since hub references are never tagged, it is always
possible to detect whether an object has been forwarded.

public Pointer originToCell(Pointer origin) {
return !isTuple(origin) ?
origin.plus(arrayLengthOffset) : origin.plus(hubOffset);

}

public Pointer cellToOrigin(Pointer cell) {
return cell.readWord(0).asAddress().isBitSet(0) ?
cell.minus(arrayLengthOffset) : cell.minus(hubOffset);

}

Listing ů.ū: Origin to cell conversion in the ѕќњ layout. In the ѕќњ layout, cell and
origin pointers are not identical and have to be converted. The conversion has to
regard that arrays and tuples have an additional header field.

Finally, the general layout is responsible for the conversion between cell
and origin pointers. As has been shown for the ѕќњ layout (cf. figure ŭ.Ų),

ůŭ

ů. Objects in SqueakMaxine

they are not necessarily the same. The ѕќњ layout’s conversion code is given
in listing ů.ū. For a given object pointer, the cell start can be calculated by
determining the object’s layout kind and adding an appropriate (negative)
offset to the origin. Given a cell pointer, however, the object’s layout kind
cannot be determined as it is not possible to locate the hub. To distinguish
whether the first word is a hub or a length header, for the laĴer the lowest bit
is always set to one. By checking this bit, it is then possible to derive the offset
to the origin. In consequence, every time the length header is read or wriĴen,
it has to be remembered that the actual value is left-shifted by one. For the
ќѕњ layout, however, both methods always just return their parameter.

Responsible for implementing different layout kinds are the specific lay-
outs. As an example, listing ů.Ŭ shows how relevant parts of the ќѕњ ar-
ray layout are implemented. The array layout is instantiated multiple times
(cf. the constructor parameter in line Ų), once for each primitive type and
once for Reference. The reference array layout is used for all arrays with an
object component type.

ū public class OhmArrayLayout
Ŭ extends OhmGeneralLayout implements ArrayLayout {
ŭ
Ů public final int lengthOffset;
ů public final int headerSize;
Ű public final Kind elementKind;
ű
Ų public OhmArrayLayout(Kind elementKind) {
ų lengthOffset = miscOffset + Word.size();

ūŪ headerSize = Word.size() * headerFields().length;
ūū this.elementKind = elementKind;
ūŬ }
ūŭ
ūŮ public boolean isArrayLayout() { return true; }
ūů public Layout.Category category() { return Category.ARRAY; }
ūŰ
ūű public HeaderField[] headerFields() {
ūŲ return new HeaderField[]
ūų {HeaderField.HUB, HeaderField.MISC, HeaderField.LENGTH};
ŬŪ }
Ŭū
ŬŬ public int originDisplacement() { return headerSize; }
Ŭŭ
ŬŮ public boolean getBoolean(Accessor accessor, int index) {
Ŭů return accessor.getBoolean(originDisplacement(), index); }
ŬŰ public byte getByte(Accessor accessor, int index) {
Ŭű return accessor.getByte(originDisplacement(), index); }

ůŮ

ů.ū. Configuration with Schemes

ŬŲ public char getChar(Accessor accessor, int index) {
Ŭų return accessor.getChar(originDisplacement(), index); }
ŭŪ ...
ŭū public void setBoolean(Accessor accessor, int index, boolean b) {
ŭŬ accessor.setBoolean(originDisplacement(), index, b); }
ŭŭ public void setByte(Accessor accessor, int index, byte b) {
ŭŮ accessor.setByte(originDisplacement(), index, b); }
ŭů public void setChar(Accessor accessor, int index, char c) {
ŭŰ accessor.setChar(originDisplacement(), index, c); }
ŭű ...
ŭŲ }

Listing ů.Ŭ: The ќѕњ array layout implementation.

Once an object’s specific layout is known, is(Tuple|Array|Hybrid)Layout
and category can be used to determine the object’s layout kind. The specific
layout further defines which header fields it uses (cf. lines Ŭū–Ŭŭ) and pro-
vides accessors for header fields that are not handled by the general layout
(not shown in the example). Finally, the specific layout allows to access the
contents of the object. For the array layout, as shown in lines ŬŲ to ŭų, there
is one pair of access methods for every component type, which allow to read
and write one element of the array; for the tuple layout, a field actor is used
to identify the field that should be accessed. Using these functions, it is possi-
ble for the ѣњ to inspect and modify objects efficiently, without the overhead
of Java’s reflection юѝі.

ů.ū.Ŭ. The Heap Scheme

A second scheme responsible for handling objects is the heap scheme. Unlike
the layout scheme, which manages the contents of single objects, the heap
scheme manages a set of objects, regarding each as an (almost) black box.
It maintains a large chunk of memory, the heap. On the heap, it allows to
allocate and initialize appropriate object cells for any given class and imple-
ments, to reclaim unused memory, the garbage collector.

For object allocation, all existing implementations use a thread-local allo-
cation buffer (ѡљюя), which reserves a small piece of memory for each thread
to allow unsynchronized, blocking-free allocations. For the garbage collec-
tor, on the other hand, Maxine provides two different implementations: a
mark-and-sweep єѐ and a semi-space heap that is explained in more detail
here, as SqueakMaxine uses the semi-space heap and add new functionality.

ůů

ů. Objects in SqueakMaxine

to-space

Before

object 1

from-space

object 2 object 2 object 3

object 1 object 2 object 2 object 3object 3

GC iterator

GC iterator

After

Forward Reference

Figure ů.ū.: GC step on the semi-space heap. Using forward references, the semi-
space garbage collector updates all references in the object cell. If a referenced
object was not reached yet, it is moved into the to-space.

On a semi-space heap, the memory is split into two regions: the from-space
and the to-space. All active objects live in the to-space, this is also where the
allocation of new objects takes place. Once the to-space is full, a єѐ run is
triggered. The first thing that happens then is that the denotations of the
spaces are swapped: the former from-space becomes the new to-space, and
vice versa. Then, since all objects are now in the from-space, they have to
be copied. This process is started by first copying all єѐ root objects: classes,
threads and every object on the stack. For each object that was copied, the
hub reference in the old cell is replaced with a forward reference to the new
origin. This way, an object is never copied twice and the єѐ can find copied
objects at their new address.

Once all root objects are moved, the garbage collector iterates over all ob-
jects in the to-space. For each object, all its references are updated, as illus-
trated in figure ů.ū. To update a reference, the forward reference stored in
the old cell is looked up and used as the new value, without the forward
marking, of course. If an object is found that was not forwarded yet, it is
copied to the end of the to-space. Once all references are processed, the єѐ
moves on to the next object cell. This iteration is possible as the copying en-
sures that no unused spaces emerge between the objects. Eventually, every
object that is reachable will be found this way.

It should be noted that the єѐ iterates from cell to cell, which means that
to actually interpret the object’s content, it has to rely on the layout to get
the origin pointer for a cell.

ůŰ

ů.Ŭ. The Squeak Layout Approach

ů.ū.ŭ. Extended Extension Points

To avoid changing original sources as much as possible, the Squeak object
model implementation was intended to be solely based on schemes . It hence
seemed appropriate to use schemes as a configuration mechanism for Squeak-
Maxine as well. However, a Squeak ѣњ requires some features not present
in a Java ѣњ. Thus, some of the extension points, as they are defined by
the schemes, were not sufficient. SqueakMaxine additionally requires a com-
piled method and a reference hybrid layout. To decouple these layouts from
the rest of the ѣњ an abstract class (SqueakLayoutScheme) was added. It can be
used as a regular layout scheme by Maxine and, at the same time, ensures
that SqueakMaxine can no longer be started with a Java layout implementa-
tion not extending this class.

In addition to the Squeak layout scheme there are two de-facto schemes
that perform additional operations required for Squeak: the SqueakRuntime
simplifies access to Squeak objects by defining a simple and optimized re-
flection юѝіand the SqueakImageLoaderScheme provides a method for loading
objects from a Squeak image file into the heap. As adding new schemes to
Maxine is not easily possible and, in this case, their implementations are
quite depending on the layout, instances of these pseudo-schemes have to
be obtained via the Squeak layout scheme.

The heap scheme also has to provide some additional methods. To sup-
port the image loading, the heap has to implement an additional interface,
ImageLoadingAllocator, that allows to load a Squeak image file into memory
and to reserve a large chunk of memory to allocate Squeak objects during the
loading phase. Furthermore, the heap has to store the special objects array,
which is a main єѐ root of Squeak. Just as with the layout scheme, a refined
SqueakHeapScheme interface was introduced. A full list of all additional inter-
face methods can be found in Appendix B.

ů.Ŭ. The Squeak Layout Approach

The first approach to test the extensibility of Maxine was to re-implement
the Squeak ѣњ as close as possible, to see to which extend the existing parts
of Maxine can be reused or adapted. For the object model, this means to
support Squeak’s cell layout and to use only existing meta-objects, as they
can be loaded from the image, instead of Maxine’s actors.

ůű

ů. Objects in SqueakMaxine

ů.Ŭ.ū. Implementing a Layout

Using Maxine’s pointer юѝі, implementing the Squeak layout is straight-for-
ward. As an example, listing ů.ŭ shows how to convert cell and origin point-
ers. For the ќѕњ layout, cell pointer and origin are identical, but the Squeak
layout uses optional header words. Each header word uses its two lowest
bits to indicate the header type. Thus, cellToOrigin just reads the first word
and increases the cell pointer by the appropriate number of words.

blic Pointer cellToOrigin(Pointer cell) {
Word firstHeader = cell.getWord();
ObjectHeaderType headerType = ObjectHeaderType.detect(firstHeader);
return cell.plusWords(headerType.getExtraWords());

blic Pointer originToCell(Pointer origin) {
Word baseHeader = origin.getWord();
ObjectHeaderType headerType = ObjectHeaderType.detect(baseHeader);
return origin.minusWords(headerType.getExtraWords());

Listing ů.ŭ: Origin to cell for the Squeak layout and vice versa.

Most layout methods, however, can have no meaningful implementation
for the Squeak layout. This is caused by assumptions in the definition of the
interface, such as that every layout implementation uses at least the header
fields of the ќѕњ layout: hub, misc and length; that there are exactly three
layout kinds: tuple, hybrid, and array; or that the header fields of an object
depend only on its layout. An overview over the implementation status of
representative methods is given in table ů.ū for the general layout and in
table ů.Ŭ for the specific layouts.

Even though only a small part of the layout methods are implementable,
implementing the Squeak object model is still possible. Most methods are
used only during the bootstrapping phase, when support for Squeak objects
is not required; by the Inspector and the Java reflection юѝі, which are not
supported for Squeak objects; and by the heap, which has to be adapted
for Squeak anyway. The access to objects at runtime, on the other hand, is
defined by code snippets which are compiled directly into machine code,
without using layout methods as an intermediate step.

Thus, a full definition of the Squeak layout was realized in an independent
class. Furthermore, the layout implementation is required in two variations:

ůŲ

ů.Ŭ. The Squeak Layout Approach

Table ů.ū.: GeneralLayout methods implemented for the Squeak layout.

Method Description Implemented Comment

cellToOrigin,
originToCell

Conversion between object
and cell pointers.

4 See example

isTuple,
isHybrid,
isArray, category

Identifies an object’s
Maxine layout kind.

8 Used only by heap
implementations, which make
implicit assumptions on layout
not compatible with Squeak.

specificLayout Returns an object’s specific
layout implementation.

4 The layout is determined from
the object format encoded in
the base header.

size Returns an object’s cell size
in bytes.

4 Reads either the size header or
the size bits of the base header.

readHubReference,
writeHubReference

Accesses the hub header
field.

8 Write access is required only
for object allocation, which has
to be rewriĴen anyway. Read
access is required only for the
inspector.

readMisc,
writeMisc

Accesses the misc header
field.

8 Required for Java’s
synchronization feature; not
supported for Squeak objects.

forwarded,
readForwardRef,
writeForwardRef

Handles forward
references (used, i.e., by
semi space garbage
collector, to move objects).

4 Sets an unused bit in the base
header to flag a forward
reference.

one version that provides fast and efficient access at runtime, and one ver-
sion that performs validation to avoid loading corrupted image data.

This leads to the architecture shown in figure ů.Ŭ. The base class ImageIO
defines the general layout rules, but does not specify how the image is ac-
cessed or how invalid data handled. As an example, listing ů.Ů shows how
ImageIOdefines the check to determine whether an object has a compact class.
The implementation is completed in the subclasses, as shown in listing ů.ů
and listing ů.Ű, respectively. The ImageAccess class, one the one hand, imple-
ments efficient runtime access; here, the memory is accessed directly, based
on the assumption that the data is correct and no exceptions are defined. For
image loading, on the other hand, the second subclass ImageLoader always
parses the entire object header to detect invalid references or inconsistent
header data, and throws a checked exception if validation fails.

ůų

ů. Objects in SqueakMaxine

Table ů.Ŭ.: The SpecificLayout interface is too specialized for Java to allow an im-
plementation of the Squeak layout.

Method Description Implemented Comment

isTupleLayout,
isHybridLayout,
isArrayLayout,
category

Identifies the Maxine
layout kind represented
by this layout.

8 Used only by heap
implementations, which make
implicit assumptions on layout
not compatible with Squeak.

headerSize,
headerFields

Returns informations of
the header fields used by
this layout.

8 In Squeak, the header fields are
independent of the layout and
depend on other properties of the
object.

visitObjectCell,
readValue,
writeValue

Accesses the object on a
low level.

8 Required only by Inspector and
during bootstrapping, not
relevant for Squeak.

layoutFields,
getFieldOffsetInCell

Tuple and hybrid layout
only. Required for
managing fields in a
tuple.

8 Requires field actor arguments,
which are not used for Squeak.

readLength,
writeLength,
arrayLengthOffset

Array and hybrid layout
only. Accesses the length
header field.

8 Array length has to be derived
from cell size. Callers of these
methods assume that there is a
length header field.

ů.Ŭ.Ŭ. Dual Semispace Heap

A problem that occurred during the implementation is that given an object
reference, it is not possible to determine whether it references a Java or a
Squeak object. Using instanceof is not possible, as we need this function-
ality to implement instanceof in the first place. Furthermore, without this
distinction it is not possible for the garbage collector to access the object’s
fields. At the origin of a Java object is its hub header field, and at the origin
of a Squeak object is its base header. Thus, it should be possible to check
whether the word that is identified by the object reference references a hub.
It is not likely that the base header bits of a Squeak object are set in a way
that they form a valid hub reference. Nevertheless, it is technically possible,
so this is not an adequate solution. In consequence, it is not possible to dis-
tinguish between a Java and a Squeak object with complete certainty just by
inspecting its memory.

Another solution would be to derive this information from the context
that references the object. It seems reasonable that Java objects and methods

ŰŪ

ů.Ŭ. The Squeak Layout Approach

ImageIO

ImageAccess ImageLoader

<ImageFormatException><RuntimeException>

ObjectMemory
LoaderScheme

ObjectMemory
Runtime

ObjectMemory
LayoutScheme

Squeak
SemiSpaceHeap

usesuses

loaderruntime1 1

Figure ů.Ŭ.: Implementations of the Squeak layout. Two variations of the Squeak
layout definitions are used, depending on the context.

public abstract class ImageIO<E extends Exception> {
// 32 or 64 bit, little or big endian
protected final ImageVersion version;

public boolean hasCompactClass(SqueakReference obj) throws E {
return getCompactClassID(obj) > 0;

}

protected abstract int getCompactClassID(SqueakReference obj)
throws E;

}

Listing ů.Ů: ImageIO defines how values are found and interpreted, but not how they
are accessed.

are allowed to reference only Java objects, and Squeak objects can reference
only Squeak objects. However, this still does not solve the problems of the
garbage collector. As described in section ů.ū.Ŭ, the semi-space iterates over
all objects and has to convert between cell and origin pointers, which is only
possible if the object’s general layout is known. Thus, it has to be ensured
that Java and Squeak objects never mix with each other on the heap.

The easiest way to achieve this is to split the heap into a Java and a Squeak
region (which are further each split into the to- from-space). This allows to
run the єѐ individually for each region, using correct layout both times.

To implement this change, modifying the SemiSpaceHeapScheme of Maxine
was necessary. By default, the existing implementation only supported col-
lecting one region and accessed the layout via a global variable. Thus, region-
specific details had to be extracted from the єѐ algorithm implementation.

Űū

ů. Objects in SqueakMaxine

public abstract class ImageAccess
extends ImageIO<RuntimeException> {
protected int getCompactClassID(SqueakReference obj) {
final long baseHeader =version.readWord(obj, BASE_HEADER_OFFSET);
return (baseHeader >> COMPACT_CLASS_SHIFT) & COMPACT_CLASS_MASK;

}
}

Listing ů.ů: In the ImageAccess implementation, the memory is accessed directly,
using the Maxine Pointer API.

public abstract class ImageLoader
extends ImageIO<ImageFormatException> {
protected int getCompactClassID(SqueakReference obj)
throws ImageFormatException {
ObjectHeader header = ObjectHeader.read(obj, version); / may throw
return header.getCompactClassId();

}
}

Listing ů.Ű: The ImageLoader uses additional validation logic to check the integrity
of the data and throws checked exceptions.

We introduced the garbage strategy, which hides the actual memory re-
gion, as well the logic how individual object cells are processed, from the
algorithm. A generalization of this change is discussed in more detail as
variation point “Garbage Strategy” in section ű.Ŭ.ū. With the dedicated heap,
loading an image file requires the same steps it does in Squeak. The file is di-
rectly copied into memory and, with a single iteration, all object references
are updated to fit the new address range. The first few bytes of both from-
and to-space are reserved for the image header and are not available for ob-
ject allocation. To save the image, the image header bytes just have to be
updated and then the entire active part of the to-space is wriĴen into a file.
To minimize the file size, a єѐ run can be executed first.

ů.Ŭ.ŭ. Integration in Maxine

To trigger the image loading, the run scheme was replaced. Instead of invok-
ing a main-method, it finds the image file and passes it to the image loader of
the Squeak layout scheme. Then, the next step would be to begin executing
the last active thread.

ŰŬ

ů.Ŭ. The Squeak Layout Approach

Hoewever, even without support for code execution, with a loaded image
it is possible to print a stack trace of the thread that was executed last, as even
the stack is stored as a chained list of Squeak objects. Shown in listing ů.ű is
the algorithm to print such a stack trace.

ū function printStackTrace()
Ŭ nil ← SpecialObjects[NilObject]
ŭ blockClass ← SpecialObjects[ClassBlockContext]
Ů context ← SpecialObjects[SchedulerAssociation][”value”]
ů .activeProcess.suspendedContext
Ű while context ̸= nil do
ű print(”context:”, context)
Ų print(”receiver:”, context.receiver)
ų print(”instruction pointer:”, context.instructionPointer)

ūŪ if context.getClass() = blockClass then
ūū print(”#args:”, context[”nargs”])
ūŬ print(”home:”, context[”home”])
ūŭ print(”startpc:”, context[”startpc”])
ūŮ else
ūů print(”method:”, context[”method”])
ūŰ end if
ūű println()
ūŲ context ← context.sender
ūų end while
ŬŪ end function

Listing ů.ű: After the image is loaded, a stack trace of the last active thread can be
printed (general algorithm).

First, the nil object and the closure class are fetched from the special ob-
jects array and cached for later use (line Ŭ and ŭ). In line Ů, the last active
execution context is retrieved from the scheduler. Now, it is possible to print
information about the context (line ű–ų), for instance the receiver (the object
that can be accessed via self), or the current bytecode index. If the context
is a closure, which is determined by checking the context’s class in line ūŪ,
additional information is available (line ūū–ūŭ): the number of arguments,
the method that defines the closure, and the closure’s first bytecode index
within the bytecode array of the defining method. For regular method in-
vocations, the invoked method can accessed to get additional information.
Finally, the context’s sender is fetched to move one level down the stack. The
process is repeated until no previous sender is found.

Űŭ

ů. Objects in SqueakMaxine

For simplicity, the algorithm was shown in pseudo-code; the actual Java
code is far less readable. As all operations are performed on Squeak objects,
it is necessary to obtain the Squeak runtime first, which is done with
SqueakRuntime rt = SqueakConfiguration.runtime();

Then, it is possible to access a special object using
SqueakReference nil;
nil = rt.getSpecialObjectReference(SpecialObject.NilObject);

Accessing an instance variable can be done in two ways. For instance, it is
possible to use a well known index that was defined in an enum before. Thus,
context.receiver becomes
rt.getInstanceVariable(context, ContextFieldIndex.RECEIVER)

A more flexible way to access a field is to specify its name. In Java, pseudo-
code similar to context[”home”] is implemented as
rt.getInstanceVariable(context, ”home”)

To access an object’s class, rt.getClass(context) can be used. Finally, to
print an object, it has to be converted into a Java String object first by us-
ing rt.toJavaString(context).

A special challenge of a Squeak implementation are two methods, which
are required by some meta-programs and ѣњ-internals. The first method,
firstobject, returns the first object, for an arbirary definition of first, while
nextobject returns the successor of a given object, again for an unspecified
ordering. Together, these methods can be used to iterate over all objects on
the heap, although objects may be skipped or found multiple times, for in-
stance, if a єѐ run takes places.

With the dual heap, both methods are easy to implement. The first object
is the object located at the beginning of the to-space, while the next object
can be found by going to the end of the current object’s cell. The semi-space
єѐ ensures that this will always work, as no empty spaces between objects
can occur.

For easier debugging of SqueakMaxine, it would be desirable to browse
Squeak objects in the Inspector. However, the Inspector requires class actors
and has strong assumptions about the layout implementation. Thus, while
it is possible to view the memory of the Squeak object space, objects have to
be interpreted manually.

ŰŮ

ů.ŭ. The Maxine Layout Approach

Adding or removing fields in a class is pending implementation, because
it requires updating all instances of this class, including subclasses. With the
new garbage strategy, this can be achieved easily. To update all objects, a spe-
cial єѐ run is triggered, which uses a different garbage strategy to change the
way how objects are processed. For instances of the modified class, instead
of simply copying the cell from one space to the other, a word is inserted or
removed to realize the field modification.

Even though this approach worked well as an object model implemen-
tation, severe problems started to appear with outlook to the integration
of the execution model. Due to the way bytecodes are compiled from Java
code-snippets, it was no longer possible to keep the distinction between the
two object worlds. In parts, this was also caused by a lack of separation be-
tween compiler and layout, which would have required re-implementing
large parts of the layout. All in all, this approach seemed to require too much
work to be worth continuing, although we believe it should be possible to
implement a fully working ѣњ this way. Relevant for this work is that an-
other object model implementation was needed, which had to provide more
compatibility with Maxine’s existing understanding of objects.

ů.ŭ. The Maxine Layout Approach

The second approach implements the object layout presented in section ŭ.ŭ.ŭ.
It creates class actors for all Squeak classes and uses, when possible, the same
layouts for Squeak objects that Maxine uses for Java objects.

ů.ŭ.ū. Extending the layout

Copying and adapting the ќѕњ to become the Ѧќѕњ layout was a rather sim-
ple task. The first change was to add another header field to the tuple layout.
As listing ů.Ų shows, only minimal changes were necessary for this: a new
header field object is created (line ū), which handily provides meta informa-
tion for the inspector; the header offset is adjusted to include an additional
word (lines ŭ–ų); and the new field is included in two methods that describe
the header layout to other parts of the ѣњ (lines ūū–Ŭū).

The second change added two new layout kinds: the hybrid reference ar-
ray layout and the compiled method layout. These layouts differ in only one
way from existing layouts (hybrid with integer array, and byte array): their

Űů

ů. Objects in SqueakMaxine

ū public static final HeaderField CLASS_ACTOR = new HeaderField(
Ŭ ”classActor”,
ŭ ”to align tuples and store class actors of class objects”);
Ů
ů private final int headerSize = 3 * Word.size();
Ű
ű public final int classActorOffset;
Ų
ų public YHomTupleLayout() {

ūŪ classActorOffset = miscOffset + Word.size();
ūū }
ūŬ
ūŭ public HeaderField[] headerFields() {
ūŮ return new HeaderField[]
ūů {HeaderField.HUB, HeaderField.MISC, CLASS_ACTOR};
ūŰ }
ūű
ūŲ @Override
ūų public Offset getOffsetFromOrigin(HeaderField headerField) {
ŬŪ if (headerField == CLASS_ACTOR) {
Ŭū return Offset.fromInt(classActorOffset);
ŬŬ }
Ŭŭ return super.getOffsetFromOrigin(headerField);
ŬŮ }

Listing ů.Ų: Minimal changes were necessary to create the Ѧќѕњ tuple layout from
the existing ќѕњ implementation.

semantic implies object references in the object cell that are not known to
the object’s class (cf. variation point “Reference Visitor”). These layouts are
instantiated by the layout scheme and ignored by the Java part of the ѣњ.

However, to actually use the Ѧќѕњ layout for Squeak objects, the Squeak
class actor is required. On the one hand, it has to act as a bridge from a
Squeak object to its Squeak class, on the other hand, it has to represent the
Squeak class in terms that Maxine can understand. Maxine has different
class actor implementations for different types of classes. The superclass
for all actors that represent instantiatable classes, as opposed to primitive
types and interfaces, is ReferenceClassActor. It is further specialized into
subclasses for each layout kind. To reuse the object-kind specific class ac-
tor code, Squeak class actors were added as further subclasses. As figure ů.ŭ
shows, the generic, layout agnostic Squeak class actor then had to be de-
fined as an interface, which lead to a small amount of code duplication for
handling references to the Squeak class object.

ŰŰ

ů.ŭ. The Maxine Layout Approach

Reference
ClassActor

Tuple
ClassActor

FixedFields
ClassActor

NoFields
ClassActor

Array
ClassActor

Hybrid
ClassActor

ReferenceArray
ClassActor

WordArray
ClassActor

ByteArray
ClassActor

CompiledMethod
ClassActor

HybridRefArray
ClassActor

SqueakClassActor

java.lang.Object

SqueakObject

y-header 0..1

getClassObject() 1

Figure ů.ŭ.: The Squeak class actor hierarchy. Original classes are highlighted.

The initialization of a class actor requires a full class description. The lay-
out kind is already chosen by instantiating the appropriate Class actor class,
but class name, super class, field names for fixed field and hybrid classes,
and method actors have to be passed as parameters.

The class name has to be provided as a Java string, which can be created
by locating and converting the bytes of the Squeak string specifying the
class name. The super class is identified by its class actor. In consequence,
the class load order is determined by the inheritance tree; root classes have
to be loaded first. The representation of fields for Squeak is even simpler
than it is for Java. In both Squeak and Java, a field has a name and identi-
fies some bytes after the objects origin. In Java, however, fields may have
different widths (one to eight bytes) which requires the field offset to regard
the widths of previous fields. In Squeak, all fields store references and have
the same width: one word (eight bytes in ŰŮ-bit). Thus, to set up a Squeak
class actor, an array of field actors can be directly created from the array
of field names; the fields’ offsets and types are not needed to be explicitly
specified, and there is no need for a dedicated Squeak field actor.

