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Abstract. Companies strive to improve their business processes in order to remain
competitive. Process mining aims to infer meaningful insights from process-related
data and attracted the attention of practitioners, tool-vendors, and researchers in
recent years. Traditionally, event logs are assumed to describe the as-is situa-
tion. But this is not necessarily the case in environments where logging may be
compromised due to manual logging. For example, hospital staff may need to
manually enter information regarding the patient’s treatment. As a result, events
or timestamps may be missing or incorrect.
In this report, we make use of process knowledge captured in process models,
and provide a method to repair missing events in the logs. This way, we facilitate
analysis of incomplete logs. We realize the repair by combining stochastic Petri
nets, alignments, and Bayesian networks. We evaluate the results using both
synthetic data and real event data from a Dutch hospital.

Keywords: process mining, missing data, stochastic Petri nets, Bayesian net-
works

1 Introduction

Many information systems record detailed information concerning the processes they
support. Typically, the start and completion of process activities together with related
context data, e.g., actors and resources, are recorded. In business process management,
such event data can be gathered into logs. Subsequently, these logs can be analyzed to
gain insights into the performance of a process. In many cases, information systems do
not force the process participants to perform tasks according to rigid paths, as specified
by process models. Rather, the process participants are responsible to track their manual
work which is sometimes not reflected in the system. In other words, the event logs might
be incomplete or noisy [1]. These data quality issues affect process mining methods and
often lead to unsatisfactory results.

One example can be found in a clinical setting describing a surgery process, which
is performed in a sequence of tasks, e.g., induce coma, enter operating room (OR),
perform surgery, leave OR, etc. These tasks are depending on each other causally,
e.g., it is impossible for a patient to leave the OR, without having entered it before.



Consider the case, where for each activity in this process, an event is documented in the
system. However, due to some reason, the event entry for enter OR is missing from the
documentation. If we observe that there is an entry for the patient to leave the OR, we
can safely conclude that the patient must have also entered it at some point before, since
these activities depend on each other. In this case, it is likely that a documentation error
occurred and it might be of interest, when the patient entered the OR most likely to aid
with root cause analysis of the documentation error.

Typically, analysis methods do not take missing data in process oriented systems
into account. Matters are complicated by several potential reasons that cause data to be
missing. One reason might be that documentation was forgotten, or lost, but in reality
the activities happened. Another reason might be that the activity was not executed.
In general, it is not easy to differentiate these cases, and the usual assumption is that
the event logs contain the truth, i.e., only the recorded activities happened in reality.
However, as the example in the surgery process shows, this is not necessarily the case.
Depending on the domain, it can be reasonable to assume that the models contain the
truth, and the documentation is faulty.

Existing approaches can be used to repair the model based on event data [2]. However,
if steps are recorded manually this may lead to misleading results as little weight is given
to a priori domain knowledge. Therefore, we adopt a stochastic approach to modeling
process behavior and introduce a novel approach to repair event logs according to a
given stochastically enriched process model [3]. We discuss different ways to deal with
the issue of incomplete event data and propose a probabilistic approach for inserting
missing entries into an event log based on a given as-is process. To model the as-is
process we use Petri nets enhanced with timing information and path probabilities.

In fact, we use a variant of the well-known Generalized Stochastic Petri nets (GSPNs)
defined in [4]. As a first step, using path probabilities, it is determined which are the
most likely missing events. Next, Bayesian networks [5] capturing both initial beliefs of
the as-is process and real observations are used to compute the most likely timestamp
for each inserted entry.

The repaired event logs can be used in further analysis, e.g., to assist in locating
responsible persons to determine the reason of the missing entry, or in further process
mining methods assuming complete event logs. Note that the uncertainty in the restored
events needs to be accounted for in the latter case. To our knowledge, this is the first
work towards using statistical techniques for missing data in the BPM/process mining
domain.

The remainder of this report is organized as follows. First, we present background on
missing data methods along other related works in Section 2. Afterwards, preliminaries
are given in Section 3. Our approach for repairing individual traces in an event log is
described in Section 4 followed by a presentation of the algorithmic details in Section 5.
An evaluation of our approach using both synthetic and real-life event data is given in
Section 6. Finally, conclusions are presented in Section 7.
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2 Background and Related Work

Missing data has been investigated in statistics, but not in the context of process mining.
Statisticians collect surveys from samples of a population to make inferences about
parameters of the whole population. Often, values are missing from these surveys due to
a number of reasons. Consider a survey asking people for their income. In this survey
people might not respond, if they do not understand the question due to language reasons,
or they might not want to respond if their income is very high. Thus, when dealing with
missing data, it is important to know the mechanisms causing such phenomena.