For methods, the signature definition is of similar simplicity: all that is
required to describe a method is its name and the number of parameters.
Squeak allows characters in method names that are not allowed in Java,
therefore, a bijective name mapping has to be applied. The current imple-
mentation simply replaces non-leĴer characters with a dollar sign, followed
by the character’s юѠѐіі code; ifTrue: becomes ifTrue$36, for instance.

With this setup, it is again possible to handle Squeak objects with Maxine,
which includes accessing fields and invoking methods. However, this object
model implementation is still useless without the capability to load objects
from an image file.

Űű

ů. Objects in SqueakMaxine

ů.ŭ.Ŭ. Image Loading

Loading objects from a Squeak image is much more complex with this layout
approach. Unlike as with the Squeak layout, where only an offset had to
be added to all references to have them point into the new memory region,
this time the objects are converted into the Ѧќѕњ layout, which also includes
the creation of class, field and method actors. From previously one to three,
now every object has three header words. Furthermore, when loading a ŭŬ-
bit image, all fields have to be converted to ŰŮ bit. This does not affect byte,
word and long arrays, but doubles the content size for fixed field, hybrid and
reference array objects, and arbitrarily affects compiled methods, depending
on their number of literal references.

As a result, without deeply examining the Squeak image first, neither can
be predicted at which address a Squeak object will end up after conversion,
nor is it possible to tell the total required amount of memory to hold the
converted image. The former means that the loading process has to populate
the heap with object cells which cannot be immediately initialized and thus
are not processable by the єѐ. The laĴer is a problem because increasing
the heap size requires a garbage collector run. In consequence, a sufficient
amount of memory has to be allocated before starting the image conversion.

Fortunately, an upper bound of the possible required heap space can be
derived from the original image size times two, plus two words for every
object. This of course requires that the conversion algorithm creates only lit-
tle garbage, which should not be taken for granted for a Java algorithm, and
that actors are created when garbage collection and heap growing is possi-
ble. The laĴer is necessary anyway, as initializing class actors for about ŮŪŪŪ
classes of a regular Squeak image creates over ŮŪŪ MB of garbage objects.

This results in a five-stage loading procedure, as summarized in table ů.ŭ.
The first four steps each require an iteration over all objects in the Squeak
image, and only in the first and the last stage garbage collection is possible.
The remainder of this subsection will describe the five stages in more detail.

Again, the loading procedure is wrapped in a pseudo-scheme implemen-
tation, in this case in squeakmaxine.image.max.MaxImageLoaderScheme. Given
the image file, a VM operation is started to ensure that all other threads
are paused. Within the operation, the loading allocator of the Squeak heap
scheme is used to map the file into memory. Then the first stage is entered.

ŰŲ

ů.ŭ. The Maxine Layout Approach

Stage ū: Create class, field and method actors

To create objects in Maxine, a class, represented by a class actor, is required.
As mentioned before, creating and initializing class actors creates a large
amount of garbage objects and thus has to happen before garbage collection
is disabled. In consequence, the first stage has to identify all behavior objects
in the image, including classes, meta classes, traits and meta traits. To do this,
the Behavior class has to be identified first, for it is a common super class of
these, and only these, four types of objects. To find Behavior, the image data
has to be interpreted, using the algorithm in listing ů.ų.

Directly after opening the image file, the special objects array is the only
Squeak object known by the ѣњ, as it is referenced in the image header. In the
special objects array, other objects, such as the Integer class, can be found at
well defined indices. While Integer itself does not extend Behavior, its class
does (similar to Point and Point class in figure ŭ.Ŭ). Thus, starting with the
integer meta class, super classes are fetched until one with the name “Be-
havior” is found. Having identified Behavior, it is now possible to find all
behavior objects by iterating over the entire image and checking for each
object whether its class extends Behavior. If such an object is found, a class
actor representation needs to be created. Since, to create a class actor, the
super class actor is needed, a class-name to class-actor map is used to avoid
creating a class actor twice. This is especially important as it cannot be ex-
pected that the class tree is stored in the image in an ordered fashion.

When a class actor does not yet exist, the behavior’s method dictionary is
read to collect Squeak method actors, each initialized with the method name
and parameter count. For fixed field and hybrid classes, the field names are
collected as well. Finally, a Squeak class actor is created and registered in
the class actor map. Once all objects in the image have been looked at, it is
guaranteed that all class actors exist and the second stage can commence.

Table ů.ŭ.: The image loading process is divided into five phases.

Stage Description Full image iteration єѐ enabled

ū Create all actors 4 4

Ŭ Allocate object cells 4 8

ŭ Link Squeak meta objects to actors 4 8

Ů Convert objects 4 8

ů Initialize method actors 8 4

Űų

ů. Objects in SqueakMaxine

ū behaviorNameBytes ← toByteArray(’Behavior’)
Ŭ classNameBytes ← new byte[behaviorNameBytes.length]
ŭ
Ů function findBehaviorClass()
ů aClass ← SpecialObjects[ClassInteger]
Ű aMetaClass ← aClass.getClass()
ű while aMetaClass ̸= nil do
Ų if nameIsBehavior(aMetaClass) then
ų return aMetaClass

ūŪ end if
ūū aMetaClass ← aMetaClass.getSuperClass()
ūŬ end while
ūŭ error ’Behavior not found’
ūŮ end function
ūů
ūŰ function nameIsBehavior(aClass)
ūű className ← aClass.className
ūŲ className.getBytes(classNameBytes)
ūų // fills classNameBytes with content of string
ŬŪ return behaviorNameBytes = classNameBytes
Ŭū end function

Listing ů.ų: Finding the Behavior class by interpreting the image. Same pseudo-code
as listing ů.ű.

Stage Ŭ: Allocate a cell for each object

In the second stage, object cells are allocated in the to-space. The cell size re-
quired by the Ѧќѕњ layout can be easily derived from the Squeak object, as
will be shown at the example of a compiled method in figure ů.Ů. Indepen-
dently of the Squeak header size, three header words are required for every
object in Maxine. Furthermore, the content words of fixed fields, hybrids, ref-
erence and word arrays, and compiled methods have to be adjusted to the
new word width. Finally, the bytes of byte arrays and compiled methods do
not change, although the number of alignment bytes might increase.

As mentioned before, while it is possible the calculate the object cell’s size,
its address in the to-space cannot be predicted. Instead, some association be-
tween the original Squeak cell and the target cell has to be established. Main-
taining a hash map to map the hundreds of thousands of objects in a simple
Squeak image would be inefficient and require an unpredictable amount of
memory, which is not acceptable while garbage collection is disabled.

űŪ

ů.ŭ. The Maxine Layout Approach

Hub Method Header Literal 1 Byte CodeMisc Length

Method
Header Literal 1 Byte CodeBase

Figure ů.Ů.: When a ŭŬ-bit Squeak cell is converted into the ŰŮ-bit Ѧќѕњ layout, it is
impossible to predict the new size without analyzing the object, as is shown here
for a compiled method with one literal and three bytecode bytes.

As an alternative, a reference to the target cell can be stored in the Squeak
cell itself. Since the smallest possible Squeak object, with a compact class and
no fields, would consist only of a base header, the base header field has to be
used to store this reference. However, the base header must not be overwrit-
ten as it is still needed for subsequent image iterations and interpretations.
The solution to this problem is illustrated in figure ů.ů. The upper part of
the figure shows a small part of an exemplary Squeak image, with an ob-
ject whose cell was just allocated in the to-space, followed by a word array
it references and its class. The base header was replaced with a reference
into the to-space, shown in the lower part of the figure. By copying the base
header value into the to-space, interpreting the image is still possible; the
base header field just has to be dereferenced to obtain the actual value.

Squeak image

class to-ref

iterator

field 1 field 2 base

miscbase y field 1 field 2

word 1

to-space

allocation mark

class base field 1

to-space Reference

Figure ů.ů.: An object cell is allocated for a Squeak object, referening its class and
two other objects. A reference to the new cell is stored in the base header field.
Uninitialized memory is shown in light gray, unallocated memory in dark gray.

űū

ů. Objects in SqueakMaxine

Stage ŭ: Link Squeak meta objects to their respective actors

After the second step, the to-space contains data that is relevant for inter-
preting the Squeak image. Thus, initializing the target cells will render the
image data unreadable. However, to set up an object its class’s class actor is
required, which can only be obtained via the original Squeak class object.

Therefore, just as in the first stage, all behavior objects are searched, but
this time to link each class’s target cell with the Squeak class actor. This in-
cludes storing a reference to the Squeak class actor in the additional header
field in the target cell and invoking setClassObject on the class actor. Notice
that the method expects a SqueakObject instance, whereas the cell does not
contain valid object data, which would require at least a hub. Nevertheless,
it still possible to pass the uninitialized object as a parameter, using Maxine’s
unsafe-cast feature to circumvent Java’s type-safety checks. In a similar way,
a unidirectional link is established from Squeak method actors to the future
compiled method objects.

Stage Ů: Convert objects into Ѧќѕњ layout

With the class actors in place it is finally possible to convert all objects from
Squeak into the Ѧќѕњ layout. To pick up the example of figure ů.ů, the same
object is shown in figure ů.Ű after its conversion.

For each object, its class’s target cell is used to look up the class actor and
fill the hub header field. For variable sized objects, the length is calculated
from the original Squeak cell size. Finally, all references to other objects are
resolved to point to their respective cells in the to-space, while word and
byte data is copied.

Stage ů: Initialize method actors

Now, as all Squeak objects have been properly set up in the to-space, the
image data can be discarded and garbage collection is possible again. How-
ever, while the objects and classes are functional already, the Squeak method
actors require further initialization. Thus, iterating over the class actors col-
lected in stage ū, each of its Squeak method actors is triggered to collect in-
formation that is required by the compiler, e.g., the number of arguments
and the byte code array. With this step completed, the image is fully loaded
and the objects and classes can be handled by the ѣњ.

űŬ

ů.ŭ. The Maxine Layout Approach

Squeak image

class to-ref

iterator

field 1 field 2 to-ref

mischub field 1 basefield 2

word 1

to-space

class to-ref field 1

miscbase classactor...

a ClassActora DynamicHub
to-space Reference

Figure ů.Ű.: After a Squeak object converted into the Ѧќѕњ layout, all its references
point into the to-space, even if the targeted objects are not initialized yet. The
dynamic hub is obtained via the class object.

ů.ŭ.ŭ. Integration in Maxine

With a working image loading process, the object model is ready for execu-
tion. It is also possible to operate manually on Squeak objects, using the Java
reflection юѝі. This way, it is easy to implement the Squeak runtime interface,
which allows printing a stack trace using the same code as for the Squeak
layout (cf. listing ů.ű).

To debug the code and the subsequent execution model implementation,
it was necessary to be able to examine Squeak objects in the Inspector. Since
the Inspector uses the same layout implementation as the ѣњ itself does, not
much work was expected here. To correctly display an object’s contents,
however, the Inspector also needs to know details about fields and meth-
ods of the object’s class , which it does not obtain from the actors present in
the ѣњ, but from reading the class file, which does not exist for Squeak ob-
jects. Fortunately, the functionality to create class files for runtime-generated
classes already exists in Maxine. Furthermore, the object models of Squeak
and Java are similar enough to allow for Squeak classes being described in
class files. Thus, when the image is loaded, a class file describing superclass,
fields and method signatures (bytecodes are not included) is generated for
each Squeak class. As described beforehand, some parts of Squeak require
the two functions firstobject and nextobject. Again, the semi-space єѐ en-
sures that the objects on the heap can iterated easily. With this approach,
however, Java objects have to be skipped explicitly.

űŭ

ů. Objects in SqueakMaxine

As with the Squeak layout approach, the modification of classes is not
supported. Even though the Maxine actors should mirror the Squeak meta
objects, they are not updated when the laĴer are changed. Due to the actor
system’s complexity, it is not sufficient to simply remove the final-modifiers
from the actor’s fields. Alas, a comprehensive analysis of necessary precon-
ditions and side effects of altering classes and recompiling methods was not
possible in the time of this project.

ů.Ů. Tagged Integers

As described in section ŭ.Ů, tagged integers are special references that di-
rectly encode a value instead of pointing to a valid memory address. They
are essential for an efficient implementation of numbers in a system where
everything is an object.

A tagged integer is a reference, in the sense that it is a value that identifies
an object, in this case an instance of SmallInteger. Thus, their characteris-
tics are defined in the reference scheme, which was extended for this pur-
pose (cf. table B.ū). The method isTaggedInteger identifies such references
by checking the smallest bit, toInt and toLong implement conversion into
the respective primitive types of Java, and fromLong can be used to create
a tagged reference for a given value. Even though small integers are ŭū-bit
values, this forced conversion to long is necessary to ensure the sign of nega-
tive numbers is not lost when converting to ŰŮ-bit words. Thus, theoretically,
SqueakMaxine supports Űŭ-bit tagged integer values, but it was not exten-
sively tested whether this breaks any assumptions in existing Squeak code.

Support in the Layout The integration of these methods into the system
was different for both layout approaches. For the Squeak layout approach,
tagged integers were explicitly implemented in the Squeak runtime, which
was used to print the stack trace. Both methods getClass and toJavaString
begin with checking the reference for tagging and handle such values dif-
ferently: the former returns the small-integer class from the special objects
array, while the laĴer creates a string from the object’s primitive value.

For the Ѧќѕњ layout implementation, tagged integers have to be regarded
wherever header fields are accessed without checking the object’s type first.
Obviously, this happens in the header-field accessors of the general layout.
To get the hub of a tagged reference, instead of trying to read the hub field,

űŮ

ů.Ů. Tagged Integers

the small-integer hub is returned directly. For this purpose, the hub is stored
in a private field of the Ѧќѕњ general layout, which is initialized directly after
loading the Squeak image. The hub field’s seĴer is not affected, as it is called
only during object allocation, which never happens for small integers.

The misc field accessors are not changed as well, as it is not possible to
store additional data in a tagged reference. This has two consequences. First,
it is not possible to synchronize on small integers. This should be no problem
as this kind of synchronization does not exist in Squeak anyway. If Squeak
objects are used in Java code, the programmer has to be aware to only syn-
chronize on objects that known not to be small integers. Again, this should
be no problem, as it is generally not advisable to synchronize on objects
of unknown origin. Second, it is not possible for tagged integers to have
an identity hash-code. To circumvent this problem, SqueakObject’s hashCode
method was overwriĴen to return the integer value instead (cf. listing ů.ūŪ).
The method toString was adapted in a similar way to return the integers
value as a decimal string, instead of its class and hash-code.

The hub access definition in the compiler has to be changed as well; then,
it is possible to use tagged integers just like real objects, as listing ů.ūū shows.

public final int hashCode() {
if (SqueakReference.isTaggedInteger(Reference.fromJava(this))) {
// I am a tagged integer, return plain value
return Reference.fromJava(this).toOrigin().toInt() >> 1;

}
return super.hashCode();

}

Listing ů.ūŪ: SqueakObject.hashCode(). The method checks whether it is invoked for
a tagged integer.

Object value = Reference.fromOrigin(Pointer.fromInt(0x1337)).toJava();
value.getClass(); // returns SmallInteger class
value.toString(); // returns ”2459”
System.out.println(value); // prints 2459

Listing ů.ūū: Tagged references can be used in regular Java code. The variable value
literally contains the value 0x1337, which is not a valid pointer, but the tagged
representation of the number ŬŮůų.

űů

ů. Objects in SqueakMaxine

Support in the Heap Other layout methods that directly access an object’s
hub header field are related to forwarding, when an object is moved by the
єѐ. There is no meaningful implementation to these methods. Tagged inte-
gers cannot be forwarded and it should not be the layout’s responsibility to
pretend that tagged integers can be moved like regular objects.

Thus, reference handling in the heap had to be changed. Whenever it is
checked for a reference if the object was already forwarded, it is first checked
whether the reference is tagged. If this is the case, no forwarding happens.
Thus, the semi-space єѐ never aĴempts to move a small integer object from
one space to another.

It should be noted that a small integer value (especially for multiples of
four) looks just like a forward reference. However, this ambiguity creates
no problems as forward references can occur only in the hub header field,
whereas small integers can occur everywhere except for header fields.

** *

As has been shown in three instances, implementing a new concept could
have been possible by replacing only one of Maxine’s subsystems, but re-
quired to add specialized behavior in otherwise unrelated subsystems as
well. This is caused by general assumption about how subsystems are im-
plemented, and which features they provide or support.

These assumptions, of course, are reasonable for a single language ѣњ, but
greatly decrease the usefulness of a ѣњ framework. We believe, however,
that many of them can be removed with moderate to liĴle effort.

űŰ

Ű. Execution in SqueakMaxine

This chapter is to give insight into the application of the concept introduced
in chapter Ů to the Squeak / Smalltalk System [Ŭū], a free and open-source dy-
namic object-oriented language derived from the original Smalltalk-ŲŪ [ūŮ].
It provides the challenges mentioned in section Ŭ.Ŭ and, thus, is suitable to
describe the implementation details of applying the ideas from section Ů.ū
and to evaluate them. The resulting ѣњ is called SqueakMaxine.

This chapter is organized as follows: for every aspect of execution model
implementation and the ѣњs architecture, we give the Maxine way of im-
plementing the aspect for Java and subsequently, the approach taken for
SqueakMaxine; with the required additions, adaptions, and modifications.

Ű.ū. Architecture of SqueakMaxine

The major components of Maxine are shown in figure Ű.ū, all of which will
be explained throughout this chapter. While Maxine has no deliberate lay-
ering approach, certain layers in Maxine exist nonetheless. Being interested
in the execution model implementation, we treat the object model imple-
mentation as a black box whose outlets are utility classes like Layout, their
configuration schemes like LayoutScheme, and the Maxine internal represen-
tations of language entities, the actors. These elements form the ground layer
on which the execution model implementation builds. Additionally, the sys-
tem provided їёј, accessed trough the Java native interface (їћі), forms the
source built-in behavior and, hence, is an integral part for Maxine. On top
of this foundational layer, the runtimes provide functionality that is to be
accessed by native code compiled methods, but not directly compiled into
them. Examples include allocation or exception handling. On top of these,
the їіѡs operate, generating native code for methods passed from the guest
language. A broker coordinates, which method is compiled when by which
compiler and is eventually called from the run scheme that defines the basic
start-up and initial guest language code invocation.

űű

Ű. Execution in SqueakMaxine

Object Model Implementation

Graal C1X T1X

Compilation
Broker

CRI, XIR
T1XRuntime

ActorsJNI

JDK

JavaRunScheme

LayoutScheme, ReferenceScheme …

Java Code

Machine or Operating System

Eventually uses,
depends on …

Directly uses …

… Maxine Component

Figure Ű.ū.: Architecture of the Maxine Execution Model Implementation. Auxil-
iaries like assemblers are omiĴed for brevity. Key: as indicated; “Maxine Com-
ponent” refers to semantic units of object providing the indicated functionality,
e.g., “Actors” is all instances of subclasses of Actor, such as MethodActor.

Ű.ū.ū. Changes by SqueakMaxine

Pursuing the goal of using Maxine as a framework for dynamic object-orient-
ed language ѣњs, there are only minimal changes to the Maxine architecture
itself. As illustrated in figure Ű.Ŭ, Maxine is merely augmented by the Squeak
specific entities required. Quite obvious is the parallelism between the part
under T1X and under S1X. Both being їіѡs for Java and Squeak respectively,
they are related, as to be explained in section Ű.ŭ. Other additions include a
new compilation broker, additional required actors and a run scheme that
interacts with the object model implementation to load Squeak image files
and invoke behavior from them.

Ű.Ŭ. Runtime Object Access

Providing a runtime interface for object access is subject to the object model
implementation chosen. Thus, Maxine provides the following facilities for
object access:

űŲ

Ű.Ŭ. Runtime Object Access

Object Model Implementation

Graal C1X T1X

Compilation
Broker

CRI, XIR
T1XRuntime

Actors, Squeak ActorsJNI

JDK

SqueakRunScheme

LayoutScheme, ReferenceScheme …

Java or
Squeak Code

Machine or Operating System

Squeak
Compilation

Broker

S1X

S1XRuntime

Eventually uses,
depends on …

Directly uses …

… Maxine Component

Java Code

Squeak Code

Figure Ű.Ŭ.: Architecture of the SqueakMaxine Execution Model Implementation.
Key: as in figure Ű.ū; additionally, grey shading indicated addition or modifica-
tion for SqueakMaxine.

Hђюѝ юѐѐђѠѠ The Heap class provides methods for object creation, i.e., allo-
cation.

AѐѐђѠѠќџѠ Accessors, i.e., Pointers and References, provide direct memory
alteration. To achieve this, they are treated specially by Maxine’s compil-
ers.

LюѦќѢѡѠ The Layout utility class abstracts from the chosen object layout and
dispatches to the concrete layout (e.g., of an array or tuple object), which,
in turn, uses the Accessor юѝі.

AѐѐђѠѠќџѦ ѐљюѠѠђѠ The accessory classes TupleAccess and ArrayAccess pro-
vide facades for Java object to the Layout class that operates on References
only. The ObjectAccess class provides general acces to objects, including
reading objects sizes or certain header fields. By the layout nature of Max-
ine objects, the laĴer includes resolving the class of an object.

SћіѝѝђѡѠ The more general Snippetsutility class includes, among other func-
tionality, methods for resolving classes and creating objects. To achieve
this, it uses ResolvingGuards and some of the accessory classes for resolv-
ing and the Heap class for creation.

űų

Ű. Execution in SqueakMaxine

Ű.Ŭ.ū. Maxine

Runtime object access is necessary primarily for Java bytecodes that modify
objects, hence, these facilities are normally only accessed through compiled
code. The їіѡs, therefore, compile invocation of behavior of the mentioned
classes into compiled methods. For baseline compilation, templates are used
that are compiled by the optimizing compiler and implement object modi-
fying bytecodes through юѐѐђѠѠќџѦ ѐљюѠѠђѠ. Additionally, the templates for
resolving classes and object creation use SћіѝѝђѡѠ and the ObjectAccess ac-
cessory class. However, due to the inlining the optimizing compiler does,
all these calls are compiled to direct native machine code instructions alter-
ing objects. This whole process is similar for the optimizing compiler with
the notable difference that no templates exist, thus, the object access is spec-
ified in special compiler and runtime independent intermediate representa-
tion (ѥіџ) snippets, wriĴen in a higher level assembler, generating the mem-
ory alteration instructions directly. Note that this circumstance currently
breaks the abstraction intended by the LюѦќѢѡ abstraction.

Ű.Ŭ.Ŭ. SqueakMaxine and the YOhmLayout

Likewise to Maxine, runtime object access in SqueakMaxine is used for im-
plementing the respective Squeak bytecodes. Hence, the template source
for Squeak uses the main facility of SqueakMaxine for object access: the
SqueakRuntime. Similar to the accessory classes described previously, this
class encapsulates all calls to the Layout class.

The SqueakRuntime and Layout abstractions are not completely suitable for
implementing class object access. Class objects are the Squeak domain objects
representing classes. In the object model implementation, there is a dual-
ism between Squeak class objects and Maxine ClassActor instances and it
is necessary to refer from one representation to the other. While the path
ClassActor instance to class object is easy to provide via an extra field in the
already present Squeak specific subclasses of ClassActor, the path vice versa
is harder to achieve. The reference to the class actor is stored in a header field
of the Squeak object, whose layout is defined by the YOhmLayout. That header
field, however is not accessible using means like Layout. In the cases where
accessing the class actor from the class object is necessary, the SqueakRuntime
and SqueakTemplateSource therefore circumvent the Layout abstraction and
use the functionality of the YOhmLayout directly.

ŲŪ

Ű.ŭ. Bytecode Compilation

Ű.ŭ. Bytecode Compilation

The most significant part of the execution model implementation in Max-
ine is the bytecode compilers which transform a given language-specific inter-
mediate representation (i.e., bytecode) into machine code. As this is always
done on the fly, all of Maxine’s bytecode compilers are just-in-time compil-
ers (їіѡs) and as such actually provide an іџ implementation in the sense of
section Ů.ŭ.

The Need for Compiler Selection Maxine naturally supports more than
one їіѡ. Since, as a design decision, no Java bytecode interpreter is included
in Maxine but Java reflection and debugging facilities need information like
the current bytecode index, a compiler is necessary that can produce code
with this information. Such a compiler in Maxine is called baseline compiler,
or interpreter-compatible. Furthermore, Maxine has a notion of optimizing
optimizing compilers, which not necessarily need to provide as excessive run-
time information as a baseline compiler. The coexistence of two different
compilers calls for a management facility that can determine which com-
piler to use for compiling a certain method. The CompilationBroker is just
this facility in Maxine. The broker selects the initial compiler for a method
and the compiler used for re-compilation of an already compiled method;
and may trigger fail-over compilation, i.e., methods that fail to compile with
one compiler are again compiled with another one. The RuntimeCompiler in-
terface along with a CompilationBroker pose the entry point to the multi-їіѡ
infrastructure of Maxine.

Ű.ŭ.ū. Java Compilation with C1X and T1X

Maxine provides no interpeter for Java but two їіѡs, one optimizing compiler
(C1X) and one baseline compiler (T1X). Also, the default CompilationBroker
is part of the Java compilation facility. This broker is setup in a way that
all methods to be compiled are compiled first with the baseline compiler
and—under certain circumstances like enough invocation—later-on with
the optimizing compiler. Furthermore, the respective other compiler is set
up as fail-over compiler. In any case, fail-over recompilation is only tired
once (cf. figure Ű.ŭ).

Ųū

Ű. Execution in SqueakMaxine

Start

Method is compiled

Compile
baseline

fail-over
Compile

optimized

Recompile
optimized

fail-over
Compile
baseline

Failure

succeeds suc
cee

ds

succeedssuc
cee

ds

fails

fails

fails

fa
il
s

is first
compilation

Method already
compiled basline

Figure Ű.ŭ.:Default Java compilation broker behavior. On first pass a method will be
compiled using the baseline compiler, else the optimizing compiler. A fail-over
step is done in case the first compilation fails. Key: Ѣњљ state diagram.

The Optimizing Compiler, C1X For optimized compilation, Maxine uses
C1X, a їіѡ derived from the HotSpot™ client compiler named C1 [Ŭŭ, ŭū]. It
was ported from C++ to Java, and improved [Ůŭ] as well as extended with
a compiler–runtime interface (ѐџі) and an intermediate representation, the
compiler and runtime independent intermediate representation (ѥіџ) [ŮŲ, ŮŪ]. The
higher-level assembly part of C1X and much of the built-in behavior defini-
tions are implemented by means of ѥіџ.
C1X is not required to compile every possible execution path in a method.

The compiler with rather compile the hot path of a method with aggressive
optimizations—especially inlining—and will de-optimize [ūų] dynamically
for more uncommon paths [ŭŬ, Ŭŭ, section Ŭ.Ű]. Unlike the standard їѣњ that
reverts to interpreted execution, Maxine in this case uses a baseline compiled
version of the method.

The C1X compiler implements extensions to the Java language as explained
in section Ŭ.ū.ū; Word data types are mapped to corresponding low level data
types. It is hence the bootstrap compiler of Maxine and therefore used for
building boot images for a Maxine ѣњ. This also applies to the compiler; C1X
is compiled by itself during boot image generation.

We did not deeply investigate C1Xwith respect to variation points, as its im-
plemented optimizations are very Java-specific and time-intensive to bring
to other languages. To show that implementing execution models of dyna-
mic object-oriented languages is possible with Maxine, an optimizing com-
piler is not necessarily required. Hence, we proceed with the non-optimizing
compiler, T1X.

ŲŬ

Ű.ŭ. Bytecode Compilation

The Baseline Compiler, T1X Ordinarily, a Maxine ѣњ does not contain an
Java interpreter as, e.g., the standard їѣњ does. However, there are situa-
tions where an optimized compilation as done by C1X does not fit. This in-
cludes the initial compilation of a method (costly to be done with C1X for
every method) and de-optimization (see the previous section), among oth-
ers. To support this non-optimized execution of methods in the absence of
an interpreter, Maxine has a notion of baseline compilers that produce non-
optimized code that is sticking to the bytecode semantics strictly. For Java,
this behavior is also called interpreter compatible.

The Java baseline compiler in Maxine is a template-based bytecode com-
piler named T1X, a portmanteau of “template-based” and “using C1X”. Tem-
plate-based compilers produce native code through collating pre-built ma-
chine code snippets, the templates, often using one template per instruction.
The T1X compiler is such a template compiler. It has templates for more than
half of the Java bytecodes. However, instead of using handwriĴen templates
for that bytecodes, T1X rather has Java wriĴen templates. These are compiled
by the C1X compiler, hence the “1X” in the name. Refer to figure Ű.Ů for the
transformation process from template source code to native code templates
to native compiled methods.

/* T1XTemplateSource part for IADD */

@T1X_TEMPLATE(IADD)
public static int iadd(@Slot(1) int value1, @Slot(0) int value2) {

return value1 + value2;
}

// --- --- ---

/* T1XCompilation part for IADD */

protected void processBytecode(int opcode) throws InternalError {
beginBytecode(opcode);
switch (opcode) {

// …
case Bytecodes.IADD : do_iadd(); break;
// …

}
// …

}

protected void do_iadd() {
emit(IADD);

}

Listing Ű.ū: T1X parts relevant for the IADD bytecode.

Ųŭ

Ű. Execution in SqueakMaxine

…
@T1X_TEMPLATE
public static int iadd…{

…
}

@T1X_TEMPLATE
public static int imul…{

…
}

@T1X_TEMPLATE
public static int idivl…{

…
}
…

T1XTemplateSource

C1X compilation

……

mov ax, cx; add dx; …

mov ax, cx; div dx; …

… …

mov ax, cx; mul dx; …

idivl

imul

iadd

T1X templates

…
iconst_1
iconst_2
iadd
dup
iconst_4
imul
dup
iconst_3
idivl
…

method bytecode

T1X compilation

…
mov cx, 1; % iconst_1
mov dx, 2; % iconst_2
mov ax, cx; % iadd
add dx;
mov cx, dx;
mov dx, cx; % dup
mov cx, 4; % iconst_4
mov ax, cx; % imul
mul dx;
mov cx, dx;
mov dx, cx; % dup
mov cx, 3; % iconst_3
mov ax, cx; % idivl
div dx;
mov cx, dx;
…

method native code

boot image build-time runtime

public void generateDyadicTemplate(Kind k, String op) {
 final boolean arg2IsInt = isShift(op);
 final int arg1Slot = isShift(op) || k.stackSlots == 1 ? 1 : 2;
 startMethodGeneration();
 generateTemplateTag("%s%s", tagPrefix(k), op.toUpperCase());
 out.printf(" public static %s %s%s(@Slot(%d) %s value
 generateBeforeAdvice(k);
 out.printf(" return value1 %s value2;%n", algOp(op));
 out.printf(" }%n");
 newLine();
} …

T1XTemplateGenerator

pre-boot image build-time

code
generation

…

…

Key

Java class

memory content

Java collection

transformation/
compilation

Figure Ű.Ů.: T1X templates overview. T1X templates are Java code snippets that are
compiled to native code by the C1X compiler (middle) and then used during T1X
compilation of Java methods (right). Several Java bytecodes exist in variants, e.g.,
multiplication for different types; the template source for those bytecodes is gen-
erated prior to template compilation (left). Key: as indicated.

As mentioned, the templates for the T1X compiler initially are Java code
snippets that are compiled to native code. T1X uses T1XTemplateSource, a util-
ity class where all theses templates are gathered. A template in the T1X sense
now is a static method that has a @T1X_TEMPLATE annotation. Find an exam-
ple of a template in listing Ű.ū. The argument to the annotation specifies the
implemented bytecode as a tag, which however does not need to map one-
to-one onto an actual bytecode. The T1Xpart that does the actual compilation,
T1XCompilation extracts various information from the template definition via
Java reflection, mostly regarding stack handling, e.g., for the iadd() method
in the code given, the @Slot() annotations specify which argument is to be
loaded with which stack slot. The return value of the iadd method specifies
that a stack slot for an integer value is necessary and the value of the method
will be pushed to the stack.
The simplified process of compiling a Java bytecode method is as follows:

ū. The T1X compiler creates a new compilation, an object that represents the
current process of compiling a method. That compilation holds the to-be-
created native code as a buffer that can hold bytes. Also, a platform-specific

ŲŮ

Ű.ŭ. Bytecode Compilation

concrete subclass of the T1XCompilation has access to a limited assembler ob-
ject that can write to the buffer.

Ŭ. The compilation writes a prologue to the buffer. This prologue contains typ-
ical low-level setup for a method entry, like adjusting the ѐѝѢ stack pointer,
puĴing the mehtod’s arguments into the right place, or performing stack
banging.

ŭ. The compilation iterates over all the method’s bytecodes.
a) The template for the current bytecode is loaded.
b) Depending on the @Slot() annotations of the arguments, the respec-

tive stack slots are linked to the argument registers for the template.
This is necessary, as the C1X compiled templates use a register-based
argument-passing scheme, as opposed to the stack-based argument-
passing scheme of the Java bytecode. The respective native code is writ-
ten to the buffer.

c) Template arguments that lack a @Slot() annotation can now be filled
in the compilation. In the example, the place for that code would be
the do_iadd() method. Instead of the call to emit(), the method would
contain a sequence of start(TAG), methods that provide stack–register
interaction like peekInt(argument, name, stackPos), and finish().

d) The finish() method, which is implicitly called in the emit() method,
then actually looks up the pre-compiled template and writes the native
code to the buffer.

e) Depending on the return type and annotations of the template method,
the compilation emits code to push the result of the template to the
stack.

Ů. At this point, all bytecode templates should be wriĴen to the buffer. Depend-
ing on the return type of the method to be compiled, special native code for
returning is emiĴed to the buffer. Then, the compilation writes an epilogue,
similar to the prologue, to the buffer.

The result of such a compilation is depicted in figure Ű.ů.

prologue epiloguebc n
template

bc n
arguments

bc n
return…bc 1

template
bc 1

arguments
bc 1

return

Figure Ű.ů.: Illustration of native code after compilation by T1X. Included are pro-
logue and epilogue (stripe paĴern), per-bytecode argument and return value
handling code (dark gray) emiĴed by T1X, and the native template code (light
gray) emiĴed by C1X before compilation.

Ųů

Ű. Execution in SqueakMaxine

+templates : T1XTemplates
…

T1X

+compile (method …): TargetMethod
…

+compile (method …): T1XTargetMethod
#processBytecode ()
#emit (…)
#start (…)
#finish () …
#do_iadd ()
#do_imul () …
#peekInt (…)
#pokeInt (…) …
#incStack (…)
#decStack (…) …
#emitPrologue ()
#emitEpilogue () …

#method : MethodActor
#stream : BytecodeStream
#buf : Buffer

T1XCompilation

#peekInt (…)
#pokeInt (…) …
#incStack (…)
#decStack (…) …
#emitPrologue ()
#emitEpilogue () …

#asm : AMD64MacroAssembler
patchInfo : PatchInfoAMD64

AMD64T1XCompilation

-compilation
1

1
#compiler

«interface»
RuntimeCompiler

+compile (method …): TargetMethod
…

Figure Ű.Ű.: T1X classes overview. A T1X compiler implements the RuntimeCompiler
interface and holds onto the templates and the current compilation for a method
that keeps track of the process of compiling a method.Key: Ѣњљ class diagram.

Not all Java bytecodes can be expressed using T1X templates, first and fore-
most, stack modifying bytecodes and jump bytecodes. The former can be im-
plemented without problems in a do_* method—stack modifying behavior
is provided by platform-specific compilations and can just be used—, the lat-
ter, jump bytecodes, are however more challenging to implement. To allow
for foreward jumps, T1X takes a record of jumps and their destinations and
patches the native code accordingly after all bytecodes have been processed.

In any case, to obtain proper native code for any of the method’s prologue,
epilogue, stack modifying operations, or the just mentioned bytecode imple-
mentations that cannot use templates, T1X uses a platform-specific subclass
of the T1XCompilation thst also implements the code patching mechanism
mentioned. Such a subclass currently only exists for the юњё₆₄ platform. The
relations between the compilation classes and the compiler entry-point class
T1X is depicted in figure Ű.Ű.

In short, T1X is capable of generating native code from Java bytecode by
means of pre-compiled code snippets and some glue code. Compared with
C1X, this compiler is straightforward and easy to understand. The focus is an
interpreter-compatible, complete implementation of the Java bytecode set.

** *

ŲŰ

Ű.ŭ. Bytecode Compilation

To sum up Java bytecode compilation in Maxine, two bytecode compilers
exist in Maxine, each with different but complementing intent. C1X is an op-
timizing bytecode compiler that aims for performance, T1X is a non-optimiz-
ing, template based bytecode compiler that aims to produce native code that
is compatible with the original їѣњ interpreter. A compilation broker at run-
time decides which compiler to use for a given method.

Ű.ŭ.Ŭ. Squeak Compilation with S1X

Compiling Squeak methods in Maxine has been the major implementation
effort for the execution part of SqueakMaxine. For this, we plugged into the
compiler selection infrastructure and implemented a Squeak їіѡ. To keep
the implementation as simple as possible we chose to implement a Squeak
їіѡ by pursuing the approach of T1X, Maxine’s Java baseline compiler. As
SqueakMaxine does not change much of the ѣњ infrastructure, the Java їіѡs
are to stay in the ѣњ and the їіѡs have to co-exist. Therefore, when a method
is going to be compiled, it is necessary to know, which compiler to use.

Selecting the Right Compiler Maxine provides means for selecting com-
pilers depending on a method’s state. The broker mechanism outlined at the
begin of section Ű.ŭ can dispatch between optimizing and non-optimizing
compilation for Java methods. Squeak methods can be handled by refining
the broker. As depicted in figure Ű.ű, the Squeak compilation broker simply
wraps the Java compilation broker and dispatches on the language of the
method to be compiled. This information is shared in form of what subclass
of MethodActor is to be compiled; the SqueakCompilationBroker only selects
the Squeak compiler for instances of the SqueakMethodActor subclass. The cur-
rent implementation of the baseline–optimizing selection requires that the
same compiler is specified as first compiler and also as fail-over compiler.
Hence the second compilation state with the Squeak compiler in figure Ű.ű
(dashed state). The outcome is known to be failure in any case when this
state is reached.

The Squeak їіѡ S1X The one and only Squeak native code compiler avail-
able in SqueakMaxine is S1X, a template-based, non-optimizing їіѡ, modeled
very closely after the T1X Java їіѡ—hence the name (Squeak T1X). In fact, it is
so close that most of the infrastructure remains unchanged compared with

Ųű

Ű. Execution in SqueakMaxine

Start

Method is compiled

Compile
baseline

fail-over
Compile

optimized

Recompile
optimized

fail-over
Compile
baseline

Failure

succeeds suc
cee

ds

succeedssuc
cee

ds

fails

fails

fails

fa
il
s

is first
compilation

method already
compiled baseline

Compile
baseline

for Squeak
is a Squeak

method

is a Java
method

fails

 succeeds

Compile
baseline

for Squeak

Figure Ű.ű.: Squeak compilation broker behavior. A Squeak method will be com-
piled with a Squeak compiler with no possibility of actual fail-over compilation
(black part). A Java method is subject to the original broker behavior (gray part).
Key: Ѣњљ state diagram + dashing as explained.

T1X. Only the bytecodes set the compiler is working on and its interpretation
is necessary to be altered. However, the changes to S1X compared to T1X go
further than the bytecode set exchange. To implement the built-in behavior
of Squeak (cf. section Ű.ů) in a simple way, we extended the template tag-
ging system. Furthermore, in an aĴempt to unify S1X with T1X, S1X is able
to handle more than one set of tags, which is T1X not. Yet, this subject to the
compiler evaluation in section Ų.Ŭ.

Find an example for a Squeak bytecode template in listing Ű.Ŭ. Besides sim-
ple renaming and the different purpose of the bytecodes in the first place,
the template-related code does not differ substantially from its T1X equiv-
alent (cf. listing Ű.ū). Due to Squeak’s object model (Squeak)References are
prevalent as return types in template implementations, even if they denote
boolean values, as in the example. Note the apparently strange construct of
a final result variable that is set depending on the conditional and then re-
turned. This construct is necessary to force the compiler compiling the tem-
plates—C1X—to create the proper assembly code for both outcomes, true
or false. Without that workaround, i.e., the return statements directly in the
branches, the compiler would generate assembly code that omiĴed the true-
branch regardless of the conditionals value, a behavior specific to references.

ŲŲ

Ű.ŭ. Bytecode Compilation

/* SqueakTemplateSource part for PRIM_EQUIVALENT */
@S1X_TEMPLATE(value = PRIM_EQUIVALENT, primitive = 110)
public static SqueakReference primitiveEquivalent(
@Slot(1) SqueakReference self,
@Slot(0) SqueakReference other

) {
final SqueakReference result;
if (self.toOrigin().equals(other.toOrigin())) {
result = trueReference();

} else {
result = falseReference();

}
return result;

}

/* S1XCompilation part for PRIM_EQUIVALENT */
protected void processBytecode(int opcode) throws InternalError {
beginBytecode(opcode);
switch (opcode) {
case Bytecodes.PRIM_EQUIVALENT : do_prim_equivalent(); break;
/* … */

} /* … */
}

protected void do_prim_equivalent() { emit(PRIM_EQUIVALENT); }

Listing Ű.Ŭ: S1X parts relevant for the PRIM_EQUIVALENT bytecode.

The T1X template system is originally laid out to support Java bytecodes in
the sense that it is possible to denote certain methods as template implemen-
tation by adding an annotation to it. With the addition of S1X, more than one
template-based compiler exist in SqueakMaxine. To introduce more flexibil-
ity in the template system, we add a new construct to dynamically deter-
mine which template annotation to use for the respective template compiler.
In essence, the T1XTemplateTagAdapter provides this functionality by means
of an interface of methods to access annotations of template methods and
the template methods themselves. That way, it is possible to maintain differ-
ent sets of template methods by using different template tags. We use this
mechanism for the Squeak template methods. See listing Ű.ŭ where the tem-
plate tag for the class is specified by the @T1X_SOURCE annotation. This tag is
then used for tagging the method returnTopFromMethod as template method.
The T1XTemplateTagAdapter picks up the @T1X_SOURCE annotation and subse-
quently, S1X is able to determine the template tag when it is iterating over
the classes methods via reflection. Hence, S1X is able to establish a connec-
tion between the bytecode (RETURN_TOP_FROM_METHOD) and the method that
will implement that bytecode (returnTopFromMethod).

Ųų

Ű. Execution in SqueakMaxine

@T1X_SOURCE(S1X_TEMPLATE.class)
public class SqueakTemplateSource {

/* ... */
@S1X_TEMPLATE(RETURN_TOP_FROM_METHOD)
@Slot(-1)
public static Reference returnTopFromMethod(@Slot(0) Reference object) {

return object;
}

}

Listing Ű.ŭ: SqueakTemplateSource with variable template tag (S1X_TEMPLATE).

One major divergence from T1X is the implementation of branching be-
havior. Unconditional branching aside, Java’s bytecode has a greater variety
of branching instructions than Squeak’s; the former supports equality and
lower–greater comparison for all its primitive types, while the laĴer only
knows about conditional branching based on a boolean on the top of the
stack. The implementation for the Squeak branching logic is hence shorter
and simpler. There are only four cases for Squeak:

ū. Branch when the top of stack is the true-object.
Ŭ. Branch when the top of stack is not the true-object.
ŭ. Branch when the top of stack is the false-object.
Ů. Branch when the top of stack is not the false-object.

Note that these cannot be combined as it may be the case that neither the
true-object nor the false-object are the top-of-stack object. These boolean-
object tests are mapped to either equality or non-equality native-code com-
parisons in the AMD64S1XCompilation, the low-level part of S1X. To find the
right target native code to jump to, S1X uses the same patching approach as
T1X. Additionally, the patching mechanism only supports jumps to bytecode
boundaries, hence, the implementation of bytecodes that comprise multiple
control flows is tricky when a template implementation does not fit and do_*
methods have to be used.

When call instructions are compiled, unlike in T1X, method lookup is per-
formed always at runtime due to the possibly polymorphic nature of the
method to be called. This renders the optimizations present in T1X void that
rely on the fact that certain methods can be looked up at compile time.

Apart from the functionality mentioned, the Squeak template compiler
comprises the implementation for built-in behavior and access to runtime-
information, covered in section Ű.ů.Ŭ and section Ű.Ű.Ŭ, respectively.

** *

ųŪ

Ű.Ů. Garbage Collection in the Presence of Executing Code

In short, basic bytecode compilation for Squeak with S1X uses the same ap-
proaches as bytecode compilation for Java with T1X, i.e., template-based non-
optimizing compilation. Currently, there is no optimizing їіѡ for Squeak
bytecode, a special broker exists to cope for that. S1X re-uses most parts of
the T1X implementation. For reference, a complete compilation example for
S1X is given in Appendix F, which already contains the handling of Squeak /
Smalltalk primitives as explained in section Ű.ů.Ŭ.

Ű.Ů. Garbage Collection in the Presence of Executing
Code

Garbage collection can happen during the execution of їіѡ-compiled code.
However, not at any point but only so-called safe-points. Safe-points are na-
tive code operations that may result in a processor trap that Maxine can in-
tercept. Under certain circumstances, the trap handling code for safe-points
kicks of the єѐ. Usually, safe-points are generated right after calls, but may
be present at other points in a native code method. Nevertheless, to perform
proper clean-up, the єѐ needs a certain knowledge of the executing method’s
stack.

A reference map conveys the information of the current stack between їіѡ-
compiled code and the єѐ. Such a map contains information about what
parts of the stack contain what kind of data and, hence, information of what
stack fields are references and therefore subject to garbage collection.

Ű.Ů.ū. Reference Maps in Maxine

Reference maps for stack frames are subject to the nature of the frame’s
method. This nature, baseline or optimizing, has an impact on a frame’s lay-
out. This may result, e.g., in different frame sizes or different locations for
method arguments or local variables.

C1X For C1X-compiled methods, reference maps are created from debug in-
formation the C1X compiler generates for each safe-point in a method. The
type information for such methods stack frames is determined as early as the
optimization process transforms the method to its lower-level intermediate
representation (љіџ) from.

ųū

Ű. Execution in SqueakMaxine

T1X For T1X-compiled methods, every end of a bytecode might denote a
safe-point.The baseline compilation behavior of T1X demands an interpreter-
compatible stack behavior, i.e., when a bytecode, like the dup bytecode, re-
sults in an increase of the Java stack, T1X also has the frames stack increased
after all native machine instructions belonging to the bytecode are executed.
Moreover, the bytecode also determines the type of data put on or removed
from the stack. Hence, a method’s bytecode is sufficient to determine the
reference map for each safe-point in a T1X-compiled method.

To create the mapping from bytecode indices, and, hence, safe-points, to
reference maps, Maxine uses a ReferenceMapInterpreter that scans through
the bytecode of a method and records stack depth and data type for each byte-
code. Actually, not the data type itself is recorded but whether a stack slot
contains a type that is subject to the єѐ, i.e., object references. Therefore, only
a bit-map is necessary for reference maps.

Ű.Ů.Ŭ. Reference Maps in SqueakMaxine

The S1X їіѡ works very similar to T1X and hence, the handling of reference
maps in SqueakMaxine is almost identical. Obviously, the bytecode set to
be interpreted is different, however, the basic concept stays the same. In fact,
the SqueakMaxine version of reference map interpretation is even simpler
than that of T1X, as anything on the stack in SqueakMaxine is a reference, as
every value in Squeak is an object. Therefore, the created reference bit-map
is only dependent on the stack depth at a particular point of the execution.

Ű.ů. Implementing Built-in Behavior

Besides the compilation of іџs to native machine code, the most important
part of a languages execution model implementation is providing the lan-
guages built-in behavior (cf. section Ů.Ů). However, while the implementa-
tions of їіѡs are quite similar, even across languages, the built-in behavior
implementations might differ vastly. That said, all built-in behavior imple-
mentations share the notion of intercepting the normal method execution and
replacing behavior by internal, predefined behavior. This notion suits at least
both the Java and the Squeak built-in behavior; native methods as well as
primitives replace calls to normal methods, regardless of whether they actu-
ally contained bytecode or not.

ųŬ

Ű.ů. Implementing Built-in Behavior

Ű.ů.ū. Maxine Java Method Substitution, Intrinsics, and the їёј

As a ѣњ for Java, Maxine needs to provide the Java built-in behavior. This
comprises the native methods of the їёј. However, the їёј is commonly de-
ployed with implementations for these native methods in a binary, machine
dependent version suitable for the default їѣњ. The їѣњ-implemented native
methods of the їёј are actually code in libraries compiled from C++ code,
like the standard їѣњ. These methods adhere to a certain calling convention,
called the Java native interface (їћі). Maxine implements this calling conven-
tion for use with native methods. Hence, Maxine is able to re-use the їѣњ
implementation for Java built-in behavior.

The default їѣњ implementation of most native methods in the їёј suits
well for Maxine, too. However, some native methods contain code too spe-
cific to the standard їѣњ for being re-used by Maxine. This is especially
true for methods that deal with reflection or, in some cases, implement ob-
ject initialization. In order to re-use existing native method implementation
on the one hand but provide own implementations of certain methods on
the other, Maxine provides means to substitute selected methods of certain
classes upon loading or compilation.

Substitution Maxine has means to intercept the default method lookup
whenever certain methods are to be called. This technique is called substitu-
tion and is accomplished in the їіѡ of Maxine. As part of Maxine, a number
of classes list methods to be substituted. These classes are annotated with
@METHOD_SUBSTITUTIONS. All methods of these classes with a @SUBSTITUTE an-
notation are loaded by the compilers and themselves contain information,
which method they should actually replace. This information is the name
of the method, that together with the specially formaĴed name of the class
identifies the to-be-substituted method. Whenever a compiler encounters a
method that match any of the substitutes, the original implementation is just
omiĴed and the Maxine provided one is used. In this substitution process,
it is also possible to change or exchange whole classes or inject new fields
into existing classes.

Intrinsics (outer) The generic technique of substituting methods is applied
to and further refined for several crucial methods of the їёј, as explained
before. These methods are called intrinsics. We call them outer intrinsics here

ųŭ

Ű. Execution in SqueakMaxine

to distinguish them from the intrinsics to be explained hereafter. Outer in-
trinsics are compiler-specific in that, depending on the compiler, the set of
intrinsic methods might differ. For C1X, around ůŪ methods are marked as to
be substituted as outer intrinsics.The T1X does not specify any outer intrin-
sics, as it makes use of C1X for its templates.

package java.lang;
public class Object {

public final native Class<?> getClass();
public native int hashCode();
protected native Object clone() throws CloneNotSupportedException;

public final native void notify();
public final native void notifyAll();
public final native void wait(long paramLong) throws InterruptedException;

}

Listing Ű.Ů: Native methods in java.lang.Object, extracted from the classfile.

For C1X, outer intrinsics are handled when the internal representation is
transformed to its љіџ form. Elements that match methods marked as intrin-
sics are treated specially. As an example, consider the reflective getClass
method of java.lang.Object. To provide the desired functionality, i.e., that
this method returns the correct Java Class object, C1X specifies an intrinsic.
The Java enum C1XIntrinsic holds information which methods to intrinsify.
Among other native methods of java.lang.Object (cf. listing Ű.Ů), getClass
is listed here (cf. listing Ű.ů, line ů).

Every intrinsic defined in enum C1XIntrinsic is specified with the method
it should substitute by giving its class, name, and signature, as illustrated in
listing Ű.ů. The enum holding such intrinsics also provides methods to deter-
mine, whether a given method is subject to a defined intrinsic (cf. line ų).

The intrinsification is carried out during їіѡ compilation. C1X builds a node
graph representing the control flow in a bytecode method. While optimizing
this graph, C1X tries to remove nodes representing a call to a method. During
that phase, the to-be-called method is checked whether it is an intrinsic. If
so, the call node is replaced by what the intrinsic specifies. In the case of the
getClass, a pre-compiled piece of native code is inserted that determines the
Maxine actor for the class of the object getClass is called upon and returns
the according Java class object.