There are different types of missing data: missing completely at random (MCAR),
missing at random (MAR), and not missing at random (NMAR), cf. the overview
by Schafer and Graham in [6]. These types refer to the independence assumptions
between the fact that data is missing (missingness) and the data values of missing and
observed data. MCAR is the strongest assumption, i.e., missingness is independent of
both observed and missing data. MAR allows dependencies to observed data, and NMAR
assumes no independence, i.e., captures cases where the missingness is influenced by the
missing values, too. The example survey about the income deals with data that is NMAR,
as people with higher income are more likely not to respond. Dealing with NMAR data
is problematic, as it requires a dedicated model for the dependency of missingness on
the missing values, and is out of scope of this report. We assume that data is MAR,
i.e., whether data is missing does not depend on the value of the missing data, but may
depend on observed data values.

2.1 How to Deal with Missing Data?

Since usual statistical methods assume data to be complete, the easiest method to deal
with missing data is to only use the subset of whole data that has all entries present.
This is called listwise deletion. The main merit in using listwise deletion is that it is
simple and honest. If the data is MCAR, and only few entries in the data have to be
discarded due to missing events, this is a good solution. However, if a large portion of the
samples have to be discarded, the efficiency of the estimate suffers from this technique.
Furthermore, if the data is not MCAR, but MAR, this method fails to take dependencies
into account and produces biased parameter estimates.

More sophisticated methods that are able to deal with data that is MAR, and are
recommended as state of the art [6], are maximum likelihood estimation, and Bayesian
multiple imputation. Both these methods are efficient, i.e., they make use of all observed
data to increase confidence in the estimations, and produce unbiased estimators in
the MAR case. The seminal work by Dempster et al. [7] describes the EM algorithm
that finds the maximum likelihood of the parameters by iterating an estimation and
maximization step until convergence. Later, Rubin introduced the idea to replace missing
values with multiple simulated values (imputations) and average results of each data set
in order to account for the variability of the missing data [8]. The technical details of
these techniques remain out of scope of this report, and the interested reader is referred
to the book by Little and Rubin [9] on this topic.

Over the years, further methods have been proposed to perform missing data imputa-
tion, cf. [6]. However, these techniques are focusing on missing values in surveys and

3



are not directly applicable to event logs, as they do not consider control flow relations in
process models and usually assume a fixed number of observed variables.

2.2 Missing and Noisy Data in Business Process Event Logs

Related work on missing data in process logs is scarce. Nevertheless, in a recent technical
report, Bertoli et al. [10] propose a technique to reconstruct missing events in process
logs. The authors tackle the problem by mapping control flow constraints in BPMN
models to logical formulae and use a SAT-solver to find candidates for missing events.
In contrast, we use an alignment approach based on Petri nets, allowing us to deal with
loops and probabilities of different paths, and we also consider the time of the missing
events, which allows performance analysis on a probabilistic basis.

Some techniques developed in the field of process mining provide functionality that
enables analysis of noisy or missing event data. In process mining, the quality of the
event logs is crucial for the usefulness of the analysis results and low quality poses
a significant challenge to the algorithms [1]. Therefore, discovery algorithms which
can deal with noise, e.g., the fuzzy miner [11] and the heuristics miner [12], have been
developed. Their focus is on capturing the common and frequent behavior and abstract
from any exceptional behavior. These discovery algorithms take the log as granted and
do not try to repair missing events.

Another example is the alignment of traces in the context of conformance check-
ing [13]. Here, the aim is to replay the event log within a given process model in order to
quantify conformance by counting skipped and inserted model activities. We build upon
this technique and extend it to capture path probabilities as gathered from historical ob-
servations. Note that the lion’s share of work focuses on repairing models based on logs,
rather than logs based on models. Examples are the work by Fahland and v.d. Aalst [2]
that uses alignments to repair a process model to decrease inconcistency between model
and log and the work by Buijs et al. [14], which uses genetic mining to find similar
models to a given original model.