ųŮ

sec:intrinsics-inner

Ű.ů. Implementing Built-in Behavior

ū public enum C1XIntrinsic {
Ŭ // java.lang.Object
ŭ java_lang_Object$init(”java.lang.Object”, ”<init>”, ”()V”),
Ů java_lang_Object$hashCode(”java.lang.Object”, ”hashCode”, ”()I”),
ů java_lang_Object$getClass(”java.lang.Object”, ”getClass”, ”()Ljava/lang/Class;”),
Ű java_lang_Object$clone(”java.lang.Object”, ”clone”, ”()Ljava/lang/Object;”),
ű
Ų C1XIntrinsic(String className, String methodName, String signature) { /* ... */ }
ų public static C1XIntrinsic getIntrinsic(RiResolvedMethod method) { /* ... */ }

ūŪ }

Listing Ű.ů: Excerpt form enum C1XIntrinsic: The intrinsics’ definitions for
java.lang.Object

Intrinsics (inner) Another concept referred to as intrinsics in Maxine are
the constructs that make Maxine a superset of Java (cf. section Ŭ.ū.ū). While
not necessary to explain the implementation of Java’s built-in behavior in
Maxine, we give a very brief explanation of these intrinsics. We will refer
to them as inner intrinsics to differentiate them from the outer intrinsics ex-
plained previously. To achieve the superset-of-Java behavior, e.g., the Word
data type being mapped to actual machine words, source code expressed in
standard Java has to be treated specially. Maxine utilizes annotations and
a special class hierarchy for this purpose. For the laĴer, Word data types, in-
stances of a Word subclass are compiled and inlined in such a way that only
machine-specific numbers remain, e.g., while Address.zero() returns an in-
stance of Address at the Java level, Maxine inlines and compiles this to the
bit-paĴern representing the number 0 for the current native instruction set.
This poses a special case of substitution.

The actual inner intrinsics are a set of less than ŬŪ operations that can be in-
voked by giving methods a special annotation. The UNSAFE_CAST operation is
a principal example of Maxine inner intrinsics. Calls to methods with such
an annotation do not compile to any native code but are useful to circum-
vent restrictions of the Java type system, where certain assignments are for-
bidden. Other inner intrinsics include operations for memory manipulation,
allocation, or manual trapping. This set is defined in the MaxineIntrinsicIDs
class and both C1X and T1X provide implementations for them. Note that the
laĴer is a template-based implementation very much like the bytecode im-
plementations described in section Ű.ŭ.ū.

ųů

Ű. Execution in SqueakMaxine

Table Ű.ū.: Differences between bytecode and primitive behavior for functional-
ity provided by either.

bytecodes primitives

Scope within the invoking
method

outside of the invoking
method

Needs new stack-frame 8 4

Failure handling continue with a message
send

continue with the body of
the containing method

Example: Equality test

Name bytecodePrimEqual primitiveEqual
Number ūŲŭ ű

Successful outcome true or false on stacka true or false on stack
Failure outcome resend of #= at bytecode

level
invocation of method body

of SmallInteger>>#=
a The Squeak interpreter ѣњ performs an optimization within the bytecode by peeking
into the next bytecode to see if it was a conditional jump, and if so, directly performs it.

Ű.ů.Ŭ. SqueakMaxine Primitives

Contrasting Java, Squeak’s built-in behavior is commonly implemented by
the ѣњ and not the class library as it is the case with the їёј and Maxine. A
subset of the essential primitives (cf. section Ů.ū.ŭ) is available to SqueakMax-
ine through an extension of the S1X template compiler.

Squeak primitives are handled at the same time method bytecodes are
handled, i.e., within the їіѡ. A Smalltalk method essentially consists of two
parts, bytecode or primitive number, of which at least one is necessary. From
the perspective of the call site, it is irrelevant, whether a primitive, bytecode,
or both is executed. Hence, providing primitive handling at the same point
as bytecode handling is possible; for many bytecodes there is a correspond-
ing primitive and vice versa. While they differ in their invocation scope and
their outcome in exceptional cases, they share most of their functionality.
The main differences between both are given in table Ű.ū.

Seeing that several bytecodes and primitives share the same functionality,
we chose to use the same means to implement primitive behavior as we use
to implement bytecode behavior, i.e., the template system of S1X. Hence, S1X
templates are responsible for both bytecode and primitive implementation.

In essence, a method’s primitive is handled as if it were a special bytecode
before all other bytecodes. Since the primitive number in is just 0 for meth-
ods without a primitive, the simplified compilation process for a nmethod is

ųŰ

Ű.ů. Implementing Built-in Behavior

roughly equivalent to the steps given in section Ű.ŭ.ū, but with the additional
primitive step.

ū. Emit a method prologue
Ŭ. If the method has a primitive number greater than 0, handle the primitive:

a) Emit its corresponding native code.
b) Emit a fail check
c) Emit a branch to the actual bytecode in case primitive fails.
d) Emit epilogue that ends the method and returns the result.

ŭ. For each individual bytecode
a) Emit code for the bytecode

Ů. Emit an epilogue that ends the method and returns the result.
The aim to reuse the templates for bytecodes and primitives as well ef-

fected an extension of the T1X template system. It is possible to specify prim-
itive numbers in addition to bytecode tag names in a templates definition.
Consider listing Ű.Ŭ that gives the relevant parts for implementing the byte-
code primitiveEquivalent, and compare it to listing Ű.Ű. The template—and
hence the resulting machine code—is the same, but it is emiĴed to the final
native method at a different point and guarded with a fail check.

An extended template method has to meet the following criteria:
TѦѝђ The method must be a public static method.
Tює The method must bear a @S1X_TEMPLATE annotation tag.
Tює ћюњђ The tag must contain a bytecode tag or PRIMITIVE.
Pџіњіѡіѣђ ћѢњяђџ The tag may contain a primitive number or a list thereof.
Sљќѡ юћћќѡюѡіќћѠ The method and its arguments may bear @Slot annota-

tions as described for T1X (cf. section Ű.ŭ.ū). A template method for a prim-
itive must include a @Slot(-1) annotation.

Consider for example the following three templates.
@S1X_TEMPLATE(RETURN_RECEIVER)
@Slot(-1)
public static SqueakReference returnReceiver(...) {...}

This method specifies a template for a single bytecode.
@S1X_TEMPLATE(value = PRIM_EQUIVALENT, primitive = 110)
public static SqueakReference primitiveEquivalent(...) {...}

This method specifies a template for both a bytecode and a primitive.
@S1X_TEMPLATE(value = PRIMITIVE, primitive = {130, 131})
public static SqueakReference garbageCollect() {...}

Finally, this method specifies a pure primitive template for two primitives.

ųű

Ű. Execution in SqueakMaxine

/* SqueakTemplateSource part for primitive 110 */
@S1X_TEMPLATE(value = PRIM_EQUIVALENT, primitive = 110)
public static SqueakReference primitiveEquivalent(

@Slot(1) SqueakReference self,
@Slot(0) SqueakReference other

) {
final SqueakReference result;
if (self.toOrigin().equals(other.toOrigin())) {

result = trueReference();
} else {

result = falseReference();
}
return result;

}

/* S1XCompilation part for primitive 110, using the general primitive case */
protected void processPrimitive(int primitiveIndex) throws InternalError {

switch (primitiveIndex) { /* … */
default: emitPrimitive(primitiveIndex); break;

}
}

protected void emitPrimitive(int primitiveIndex) {
startPrimitive(primitiveIndex);
// … (load template, assign possible result)
finish();
// branch to actual bytecode (index 1) if primitive failed

}

Listing Ű.Ű: S1X parts relevant for the Squeak primitive ūūŪ.

Failure handling A Squeak primitive might fail. This can happen, e.g.,
when a primitive’s arguments are not of the expected class, a computation
effected an exceptional result like a division by zero, a primitive is not pro-
vided by the ѣњ, or even intentional. In any case, when a primitive fails, the
primitive’s method’s body is to be executed. To achieve this, it is necessary
to provide an indication of failure in the їіѡ compiler. Moreover, the method
body is to be executed with the original arguments, hence, they are to be
restored if changed by the primitive in any fashion.

As some templates are shared between bytecodes and primitives, intro-
ducing a global primitive success flag as the original Squeak ѣњ does is un-
desirable, and even more so since Maxine provides native threads opposed
to Squeak’s green threads. Therefore, S1X templates now follow the conven-
tion to result in a null value in case of a failure. This value can be tested and
it is possible to either return from the primitive’s method in case of success
(line ų of listing Ű.ű) or continue with the method’s body in case of failure.
This is done by the branching in line ūŪ of listing Ű.ű.

ųŲ

Ű.ů. Implementing Built-in Behavior

ū protected void emitPrimitive(int primitiveIndex) {
Ŭ startPrimitive(primitiveIndex);
ŭ int stackArgs = template.sig.stackArgs;
Ů CiRegister result = template.sig.out.reg;
ů finish();
Ű if (stackArgs > 0) {
ű incStack(stackArgs); // unpop
Ų }
ų branchIfNull(result, 1, 0);

ūŪ emitEpilogue();
ūū }

Listing Ű.ű: Squeak primitive failure handling by jumping over the primitive return.

To meet the requirement of restoring the method’s original arguments, S1X
just “un-pops” the stack. This is possible, as popping the stack in S1X essen-
tially decrements the stack pointer without actually modifying the stack top
value. Furthermore, in recent Squeak versions, it is forbidden to overwrite a
methods arguments, hence, they remain untouched on the stack. The imme-
diate result of a S1X template is stored in a register, given the template bears
a @Slot(-1) annotation. Hence the last requirement in the template criteria
list above. Consequently, only the original arguments reside over the stack
and can be un-popped as done in line Ű et seqq.

For SqueakMaxine, a subset of the Squeak primitives is implemented; not
all essential primitives are implemented but a few non-essential ones are.
Please refer to table D.ū in Appendix D for a full list of supported primi-
tives. There is an exclusive choice between primitives supporting traditional
Smalltalk-ŲŪ contexts and newer closures. While both sets are marked es-
sential, only one set is actually necessary; SqueakMaxine implements the
closure primitives. A number of primitives are expected to fail. These űŰ
primitives are implemented using a template that just returns null, thus
employing the already outlined failure handling. This is also indicated in
the last line of the said table. Similar to bytecodes, primitives can be imple-
mented at different levels within Maxine and, more specifically, S1X. Most
primitives are implemented with a template. See table Ű.Ŭ for the implemen-
tation level of primitives implemented by SqueakMaxine. Some templates
need functionality, such as allocation, that potentially result in a compiler
stub—small, handcrafted native machine code for special purposes internal
to Maxine—, which is not possible for templates. Hence, the S1XRuntime pro-
vides the requested functionality, marked as not to be inlined, and the re-
spective template can call the runtime functionality safely.

ųų

lbl:template-critera
lbl:template-critera
tbl:prim-impl-status:last

Ű. Execution in SqueakMaxine

Table Ű.Ŭ.: Primitives and their implementation levels.

Implementation level
Index Name Compilation Template Runtime

ū Add 4

Ŭ Subtract 4

ŭ LessThan 4

Ů GreaterThan 4

ů LessOrEqual 4

Ű GreaterOrEqual 4

ű Equal 4

Ų NotEqual 4

ų Multiply 4

ūŪ Divide 4 a

ūŬ Div 4

ūű BitShift 4

ŰŪ At 4 4

űŪ New 4 4

űū NewWithArg 4 4

ūūŪ Identical 4

ūūū Class b 4

ūŭŪ/ūŭū Full/IncrementalGC b 4

ŬŪū–ŬŪů ClosureValue 4 4 4

ŬůŰ Quick return receiver 4

Ŭůű Quick return true 4

ŬůŲ Quick return false 4

Ŭůų Quick return nil 4

ŬŰŪ–ŬŰŭ Quick return −1 – 2 4

a Fails, the image side code is sufficient. b Call to the runtime method.

Besides normal primitives, Squeak allows for special primitives for fast ac-
cess to common objects or instance variables, calledQuick primitives. Squeak-
Maxine provides a limited range of quick primitives, i.e., those listed as
“Quick return …” in table Ű.Ŭ; quick primitives that return instance vari-
ables are not implemented. The eight quick primitives that are available are
not implemented at template level, as they are very close to their respec-
tive bytecodes, which are implemented at compilation level. Quick primi-
tives are prevalent in Squeak, there are around ū,ŰŪŪ methods that use the
quick return primitives as given in table Ű.Ŭ, an more than ŭ,ŰŪŪ methods
altogether using quick primitives in a vanilla Squeak Ů.ŭ image, but these
numbers might differ vastly, as methods using these primitives may be cre-
ated at will by the image-side Squeak bytecode compiler when a method

ūŪŪ

Ű.Ű. Runtime Execution Information and Call Stacks

solely consists of a return of the receiver, true, false, nil, a number between
−1 and 2, or an instance variable of an object. The number of those methods
differs from application to application.

** *
Summing up built-in behavior implementation, Maxine does not implement
the Java built-in behavior but reuses the їёј implementation, with means to
substitute behavior if necessary. Conversely, Squeak primitives are handled
like bytecodes in SqueakMaxine, and the existing S1X is reused for the im-
plementation of Squeak’s built-in behavior.

Ű.Ű. Runtime Execution Information and Call Stacks

For debugging and meta-programming purposes, it may become necessary
to provide information about the current execution. First and foremost, such
information can be stack traces, mostly a textual representation of the current
call stack, especially for Java. However, Squeak allows an object-oriented
access to the call stack, which has to be reflected in SqueakMaxine. In any
case, Maxine has to keep track of the current execution and is to provide
access to it.

Ű.Ű.ū. Stack-walking in Maxine

The access to runtime execution information in Java is practically limited to
stack traces, eventually accessible though the methods getOurStackTrace()
and fillInStackTrace() of the class java.lang.Throwable; and limited reflec-
tive access to a methods caller using getCallerClass() of the reflection class
sun.reflect.Reflection as provided by the їёј. Maxine just has to provide
customized implementations for these methods in the sense of section Ű.ů.ū.
However, internally, more than just full stack traces are necessary, and hence
Maxine provides a more elaborate means of stack access, called stack walkers.

Maxine stack walkers are a means to iterate over the elements of a stack.
They provide stack frame visitors that can be provided to do actual work on
the stack. Thus, the implementation for a full stack trace is a visitor that
collects the visited stack frames as java.lang.StackTraceElement objects. A
stack trace printer is even simpler, as it just needs a stack frame visitor with
a single logging statement.

ūŪū

Ű. Execution in SqueakMaxine

Base Index ContentsContents+R+(P×J)+1 Java parameter 0 Incoming
Java
parameters

 …
Incoming
Java
parameters+R+1 Java parameter (P-1)
Incoming
Java
parameters

+R return address Call save
area+R-1 caller’s frame pointer value
Call save
area

 … alignment

+(T-1) template spill slot (T-1) Template
spill
area

 …
Template
spill
area+0 template spill slot 0
Template
spill
area

-J Java non-parameter local 0 Java non-
parameter
locals

 …
Java non-
parameter
locals-(L×J) Java non-parameter local (L-1)
Java non-
parameter
locals

-((L+1)×J) Java stack slot 0
Java operand
stack … Java operand
stack-((L+S)×J) Java stack slot (S-1)
Java operand
stack

Frame pointer
(rbp)

Stack pointer
(rsp)

LegendLegendP Number of Java parameter slotsL Number of Java non-parameter local slotsS (Maximum) number of Java operand stack slotsR Return address offsetJ Stack slots per JVMS slot
Figure Ű.Ų.: T1X frame layout for юњё₆₄ architectures, based on the Java virtual ma-

chine specification. Source: AMD64JVMSFrameLayout

A stack frame walker, as implemented by StackFrameWalker, calls the stack
frame visitor it is given with appropriate values describing the current frame,
i.e., data structures that hold information like, e.g., the current stack pointer,
frame pointer, or instruction pointer. These values are read only.

Currently, there are two stack frame visitor base classes in Maxine, the
StackFrameVisitor and the RawStackFrameVisitor. While the former provides
a more object-oriented view on the stack, it allocates new objects during the
walking process and hence may not suit all situations where stack traces are
necessary. Therefore the laĴer provides an allocation-free, yet more machi-
ne-oriented view on the stack. Apart from the Maxine inspector, only the
RawStackFrameVisitor is currently used in the Maxine ѣњ implementation,
due to its non-allocating behavior. Stack frame visitors are chiefly used for
debug information, and information gathering and stack patching for both
de-optimization [ūų] and code eviction, among others.

However, from the Java perspective only liĴle of this powerful interface
is necessary. Hence it is possible for Maxine to provide the necessary in-
formation by substituting the indicated methods (e.g., getOurStackTrace(),

ūŪŬ

Ű.Ű. Runtime Execution Information and Call Stacks

Generator>>fork
| result |
home := thisContext.
block reentrant value: self.
thisContext swapSender: continue.
result := next.
continue := next := home := nil.
↑ result

Listing Ű.Ų: Example use of thisContext. The active context is stored in an instance
variable and receives a message.

fillInStackTrace() of java.lang.Throwable) with a stack walker based im-
plementation suiting Maxine. The same holds for getCallerClass() of the
class sun.reflect.Reflection. Nothing of the more powerful functionality
of Maxine stack walkers, let alone write access, is exposed to Java.

Ű.Ű.Ŭ. SqueakMaxine and Smalltalk’s thisContext

Smalltalk is renowned for its reflection and meta-programming capabilities.
This includes static meta-programming, like class lookup by name or class
creation at runtime, which affects or reflects on structural parts of Smalltalk
programs. Moreover, Smalltalk supports dynamic meta-programming, e.g.,
intercession of or introspection into running methods and the call stack. To
access such execution information, Smalltalk has a notion of contexts. A con-
text is defined as the execution state of a method [ūŮ], including information
about the calling method. Thus, the call stack in Smalltalk is represented by
a linked list of contexts. In Smalltalk source code, the current method’s con-
text is represented by the pseudo-variable thisContext. While being handled
specially with respect to certain message sends, Smalltalk contexts remain
objects just as any other Smalltalk object. Hence, execution state can be saved
to instance variables of objects and multiple stack paths are possible. The lat-
ter, as Deutsch [ūŪ] points out, is similar to spagheĴi stacks of Interlisp. That
way, concepts like coroutines [ų], continuations [Ůű], or generators can be
implemented without special ѣњ support. For example, consider a part of
Squeak’s generator implementation in listing Ű.Ų, where the current context
is accessed both for reading and writing.

In the traditional Squeak interpreter ѣњ, the Smalltalk stack is modeled
precisely after the context notion; the image side context objects, i.e., in-
stances of ContextPart, are identical to the ѣњ side context that make up the
Smalltalk stack. Any new activation hence results in the creation of a new

ūŪŭ

Ű. Execution in SqueakMaxine

context object. This has positive implications, e.g., the stack practically be-
ing only limited by the memory available, but also downsides, e.g., the more
difficult detection of infinite recursion or the necessary allocations.

Context reification The direct context mapping approach of the Squeak in-
terpreter ѣњ is simple but impedes performance and hinders efficient imple-
mentations of їіѡs. A possible solution for this is to maintain both a context-
based Smalltalk stack and a ѣњ internal call stack. This approach implies a
rather high memory consumption and requires permanent synchronization
between the two stacks, which is quite expensive. For this reason, several
Smalltalk implementations, e.g., VisualWorks [Ŭű] or, for Squeak, the stack
interpreter ѣњ and the Cogѣњ [ŬŲ], do not create actual context objects for
every activation any longer but internally use a C like stack and create con-
text objects only when necessary. This context reification provides the best of
both approaches, image side access to contexts and spagheĴi stack on the
one hand and ѣњ side C-like stack for saving allocations and efficient access
from їіѡs on the other hand. Yet, an implementation using this idea has to
consider that image side contexts and ѣњ side stack frames have to be sync,
that created contexts must be stored appropriately, and that a context may
outlive the stack frame it was created for.

On his Cogѣњ website, Miranda proposed [Ŭų] a nomenclature for the
states of a stack-frame–context relation as follows:
Ѡіћєљђ A single context is a context that has no corresponding stack frame.
њюџџіђё A married context is a context object that has an associated stack

frame. The married context acts as a proxy to the frame. Frames and con-
texts are married whenever a context is requested by image side code, i.e.,
“creating a block, explicit use of thisContext, [and] access to sender when
sender is a frame […]” as stated in source code of Miranda’s Cogѣњ and
Stack interpreter ѣњ. The context object and the stack frame have to be
kept in sync.

ѤіёќѤђё A widowed context is a context object that is bereaved of its stack
frame, i.e., the stack frame belonged to a method that has already returned.

Both Miranda’s stack interpreter ѣњ and the Cogѣњ provide this tri-state and
the appropriate synchronization. In essence, the ѣњs intercept accesses to a
context’s instance variables and act on the frame accordingly. Conversely,
the ѣњs’ stack frames have a designated field for a married context, to pro-
vide the back-link (cf. figure Ű.ų). The state of a context–frame relationship

ūŪŮ

Ű.Ű. Runtime Execution Information and Call Stacks

…

…

…

Stack

…

context object

…

…

(stack slots …)
Block closure on stack

…

caller’s frame pointer

receiver

caller’s frame pointer (pc)

(stack slots …)

closure or nil

stack pointer

encoded frame pointer (sender)
MethodContext

method

outer context

(copied values …)
number of arguments

start pc

BlockClosure

frame
pointer

stack
pointer

Figure Ű.ų.: Married contexts. The current stack frame (light gray) is “married” to a
context object (MethodContext) that is an outer context for a closure (BlockClosure).
The link from the context object to the stack frame is encoded into the context’s
sender and pc fields, which are treated specially by the ѣњ. Adapted from an im-
age by Miranda [Ŭų].

hence can be derived from the values of the context’s instances variables and
the frame’s context fields, of which at least one must exists.

SqueakMaxine pursues the notion of context reification just like Miranda’s
ѣњs, yet, with slight adaptions to the Maxine ѣњ.

Frame modifications To both implement the married context approach as
well as remain as close as possible to the T1X implementation of Maxine, we
modified the frame layout as used by T1X to include an optional context field,
as depicted in figure Ű.ūŪ. Furthermore, the S1XCompilation hast to provide
the special handling of the instance variables of a context object. As all meth-
ods that access instance variables of context objects are compiled specially,
only a few bytecodes are to be adapted to intercept access to context objects,
namely the push- and store-instance variable bytecodes that use a prefix.

Most important, however, is the bytecode requesting the active context,
pushActiveContext. This is the key interface between the Squeak image and
the ѣњ for context access. Basically, the following is performed when the
active context is requested:

ū. Check whether the current frame already has a context object. If so, the cre-
ation of a new object is skipped and the processing continues with step Ů.

Ŭ. If not, a new context for the current frame is created:
a) The current state of imported registers, i.e., frame-, instruction-, and

stack-pointer, is recorded now. This happens via a template.

ūŪů

Ű. Execution in SqueakMaxine

Base Index ContentsContents+R+(P×J)+1 Squeak parameter 0 Incoming
Squeak
parameters

 …
Incoming
Squeak
parameters+R+1 Squeak parameter (P-1)
Incoming
Squeak
parameters

+R return address Call save
area+R-1 caller’s frame pointer value
Call save
area

+R-2 married context object

 … alignment

+(T-1) template spill slot (T-1) Template
spill
area

 …
Template
spill
area+0 template spill slot 0
Template
spill
area

-J Squeak non-parameter local 0 Squeak non-
parameter
locals

 …
Squeak non-
parameter
locals-(L×J) Squeak non-parameter local (L-1)
Squeak non-
parameter
locals

-((L+1)×J) Squeak stack slot 0 Squeak
operand
stack

 …
Squeak
operand
stack-((L+S)×J) Squeak stack slot (S-1)
Squeak
operand
stack

Frame pointer
(rbp)

Stack pointer
(rsp)

LegendLegendP Number of Squeak parameter slotsL Number of Squeak non-parameter local slotsS (Maximum) number of Squeak operand stack slotsR Return address offsetJ Stack slots per Squeak slot
Figure Ű.ūŪ.: S1X frame layout based on the їѣњѠ layout used by T1X. The only dif-

ference is the additional field before the call save area for the context object.

b) As a new object has to be allocated now, the template code calls the
runtime with the pieces of information that describe the current stack
frame, notably

• the three said registers,
• the method object (CompiledMethod) of the stack frame’s method,
• the closure object of the current stack frame, if applicable, and
• the receiver, on which this method is called.

c) The S1XRuntime allocates a new context object and fills it with the sup-
plied information from the template code. However, as with Miranda’s
ѣњs, the frame pointer is encoded into the sender field of the object.
This tells subsequent accessors of the context that all three registers are
stored in this context and the thusly shadowed stackPointer, sender, and
pc values are to be derived on demand.

d) The new context object is handed back.

ūŪŰ

Ű.Ű. Runtime Execution Information and Call Stacks

ŭ. The new context object is saved to the context field of the current frame.
Ů. The context object is now filled with the current local variables.
ů. The context object is put on the stack.

As pointed out, the access to instance variables of context objects has to be
treated specially. This is necessary to obtain actual runtime information, e.g.,
when sending thisContext pc, the outcome depends on where in a method
or closure this is sent. Hence, it is not sufficient to fill the instance variables
of a context once and for all but they must rather be updated upon every call.
As shown in listing Ű.ų and Ű.ūŪ, instance variable access for context objects
is compiled to prefixed Smalltalk bytecodes, thus making it rather easy to do
a class check upon every prefixed bytecode invocation. Had the #pc method
been compiled with a non-prefixed bytecode, i.e., pushReceiverVariable02
in this case, a class check would decrease performance heavily.

pc
”Answer the index of the next
bytecode to be executed.”

↑pc
Listing Ű.ų: ContextPart>>pc source

code

13 <84 40 01> pushRcvr: 1
16 <7C> returnTop

Listing Ű.ūŪ: ContextPart>>pc bytecodes.
Note the use of the extended bytecode.

The S1X compiler handles extended bytecodes and for the context sensi-
tive bytecodes, it does a class check. Manual jumps in the S1X infrastructure
are only possible with bytecode boundaries as target, hence we chose to un-
conditionally execute the normal bytecode behavior and do a class check
after that, as can be found in listing Ű.ūū, line ŭ for the prefixed push byte-
code. Note that the result of the normal, non-context operation remains on
the stack. In the context case, and only if the context is married, this result is
replaced with an actual value.

ū protected void do_push_receiver_variable_maybe_context(int index) {
Ŭ do_push_receiver_variable(index);
ŭ do_check_context_or_next_bc();
Ů // handle context
ů do_push_context_variable(index);
Ű }

Listing Ű.ūū: Implementation of pushing instance variable, prefixed variant.

ūŪű

Ű. Execution in SqueakMaxine

Stack walking implementation Access to context instance variables, such
as the prefixed push instance variable, requires access to the current stack
frame and the associated previous stack frames. This is important to sup-
port access to the sender of a message. Hence, S1X uses the stack walking fa-
cilities of Maxine to access all necessary data. Consider the simple message
send thisContext sender. When compiled, this code will eventually call the
S1XRuntime method variableInContext(). Its parts that are relevant for this
example are depicted in listing Ű.ūŬ. Note that at this point, it is already guar-
anteed that the frame is married, thus line Ŭ will yield the frame pointer for
the context.