3 Preliminary Definitions and Used Methods

In this section, we give a formal description of the concepts used in order to describe the
approach for repair of missing values in process logs. We start with event logs and Petri
nets.

Definition 1 (Event logs). An event log over a set of activities A and time domain TD
is defined as LA,TD = (E,C, α, γ, β,�), where:

– E is a finite set of events.
– C is a finite set of cases (process instances).
– α : E → A is a function relating each event to an activity.
– γ : E → TD is a function relating each event to a timestamp.
– β : E → C is a surjective function relating each event to a case.
– �⊆ E × E is the succession relation, which imposes a total ordering on the events

in E. We use e2 � e1 as shorthand notation for (e2, e1) ∈�. We call the ordered set
of events belonging to one case a “trace”.
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Definition 2 (Petri Net). A Petri net is a tuple PN = (P,T, F,M0) where:
– P is the set of places.
– T is the set of transitions.
– F ⊆ (P × T ) ∪ (T × P) is the set of connecting arcs representing flow relations.
– M0 ∈ P→ IN+

0 is the initial marking.

There have been many extensions of Petri nets to capture time, both deterministic
and stochastic. In [15], Ciardo et al. give an overview of different classes. We use the
definition of Generalized Stochastic Petri Nets (GSPNs) provided in [4], but do not limit
the durations of the timed transitions to be exponentially distributed. In terms of the
categorization proposed in [15], we use SPN with generally distributed firing times. In
the remainder of the report, we simply refer to this class as SPN.

Definition 3 (SPN). A stochastic Petri Net with generally distributed firing times (SPN)
is a seven-tuple: SPN = (P,T,P,W, F,M0,D), where (P,T, F,M0) is the basic underly-
ing Petri net. Additionally:

– The set of transitions T = Ti ∪ Tt is partitioned into immediate transitions Ti and
timed transitions Tt.

– P : T → IN+
0 is an assignment of priorities to transitions, where ∀t ∈ Ti : P(t) ≥ 1

and ∀t ∈ Tt : P(t) = 0.
– W : Ti → IR+ assigns probabilistic weights to the immediate transitions.
– D : Tt → D(x) is an assignment of arbitrary probability distribution functions D(x)

to timed transitions, capturing the random durations of the corresponding activities.

Although this definition of SPN models allows us to assign arbitrary duration distributions
to timed transitions, in this work, we assume normally distributed durations. Note that
normal distributions are defined also in the negative domain, which we need to avoid.
Therefore, we assume that most of their probability mass is in the positive domain, such
that errors introduced by correction of negative durations are negligible.

B

A

E

C

F G

D

H

0.5

0.5

0.75

0.25

N(20,5²)

N(16,3²)

N(10,2²)

N(15,4²)

N(11,2²) N(10,2²)

N(9,3²)

N(5,1²)

1

1

Fig. 1: Example unstructured free-choice Petri net model.
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An example SPN model is shown in Fig. 1 and has immediate transitions (bars),
as well as timed transitions (boxes). In the figure, immediate transitions are annotated
with their weights, e.g., the process will loop back with a probability of 0.25, and
leave the loop with 0.75 probability. We omitted priorities and define priority 1 for all
immediate transitions. The timed transitions are labeled from A to H and their durations
are normally distributed with the parameters annotated underneath. In this example,
activity A’s duration is normally distributed with a mean of 20, and and a standard
deviation of 5. Note that the model is sound and free-choice, and contains parallelism,
choices, and a loop.

We use the race semantics with enabling memory as described in [16]. This means
that concurrently enabled transitions race for the right to fire, and transitions will be
reset only if they get disabled by the firing of another transition. Concurrent transitions
that remain enabled after a transition firing do not lose their progress.

In the remainder of this section, we introduce techniques used in our repair algorithm:
Elicitation techniques to get an SPN model, cost-based alignments between a Petri net
and a log, and inference in a Bayesian network.

3.1 Elicitation of SPN models

There exists already work on obtaining stochastic Petri net models from data. Hu et
al. propose a method to mine these models from workflow logs in [17]. Another, quite
different approach was proposed by Anastasiou et al. [18] and uses location data to elicit
GSPN models.