ū public static SqueakReference variableInContext(SqueakReference context, int index) {
Ŭ Pointer spouseFP = frameOfMarriedContext(context);
ŭ Pointer spouseSP = r().getInstanceVariable(context, STACK_POINTER).toOrigin();
Ů Pointer spouseIP = r().getInstanceVariable(context, INSTRUCTION_POINTER).toOrigin();
ů
Ű if (index == ContextFieldIndex.SENDER.getIndex()) {
ű ensureCallerContext(spouseIP, spouseSP, spouseFP);
Ų return getCallerContext(spouseIP, spouseSP, spouseFP);
ų } …

ūŪ }

Listing Ű.ūŬ: Parts of S1XRuntime.variableInContext() that are relevant for determining a
context’s sender

For the determination of the sender context, S1X first ensures that a context
in the caller frame exists and then retrieves it. Both operate using Maxine’s
stack walking. The method ensureCallerContext() just kicks off the stack
walking using an EnsureCallerContextStackVisitor. It will walk the stack
until the second-to-topmost frame and check for an existing or create a new
context object for that frame. In listing Ű.ūŭ, this visitor is given. A previ-
ously created stack walker uses this visitor and performs the walking with
the important registers (stack, frame, instruction pointer), as determined in
listing Ű.ūŬ.

The method getCallerContext() essentially works the same way, with the
notable difference that the context object that is found in the caller frame is
stored locally in the visitor used. That way, getCallerContext() can retrieve
it after the stack walk, as returning a value from a stack walk is not possible.
Retrieving the Squeak instruction pointer works similarly; determining the
stack depth is even simpler, as it only depends on the already known stack
pointer and instruction pointer.

ūŪŲ

Ű.Ű. Runtime Execution Information and Call Stacks

private static class EnsureCallerContextStackVisitor extends StackFrameVisitor {
@Override
@NO_SAFEPOINT_POLLS(”Working on references”)
public boolean visitFrame(StackFrame stackFrame) {
if (stackFrame instanceof SqueakFrame) {
SqueakFrame sf = (SqueakFrame) stackFrame;
if (!sf.frameHasContext()) {
final S1XTargetMethod s1xMethod = (S1XTargetMethod) stackFrame.targetMethod();
final SqueakReference receiver = SqueakReference.fromReference(
sf.localsPointer(0).readReference(Offset.zero()));

final Object newCtx = createContextRuntime(
SqueakReference.fromJava(s1xMethod.squeakMethodActor().getCompiledMethod()),
SqueakReference.fromOrigin(sf.fp.plus(1)), // is: sender,
SqueakReference.fromOrigin(sf.ip),
SqueakReference.fromOrigin(sf.sp),
nilReference(),
receiver);

sf.frameContextPointer().writeReference(Offset.zero(),
Reference.fromJava(newCtx));

}

if (sf.isTopFrame()) {
return true;

}
}
return false;

}
}

Listing Ű.ūŭ: EnsureCallerContextStackVisitor: Visitor to ensure that the caller frame is
married. If not, a new context for that frame is created.

Using the stack walking approach, S1X only creates context objects when
actually necessary and actually provides context reification.

ūŪų

ű. Variation Points of a Virtual
Machine Framework

When evaluating the extensibility, the final goal of using Maxine as a frame-
work for virtual machines of other languages can be understood in two
ways:

On the one hand, Maxine’s source code can be reused as a starting point
for the development of ѣњs for other languages. The additional code is in-
tegrated into Maxine during the bootstrapping phase, which will produce
a customized ѣњ capable of running both Java and a second language. This
ѣњ can then be shipped as an individual program.

On the other hand, Maxine could be regarded as a platform capable of
executing multiple languages. In this scenario, a custom ѣњ is but a Java
program, with Maxine specific dependencies, which will be loaded by Max-
ine with some simple kind of extension mechanism. Bootstrapping the ѣњ-
extension will not be necessary as Maxine is already capable of loading and
compiling Java code. This simplifies the development process as well as the
distribution of the final program, because only one platform-independent
jar file, containing only the additional sources, has to be provided.

SqueakMaxine was developed using the first approach, as it was neces-
sary to modify some of Maxine’s internals and no plug-in mechanism exists
yet. In the long run, however, it might be desirable to have support for the
second approach as well, as it might even allow running multiple language
environments at the same time.

The remainder of this chapter will discuss how Maxine’s extensibility can
be improved, especially to be more flexible towards support other object
models, regardless of which of the two framework approaches will be pur-
sued. After a general analysis on the introduction of new language environ-
ments, missing variation points that have been discovered during the course
of this project will be discussed for Maxine’s subsystems.

ūūŪ

ű.ū. From Configurability to Extensibility

runs

Java
Environment H

e
a
pLayout

Compiler

Guest
Environment H

e
a
pLayout

Compiler

Guest
Program

runs

Figure ű.ū.: Parallel environments. The host ѣњ is used to execute the guest ѣњ.

ű.ū. From Configurability to Extensibility

Maxine was started as a research Java ѣњ that allows replacing subsystems
easily to try out different implementations of aspects of the Java program-
ming language. With the introduction of a new language, however, the exist-
ing parts must not be replaced, as Maxine requires them to run itself. Instead,
new concepts have to be added without breaking support for Java. This can
be done in two ways.

ű.ū.ū. Parallel Environments

SqueakMaxine’s first layout implementation, the Squeak default layout, was
incompatible with the existing Java layouts. The main reason for this was the
absence of a hub and a misc header field, which are heavily relied upon in
Maxine’s default implementation. As a result, Squeak and Java objects could
not be stored on the same heap, nor could they reference each other. The
Java heap, layout and compiler were just an implementation detail of the
SqueakMaxine ѣњ, which again implemented a heap, layout and compiler
for Squeak.

As illustrated in figure ű.ū, this scenario contains two independent lan-
guage environments. The Java environment, essentially an unmodified Max-
ine, runs a guest environment and itself. SqueakMaxine, shown as the guest
environment, is run by the Java part and executes the Squeak program.

ūūū

ű. Variation Points of a Virtual Machine Framework

runs

Java
Environment

Guest
EnvironmentH

e
a
pLayout

Compiler

Layout

Compiler

Guest+Java
Program

runsruns

Figure ű.Ŭ.: Integrated environments. Both host and guest ѣњ share components
and can execute a program mixed of both languages.

ű.ū.Ŭ. Integrated Environments

With the second layout implementation, SqueakMaxine provides a fully in-
tegrated solution. All Squeak objects can be used wherever Java objects are
expected, which allows having Squeak and Java objects on the same heap,
referencing each other.

This approach, as shown in figure ű.Ŭ, still allows for a language specific
layout and compiler. There are, however, some constraints the object model
implementation has to fulfill to ensure compatibility:
Hђюёђџ FіђљёѠ The hub and misc header fields have to be at the same offset

in both layouts.
Oџієіћ іћ Cђљљ The conversion between cell pointer and origin pointer of

the object has to be possible without knowing the specific layout.
Mђѡю-ќяїђѐѡѠ The hub has to reference an appropriate SpecificLayout im-

plementation. To allow reflection in Java, fields and methods have to be
represented with their respective actors.

Mђѡѕќё Iћѣќѐюѡіќћ юћё Fіђљё AѐѐђѠѠ For a full integration, method invo-
cations and field accesses have to be implemented in a way that also works
for Java objects. On the other hand, fields and methods of the guest lan-
guage don’t have to be accessible to Java. As Java is statically typed, it is
not possible invoke methods or access fields that are not available to the
Java compiler anyway.

ūūŬ

ű.ū. From Configurability to Extensibility

The two laĴer constraints might even become unnecessary with the intro-
duction of wrapper objects which encapsulate the logic for using objects of
another language or object model, but this is out of the scope of this work
and requires further research.

ű.ū.ŭ. Scheme Sets

It should be noted that both figure ű.ū and figure ű.Ŭ show an idealized ar-
chitecture of their respective approach that was not actually achieved. At the
time of the project Maxine only allowed one instance of each scheme, which
is globally accessible. Thus, the schemes had to be split to provide two im-
plementations at once.

For the first approach, implementing Squeak’s native layout, this worked
well for the heap (see variation point “Garbage Strategy”), but not so well
for the layout. A possible solution to this problem is discussed in variation
point “General Layout Responsibility”.

With the second approach, reusing and extending Maxine’s default layout,
it was not necessary to change the functionality of the heap. The modified
layout implementation fulfilled the compatibility constraints as listed above.
Thus, after providing the variation points Layout Responsibility and Refer-
ence Visitor, it was possible to add Squeak specific layouts without affecting
Java objects.

This shows that the understanding of a scheme configuration has to be
changed. Both approaches have in common that schemes are no longer glob-
ally unique, but that the relevant implementation depends on the context
where it is used. For Maxine to be fully extensible, the global accessors for
schemes have to be replaced with some local environment that provides one
implementation for each scheme interface. Optionally, this mechanism can
allow to introduce entirely new scheme interfaces to use the existing config-
urability mechanism to try out different implementations for aspects of the
guest ѣњ that are not present in Java/Maxine.

A helpful framework is not only easily extensible, but should also have
reusable parts, like a library. To avoid forcing the reinvention of the wheel,
it should provide meaningful default implementations for the defined ex-
tension points which can be adapted by customizing well defined variation
points. The next three sections will discuss missing variation points that
were identified during the implementation of the Squeak object model, or-
dered by their respective Maxine subsystem.

ūūŭ

ű. Variation Points of a Virtual Machine Framework

Default Heap Default Heap Garbage Strategy

collect
Garbage

collect
Garbage

Figure ű.ŭ.: To the left, a sequence diagram shows a simplified єѐ algorithm where
parts of the logic are moved into protected methods. This implementation can
be refined through subclassing. To the right, the logic of one method was moved
into the garbage strategy, a second method is wrapped.

ű.Ŭ. Heap and Garbage Collector

The heap is responsible for managing objects in multiple memory regions,
such as the boot image, the immortal heap and the object space. For the last, a
garbage collector cleans up unreachable objects. A reusable heap implemen-
tation should allow adding new object spaces for parallel environments or
has to be flexible enough to support objects of multiple layouts, as long as
they fulfill the constraints for an integrated environment.

ű.Ŭ.ū. Garbage Strategy

A reusable heap implementation would have complex algorithms, such as
the garbage collector, broken into parts of overridable methods, as illus-
trated on the left hand side of figure ű.ŭ. If the variation points are chosen
carefully, this allows for an easy customization of the heap via sub-classing.

However, even for separated object spaces, it is not necessary to have two
heap instances. All that is needed is one additional memory region which is
garbage collected, without a second boot image manager or immortal heap.

Instead, as shown on the right hand side of figure ű.ŭ, the existing scheme
instance can be extended by using the strategy paĴern [ūŭ]. Selected parts
of the єѐ algorithm are encapsulated in a “garbage strategy”, which then
implements these parts and/or invokes appropriate methods of the heap.

ūūŮ

ű.Ŭ. Heap and Garbage Collector

When a new memory region is added, only a customized garbage strategy
has to be provided to enable garbage collection.

The garbage strategy interface is specific to the єѐ algorithm. For the semi-
space garbage collector, the relevant variation points encapsulated by the
strategy are

• the from- and to-space memory regions,
• the current to-space’s allocation mark,
• the upper allocation bound and safety zone, and
• how, for a given object cell, references can be visited.

The advantage of this solution is that the heap still is unique, which sim-
plifies the overall architecture with regard to the integrated environment
approach. On the other hand, the garbage strategy does not allow using a
different єѐ algorithm for the Java and the Guest ѣњ. For this, it might be
beĴer to strengthen the notion of multiple heaps by moving the immortal
heaps into a dedicated scheme.

ű.Ŭ.Ŭ. Layout Responsibility

final SpecificLayout specificLayout = hub.specificLayout;
if (specificLayout.isTupleLayout()) {

TupleReferenceMap.visitReferences(hub, origin, refUpdater);
if (hub.isJLRReference) {

SpecialReferenceManager.discoverSpecialReference(origin);
}
return cell.plus(hub.tupleSize);

}
if (specificLayout.isHybridLayout()) {

TupleReferenceMap.visitReferences(hub, origin, refUpdater);
} else if (specificLayout.isReferenceArrayLayout()) {

scanReferenceArray(origin);
}
return cell.plus(Layout.size(origin));

Listing ű.ū: Scanning an object during garbage collection. In the original code, the
єѐ holds strong assumptions how objects of certain specific layouts have to be
scanned.

In the original implementation, shown in listing ű.ū, the garbage collector
holds strong assumptions about the layout implementation. It is expected
that object references can only be found in tuples, in the tuple part of hybrids,

ūūů

ű. Variation Points of a Virtual Machine Framework

and in reference arrays. Furthermore, even though the details of the layout
are still hidden, it already implements a very specific solution to how the
references can be found, by directly invoking appropriate utility functions.

To be independent from the layout implementation, the garbage collec-
tor already uses a visitor that is invoked for each reference in an object cell.
As listing ű.Ŭ shows, the distinction between layout kinds can be hidden
completely using polymorphism. This solution even reduces the number
of necessary interface calls from up to four (isTupleLayout, isHybridLayout,
isReferenceArrayLayout and one hidden in Layout.size) to two.

final SpecificLayout specificLayout = hub.specificLayout;
specificLayout.visitReferences(hub, origin, refUpdater);
return cell.plus(specificLayout.size(origin));

Listing ű.Ŭ: Object scanning deferred to layout. Here, the єѐ completely relies on
the specific layout to scan an object.

It should be noted that this change is complementary to the proposal that
a garbage strategy defines how object cells are visited. The code shown here
requires the object’s specific layout and expects it can be found via the hub.
The garbage strategy might define different ways of obtaining the special
layout, e.g., by reading the object’s base header. Furthermore, this change
is just a special case of the more generic variation point “Predefined Layout
Kinds”.

ű.ŭ. Layout

The layout manages how data is stored inside of an object. It should provide
direct and efficient access and, at the same time, has to be generic enough
to support new object types that can be found in dynamic object-oriented
languages but are unknown to Java.

ű.ŭ.ū. Predefined Layout Kinds

Maxine defines three kind of objects: tuples, hybrids and arrays. Only the
last kind has multiple instances, one for each content type. These three kinds
are defined explicitly in the enum Layout.Category, and implicitly in meth-
ods such as isTupleLayout (see table ů.ū and table ů.Ŭ on page ůų for similar

ūūŰ

ű.ŭ. Layout

methods). The assumption that there are exactly these layout kinds is made
in several other, non-layout parts of the ѣњ, such as the garbage collector, as
discussed in variation point “Layout Responsibility”.

This assumption should be removed entirely, together with the enum and
the respective identification methods. It prevents the introduction of new ob-
ject kinds, such as the reference hybrid or the compiled method, and should
be replaced with generic methods to access object cells efficiently.

This requires further analysis of code that relies on the layout, to show
which impact this assumption has on the way objects are accessed. The fol-
lowing variation point shows how the layout interface was extended to re-
move the assumption from the semi-space garbage collector.

ű.ŭ.Ŭ. Reference Visitor

Previously, the assumption of the three layout kinds was helpful because it
allowed to define, for a given task such as visiting all references in an object
cell, specially optimized implementations for each possible case. It is not
desirable to replace these implementations with a generic, inefficient solu-
tion. Instead, the SpecificLayout interface was extended to directly provide
a method for this high-level task. For the existing ќѕњ layout kinds tuple,
hybrid and array, the implementation was simply copied from the original
source (see listing ű.ū).

In SqueakMaxine, this change allowed correct garbage collection for new
layout kinds. As an example, listing ű.ŭ shows the specialized visiting algo-
rithm for compiled methods. The location of references can be determined
neither from the hub (as for tuples and hybrids) nor from one of the header
fields (as for arrays), but depends on the object’s first content word which
stores the method header.

ű.ŭ.ŭ. General Layout Responsibility

At the time of writing, the general layout serves two purposes: On the one
hand, it is used as a base class for the layout hierarchy, implementing meth-
ods that are similar for all specific layout kinds (see figure ŭ.ű on page Ŭų); on
the other hand, it can be used to select the specific layout for a given object.

While it is useful to have a base class in the layout hierarchy to avoid code
duplication, the purpose of the general layout should be redefined with re-
gard to objects of other layout hierarchies using the same heap. It should

ūūű

ű. Variation Points of a Virtual Machine Framework

public void visitReferences(Hub hub, Pointer origin,
PointerIndexVisitor visitor) {

// visit literals
final int start = HEADER_WORDS + EXTRA_HEADER_WORDS;
final int end = start + getNumberOfReferences(origin);
for (int i = start; i < end; i++) {

visitor.visit(origin, i);
}

}

public int getNumberOfReferences(Pointer origin) {
return (origin.getWord(0, METHOD_HEADER_INDEX).toInt() >> 10) & 0xff;

}

Listing ű.ŭ: Visiting references of a compiled methods. Especially for complex ob-
jects such as compiled methods, the specific layout knows best how to scan for
references.

be independent even of the chosen Java layout, and instead be compatible
with every layout implementation that conforms the rules for layouts in an
integrated environment. For instance, the default general layout would de-
fine that a hub header field is located at an object’s origin, and that the hub
references a specific layout.

For additional heaps of parallel environments, another general layout that
fits the otherwise incompatible new layouts can be implemented.

ű.ŭ.Ů. Additional Header Fields

Header fields are used to store data that should not be accessible as freely as
fields are, or is otherwise not considered to be part of the objects content. For
Maxine, this is the hub, the miscellaneous bits, and for arrays and hybrids
the length. For other languages, additional header fields might be required,
for instance, the associated class actor for Squeak class objects.

Adding header fields after the object’s origin can cause problems with
field offsets, as discussed in section ŭ.ŭ.ŭ, and adding header fields to all
objects is wasteful if they are used only occasionally.

A possible solution would be to add new header fields before the origin,
which, when using the ќѕњ layout as a base, would lead to a mix of ѕќњ
and ќѕњ layout for objects with additional headers. For instance, it could be
defined that the three lowest bits of the first header field indicate up to seven
additional words before the origin. As the value of the hub header always is

ūūŲ

ű.ŭ. Layout

a ŰŮ-bit word aligned reference, thus indicating zero by default, this allows
for an easy cell-to-origin conversion. This logic would have to be included in
the general layout (see previous variation point) and would not affect Java
objects in any other way.

To convert origin to cell pointers, the specific layout can be used, which
can be obtained via the hub. However, as the Squeak layout shows, it might
be desirable to have a different number of header fields even for objects of
the same specific layout. In this case, the lowest hub-header bits can be used
to encode that number. Here, it would only be possible to indicate up to
six additional header words, as one bit configuration is already reserved
for forward references. Furthermore, every time the hub is retrieved from
the object header, the lowest bits have to be masked, which creates a small
runtime overhead.

ű.ŭ.ů. Logic Duplication with Compiler

As described in section ů.Ŭ, the fact the most of the layout could not be im-
plemented in a meaningful way was not an actual problem. The parts of the
ѣњ that used the layout had to be adapted anyway.

One part, however, that should have depended on the layout did not: the
compiler. With the old CPS compiler, the layout had to define code snippets
to describe actions such as hub or field accesses to the compiler. In the cur-
rent C1X implementation, however, the entire layout logic is duplicated in
assembler definition, which is why the ѕќњ layout could not be used in the
first place. With the new Graal compiler, however, it should be possible to
return to a snippet based approach that removes layout logic from the com-
piler’s internals.

ű.ŭ.Ű. Actor Hierarchy

Although not part of the layout scheme, actors are tightly coupled with the
object model and the layout implementation. For instance, each layout kind
has its respective class actor subclass which contains specialized initializa-
tion code. To introduce new layout kinds, these class actor implementations
have to be sub-classed.

For SqueakMaxine, it was necessary to add new constructors with addi-
tional parameters. In Squeak, for instance, array classes can be named freely,
so the array class actor needed a new constructor with a name parameter.

ūūų

ű. Variation Points of a Virtual Machine Framework

The actors have to be analyzed for assumptions held in the code, as some
of them might not be necessary and are just Java-specific. It also seemed that
some methods were declared final just for performance reasons.

Another important requirement is the possibility to change classes at run-
time, including the addition and removal of fields and methods; and even
changing the inheritance order. This is not just done with remove the final-
modifier from the respective fields holding field or method actor arrays.

Changing the fields requires resizing all instances of this class, including
its subclasses. Adding or removing methods might require the hub to be
replaced, when the size of the vTable has to be changed. Both can be done
with a modified єѐ operation; here, maybe the garbage strategy can be used
to introduce the appropriate changes.

ű.Ů. Other Subsystems

Even though not relevant for implementing the object model, other parts of
Maxine were affected by the changes as well.

ű.Ů.ū. Reference Scheme

In many dynamic object-oriented languages everything is an object, which
means they face the same problems as Squeak representing simple values,
such as integers, and can benefit from tagged references. However, there are
only three bits available for tagging, and a language implementation might
want to represent instances of more than one class as tagged references. This
can lead to problems when mixing multiple language environments. Fur-
thermore, tagging leads to a constant overhead every time the hub is ac-
cessed. Scala and JRuby have shown that a language implementation that
uses only boxed integers, i.e., every integer object has a memory cell, can be
reasonably fast.

Thus, the usefulness and performance impact of tagged references has to
be subject of further evaluation. Nevertheless, we have shown that imple-
menting tagged references is possible with minimal effort.

ūŬŪ

ű.Ů. Other Subsystems

ű.Ů.Ŭ. Inspector

The inspector very much relies on the fact that Maxine is a Java-only ѣњ.
To obtain the layout information for a Java class, it reads the class-file and
recreates the actors. This obviously does not work for Squeak classes that are
loaded from an image file. To get the inspector to correctly visualize Squeak
objects, it was necessary to generate class files that contain the respective
field and method definitions.

For Squeak objects, this could be done because the object models of Squeak
and Java are rather similar. For other languages, however, it might not be
possible to express the classes as Java class-files. Here, a more flexible ap-
proach is needed to directly copy the actor data from the inspected ѣњ.

ű.Ů.ŭ. Run Scheme versus Startup Scheme

Before the ѣњ can start executing application code, the run scheme initializes
ѣњ internals, which also includes Java-specific юѝі classes in the JDK. When
all ѣњ features are up and running, it finds and invokes the application’s
entry point.

For Java, this was loading the main class and invoking its main method.
In SqueakMaxine, at this point the image is loaded.

As Maxine always has to be a fully working Java ѣњ, the Java initializa-
tion code has to be copied for each run scheme of every new language. This
can be avoided by introducing a new start-up scheme, which performs the
mandatory initialization and having a lighter run scheme, which only in-
vokes the language-specific entry point.

ūŬū

Ų. Maxine Variation Points:
An Evaluation

One purpose of this work and of the implementation of SqueakMaxine is
the identification of missing variation points. These have been determined as
evaluation of the application of the principles laid out in chapter Ů to Squeak
on Maxine. Hence, in the following, for each application, the status quo in
Maxine is explained, the findings of the application are discussed, and the
necessary variation points are presented, if any.

Ų.ū. Instruction Set Abstractions

Maxine provides ways to handle Java bytecode, constituting its instruction
set. However, there is no general abstraction for bytecodes on its own. Even
more, there are at least three instances of Java bytecode handling interface
in the current Maxine.
Tѕђ ѐџі The compiler–runtime interface (ѐџі) is a component of Maxine that

is meant to facilitate the interaction between Maxine and the standard їѣњ.
As such, it plays an important role for the upcoming Graal compiler, that
runs on both Maxine and the standard їѣњ. The ѐџі is also used by the
C1X compiler. One of the key parts is its Java bytecode interface; the ѐџі
has a list of all Java bytecodes as Java constants, as well as a streaming
interface to iterate over a typical Java bytecode method, with additional
functionality to decode bytecode arguments. The C1X and T1X compilers
uses the bytecode interface of the ѐџі directly. The ѐџі is completely Java-
specific.

Tђњѝљюѡђ ѡюєѠ The tags used in T1X templates roughly match the Java byte-
code set, with exceptions of type-specific tags or bytecodes not implement-
ed by templates. In the mapping between bytecodes and templates, the ѐџі
bytecode constants are used to identify bytecodes and the ѐџі streaming
interface is used to obtain a bytecode’s respective argument in a method.

ūŬŬ

Ų.ū. Instruction Set Abstractions

The T1X template tags built upon the ѐџі bytecode constants and are hence
Java-specific.

T1X џђѓђџђћѐђ њюѝ єђћђџюѡіќћ As said in section Ű.Ů.ū, reference maps for
T1X compiled methods are generated from a Java method’s bytecode. This
is done by interpreting the method’s list of bytecode. The bytecode values
are checked and the possible stack depth of the native method is deter-
mined from the kind of the bytecode. This is done entirely independent of
the ѐџі or the T1X template tags. The ReferenceMapInterpreter has a com-
pletely decoupled logic from the other two. The generation of reference
maps is Java specific.

Working with this interfaces has disadvantages: Not counting the implemen-
tation of the actual bytecode semantics in either T1X or C1X, adding a bytecode
requires changes to at least three distinct places: the ѐџі list of bytecodes, the
option handling for this bytecode in the streaming interface of the ѐџі, the
reference map interpreter and the T1X template tags.

Moreover, the Java bytecode abstraction in Maxine is not meant to be ex-
tensible to any extend. Each location where bytecode handling is done de-
liberately is implemented in a way it appears “sealed”; subclassing, general
interfaces, or other means of extension are ruled out on the basis that, regard-
ing Java, the bytecode set has singleton semantics, i.e., there is only one Java
bytecode set, and that this set seldom changes. For a pure Java ѣњ, this as-
sumptions are reasonable and allow for common optimizations of this often
used code.

SqueakMaxine Findings As Squeak has a comparable, but in details dif-
ferent bytecode set to Java, Maxine’s way of handling Java bytecode is used
as a blueprint for Squeak bytecodes in Maxine. Due to the design of the Java
bytecode abstraction in Maxine, re-use in an object-oriented sense is not pos-
sible, thus, the Java bytecode implementation is rather copied verbatim and
adapted to Squeak. This approach suffers from the same problems and ben-
efits from the advantages as the Java bytecode implementation in Maxine:
four dispersed locations of source code dealing with bytecode as well as a
non-extensible, but easily optimizable implementation.

Instruction Set Abstraction A general abstraction for іџ instruction sets,
i.e., bytecodes in most cases, is necessary within Maxine. At least Smalltalk,
Lua, and Python are commonly compiled to bytecodes and brining such

ūŬŭ

Ų. Maxine Variation Points: An Evaluation

dynamic object-oriented languages to Maxine requires support for their in-
struction sets. While listing all bytecodes of a languages instruction set is
inevitable in most cases, a common interface and method of specifying bytecodes
should be devised. This should include a streaming interface akin to the
BytecodeStream found in the ѐџі for Java. Such a streaming interface requires
information about bytecode arguments. To keep the number of places where
bytecodes are specified small, such arguments should be specified in prox-
imity to their bytecodes. Furthermore, if the instruction set is stack-based, a
bytecode’s effect on the stack could be recorded in proximity to a bytecode’s
arguments. That way, the number of places to change when a bytecode is
changed, added, or removed, would decrease from about four to one or two
for Java, depending on the compiler.