For our purposes, we reuse the existing work in the ProM framework that extracts
performance information of activities from the log [19] and enrich the modeled Petri nets
with that performance information [3]. First, we need to elicit the probabilities to follow
different paths in the model, and second, the duration distributions of timed transitions.
For decisions in the model, we look at the relative number of traces following either
branch in the model and store them as weights of the immediate transitions. Transition
duration distributions are specified by the mean and the variance of the differences
between event times in the observed traces that correspond to subsequent activities.

If no data is missing from the logs, it is straight forward to compute the differences
between timestamps of subsequent events using the parallelism information encoded in
the Petri net model and count relative decisions on alternative paths. However, when
facing missing data, the presented approach in this report can be used to estimate
parameters of the model iteratively. That procedure is similar to the EM algorithm for
maximum likelihood estimation. In this report, we assume the model is given and present
one iteration of the algorithm to focus on how we can repair missing entries according to
the given model.

3.2 Cost-Based Fitness Alignment

Consider the example log in Fig. 2(a) consisting of two traces t1, and t2. In order to
check, whether the trace fits to the model, we need to align both. We reuse the technique
described by Adriansyah et al. in [13], which results in a sequence of movements that
replay the trace in the model. These movements are either synchronous moves, model
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(a) example log:

t1 : 〈A, C, D, B, E, F, G, H〉
t2 : 〈E, G, H〉

(b) alignment for trace t1:

log A C D B E F G H
model A C D B E F G H

(c) alignments for trace t2:

(c.1)
log ⊥ E ⊥ G H
model B E F G H

(c.2)
log ⊥ ⊥ E G H
model B F E G H

Fig. 2: Example log and possible alignments for the traces.

moves, or log moves. A formal description of the alignment technique remains out of
scope of this report, but we want to give the intuition. For an alignment, the model and
the log are replayed side by side to find the best mapping of events to activities in the
model. Thereby, a synchronous move represents an event in the log that is allowed in
the respective state in the model and in this case both the model and the log progress
one step. However, if an activity in the model or an event in the log is observed with
no counterpart, the model and log have to move asynchronously. Then, a model move
represents an activity in the model, for which no event exists in the log at the current
position and similarly, a log move is an event in the log that has no corresponding activity
in the model that is enabled in the current state during replay. It is possible to assign
costs to the different types of movements for each activity separately.

Fig. 2 shows some example alignments between the model in Fig. 1 and log in
Fig. 2(a). In Fig. 2(b), a perfect alignment is depicted for t1 above, i.e., the trace can
be replayed completely by a sequence of synchronous moves. A closer look at trace t2
and the model in Fig. 1 reveals that the two events B, and F are missing from the trace,
which might have been caused by a documentation error. As activity F is parallel to E,
there exist two candidate alignments for t2, as shown in Fig. 2(c). The ⊥ symbol denotes
a step that is used to show non-synchronous moves, i.e., modeled and recorded behavior
disagree. In this example, there are two model moves necessary to align the trace t2 to
the model.

Summarizing, the alignment technique described in [13,19] can be used to find
the cost-optimal matches between a trace in a log and a model in terms of structure.
However, the approach only considers the structure of the model and the sequence of
events encountered in the log without considering timestamps or probabilities. In this
report, we enhance the alignment technique to also take path probabilities into account.

3.3 Bayesian Networks

B

F E

G

Fig. 3: Bayesian network
for a fragment of Fig. 1.

Our SPN model also captures probabilistic information about
the durations of each activity in the process. We use Bayesian
networks [5,20] to capture the dependencies between the
random durations given by the SPN model structure. Fig. 3
shows an example Bayesian network that captures the rela-
tions for a fraction of the process model in Fig. 1. The arcs
between activities B, F, and G, and between B and E, are
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sequential dependencies. Note that there is no direct dependency between F and E, since
they are executed in parallel, and we assume that the durations of these activities are
independent.

More generally, a Bayesian network is a directed acyclic graph and captures depen-
dencies between random variables in a probabilistic model [20]. An arc from a parent
node to a child node indicates that the child’s probability distribution depends on the
parent’s values. There are many useful applications for probabilistic graphical models,
e.g. classification, voice-recognition, spam filtering, and others.

Definition 4 (Bayesian Network). Let X1, . . . , XN be a set of random variables. A
Bayesian network BN is a directed acyclic graph (N, F), where N is the set of nodes
n1, n2, . . . , nk assigned each to a random variable X1, . . . , Xk, and F ⊂ N × N is the set
of directed edges. Let (ni, n j) ∈ F be an edge from parent node ni to child node n j. The
edges reflect conditional dependencies between the corresponding random variables Xi

and X j, s.t., each random variable is independent from its predecessors given the values
of its parents.

Let πi denote the set of parents of Xi. A Bayesian network is fully defined by the
probability distributions of the nodes ni in as P(Xi | πi) and the conditional dependency
relations encoded in the graph. Then, the joint probability distribution of the whole
network factorizes according to the chain rule as follows:
P(X1, . . . , XN) =

∏N
i=1 P(Xi | πi)

We use Bayesian networks to reason about our updated probabilistic beliefs, i.e.,
the posterior probability distributions in a model, once we assigned specific values to
some of the random variables. Assume that we observe trace t2 in the log in Fig. 2(a),
with times γ(E) = 30, γ(G) = 35, and γ(H) = 40. Initially, the random variable of node
B in the example had a duration distribution of N(16, 32), i.e., a normally distributed
duration with mean 16, and standard deviation 3. However, after inserting the observed
times of events E, and event G into the network in Fig. 3, we can calculate the resulting
posterior probability distributions, by performing inference in the Bayesian network.
In this case, the posterior probability of B is the normal distribution N(14.58, 1.832).
Note that by inserting evidence, i.e., constraining the variables in a Bayesian network,
the resulting probability distributions get more accurate. In this example, the standard
deviation is reduced from 3 to 1.83. The intuition is that we narrow the possible values of
the unobserved variables to be in accordance with the observations in the log. There exist
algorithms for Bayesian networks automating this process. A complete explanation of
Bayesian networks is not the aim in this report, and the interested reader is referred to the
original work by Pearl [5] and the more recent text book by Koller and Friedman [20].

4 Repairing Events in Timed Event Logs

In this report, we propose a method to probabilistically restore events in logs which
contain missing events. We allow two modes of repair: restoring the most likely events
and their corresponding times, and a Monte Carlo simulation repair mode that picks
alignments and times randomly according to their posterior probabilities. Latter mode
is a useful component in a multiple imputation approach and allows to reason about
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variability in process measures involving missing events. We will focus on the first mode
in this report and discuss differences to the random mode where applicable. The problem
that we try to solve is to identify the parts in the model that are missing from the trace
(which) and also to estimate the times of the activities in those parts (when).

In theory, we need to compare the probabilities of all possible paths in the model that
are conforming to the trace. Each path may allow for different assignments of events in the
trace to the activities in the model. For example, for trace t2: 〈E,G,H〉 and the model in
Fig. 1 two cost-minimal paths through the model are given by the alignments in Fig. 2(c).
But, there might be further possibilities. It might have happened, that a whole iteration
of the loop happened in reality, but was forgotten to be documented. in which case, the
path 〈B, E, F,G, A,C,D,H〉 would also be an option to repair trace t2. Equally likely, the
second iteration could have gone the other way in the model: 〈B, E, F,G, B, F, E,G,H〉,
in which case different assignments of the events E, and G in t2 to the path in the model
exist. In general, there are infinitely many possible traces for a model that contains loops.

Repair Logs Method

Repair
Structure

Insert
Time

Repaired log

Log with
missing entries

SPN model

Fitting Log
with missing
time entries

Fig. 4: We divide the problem into two subproblems: repairing the control flow and
repairing the timestamps.

In order to compare the probabilities of these paths, we need to compute the probabil-
ity distributions of the activities on the paths and compare which model path and which
assignment explains the observed events’ timestamps best. To reduce the complexity,
we propose to decompose the problem into two separate problems, 1) repair structure
and 2) insert time, as sketched in Fig. 4. The method uses as input a log that should be
repaired and an SPN model specifying the as-is process.

Note that by this approach, we accept the limitation that missing events on a path
can only be detected, if at least one event in the log indicates that the path was chosen.
We discuss this limitation in the evaluation section.

5 Realization of Repairing Logs

In this section, we explain a realization of the method described above. For this realiza-
tion, we make the following assumptions:

– The supported models, i.e., the SPN models, are sound, cf. [21], and free-choice,
cf. [22], but do not necessarily need to be (block-)structured. This class of models
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captures a fairly large class of process models and does not impose unnecessary
constraints.