Given such an interface or abstract component, an instruction set for a
dynamic object-oriented language could be specified by just listing the lan-
guages bytecodes with adjacent specification of their arguments and stack
impact.

Ų.Ŭ. The Template-based Just-In-Time Compiler

The major part of an execution model implementation is the execution en-
gine, which for Maxine is any of its їіѡs. For SqueakMaxine, this is provided
by a їіѡ that is based on Maxine’s template-based non-optimizing T1X com-
piler. This їіѡ, S1X, is able to compile Squeak bytecodes to native machine
code just like T1X for Java does.

Ideally, S1X should not re-implement necessary functionality that is al-
ready present in T1X. However, S1X currently is an altered verbatim copy of
T1X for two main reasons. First, T1X is not language-agnostic by design. The
template tag system of T1X is directly based on the ѐџі implementation of
Java bytecode and quite strongly coupled to it. Second, while T1X is already
factorized, the factorization axis is not the language implemented but the
target platform, i.e., for the T1X compilation T1XCompilation a target specific
AMD64T1XCompilation exists (cf. figure Ų.ū). This approach does not allow the
common practice of specialization by subclassing in order to specialize the
language implemented. Hence, the T1X infrastructure is duplicated for S1X.
During the implementation of S1X, it became apparent that T1X, and hence
S1X, has three layers of implementation; the compilation, the templates, and
the runtime. Refer to table Ų.ū for a high-level comparison of these layers.

ūŬŮ

Ų.Ŭ. The Template-based Just-In-Time Compiler

T1X T1XCompilation

AMD64T1XCompilation

-compilation
1

1
#compiler S1X S1XCompilation

AMD64S1XCompilation

-compilation
1

1
#compiler

Figure Ų.ū.: Factorization of the template-based їіѡ compilers by target platform; left
for T1X, right for S1X. Key: Ѣњљ

Table Ų.ū.: Possible locations of bytecode functionality implementations.

Compilation Template code Runtime

Class where
implemented

(AMD64)S1XCompilation SqueakTemplateSource S1XRuntime

Example
from
listing Ű.Ŭ

do_prim_equivalent() primitiveEquivalent() trueReference()

Functionality stack manipulation arithmetics,
comparison

allocation

Limitations very low level, needs
per-architecture
subclass

jumps, stack
manipulation not
expressible, may not
allocate or call stubs

inlining restrictions

In any case, an implementation for each bytecode in the compilation is nec-
essary, as the compilation has access to an assembler, which is beneficial
certain cases like jumping. For most bytecodes, the compilation implementa-
tion, however, just uses the implementation given by the templates. In some
cases, e.g., the creation of new objects, the templates have to call the run-
time, as only there allocation is possible. This partitioning is reasonable, yet,
figuring out what functionality to implement at which place can result in a
trial-and-error approach. At least documentation of the capabilities of each
layer is necessary.

Generic Template-based їіѡ To overcome the platform-preferring factor-
ization in T1X, and to cope with different languages, a generic template-based
їіѡ can be useful. It should provide the generally necessary infrastructure for
writing їіѡs template-based, e.g., the recording and application of templates
or the incrementing and decrementing of the stack pointer. Furthermore, a
facility is necessary that provides a platform-independent means to express
jumps, conditional or unconditional. Possibly, this could be derived from
the existing Java and Squeak їіѡ implementations.

ūŬů

Ų. Maxine Variation Points: An Evaluation

T1X T1XCompilation AMD64T1XPlatform

S1X S1XCompilation AMD64S1XPlatform

TemplateCompiler TemplateCompilation-compilation
1

1
#compiler CompilationPlatform-platform

1
1
#compilation

… … …

AMD64Platform …

Figure Ų.Ŭ.: Template compiler proposal. The factorization of the compiler is per-
language. The per-platform code is a strategy, a possible approach to the two-
dimensional nature of requirements to language and platform in T1X. Key: Ѣњљ

From the implementation point of view, such an generalized template-
based їіѡ should be factored by both language and platform. However, this
is difficult, given that Java as the host language does not support multiple
inheritance. Hence, the factorization should be dominated by the language
implemented with the respective platform specific methods provided by a
strategy. An example for such an architecture is given in figure Ų.Ŭ. Addi-
tionally, providing templates the way T1X currently does is insufficient for
multiple languages due to the restrictions of the Java annotations. However,
SqueakMaxine already provides a means to circumvent these and to specify
a per-language template tag that is able to maintain different sets of template
tags within the compilation framework. This is already used for Squeak, as
explained in section Ű.ŭ.Ŭ.

Ų.ŭ. Re-usability of Maxine’s Compilation
Infrastructure

Although the compilation of dynamic object-oriented languages to machine
code is different in detail, certain aspects of compilation are similar across
languages. This includes the need to load and store temporary variables,
write to or read from objects, or look up methods, among others. To ease
the implementation process of їіѡs, those often-used compiler components
should be available within Maxine. Actually, there are several of such re-
usable components ready to use.
ѠћіѝѝђѡѠ Maxine snippets encapsulate often used functionality that is to be

inlined into the code using it. Such functionality includes allocation of new
objects with automatic linking to the Maxine internal actors, obtaining

ūŬŰ

Ų.ŭ. Re-usability of Maxine’s Compilation Infrastructure

native code entry points from a given TargetMethod, or resolving classes,
among others, with only the last being Java-specific.

юѠѠђњяљђџѠ Maxine currently offers one programmatic native code assem-
bler for AMDŰŮ platforms. Furthermore, more abstract concepts exist as
well, e.g., the T1XCompilation provides an interface to assign registers or
peek from or poke to the stack, which could be re-used, given there is a
generalized template compiler (cf. section Ų.Ŭ).

џѢћѡіњђ іћѡђџѓюѐђ The runtime interface of Maxine consist of functional-
ity that is not compiled into native code methods by їіѡs at runtime, but
functionality that is called from those code methods. An example is the
T1XRuntime that encapsulates, e.g., object creation. Note that it makes us
of snippets but itself provides a higher layer of abstraction. Also, a Java-
specific compiler–runtime interface (ѐџі) exists that can partially be reused.

Ѡѡюѐј ѤюљјђџѠ The Maxine stack walkers provide means to inspect the cur-
rent execution and abstracts from the raw handling of frame pointers and
stack pointers (cf. section Ű.Ű.ū)

Mюѥіћђ іћѡђџњђёіюѡђ џђѝџђѠђћѡюѡіќћѠ Maxine has a lower-level interme-
diate representation (љіџ) that can be used by optimizing compilers prior
to generating actual machine code. Both the compilers and the љіџ imple-
mentation can make use of ѥіџ, that aims to be a compiler and runtime
independent іџ. It is possible to re-use either іџ to interact with Maxine or
re-use parts of other Maxine їіѡs.

ќяїђѐѡ њќёђљ іћѡђџюѐѡіќћ It is possible to interact with the object model
implementation uniformly via the Layout utility class or its convenience
wrappers like ObjectAccess. Directly modifying objects via pointers or ref-
erences is not necessary if these interaction components are re-used.

ѐќњѝіљђџ Ѡђљђѐѡіќћ Deciding which method to compile with which com-
piler is done in the compilation broker, which easily can be replaced by
implementations aware of different languages (cf. section Ű.ŭ).

SqueakMaxine Findings We re-use snippets, an assembler, the runtime
interface, stack walkers, and the object model interaction. Also, the variabil-
ity of the compiler selection is used (cf. section Ű.ŭ.Ŭ). There is no new vari-
ation point necessary within Maxine’s compilation infrastructure, as there
are plenty of helper components and for the compiler selection, variation is
already possible with the existing compilation broker. However, the broker
should be extended to allow an arbitrary number of compiler fallbacks.

ūŬű

Ų. Maxine Variation Points: An Evaluation

Ų.Ů. Implementing Built-in Behavior

While the notions of іџ are quite similar among Java and dynamic object-
oriented languages, their built-in behavior differs, even among each other.
For example, Java’s built-in behavior is based on its ѓѓі, Python’s built-in
behavior is integrated in its module concept, and Smalltalk has a notion of
methods tagged as primitives that are to be provided by the ѣњ. These no-
tions only have in common that, despite they all originate from a normal
method call or message send, respectively, code is executed that does not
exist in the languages common representation.

As a consequence of this divergence in notion, it is barely possible to pro-
vide an explicit but language-agnostic support for the built-in behavior of
dynamic object-oriented languages. The road taken for SqueakMaxine is
more an optimization, which is possible as a result of primitives being able
to play the role of an “bytecode before the actual bytecode”, than a general
way for implementing built-in behavior.

Advanced Substitution The only concept Maxine could support regard-
less of the language implemented is an extended substitution mechanism.
This comprises facilities that allow to match on methods of the language im-
plemented and, subsequently, to replace the actual method to be executed
by a custom one. This already exists in Maxine for Java. However, it is only
possible to match the names of Java classes and methods by means of dedi-
cated annotation. It should, however, be possible to specify the methods to
match and replace in the way that is common to the language implemented.

Moreover, the code that actually carries out the substitution is integrated
deeply with the Java compilers and, hence would have to be rewriĴen for ev-
ery language that wants to use Maxine’s substitution. Maxine should rather
provide a more general substitution facility with means to query for meth-
ods that should be replaced and storage for the actual replacement to use.
Several compilers then would be able to reuse such an infrastructure for re-
placing methods.

ūŬŲ

Ų.ů. Stack Manipulation

Ų.ů. Stack Manipulation

The current Maxine implementation that provides access to the call stack
information is rather difficult to understand and insufficient for dynamic
object-oriented languages.

The former is because the lack of actual object-oriented abstraction for
stack frames in Maxine, stack walker aside. There is no point where a stack
frame is explicitly created. The mere fact that a frame pointer is altered consti-
tutes the creation of a stack frame; its fields are just offsets, even at the higher
level parts of Maxine. While there is a class StackFrame, it is only used when
Maxine runs on top of a їѣњ in its hosted mode for, e.g., debugging by the
inspector. Moreover, instances of this class do only represent the already ex-
isting stack; creating an instance of such object will not result in a new stack
frame on the call stack.

The laĴer is caused by the circumstance that most dynamic object-orient-
ed languages support a notion of anonymous units of execution. Common
names for that include closures (which is used here), λ-expressions, or anony-
mous functions. A closure is able to access state from its enclosing context,
i.e., the method defining the closure. Hence, a closure accessing a tempo-
rary variable in its enclosing context has to have access to the stack frame
of that method during execution, as there is no other way to change the
temporary variable. Furthermore, dynamic object-oriented languages like
Smalltalk support the notion of non-local return, i.e., a closure is able to not
only return from its own execution but also to return from the method it is
defined in, regardless of how many different invocations are between them.
Consequently, an implementation of closures with non-local returns has to
have access to the stack frame of its defining method to obtain its return
address to use it as its own return address.

Currently, it is possible to express the retrieval of the return address and
the retrieval of temporary variable in a closure’s enclosing context by means
of a stack walker and an extension to the frame layout (cf. section Ű.Ű.Ŭ). How-
ever, this is an read-only operation that is insufficient for the temporary vari-
ables, as for most dynamic object-oriented languages, especially for Small-
talk, it is expected that closures can write to its enclosing context’s temporary
variables.

ūŬų

Ų. Maxine Variation Points: An Evaluation

Manual Stack Management Maxine needs to provide a way of manual
stack management, i.e., means to allocate and modify the stack in a man-
ner consistent with the rest of Maxine with respect to modularization and
object-oriented abstraction. That way, the kind of stack access necessary for
dynamic object-oriented languages that support closures can be provided.
This may imply an advanced handling of the stack, e.g., by providing mech-
anisms similar to stack pages which are used in ѣњs like the Cogѣњ [Ŭų].
Moreover, an explicit interaction with the stack could make garbage collec-
tion of running more approachable and probably even absorb the function-
ality of the current reference map interpreters.

An advanced, manual stack handling might have other beneficial uses. For
example, it can be used to provide lightweight threading approaches like
green threads in addition to the operating-system-level threads that are al-
ready present in Maxine. This can be useful for implementing functional
languages like Erlang.

Ų.Ű. Applicability to Other Dynamic Languages

Implementing Squeak poses a first step in the process of bringing dynamic
object-oriented languages to Maxine. The findings of SqueakMaxine suggest
that the presented way of bringing a dynamic object-oriented language to
Maxine is applicable to other dynamic object-oriented languages, with re-
spect to their execution models. We think that the same restrictions that ap-
ply to implementing Squeak in Maxine also apply to other dynamic object-
oriented languages and, hence, the variation points stated are in their case
necessary, as well. Considerations for class-based and prototype-based lan-
guages are to follow.

Ų.Ű.ū. Class-based Languages

Class-based dynamic object-oriented languages such as Python, Ruby, or
Lua should be able to implement basically the same way as Squeak is; the
class-notion of Maxine fits well and the main difference in the dynamic ob-
ject-oriented languages’ execution models is the respective lookup and the
built-in behavior, which needs individual treatment in any case. However,
certain language-specific notions in execution differ and might pose a chal-
lenge to Maxine.

ūŭŪ

Ų.Ű. Applicability to Other Dynamic Languages

Python In contrast to both Java and Squeak, Python supports multiple in-
heritance. Maxine does not anticipate this and probably needs dedicated
support for such, essentially, lookup variants. Another, more challenging
feature of execution in Python is the notion of bound methods: a method can
be bound to a single receiver, effectively creating a new method that always
operates on the receiver bound. In consequence, multiple instances of the
very same method bound to different receivers can exist. This results in the
need for some kind of code management to handle such instances. Python
λ-expressions and nested functions have similar requirements as Squeak
closures, but Python’s notion of generators needs a more sophisticated ap-
proach of suspending and resuming the execution of methods. We expect
that an even more intense interaction with and manipulation of the call stack
is necessary to support generators than it is for Squeak contexts.

Ruby While Ruby does not provide multiple inheritance like Python, it
does have a notion of sideways composition, called mixins. Such mixins can
extend a class’s functionality dynamically and, thus, might complicate the
lookup and the generation of machine code, the laĴer, as the inclusion of
a mixin can result in methods being present in the current class that were
formerly take from a superclass. This at least calls for the possibility of de-
optimization, which is possible in Maxine. Another peculiarity of Ruby is
the notion of per-object meta-classes, commonly called eigenclasses, which
can exist for every object and, subsequently can change the behavior of ob-
jects without changes to its nominal class. This can make an efficient storage
and lookup of behavior, as done for Maxine by hubs for classes, challenging.

Ų.Ű.Ŭ. Prototype-based Languages

In contrast to class-based languages, prototype-based languages such as Self,
JavaScript, or Io typically do not organize their behavior in classes. The dis-
tinction between an object’s state and its behavior blurs; slots can contain ei-
ther data or behavior at will. The class concept implemented in Maxine, that
is exposed to its guest languages does not facilitate the non-class-based ap-
proach of organizing behavior. Moreover, while JavaScript only allows one
direct parent object per object to search functionality for, which resembles
Java’s single inheritance, Self allows an arbitrary number of direct parents
per object, effectively providing a kind of multiple inheritance.

ūŭū

Ų. Maxine Variation Points: An Evaluation

An efficient approach to implement the per-object behavior of prototype-
based languages has been proposed with the Self ѣњ [ű], grouping object
with identical behavior in object families. Consequently, it is possible to have
optimized data structures for these objects and to group behavior accord-
ingly. This is not dissimilar to the current Maxine implementation with the
notable difference that the Self object families are never visible in the guest
language while the Maxine classes are. When implementing an object fam-
ily approach in Maxine, a means to store such family information “out of
sight” of the guest language is necessary, effectively the same requirement
as explained in section Ů.Ŭ.

In comparison with other dynamic object-oriented languages, prototype-
based languages pose the biggest challenge regarding an implementation
in Maxine. The mismatch between the class-based statically-typed approach
of Maxine and the prototype-based dynamically-typed languages becomes
apparent when considering possible implementations of certain language
aspects, e.g., the vastly different, even object-local lookup; the object model
differs even more.

ūŭŬ

ų. Related Work

This chapter gives an overview of other work that is related to either Max-
ine itself or SqueakMaxine or. First, metacircular ѣњs and ѣњs wriĴen in pro-
gramming languages with higher-level abstractions are presented, as those
are most closely related to SqueakMaxine in its role as being implemented in
a higher-level programming language within a metacircular ѣњ. Next, ѣњs
are presented that focus on ѣњ configuration or generation, or on providing
ѣњ frameworks. These are in so fare related to Maxine as it aims to become
a ѣњ framework. Then, Squeak ѣњs and Java ѣњ are presented, as these are
connected to the original nature of either Squeak or Maxine. Finally, other
dynamic object-oriented languages are presented that are present on їѣњs,
as they are, like SqueakMaxine, implementations of dynamic languages in
Java.

ų.ū. Virtual Machines in Higher-level Languages and
Metacircular Virtual Machines

Jikes, formerly Jalapeño [Ŭ], is quite similar to Maxine as it is a Java ѣњ writ-
ten in Java. However it does not use the standard їёј but an alternate run-
time environment and, more importantly, does neither focus on configura-
bility nor the inclusion of additional languages as done with SqueakMaxine.

The previously mentioned Squeak interpreter ѣњ [Ŭū] is a ѣњ that is writ-
ten in itself in the sense that a subset of Smalltalk, called Slang, is translated
to C and then compiled to the Squeak ѣњ. It is allegedly the first metacircular
virtual machine.

The PyPy [ŭŲ] Python ѣњ is wriĴen in RPython, a restricted subset of
Python. The premises of both SqueakMaxine and PyPy are similar, however,
PyPy more tries to be a tool chain for ѣњ development with fixed combinable
ѣњ components, while Maxine focuses on configurability, with one configu-
ration entity being the language, i.e., SqueakMaxine. One notable difference

ūŭŭ

ų. Related Work

is that while for PyPy, the underlying language has to be restricted, for Max-
ine, the underlying language has been extended.

Other metacircular ѣњs include Klein [ůŪ], a Self ѣњ wriĴen in Self, and
the Rubiniusū Ruby implementation.

ų.Ŭ. Virtual Machine Product Lines, Platforms, and
Frameworks

As pointed out, PyPy [ŭŲ] aims to provide a tool chain for ѣњ development;
the implementations of different languages such as Squeak, Prolog, R, and
Python allow a view on PyPy as a ѣњ framework.

The Parrot ѣњŬ, originally a Perl ѣњ, aims to serve as a multi-language ѣњ,
however, in contrast to Maxine, it pursues the ideas of a common bytecode
set for all languages that shall run on Parrot. Hence, dynamic object-oriented
languages would run on top of Parrot while they could be run inside Maxine,
as SqueakMaxine does.

LLVM [ŬŮ] is a framework/ѣњ hybrid that aims to provide some abstrac-
tion form the underlying machine while retaining as much control as possi-
ble over the details of generated code, object layout, an similar. It does not
aim to provide object-oriented abstractions, however.

CSOM/PL [ūű] is a configurable ѣњ product line, that allows the compile-
time selection of features to be present in the resulting ѣњ. It employs a spe-
cialized virtual machine architecture description language (ѣњюёљ) to de-
scribe the ѣњ to be generated, unlike Maxine, which for this task uses a com-
bination of Python scripts and Java classes with special meaning for the ѣњ
composition

ų.ŭ. Java Virtual Machines

The Oracle їѣњ with its HotSpot™ compiler is the reference implementation
of the їѣњѠ. It is wriĴen in C++, in this way differing from Maxine; as part of
the Da Vinci project, the standard їѣњ is to become a multilingual ѣњ, facil-
itating the implementation of dynamic object-oriented languages on top of

ūhttp://rubini.us
Ŭhttp://www.parrot.org/

ūŭŮ

http://rubini.us
http://www.parrot.org/

Squeak Virtual Machines

the їѣњ by, e.g., providing special bytecodes for the method lookup in dy-
namic object-oriented languages. The aim of supporting multiple languages
matches Maxine’s but is carried out on a different level.

The Jikes ѣњŭ, as pointed out, is a їѣњ wriĴen in Java. It pursues similar
techniques as Maxine, with the main deviances being the supported plat-
forms and the їџђ used.

A quite different їѣњ is the Dalvik virtual machine. It supports the ex-
ecution of Java programs after a transformation of the (stack-based) Java
bytecode to Dalvik’s own register-based bytecode. In that respect, Java is to
Dalvik as Scala is to the їѣњ.

ų.Ů. Squeak Virtual Machines

The root for all Squeak implementations is the original Squeak ѣњ [Ŭū], that
aims to provide an open Smalltalk-ŲŪ system. Initially, the original ѣњ did
only provide an interpreter-based execution, hence it is sometimes called in-
terpreter ѣњ. Although projects like ExuperyŮ aim to provide a їіѡ, this ѣњ
primarily is used with its interpreter. Also, it serves as the reference imple-
mentation for other Squeak ѣњs and, hence, set the standard for SqueakMax-
ine with respect to feature-completeness.

Another well-known Squeak ѣњ is Miranda’s Cogѣњ [ŬŲ], providing a
fully functional їіѡ for Squeak. However, unlike SqueakMaxine, Cog’s pri-
mary concern is performance.

The RoarVMů [ŭŮ, Ůų] is a quite recent implementation of a Squeak ѣњ
with a focus on exploiting manycore hardware with Squeak.

PotatoŰ and its ancestor, JSqueakű, are implementations of Squeak in Java,
resulting in a dual stack ѣњ. Potato is similar to SqueakMaxine with regard
to language both are implemented in. In fact, they even share some minor
design decisions, mostly regarding the loading of Squeak images.

SPy [ů] is an implementation of Squeak in the PyPy framework. Although
implemented in a subset of Python, RPython, it shares a similar purpose
with SqueakMaxine: both were implemented to test the variability of their

ŭhttp://jikes.sourceforge.net/
Ůhttp://wiki.squeak.org/squeak/Exupery
ůhttp://soft.vub.ac.be/~smarr/renaissance/
Űhttp://sourceforge.net/projects/potatovm/
űhttp://labs.oracle.com/projects/JSqueak/

ūŭů

http://jikes.sourceforge.net/
http://wiki.squeak.org/squeak/Exupery
http://soft.vub.ac.be/~smarr/renaissance/
http://sourceforge.net/projects/potatovm/
http://labs.oracle.com/projects/JSqueak/

ų. Related Work

ѣњ platforms. SPy is closer to feature-completeness, however, it is based on
a rather old version of Squeak and does not handle newer, closure-based
Squeak images. While only rudimentary, SqueakMaxine anticipates Squeak
closures.

ų.ů. Dynamic Languages on Java Virtual Machines

JythonŲ is an implementation of Python in Java that runs on top of the stan-
dard їѣњ. It tries to leverage the benefits of a Java-based ѣњ implementation
and, in this respect, is similar to SqueakMaxine. As it runs on top of the їѣњ,
a double stack ѣњ scenario cannot be avoided. Jython supports the їіѡ com-
pilation of Python source code to їѣњ bytecode.

JRubyų is a similar project as Jython, but for the Ruby language. However,
JRuby tries to benefit from the rich standard library of the їёј, in this respect
deviating from the default Ruby implementation. Its relation to SqueakMax-
ine is the same as Jython’s to SqueakMaxine.

ScalaūŪ is a dynamic object-oriented language with optional typing that
is designed to run on top of the їѣњ. It, hence, requires its source code to
be compiled to Java bytecode in a different step than it is executed, which
sets Scala apart from JRuby and Jython. Even more, compiled Scala applica-
tions are hardly distinguishable from ordinary Java programs. Scala differs
from SqueakMaxine in type discipline, compile/run cycle, and most impor-
tant, intent; Scala tries to leverage the Java bytecode for a dynamically typed
language, SqueakMaxine tries to not use it at all.

Ųhttp://jython.org/
ųhttp://jruby.org/

ūŪhttp://www.scala-lang.org/

ūŭŰ

http://jython.org/
http://jruby.org/
http://www.scala-lang.org/

ūŪ. Summary and Future Work

This work presented an approach for bringing the object and execution mod-
els of dynamic object-oriented languages to the Maxine ѣњ. We implemented
Squeak / Smalltalk using this approach and, in this course, identified varia-
tion points. These variation points are necessary to facilitate the implemen-
tation of dynamic object-oriented languages in Maxine and support Maxine
in becoming a ѣњ framework, subsequently.

The approach for mapping execution models to Maxine includes the defi-
nition of execution models in this work and conceptual processes of how to
implement individual parts of such an execution model in Maxine. To ver-
ify these processes, and to identify missing variation points in Maxine, they
were carried out on an implementation of Squeak / Smalltalk in Maxine. We
expect the identified variation points to improve the capabilities of Maxine
to provide execution for arbitrary dynamic object-oriented languages.

Open Tasks for SqueakMaxine The implementation of Squeak in Max-
ine, SqueakMaxine, has served its purpose as feasibility study for dynamic
object-oriented languages in Maxine. However, SqueakMaxine is yet to be
completed to be regarded as an actual Squeak ѣњ. Specifically, the closure
support is still rudimentary and has to be fully implemented. Up until now,
there is no support for the Squeak graphical user interface. Likewise, only a
subset of the Squeak primitives is currently available in SqueakMaxine and
awaits finalization. These should be mere implementation tasks once the re-
quired variation points are present in Maxine.

More elaborate tasks for SqueakMaxine include the support of traditional
Squeak plugins, a means to extend Squeak by functionality not wriĴen in
Smalltalk, as well as the Squeak ѓѓі, a more recent approach to the same
idea. These concepts commonly are provided by їћі in the Java world, how-
ever, they are mutually incompatible and, hence, can constitute an interest-
ing follow-up question to this work.

ūŭű

ūŪ. Summary and Future Work

Steps towards a Virtual Machine Framework Up until now, Maxine is a
single language ѣњ. Provided the identified variation points are added to
Maxine, implementing dynamic object-oriented languages should be feasi-
ble. However, some concepts have not been tested with the SqueakMaxine
implementation and remain for future consideration.

As already pointed out, the Graal compiler is intended to also support the
implementation of dynamic object-oriented languages, but while it is impor-
tant to have optimizing compilers for dynamic object-oriented languages in
Maxine, the feasibility of Graal for that task has not been tested yet. Like-
wise, the only ѓѓі variant present in Maxine is the Java native interface (їћі),
which is powerful but not supported by all dynamic object-oriented langu-
ages; those typically com with their own ѓѓі flavor. Probably a mapping is
possible there, but this remains to be explored.