– The stochastic Petri net model is normative, i.e., it reflects the as-is processes in
structural, behavioral and time dimension.

– Activity durations are independent and have normal probability distributions, con-
taining most of their probability mass in the positive domain.

– The recorded timestamps in the event logs are correct.
– Each trace in the log has at least one event, and all events contain a timestamp.
– The activity durations of a case do not depend on other cases, i.e., we do not look at

the resource perspective and there is no queuing.
– We assume that data is MAR, i.e., that the probability that an event is missing from

the log does not depend on the time values of the missing events.
The algorithm is depicted in Fig. 5, and repairs an event log as follows.

model with
alignment &
Convert it to
a Bayesian
Network

Bayesian
Network

Perform
inference

given evidence
in trace

Posterior
probability

distributions

Add missing
times according

to probability
distributions

Repaired log

1. Repair Structure

2. Insert Time

Repair Logs Algorithm

Log with
missing entries

Perform
alignment

Set of
aligned traces

Pick
alignment

Alignment for
missing events

SPN model

For each trace

Unfold SPN

Fig. 5: The repair approach described in more detail.

5.1 Repairing the Structure

For each trace, we start by repairing the structure. This becomes trivial, once we identified
a path in the model that fits our observations in the trace best. The cost-based fitness
alignment [13] introduced in Sect. 3, can be used for this part. It tells us exactly:
a) when the model moves synchronously to the trace, i.e., where the events match,
b) when the model moves alone, i.e., an event is missing from the trace,
c) when the log moves alone, i.e., there is an observed event that does not fit into the

model at the recorded position.
We set the costs of synchronous and model moves to 0, the cost of log moves to a very
high value, e.g., 1000. The alignment algorithm returns all paths through the model,
where the events in the trace are mapped to a corresponding activity. This works well for
acyclic models. For cyclic models, where infinite paths through a model exist, we need
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to assign some small costs to model moves, in order to limit the number of resulting
alignments that we compare in the next step.

In the next step, cf. box Pick alignment in Fig. 5, we decide which of the returned
cost-minimal alignments to pick for repair. The algorithm replays the path taken through
the model and multiplies the probabilities of the decisions made along the path. This
allows us to take some probabilistic information into account when picking an alignment
and enhances the alignment approach introduced in [13]. Also, we take into account
that, for one trace, paths with many forgotten activities are less likely than others. That
is, we allow to specify the parameter of the missing data mechanism, i.e., the rate of
missingness. We let the domain expert define the probability to forget an event. The
domain expert can specify how to weigh these probabilities against each other, i.e., to
give preference to paths with higher probability, i.e., determined by immediate transition
weights, or to paths with less missing events that are required to be inserted into the trace.
This novel post-processing step on the cost-optimal alignments allows to control how
much to penalize possible paths in the model that are not reflected in a log by any event.

For example, consider a loop in a SPN model with n activities in the loop. By
setting the chance of missing entries low, e.g., setting the missingness probability to 0.1
(10% chance that an event is lost), an additional iteration through the loop will become
more unlikely, as its probability will be multiplied by the factor 0.1n. This factor is the
probability that all n events are missing. Extreme probability values, such as 0, or 1
should be avoided, as the probabilities of all alignments containing both synchronous
and model moves will be 0.

We can select candidate alignments using various policies depending on the intended
use. If we want to find the most probable missing events only, we choose the alignment
with the highest probability. But we can also choose randomly according the probabilities
to follow a multiple imputation approach. Once we decided on the structure of how our
repaired trace will look like, we can continue and insert the times of the missing events
in the trace, i.e., the identified model moves.

5.2 Inserting Time

To repair the timing information it is not enough to look at the SPN model alone, we
need to find a way to add the information that we have for each trace, i.e., the timestamps
of the recorded events. Fortunately, as mentioned in Sect. 3, there exists a solution for
this task: Inference in Bayesian networks. Thus, we can convert the SPN model into a
Bayesian network and then insert the evidence given by the observations to be able to
perform the inference.