A next big step toward multiple languages in Maxine would be the possi-
bility to add, remove, or exchange language modules for Maxine at runtime.
Such a pluggability approach could lower the entry barrier and catalyze the
implementation of a quite large number of dynamic object-oriented langua-
ges in Maxine. framework for dynamic object-oriented languages has been
taken.

Systems have sub-systems
and sub-systems have sub systems

and so on ad infinitum—
which is why we’re always starting over.

—Alan Perlis

ūŭŲ

Bibliography

[ū] Norman I. Adams IV, David H. Bartley, Gary Brooks, R. Kent Dyb-
vig, Daniel Paul Friedman, Robert Halstead, Chris Hanson, Christo-
pher Thomas Haynes, Eugene Kohlbecker, Don Oxley, Kent M. Pit-
man, Guillermo Juan Rozas, Guy Lewis Steele Jr., Gerald Jay Sussman,
Mitchell Wand, and Harold Abelson. “Revisedů report on the algorith-
mic language scheme.” In: SIGPLAN Not. ŭŭ (ų ūųųŲ-Ūų), pages ŬŰ–űŰ.
іѠѠћ: ŪŭŰŬ-ūŭŮŪ. ёќі: 10.1145/290229.290234.

[Ŭ] Bowen Alpern, C. R. AĴanasio, Anthony Cocchi, Derek Lieber, Stephen
Smith, Ton Ngo, John J. Barton, Susan Flynn Hummel, Janice C. Shep-
erd, and Mark Mergen. “Implementing Jalapeño in Java.” In: SIGPLAN
Not. ŭŮ.ūŪ (ūųųų-ūŪ), pages ŭūŮ–ŭŬŮ. іѠѠћ: ŪŭŰŬ-ūŭŮŪ. ёќі: 10 . 1145 /
320385.320418.

[ŭ] American National Standards Institute.ANSINCITS ŭūų-ūųųŲ (RŬŪŪű):
Information Technology – Programming Languages – Smalltalk. New York,
NY, USA, ūųųŲ.

[Ů] David Bacon, Stephen Fink, and David Grove. “Space- and Time-Ef-
ficient Implementation of the Java Object Model.” In: ECOOP ŬŪŪŬ.
Edited by Boris Magnusson. Volume ŬŭűŮ. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, ŬŪŪŰ, pages ūŭ–Ŭű. ёќі: 10.1007/3-
540-47993-7-5.

[ů] Carl Friedrich Bolz, Adrian Kuhn, Adrian Lienhard, Nicholas D. Mat-
sakis, Oscar Nierstrasz, Lukas Renggli, Armin Rigo, and Toon Ver-
waest. “Back to the Future in One Week —Implementing a Smalltalk
VM in PyPy.” In: Self-Sustaining Systems. Volume ůūŮŰ. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, ŬŪŪŲ, pages ūŬŭ–
ūŭų. ёќі: 10.1007/978-3-540-89275-5_7.

[Ű] Carl Friedrich Bolz and Armin Rigo. “How to not write virtual ma-
chines for dynamic languages.” In: ŭrdWorkshop onDynamic Languages
and Applications (Dyla’Ūű). Berlin, Germany, ŬŪŪű.

ūŭų

http://dx.doi.org/10.1145/290229.290234
http://dx.doi.org/10.1145/320385.320418
http://dx.doi.org/10.1145/320385.320418
http://dx.doi.org/10.1007/3-540-47993-7-5
http://dx.doi.org/10.1007/3-540-47993-7-5
http://dx.doi.org/10.1007/978-3-540-89275-5_7

Bibliography

[ű] Craig Chambers, David Ungar, and Elgin Lee. “An efficient implemen-
tation of SELF, a dynamically-typed object-oriented language based
on prototypes.” In: Conference proceedings on Object-oriented program-
ming systems, languages and applications. OOPSLA ’Ųų. New Orleans,
Louisiana, United States: ACM, ūųŲų, pages Ůų–űŪ. іѠяћ: Ū-Ųųűųū-ŭŭŭ-
ű. ёќі: 10.1145/74877.74884.

[Ų] Paul Clements and Linda Northrop. Software Product Lines: Practices
and PaĴerns. ŭrd. SEI Series in Software Engineering. Boston, MA, USA:
Addison-Wesley, ŬŪŪū-ŪŲ-ŭŪ. іѠяћ: ųűŲ-ŪŬŪūűŪŭŭŬŪ.

[ų] Melvin E. Conway. “Design of a separable transition-diagram com-
piler.” In: Commun. ACM Ű.ű (ūųŰŭ-Ūű), pages ŭųŰ–ŮŪŲ. іѠѠћ: ŪŪŪū-ŪűŲŬ.
ёќі: 10.1145/366663.366704.

[ūŪ] L. Peter Deutsch and Allan M. Schiffman. “Efficient implementation
of the Smalltalk-ŲŪ system.” In: Proceedings of the ūūth ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. POPL ’ŲŮ.
Salt Lake City, Utah, United States: ACM, New York, NY, USA, ūųŲŮ,
pages Ŭųű–ŭŪŬ. іѠяћ: Ū-Ųųűųū-ūŬů-ŭ. ёќі: 10.1145/800017.800542.

[ūū] ECMA. ECMA-ŬŰŬ: ECMAScript Language Specification. Third. Geneva,
Swiĵerland: ECMA (European Association for Standardizing Infor-
mation and Communication Systems), ūųųų-ūŬ.

[ūŬ] Daniel Frampton, Stephen M. Blackburn, Perry Cheng, Robin J. Gar-
ner, David Grove, J. Eliot B. Moss, and Sergey I. Salishev. “Demysti-
fying magic: high-level low-level programming.” In: Proceedings of the
ŬŪŪų ACM SIGPLAN/SIGOPS international conference on Virtual execu-
tion environments. VEE ’Ūų. Washington, DC, USA: ACM, ŬŪŪų, pages Ųū–
ųŪ. іѠяћ: ųűŲ-ū-ŰŪůůŲ-ŭűů-Ů. ёќі: 10.1145/1508293.1508305.

[ūŭ] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign paĴerns: elements of reusable object-oriented software. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., ūųųů. іѠяћ: Ū-
ŬŪū-ŰŭŭŰū-Ŭ.

[ūŮ] Adele Goldberg and David Robson. Smalltalk-ŲŪ: the language and its
implementation. Commonly called the “Blue Book”. Boston, MA, USA:
Addison-Wesley, ūųŲŭ. іѠяћ: Ū-ŬŪū-ūūŭűū-Ű.

[ūů] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java Language
Specification. Ŭnd. Boston, MA, USA: Addison-Wesley, ŬŪŪŪ. іѠяћ: Ū-
ŬŪū-ŭūŪŪŲ-Ŭ.

ūŮŪ

http://dx.doi.org/10.1145/74877.74884
http://dx.doi.org/10.1145/366663.366704
http://dx.doi.org/10.1145/800017.800542
http://dx.doi.org/10.1145/1508293.1508305

Bibliography

[ūŰ] Michael Haupt and Robert Hirschfeld. Virtual Machines: ŭ. High-Level
Language VMs, A Tour of SOM++. Licensed under Creative Commons
AĴribution-Share Alike ŭ.Ū Germany cba. Lecture. Hasso-PlaĴner-
Institut, University of Potsdam. Potsdam, Germany, ŬŪŪų.

[ūű] Michael Haupt, Stefan Marr, and Robert Hirschfeld. “CSOM/PL —
A Virtual Machine Product Line.” In: Journal of Object Technology ūŪ
(ŬŪūū), ūŬ:ū–ŭŪ. іѠѠћ: ūŰŰŪ-ūűŰų. ёќі: 10.5381/jot.2011.10.1.a12.

[ūŲ] C. A. R. Hoare. “Monitors: an operating system structuring concept.”
In: Commun. ACM ūű.ūŪ (ūųűŮ-ūŪ), pages ůŮų–ůůű. іѠѠћ: ŪŪŪū-ŪűŲŬ. ёќі:
10.1145/355620.361161.

[ūų] Urs Hölzle, Craig Chambers, and David Ungar. “Debugging optimized
code with dynamic deoptimization.” In: SIGPLAN Not. Ŭű (ű ūųųŬ-Ūű),
pages ŭŬ–Ůŭ. іѠѠћ: ŪŭŰŬ-ūŭŮŪ. ёќі: 10.1145/143103.143114.

[Ŭū] Dan Ingalls, Ted Kaehler, John Maloney, ScoĴ Wallace, and Alan Kay.
“Back to the future: the story of Squeak, a practical Smalltalk wriĴen
in itself.” In: SIGPLAN Not. ŭŬ (ūŪ ūųųű-ūŪ), pages ŭūŲ–ŭŬŰ. іѠѠћ: ŪŭŰŬ-
ūŭŮŪ. ёќі: 10.1145/263700.263754.

[ŬŬ] Alan Kay and Stefan Ram. Dr. Alan Kay on the Meaning of “Object-
Oriented Programming”. Email conversation between Alan Kay and Ste-
fan Ram. ŬŪŪŭ-Ūű-Ŭŭ. Ѣџљ: http://www.purl.org/stefan_ram/pub/doc_
kay_oop_en (visited on ŬŪūŬ-Ūū-Ūų).

[Ŭŭ] Thomas Koĵmann, Christian Wimmer, Hanspeter Mössenböck, Tho-
mas Rodriguez, Kenneth Russell, and David Cox. “Design of the Java
HotSpot™ client compiler for Java Ű.” In: ACM Transactions on Archi-
tecture and Code Optimization (TACO) ů (ū ŬŪŪŲ-Ūů), ű:ū–ű:ŭŬ. іѠѠћ: ūůŮŮ-
ŭůŰŰ. ёќі: 10.1145/1369396.1370017.

[ŬŮ] Chris LaĴner and Vikram Adve. “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation.” In: Proceedings of
the international symposium on Code generation and optimization: feedback-
directed and runtime optimization. CGO ’ŪŮ. Palo Alto, California: IEEE
Computer Society, ŬŪŪŮ, pages űů–ŲŰ. іѠяћ: Ū-űŰųů-ŬūŪŬ-ų. ёќі: 10.1109/
CGO.2004.1281665.

[Ŭů] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Ŭnd.
Boston, MA, USA: Addison-Wesley, ūųųų. іѠяћ: ŪŬŪūŮŭŬųŮŭ.

ūŮū

http://dx.doi.org/10.5381/jot.2011.10.1.a12
http://dx.doi.org/10.1145/355620.361161
http://dx.doi.org/10.1145/143103.143114
http://dx.doi.org/10.1145/263700.263754
http://www.purl.org/stefan_ram/pub/doc_kay_oop_en
http://www.purl.org/stefan_ram/pub/doc_kay_oop_en
http://dx.doi.org/10.1145/1369396.1370017
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/CGO.2004.1281665

Bibliography

[ŬŰ] Bernd Mathiske. “The Maxine Virtual Machine and Inspector.” In:Com-
panion to the Ŭŭrd ACM SIGPLAN conference on Object-oriented program-
ming systems languages and applications. OOPSLA’ŪŲ. Nashville, TN,
USA: ACM, ŬŪŪŲ, pages űŭų–űŮŪ. іѠяћ: ųűŲ-ū-ŰŪůůŲ-ŬŬŪ-ű. ёќі: 10.1145/
1449814.1449838.

[Ŭű] Eliot Miranda. Context Management in VisualWorks ůi. Technical report.
ParcPlace Division, CINCOM, Inc, ūųųų.

[ŬŲ] Eliot Miranda. “The Cog Smalltalk Virtual Machine: writing a JIT in a
high-level dynamic language.” Talk given at the ůth workshop on Vir-
tual Machines and Intermediate Languages VMIL’ūū. Unpublished.
ŬŪūū-ūŪ-ŬŮ.

[Ŭų] Eliot Miranda. Under Cover Contexts and the Big Frame-Up. ŬŪŪų-Ūū-ūŮ.
Ѣџљ: http://www.mirandabanda.org/cogblog/2009/01/14/under-cover-
contexts-and-the-big-frame-up/ (visited on ŬŪūŬ-ŪŬ-Ŭų).

[ŭŪ] NCITS Technical CommiĴee Hű. XŭHű-ųŭ-ŪŪűvūŬb: Object Model Fea-
tures Matrix. ūųųű-Ūů-Ŭů. Ѣџљ: http://www.objs.com/x3h7/fmindex.htm
(visited on ŬŪūū-ŪŲ-ūŲ).

[ŭū] Oracle, Inc.The JavaHotSpot Performance EngineArchitecture. JavaHotSpot
Client Compiler. ŬŪŪŭ-ŪŮ. Ѣџљ: http://www.oracle.com/technetwork/
java/whitepaper-135217.html#client (visited on ŬŪūŬ-Ūū-ŪŮ).

[ŭŬ] Oracle, Inc. The Java HotSpot Performance Engine Architecture. Dynamic
Deoptimization. ŬŪŪŭ-ŪŮ. Ѣџљ: http://www.oracle.com/technetwork/
java/whitepaper-135217.html#dynamic (visited on ŬŪūŬ-Ūū-ŪŮ).

[ŭŭ] Oracle, Inc. The Java HotSpot Performance Engine Architecture. ŬŪŪŭ-ŪŮ.
Ѣџљ: http://www.oracle.com/technetwork/java/whitepaper-135217.
html (visited on ŬŪūŬ-Ūū-ŪŮ).

[ŭŮ] J. Pallas and D. Ungar. “Multiprocessor Smalltalk: a case study of a
multiprocessor-based programming environment.” In: SIGPLAN Not.
Ŭŭ.ű (ūųŲŲ-ŪŰ), pages ŬŰŲ–Ŭűű. іѠѠћ: ŪŭŰŬ-ūŭŮŪ. ёќі: 10.1145/960116.
54017.

[ŭů] Python Software Foundation. dis — Disassembler for Python bytecode.
ŬŪūū-ūŬ-ūŭ. Ѣџљ: http://docs.python.org/py3k/library/dis.html
(visited on ŬŪūū-ūŬ-ūŭ).

ūŮŬ

http://dx.doi.org/10.1145/1449814.1449838
http://dx.doi.org/10.1145/1449814.1449838
http://www.mirandabanda.org/cogblog/2009/01/14/under-cover-contexts-and-the-big-frame-up/
http://www.mirandabanda.org/cogblog/2009/01/14/under-cover-contexts-and-the-big-frame-up/
http://www.objs.com/x3h7/fmindex.htm
http://www.oracle.com/technetwork/java/whitepaper-135217.html#client
http://www.oracle.com/technetwork/java/whitepaper-135217.html#client
http://www.oracle.com/technetwork/java/whitepaper-135217.html#dynamic
http://www.oracle.com/technetwork/java/whitepaper-135217.html#dynamic
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://dx.doi.org/10.1145/960116.54017
http://dx.doi.org/10.1145/960116.54017
http://docs.python.org/py3k/library/dis.html

Bibliography

[ŭŰ] Python Software Foundation. Execution model. ŬŪūū-ūŬ-ūŭ. Ѣџљ: http:
//docs.python.org/py3k/reference/executionmodel.html (visited on
ŬŪūū-ūŬ-ūŭ).

[ŭű] Python Software Foundation.PythonDatamodel—Specialmethod names.
ŬŪūū-ūŬ-ūŭ. Ѣџљ: http://docs.python.org/py3k/reference/datamodel.
html#special-method-names (visited on ŬŪūū-ūŬ-ūŭ).

[ŭŲ] Armin Rigo and Samuele Pedroni. “PyPy’s approach to virtual ma-
chine construction.” In: Companion to the Ŭūst ACM SIGPLAN sympo-
sium on Object-oriented programming systems, languages, and applications.
OOPSLA ’ŪŰ. Portland, Oregon, USA: ACM, ŬŪŪŰ, pages ųŮŮ–ųůŭ. іѠяћ:
ū-ůųůųŭ-Ůųū-X. ёќі: 10.1145/1176617.1176753.

[ŭų] John R. Rose. “Bytecodes meet combinators: invokedynamic on the
JVM.” In: Proceedings of the Third Workshop on Virtual Machines and In-
termediate Languages. VMIL ’Ūų. Orlando, Florida: ACM, ŬŪŪų, Ŭ:ū–Ŭ:ūū.
іѠяћ: ųűŲ-ū-ŰŪůůŲ-ŲűŮ-Ŭ. ёќі: 10.1145/1711506.1711508.

[ŮŪ] Douglas Simon. “XIR definition.” personal communication. ŬŪūŬ-Ūū-Ūů.

[Ůū] Douglas Simon and Michael van de Vanter.Maxine Schemes. ŬŪūŬ. Ѣџљ:
https : / / wikis . oracle . com / display / MaxineVM / Schemes (visited on
ŬŪūŬ-ŪŮ-ŪŮ).

[ŮŬ] Douglas Simon and Michael van de Vanter. Maxine VM. ŬŪūū-ūū-Ūų.
Ѣџљ: http : / / wikis . oracle . com / pages / viewpage . action ? pageId =
31394883 (visited on ŬŪūū-ūŬ-Ūů).

[Ůŭ] Douglas Simon, Michael van de Vanter, and Ben Tiĵer. C1 X - Max-
ine VM. ŬŪūū-ŪŮ-Ūů. Ѣџљ: http://wikis.oracle.com/pages/viewpage.
action?pageId=31394883 (visited on ŬŪūū-ūŬ-Ūů).

[ŮŮ] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Sys-
tems and Processes (TheMorganKaufmann Series in Computer Architecture
and Design). San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., ŬŪŪů. іѠяћ: ūůůŲŰŪųūŪů.

[Ůů] Alan Snyder.AnAbstractObjectModel forObject-Oriented Systems. Tech-
nical report. HP Laboratories, ūųųŪ-ŪŮ.

[ŮŰ] Squeak Smalltalk. ŬŪūŬ. Ѣџљ: http://squeak.org/Smalltalk/ (visited on
ŬŪūŬ-ŪŮ-ŪŮ).

ūŮŭ

http://docs.python.org/py3k/reference/executionmodel.html
http://docs.python.org/py3k/reference/executionmodel.html
http://docs.python.org/py3k/reference/datamodel.html#special-method-names
http://docs.python.org/py3k/reference/datamodel.html#special-method-names
http://dx.doi.org/10.1145/1176617.1176753
http://dx.doi.org/10.1145/1711506.1711508
https://wikis.oracle.com/display/MaxineVM/Schemes
http://wikis.oracle.com/pages/viewpage.action?pageId=31394883
http://wikis.oracle.com/pages/viewpage.action?pageId=31394883
http://wikis.oracle.com/pages/viewpage.action?pageId=31394883
http://wikis.oracle.com/pages/viewpage.action?pageId=31394883
http://squeak.org/Smalltalk/

Bibliography

[Ůű] Christopher Strachey and Christopher P. Wadsworth. “Continuations:
A Mathematical Semantics for Handling Full Jumps.” In:Higher-Order
and Symbolic Computation ūŭ (ŬŪŪŪ), pages ūŭů–ūůŬ. ёќі: 10.1023/A:
1010026413531.

[ŮŲ] Ben L. Tiĵer, Thomas Würthinger, Doug Simon, and Marcelo Cintra.
“Improving compiler-runtime separation with XIR.” In: Proceedings of
the Űth International Conference on Virtual Execution Environments, VEE
ŬŪūŪ, PiĴsburgh, Pennsylvania, USA,March ūű-ūų, ŬŪūŪ. Edited by Marc
E. Fiuczynski, Emery D. Berger, and Andrew Warfield. VEE ’ūŪ. New
York, NY, USA: ACM, ŬŪūŪ, pages ŭų–ůŪ. іѠяћ: ųűŲ-ū-ŰŪůůŲ-ųūŪ-ű. ёќі:
10.1145/1735997.1736005.

[Ůų] David Ungar and Sam S. Adams. “Hosting an object heap on many-
core hardware: an exploration.” In: SIGPLAN Notices ŮŮ.ūŬ (ŬŪŪų-ūŪ),
pages ųų–ūūŪ. іѠѠћ: ŪŭŰŬ-ūŭŮŪ. ёќі: 10.1145/1837513.1640149.

[ůŪ] David Ungar, Adam Spiĵ, and Alex Ausch. “Constructing a metacir-
cular Virtual machine in an exploratory programming environment.”
In: Companion to the ŬŪth annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications. OOPSLA ’Ūů.
San Diego, CA, USA: ACM, ŬŪŪů, pages ūū–ŬŪ. іѠяћ: ū-ůųůųŭ-ūųŭ-ű. ёќі:
10.1145/1094855.1094865.

[ůū] Michael van de Vanter. Schemes - Maxine VM. ŬŪūū-ūŪ-ŬŲ. Ѣџљ: https:
//wikis.oracle.com/pages/viewpage.action?pageId=4161615 (visited
on ŬŪūū-ūŬ-ŪŰ).

[ůŬ] Mario Wolczko. “Semantics of Smalltalk-ŲŪ.” In: ECOOP’ Ųű European
Conference onObject-Oriented Programming. Edited by Jean Bézivin, Jean-
Marie Hullot, Pierre Cointe, and Henry Lieberman. Volume ŬűŰ. Lec-
ture Notes in Computer Science. London, UK: Springer Berlin / Hei-
delberg, ūųŲű, pages ūŪŲ–ūŬŪ. іѠяћ: ųűŲ-ŭ-ůŮŪ-ūŲŭůŭ-Ŭ. ёќі: 10.1007/3-
540-47891-4_11.

ūŮŮ

http://dx.doi.org/10.1023/A:1010026413531
http://dx.doi.org/10.1023/A:1010026413531
http://dx.doi.org/10.1145/1735997.1736005
http://dx.doi.org/10.1145/1837513.1640149
http://dx.doi.org/10.1145/1094855.1094865
https://wikis.oracle.com/pages/viewpage.action?pageId=4161615
https://wikis.oracle.com/pages/viewpage.action?pageId=4161615
http://dx.doi.org/10.1007/3-540-47891-4_11
http://dx.doi.org/10.1007/3-540-47891-4_11

Appendix A.

Key to Figures in Chapters ŭ and ů

Throughout this work, a variation of Ѣњљ class and object diagrams is used
to illustrate structural concepts. Ѣњљ was chosen as a base for it is an expres-
sive and well-known modeling language. At some points the notion is sim-
plified to avoid unnecessary complexity, other points are extended to allow
for more precision when describing the state of objects.

Classes and objects are shown as rectangles. Objects are usually labelled in
lower case, if possible with a descriptive name. Classes are labelled in up-
per case, even if they are objects at the same time. Unless relevant, field and
method definitions are omiĴed. Java interfaces are set in italics and can also
be identified by implements-connectors.

To show relations between entities, the default arrow types are used for sub-
classing, implementing interfaces (Java only) and instantiating a class. An
association between classes defines that instances of these classes may refer-
ence each other. Associations usually have a name and multiplicity informa-
tion; arrow heads indicate whether they are uni- or bi-directional. For beĴer
distinction, actual references between objects are shown with a different ar-
row type.

ūŮů

Appendix A. Key to Figures in Chapters ŭ and ů

Sometimes it is necessary to show details of an object’s state. In these cases,
one of two notations is used: the logical and the physical representation.

In the logical representation, fields are shown as additional boxes. They
contain either a string representation of their value or are the origin of a
reference connector. Information that is not logically stored in the object,
but is shown for a beĴer understanding of the values, is placed outside of
the boxes. In the example shown above, they are the field names that are
only known to the class, but not to the object itself.

The physical representation shows how the object is stored in memory.
Here, each box represents one word. Header fields are highlighted gray and
labelled with their name, regular fields are shown similar to the logical repre-
sentation. A small arrow indicates the object’s origin, the address that is used
to reference the object. Again, complementary information may be shown
outside of the cell.

Other diagram types or object connectors are explained as they are used.

ūŮŰ

Appendix B.

Extended Interfaces

Table B.ū.: To allow for a modular and configurable architecture of SqueakMaxine, the
existing scheme interfaces were extended with the methods listed here.

Method Description

SqueakLayoutScheme

boolean isSqueakObject(Accessor obj) Determines whether the parameter
references a Squeak object.

Pointer nextObject(Pointer orig) For a given object, returns the next object
on the heap.

SqueakImageLoaderScheme getSqueakImageLoader() Returns the image loader, which
populates the heap from a Squeak image
file (see below).

SqueakRuntime getSqueakRuntime() Returns the Squeak runtime, which
provides reflection methods for Squeak
objects (see below).

SqueakRuntime

Reference getSpecialObjectReference(
SpecialObject so)

Returns the requested special object;
enum SpecialObject defines well-known
object indices.

Reference getInstanceVariable(Reference object,
Index index)

void setInstanceVariable(Reference o, Index i,
Reference v)

Accesses an object’s field by index. As
Squeak uses one-based indices, while
Java by default uses zero-based indices,
the meaning of an int parameter would
be ambigous. Instances of Index explicitly
provide a zero and a one-based value.

Reference getInstanceVariable(Reference o,
String n)
void setInstanceVariable(Reference o, String n,
Reference v)

Accesses an object’s field by name.

Reference getClass(Reference object) Returns the class object for a given
Squeak object.

String toJavaString(Reference object) Returns a simple string representation of
the object.

ūŮű

Appendix B. Extended Interfaces

Table B.ū.: To allow for a modular and configurable architecture of SqueakMax-
ine, the existing scheme interfaces were extended with the methods listed here.
(continued)

Method Description

SqueakRuntime (continued)

Reference getSmallIntegerReferene
(long value)
long getSmallIntegerValue(
Reference smallInteger)

Converts Java integers to and from tagged
integer references.

int getArrayLength(Reference array
)

Returns the length of a Squeak array.

Reference getElement(Reference
array, int index)
void setElement(Reference array,
int index, Reference value)

Accesses values of an object array.

byte getByte(Reference array, int
index)

void setByte(Reference array, int
index, byte value)

Accesses values of a byte array.

Word getWord(Reference array, int
index)

void setWord(Reference array, int
index, Word value)

Accesses values of a word array.

int getFirstByteCodeIndex(
Reference compiledMethod)
int getLastByteCodeIndex(
Reference compiledMethod)

Determines the bytecode part in a compiled
method. Bytes can be accessed with getByte.

int getNumberOfLiterals(
SqueakReference compiledMethod)

Determines the number of literal references in a
compiled method. Literals can be accessed with
getElement.

int getNumberOfArguments(
SqueakReference compiledMethod)
int getNumberOfTemporaries(
SqueakReference compiledMethod)

Returns the number of parameters and
temporal variables of a compiled method.

SqueakImageLoaderScheme

void loadImage(File image)throws
IOException, ImageFormatException

Loads an image file.

ūŮŲ

Table B.ū.: To allow for a modular and configurable architecture of SqueakMax-
ine, the existing scheme interfaces were extended with the methods listed here.
(continued)

Method Description

SqueakHeapScheme

boolean
supportsSqueakObjectDetection()

Returns whether the heap is capable of
distinguishing between Squeak and Java
objects on its own. True for the dual semi-space
heap of the Squeak layout approach, false for
Maxine layout approach.

boolean isSqueakObject(Accessor
object)

If Squeak object detection is supported, returns
whether the argument references a Squeak
object.

Reference specialObjectsArray() Returns the special objects array.
Pointer imageStart()
Pointer imageEnd()

Returns the start and end of the current
to-space.

SqueakReference firstObject() Returns the first Squeak object on the heap.
ImageLoadingAllocator
getImageLoadingAllocator()

Returns the image loading allocator (see
below), which is used by the image loader to
populate the heap.

ūŮų

Appendix B. Extended Interfaces

Table B.ū.: To allow for a modular and configurable architecture of SqueakMax-
ine, the existing scheme interfaces were extended with the methods listed here.
(continued)

Method Description

ImageLoadingAllocator

Region placeImageIntoMemory(File
imageFile)throws IOException

Places the content of the image file in memory.

void reserveMemory(Size
requestedMemory)

Reserves memory for allocating Squeak objects.

Region getPrivateMemorySpace() Returns the reserved memory region. It can be
filled with Squeak objects; objects created with
the new-keyword will not be allocated here.

void informLoadingDone() Informs the heap that loading is completed. For
instance, the image file memory can be freed
now.

void setSpecialObjectsArray(
Reference soa)

Makes the special objects array known to the
heap.

SqueakReferenceScheme

boolean isMarkedSqueak(Reference
ref)
Reference markedSqueak(Reference
ref)
Reference unmarkedSqueak(
Reference ref)

Handles forward references explicitly for
Squeak objects. Only used by the Squeak
layout approach, which uses a different bit to
indicate forward references. With the Maxine
layout approach, Java and Squeak objects are
handled the same way.

boolean isTaggedInteger(Reference
object)
Reference fromLong(long value)
long toLong(Reference object)

Implements how small integers are realized as
tagged references.

ūůŪ

Appendix C.

Squeak Essential Primitives

Table C.ū.: Squeak primitives that are marked “Essential.”. A total of Űů unique
primitives constitute the built-in behavior of Squeak/Smalltalk; including arith-
metics, object content access, instance creation, and invocation, among others.
Some methods share the same primitive; those primitives’ indices are only given
once in the table.

Index Class Method Category

ū SmallInteger + arithmetic
Ŭ SmallInteger - arithmetic
ŭ SmallInteger < comparing
Ů SmallInteger > comparing
ű SmallInteger = comparing
Ų SmallInteger ~= comparing
ų SmallInteger * arithmetic

ūŬ SmallInteger // arithmetic
ūŮ SmallInteger bitAnd: bit manipulation
ūů SmallInteger bitOr: bit manipulation
ūŰ SmallInteger bitXor: bit manipulation
ūű SmallInteger bitShift: bit manipulation
ŭŲ Float basicAt: accessing
ŭų Float basicAt:put: accessing
ŮŪ SmallInteger asFloat converting
Ůū Float + arithmetic
ŮŬ Float - arithmetic
Ůŭ Float < comparing
ŮŮ Float > comparing
Ůű Float = comparing
Ůų Float * arithmetic
ůŪ Float / arithmetic
ůū Float truncated truncation and round off
ŰŪ Object basicAt: accessing

Object at: accessing
LargePositiveInteger digitAt: system primitives

ūůū

Appendix C. Squeak Essential Primitives

Table C.ū.: Squeak primitives that are marked “Essential.” (continued)
Index Class Method Category

FutureMaker basicAt: accessing
Űū WideSymbol pvtAt:put: private

Object basicAt:put: accessing
Object at:put: accessing

LargePositiveInteger digitAt:put: system primitives
FutureMaker basicAt:put: accessing

ŰŬ Object size accessing
Object basicSize accessing

LargePositiveInteger digitLength system primitives
FutureMaker basicSize accessing

Űŭ ByteSymbol at: accessing
ByteString at: accessing

ŰŮ ByteSymbol pvtAt:put: private
ByteString at:put: accessing

ŰŲ CompiledMethod objectAt: literals
Űų CompiledMethod objectAt:put: literals
űŪ Interval class new instance creation

Behavior basicNew instance creation
űū Behavior basicNew: instance creation
űŭ ObjectOut xxxInstVarAt: basics

Object instVarAt: system primitives
FutureMaker instVarAt: accessing

űŮ ObjectOut xxxInstVarAt:put: basics
Object instVarAt:put: system primitives

FutureMaker instVarAt:put: accessing
űů ProtoObject identityHash comparing
űű Behavior someInstance accessing instances and variables
űŲ ProtoObject nextInstance system primitives
űų CompiledMethod class newMethod:header: instance creation
ŲŬ BlockContext valueWithArguments: evaluating
Ųů Semaphore signal communication
ŲŰ Semaphore wait communication
Ųű Process primitiveResume changing process state
Ųų Behavior flushCache private
ųŮ EventSensor primGetNextEvent: private-I/O
ųű SmalltalkImage snapshotPrimitive snapshot and quit

ūŪŪ Object perform:withArguments:inSuperclass:message handling
ūŪū Cursor beCursorWithMask: primitives

Cursor beCursor primitives
ūŪŬ DisplayScreen beDisplay private
ūūŪ ProtoObject == comparing
ūūū ObjectOut xxxClass basics

Object class class membership

ūůŬ

Table C.ū.: Squeak primitives that are marked “Essential.” (continued)
Index Class Method Category

ImageSegmentRootStub xxxClass fetch from disk
ūūŭ SmalltalkImage quitPrimitive snapshot and quit
ūūŮ SmalltalkImage exitToDebugger snapshot and quit

↑ Smalltalk Squeak/Smalltalk only ↓

ūŭŰ Delay class primSignal:atMilliseconds: primitives
ūŭű Time class primSecondsClock smalltalk-ŲŪ
ŬŪū BlockClosure value evaluating
ŬŪŬ BlockClosure value: evaluating
ŬŪŭ BlockClosure value:value: evaluating
ŬŪŮ BlockClosure value:value:value: evaluating
ŬŪů BlockClosure value:value:value:value: evaluating
ŬŪŰ BlockClosure valueWithArguments: evaluating
ŬūŪ MethodContext tempAt: accessing

ContextPart basicAt: accessing
ContextPart at: accessing

Ŭūū MethodContext tempAt:put: accessing
ContextPart basicAt:put: accessing
ContextPart at:put: accessing

ŬūŬ ContextPart size accessing
ContextPart basicSize accessing

ŬŬū BlockClosure valueNoContextSwitch evaluating
ŬŬŬ BlockClosure valueNoContextSwitch: evaluating

(ūūű) BitBlt copyBitsAgain 1 private

ūThis primitive is actually not an indexed but a named primitive, yet marked as being es-
sential. We suspect that this is a bug.

ūůŭ

Appendix D.

SqueakMaxine Primitive
Implementation Overview

Table D.ū.: Squeak primitives and their implementation status in SqueakMaxine.
The name column refers to the primitive name in the Squeak ѣњ.
Index Essential Implemented Name Remark

ū 4 4 Add
Ŭ 4 4 Subtract
ŭ 4 4 LessThan
Ů 4 4 GreaterThan
ů 4 LessOrEqual
Ű 4 GreaterOrEqual
ű 4 4 Equal
Ų 4 4 NotEqual
ų 4 4 Multiply

ūŪ 4 Divide
ūŬ 4 4 Div
ūŮ 4 8 BitAnd
ūů 4 8 BitOr
ūŰ 4 8 BitXor
ūű 4 4 BitShift
ŭŲ 4 8 FloatAt not interpreter
ŭų 4 8 FloatAtPut not interpreter
ŮŪ 4 8 AsFloat not interpreter
Ůū 4 8 FloatAdd not interpreter
ŮŬ 4 8 FloatSubtract not interpreter
Ůŭ 4 8 FloatLessThan not interpreter
ŮŮ 4 8 FloatGreaterThan not interpreter
Ůű 4 8 FloatEqual not interpreter
Ůų 4 8 FloatNotEqual not interpreter
ůŪ 4 8 FloatMultiply not interpreter
ůū 4 8 FloatDivide not interpreter
ŰŪ 4 4 At

ūůŮ

Table D.ū.: Squeak primitives and their implementation status in SqueakMaxine.
(continued)
Index Essential Implemented Name Remark

Űū 4 8 AtPut
ŰŬ 4 8 Size
Űŭ 4 8 StringAt
ŰŮ 4 8 StringAtPut
ŰŲ 4 8 ObjectAt
Űų 4 8 ObjectAtPut
űŪ 4 4 New
űū 4 4 NewWithArg
űŭ 4 8 InstVarAt
űŮ 4 8 InstVarAtPut
űů 4 8 IdentityHash
űű 4 8 SomeInstance
űŲ 4 8 NextInstance
űų 4 8 NewMethod
ŲŬ 4 8 ValueWithArgs only for contexts
Ųů 4 8 Signal
ŲŰ 4 8 Wait
Ųű 4 8 Resume
Ųų 4 8 FlushCache
ųŮ 4 8 GetNextEvent
ųű 4 8 Snapshot

ūŪŪ 4 8 PerformInSuperclass
ūŪū 4 8 BeCursor
ūŪŬ 4 8 BeDisplay
ūūŪ 4 4 Identical
ūūū 4 4 Class
ūūŭ 4 8 Quit
ūūŮ 4 8 ExitToDebugger
ūŭŪ 4 FullGC
ūŭū 4 IncrementalGC
ūŭŰ 4 8 SignalAtMilliseconds
ūŭű 4 8 SecondsClock

ŬŪū–ŬŪů 4 4 ClosureValue only for closures
ŬŪŰ 4 8 ClosureValueWithArgs only for closures
ŬūŪ 4 8 At ContextPart, ∼= ŰŪ
Ŭūū 4 8 AtPut ContextPart, ∼= Űū
ŬūŬ 4 8 Size ContextPart, ∼= Űŭ

ŬŬū/ŬŬŬ 4 8 ClosureValueNoContextSwitch only for closures
multiple n/a n/a Fail deliberately failing

ūůů

Appendix E.

Key for Virtual Machine Structure
Diagram

Model boundary

Data-loading access,
no control behavior like GC.

Access, not directly
related to VM behavior

Access

Data storage

VM component,
Operating system

Key for figure Ů.ū and figure Ů.Ŭ. Note that the former diagram uses a non-
formal notation in both the lecture material [ūŰ] and the book it is based
on [ŮŮ]. Hence, to point out the abstracted parts, we chose to not use a formal
notation either but rather use the same non-formal for the laĴer diagram.

ūůŰ

Appendix F.

Code Examples for S1X

Behavior>>basicNew
”Primitive. Answer an instance of the receiver (which is a class)
with no indexable variables.
Fail if the class is indexable. Essential.
See Object documentation whatIsAPrimitive.”

<primitive: 70>
self isVariable ifTrue: [↑ self basicNew: 0].
”space must be low”
OutOfMemory signal.
↑self basicNew ”retry if user proceeds”

Listing F.ū: Squeak/Smalltalk source of Behavior>>new as of Squeak Ů.ŭ.

<primitive: 70>
33 <70> self
34 <D1> send: isVariable
35 <9B> jumpFalse: 40
36 <70> self
37 <75> pushConstant: 0
38 <E0> send: basicNew:
39 <7C> returnTop
40 <43> pushLit: OutOfMemory
41 <D2> send: signal
42 <87> pop
43 <70> self
44 <D4> send: basicNew
45 <7C> returnTop

Listing F.Ŭ: Squeak bytecode of Behavior>>new as of Squeak Ů.ŭ.

ūůű

Appendix F. Code Examples for S1X

;;
;; sr = S1XRuntime
;; mr = MaxSqueakRuntime
;;
Prologue:

jmp L1
nop
nop
nop
call +133940307 ; OPT2BASELINE-Adapter(R)

L1:
enter 0x50, 0x0 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
subq rbp, 0x50
mov [rsp - 8104], rax
xor r11, r11
mov [-159], r11
xor r11, r11
mov [rbp + 72], r11

Primitive: ; primitive 70
mov r11, [rbp + 96]
subq rsp, 0x10
mov [rsp], r11
mov rdi, [rsp]
mov rdi, [rdi + 16]
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
nop
nop
call -9006170 ; sr.createTupleOrHybrid()[O]
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov [rsp], rax
subq rsp, 0x10
cmpq rax, 0x0
jz L2: +8
addq rbp, 0x50
leave
ret 0x10

bytecode_01: ; push receiver
L2:

mov r11, [rbp + 96]
subq rsp, 0x10
mov [rsp], r11

bytecode_02: ; send: #isVariable
mov rsi, [-232] ; aSymbol(isVariable)
mov rdi, [rsp]

ūůŲ

call -9007353 ; sr.resolveAndSelectSqueakMethod()[O]
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov rdi, [rsp]
call rax
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
subq rsp, 0x10
mov [rsp], rax

bytecode_03: ; jumpFalse: 40 (L5)
mov r11, [rsp]
mov rax, [-260] ; aTrue(true)
addq rsp, 0x10
cmp r11, rax
jz L3: +86 ; bytecode_04
subq rsp, 0x10
mov r11, [rsp]
mov rax, [-280] ; aFalse(false)
addq rsp, 0x10
cmp r11, rax
jz L5: +256 ; bytecode_08
subq rsp, 0x10
mov rdi, [-296] ; SpecialObject.SelectorMustBeBoolean
call -9005741 ; sr.getSpecialObjectReference()[O]
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
subq rsp, 0x10
mov [rsp], rax
mov rsi, [rsp]
addq rsp, 0x10
mov rdi, [rsp]
call -9007463 ; sr.resolveAndSelectSqueakMethod()[O]
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov rdi, [rsp]
call rax
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
subq rsp, 0x10
mov [rsp], rax

bytecode_04: ; push receiver
L3:

mov r11, [rbp + 96]
subq rsp, 0x10
mov [rsp], r11

bytecode_05: ; push constant 0
mov r11, [-354] ; 0, tagged int
subq rsp, 0x10
mov [rsp], r11

ūůų

Appendix F. Code Examples for S1X

bytecode_06: ; send: #basicNew:
mov rsi, [-361] ; aSymbol(basicNew:)
mov rdi, [rsp + 16]
call -9007523 ; sr.resolveAndSelectSqueakMethod()[O]
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov rdi, [rsp + 16]
call rax
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
subq rsp, 0x10
mov [rsp], rax

bytecode_07: ; return top
mov rdi, [rsp]
mov rax, rdi
addq rsp, 0x10
mov r11, [rbp + 72]
mov rdi, r11
mov rsi, rax
mov rdx, rdi
cmpq rdx, 0x0
jz L4: +84
mov [rbp + 24], rsi
mov [rbp + 8], rdi
mov rax, [-429] ; mr
mov rdx, [rax + 24]
mov rdi, rax
mov rsi, rdx
mov edx, 0x0
mov [rbp + 16], rax
call -9014213 ; mr.getElement()[O]
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov rdi, [rbp + 8]
mov [rdi + 40], rax ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov rax, [rbp + 16]
mov rsi, [rax + 24]
mov rdi, rax
mov edx, 0x0
nop
nop
call -9014245 ; mr.getElement()[0]
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov rdi, [rbp + 8]
mov [rdi + 32], rax
mov rsi, [rbp + 24]

Epilogue_L4:
L4:

ūŰŪ

mov rax, rsi
subq rsp, 0x10
mov [rsp], rax
addq rbp, 0x50
leave
ret 0x10

bytecode_08: ; push literal: OutOfMemory
L5:

mov rdi, [-516] ; anAssociation(#OutOfMemory->OutOfMemory)
call -9014049 ; sr.getAssociationValue()[O]
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
subq rsp, 0x10
mov [rsp], rax

bytecode_09: ; send: #signal
mov rsi, [-529] ; aSymbol(signal)
mov rdi, [rsp]
call -9007714 ; sr.resolveAndSelectSqueakMethod()[O]
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov rdi, [rsp]
call rax
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
subq rsp, 0x10
mov [rsp], rax

bytecode_10: ; pop
addq rsp, 0x10

bytecode_11: ; push receiver
mov r11, [rbp + 96]
subq rsp, 0x10
mov [rsp], r11

bytecode_12: ; send: #basicNew
mov rsi, [-569] ; aSymbol(basicNew)
mov rdi, [rsp]
call -9007762 ; sr.resolveAndSelectSqueakMethod()[O]
nop
mov rdi, [rsp]
call rax
nop
subq rsp, 0x10
mov [rsp], rax

ūŰū

Appendix F. Code Examples for S1X

bytecode_13: ; return top
mov rdi, [rsp]
mov rax, rdi
addq rsp, 0x10
mov r11, [rbp + 72]
mov rdi, r11
mov rsi, rax
mov rdx, rdi
cmpq rdx, 0x0
jz L6: +84 ; Epilogue
mov [rbp + 24], rsi
mov [rbp + 8], rdi
mov rax, [-635] ; mr
mov rdx, [rax + 24]
mov rdi, rax
mov rsi, rdx
mov edx, 0x0
mov [rbp + 16], rax
call -9014451 ; mr.getElement()[O]
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov rdi, [rbp + 8]
mov [rdi + 40], rax ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov rax, [rbp + 16]
mov rsi, [rax + 24]
mov rdi, rax
mov edx, 0x0
nop
nop
call -9014483 ; mr.getElement()[O]
nop ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov rdi, [rbp + 8]
mov [rdi + 32], rax
mov rsi, [rbp + 24]

Epilogue:
L6:

mov rax, rsi
subq rsp, 0x10
mov [rsp], rax
addq rbp, 0x50
leave
ret 0x10

Listing F.ŭ: S1X generated native code for Behavior>>new.

ūŰŬ

Colophon

This report was typeset by LATEXŬε with X ETEX using KOMA-Script. The
body text is set ūū/ūŮū⁄Ů pt on a ŭŪū⁄Ů pc measure. The body type face is Her-
mann Zapf’s Palatino Linotype. The listing type face is DejaVu Sans Mono,
based on the Vera family by Bitstream, Inc. —Tobias Pape

ūŰŭ

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

81 978-3-86956-

265-0
Babelsberg: Specifying and Solving
Constraints on Object Behavior

Tim Felgentreff, Alan Borning,
Robert Hirschfeld

80 978-3-86956-
264-3

openHPI: The MOOC Offer at Hasso
Plattner Institute

Christoph Meinel,
Christian Willems

79 978-3-86956-
259-9

openHPI: Das MOOC-Angebot des Hasso-
Plattner-Instituts

Christoph Meinel,
Christian Willems

78 978-3-86956-
258-2

Repairing Event Logs Using Stochastic
Process Models

Andreas Rogge-Solti, Ronny S.
Mans, Wil M. P. van der Aalst,
Mathias Weske

77 978-3-86956-
257-5

Business Process Architectures with
Multiplicities: Transformation and
Correctness

Rami-Habib Eid-Sabbagh,
Marcin Hewelt, Mathias Weske

76 978-3-86956-
256-8

Proceedings of the 6th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren des
HPI

75 978-3-86956-
246-9

Modeling and Verifying Dynamic Evolving
Service-Oriented Architectures

Holger Giese, Basil Becker

74 978-3-86956-
245-2

Modeling and Enacting Complex
Data Dependencies in Business
Processes

Andreas Meyer, Luise Pufahl,
Dirk Fahland, Mathias Weske

73 978-3-86956-
241-4

Enriching Raw Events to Enable Process
Intelligence

Nico Herzberg, Mathias Weske

72 978-3-86956-
232-2

Explorative Authoring of ActiveWeb
Content in a Mobile Environment

Conrad Calmez, Hubert Hesse,
Benjamin Siegmund, Sebastian
Stamm, Astrid Thomschke,
Robert Hirschfeld, Dan Ingalls,
Jens Lincke

71 978-3-86956-
231-5

Vereinfachung der Entwicklung von
Geschäftsanwendungen durch
Konsolidierung von Programmier-
konzepten und -technologien

Lenoi Berov, Johannes Henning,
Toni Mattis, Patrick Rein, Robin
Schreiber, Eric Seckler, Bastian
Steinert, Robert Hirschfeld

70 978-3-86956-
230-8

HPI Future SOC Lab - Proceedings 2011 Christoph Meinel, Andreas Polze,
Gerhard Oswald, Rolf Strotmann,
Ulrich Seibold, Doc D'Errico

69 978-3-86956-
229-2

Akzeptanz und Nutzerfreundlichkeit der
AusweisApp: Eine qualitative
Untersuchung

Susanne Asheuer, Joy
Belgassem, Wiete Eichorn, Rio
Leipold, Lucas Licht, Christoph
Meinel, Anne Schanz, Maxim
Schnjakin

68 978-3-86956-
225-4

Fünfter Deutscher IPv6 Gipfel 2012 Christoph Meinel, Harald Sack
(Hrsg.)

67 978-3-86956-
228-5

Cache Conscious Column Organization in
In-Memory Column Stores

David Schalb, Jens Krüger,
Hasso Plattner

66 978-3-86956-
227-8

Model-Driven Engineering of Adaptation
Engines for Self-Adaptive Software

Thomas Vogel, Holger Giese

ISBN 978-3-86956-266-7
ISSN 1613-5652

	Title page
	Imprint

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	1. Introduction
	1.1. Contributions
	1.2. Outline

	2. Maxine and Dynamic Object-oriented Languages
	2.1. Introduction to Maxine
	2.1.1. Maxine as a Java Superset
	2.1.2. Bootstrapping
	2.1.3. Variability through Schemes
	2.1.4. Pluggability through Brokers
	2.1.5. Execution in Maxine

	2.2. Challenges for Dynamic Languages on Maxine
	2.2.1. Relevant Characteristics of Dynamic Object-oriented Languages
	2.2.2. Maxine as a Virtual Machine Platform

	3. Representing Squeak Objects in Memory
	3.1. Object Models
	3.1.1. Definition
	3.1.2. The Java and Squeak Object Models
	3.1.3. Object Layout: The Physical Representation

	3.2. Squeak Layout
	3.2.1. Header Words
	3.2.2. Nine Layout Kinds
	3.2.3. The Squeak Heap

	3.3. Mapping Squeak to Maxine
	3.3.1. Hubs and Actors
	3.3.2. The OHM Layout
	3.3.3. A Compromise
	3.3.4. Introducing New Layout Kinds

	3.4. Tagged Integers

	4. Mapping Execution Models toMaxine
	4.1. Execution Models and Virtual Machines
	4.1.1. Working Definition in the Context of Virtual Machines
	4.1.2. The Java Execution Model
	4.1.3. The Squeak / Smalltalk Execution Model

	4.2. Interaction with Object Models
	4.3. Implementation Process Concept
	4.3.1. Transformation Requirements
	4.3.2. Possible Implementation Process

	4.4. Built-in Behavior
	4.4.1. Instances of Built-in Behavior
	4.4.2. Maxine and Built-in Behavior
	4.4.3. Providing General Built-in Behavior in Maxine

	4.5. Stack Access
	4.5.1. Stack Access in Dynamic Object-oriented Languages
	4.5.2. Maxine Stack Walking
	4.5.3. Implementation Approaches

	5. Objects in SqueakMaxine
	5.1. Configuration with Schemes
	5.1.1. The Layout Scheme
	5.1.2. The Heap Scheme
	5.1.3. Extended Extension Points

	5.2. The Squeak Layout Approach
	5.2.1. Implementing a Layout
	5.2.2. Dual Semispace Heap
	5.2.3. Integration in Maxine

	5.3. The Maxine Layout Approach
	5.3.1. Extending the layout
	5.3.2. Image Loading
	5.3.3. Integration in Maxine

	5.4. Tagged Integers

	6. Execution in SqueakMaxine
	6.1. Architecture of SqueakMaxine
	6.1.1. Changes by SqueakMaxine

	6.2. Runtime Object Access
	6.2.1. Maxine
	6.2.2. SqueakMaxine and the YOhmLayout

	6.3. Bytecode Compilation
	6.3.1. Java Compilation with C1X and T1X
	6.3.2. Squeak Compilation with S1X

	6.4. Garbage Collection in the Presence of Executing Code
	6.4.1. Reference Maps in Maxine
	6.4.2. Reference Maps in SqueakMaxine

	6.5. Implementing Built-in Behavior
	6.5.1. Maxine Java Method Substitution, Intrinsics, and the JDK
	6.5.2. SqueakMaxine Primitives

	6.6. Runtime Execution Information and Call Stacks
	6.6.1. Stack-walking in Maxine
	6.6.2. SqueakMaxine and Smalltalk’s thisContext

	7. Variation Points of a Virtual Machine Framework
	7.1. From Configurability to Extensibility
	7.1.1. Parallel Environments
	7.1.2. Integrated Environments
	7.1.3. Scheme Sets

	7.2. Heap and Garbage Collector
	7.2.1. Garbage Strategy
	7.2.2. Layout Responsibility

	7.3. Layout
	7.3.1. Predefined Layout Kinds
	7.3.2. Reference Visitor
	7.3.3. General Layout Responsibility
	7.3.4. Additional Header Fields
	7.3.5. Logic Duplication with Compiler
	7.3.6. Actor Hierarchy

	7.4. Other Subsystems
	7.4.1. Reference Scheme
	7.4.2. Inspector
	7.4.3. Run Scheme versus Startup Scheme

	8. Maxine Variation Points: An Evaluation
	8.1. Instruction Set Abstractions
	8.2. The Template-based Just-In-Time Compiler
	8.3. Re-usability of Maxine’s Compilation Infrastructure
	8.4. Implementing Built-in Behavior
	8.5. Stack Manipulation
	8.6. Applicability to Other Dynamic Languages
	8.6.1. Class-based Languages
	8.6.2. Prototype-based Languages

	9. Related Work
	9.1. Virtual Machines in Higher-level Languages and Metacircular Virtual Machines
	9.2. Virtual Machine Product Lines, Platforms, and Frameworks
	9.3. Java Virtual Machines
	9.4. Squeak Virtual Machines
	9.5. Dynamic Languages on Java Virtual Machines

	10. Summary and Future Work
	Bibliography
	Appendix A
	Key to Figures in Chapters 3 and 5

	Appendix B
	Extended Interfaces

	Appendix C
	Squeak Essential Primitives

	Appendix D
	SqueakMaxine Primitive Implementation Overview

	Appendix E
	Key for Virtual Machine Structure Diagram

	Appendix F
	Code Examples for S1X

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