In the previous step, we identified the path through the SPN model. With the path
given, we can eliminate choices from the model by removing branches in the process
that were not taken. We unfold the net from the initial marking along the chosen path.
Note that loops are but a special type of choices and will be eliminated from the model
for any given trace. Consider trace t3 = 〈A,D,C,C,D,H〉 and assume, we picked the
following alignment:

log A D C ⊥ C D H
model A D C A C D H

11



Then, the unfolded model looks like Fig. 6, where the black part marks the path taken
in the model. The grey part is removed while unfolding. Note that the unfolded model still
contains parallelism, but it is acyclic and is directly converted into a Bayesian network
with a similar structure, where the random variables represent timed transitions. As, due
to multiple iterations of loops, activities can happen multiple times, we differentiate
them by adding an index of their occurrence, e.g., A1 and A2 correspond to the first and
second occurrence of the transition A. The unfolding is done by traversing the model
along the path dictated by the alignment and keeping track of the occurrences of the
transitions.

A1

C1

D10.5

0.25

N(20,5)

N(10,2)

N(9,3)

1

H1

0.75 N(5,1)

A2

C2

D20.5 N(20,5)

N(10,2)

N(9,3)

1

Fig. 6: Unfolded model in Fig. 1 for path 〈A,D,C, A,C,D,H〉.

We transform the resulted unfolded model into a Bayesian network with a similar
structure. Most immediate transitions are not needed in the Bayesian network, as these do
not take time and no choices need to be made in the unfolded process. Only immediate
transitions joining parallel branches will be kept.

Petri Net Bayesian Network Petri Net Bayesian Network

Parallel Split

Sequence (timed)

A B B

Parallel Join:

A

B

Sequence (immediate) :

start A B

start

A B join

A B

start B

A

B
max

sumsumsum

sumsum

Fig. 7: Transformation of SPN models to Bayesian Networks.

Fig. 7 shows the transformation of sequences, parallel splits, and synchronizing joins.
These are the only constructs remaining in the unfolded form of the SPN model. In the
resulting Bayesian network, we use the sum and max relations to define the random
variables given their parents. More concretely, if a timed transition ti is followed by
another timed transition t j in a sequence, we can convert this fragment into a Bayesian
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network with variables Xi and X j. From the SPN model, we use the transition duration
distributions D(ti) = Di(x) and D(t j) = D j(x). Then, the parent variable Xi has the
unconditional probability distribution P(Xi ≤ x) = Di(x) and the child variable X j has
the conditional probability distribution P(X j ≤ x | Xi). For each possible value of the
parent xi ∈ Xi, the probability is defined as P(X j ≤ x | Xi = xi) = D j(x − xi). This means
that the distribution of X j is shifted by its parent’s value to the right. A parallel split, cf.
lower left part in Fig. 7, is treated as two sequences sharing the same parent node.

The max relation that is required for joining branches at synchronization points, cf.
lower right in Fig. 7 is defined as follows. Let Xi and X j be the parents of Xk, such that
Xk is the maximum of its parents. Then, P(Xk ≤ x | Xi, X j) = P(Xi ≤ x) · P(X j ≤ x), i.e.,
the probability distribution functions are multiplied. This proves to be a challenge, as the
maximum of two normally distributed random variables is no longer normally distributed.
We use a linear approximation, as described in [23]. This means that we express the
maximum as a normal distribution, with its parameters depending linearly on the normal
distributions of the joined branches. The approximation is good, when the standard
deviations of the joined distributions are similar and it degrades when they strongly
diverge, cf. [23]. The resulting Bayesian network model is a linear Gaussian model,
which is a class of continuous type Bayesian networks, where inference is efficiently
possible. More precisely, inference can be done in O(n3) where n is the number of nodes
[20]. Otherwise, inference in Bayesian networks is an NP-hard problem [24].

Once we have constructed the Bayesian network, we need to set the values for the
observed events for their corresponding random variables, i.e., insert the evidence into
the network. Then we perform inference in the form of querying the posterior probability
distributions of the unobserved variables. We use the Bayesian network toolkit for
Matlab [25], where these inference methods are implemented. This corresponds to the
second step in the insert time part of Fig. 5.

The posterior probabilities of the queried variables reflect the probabilities, when the
conditions are given according to the evidence. One repair mode is to get the most likely
time values for the missing events. These most likely times are good estimators for when
the events occurred in reality, and thus could be used by process participants as clues
when performing root cause analysis. For example, in order to find the responsible person
for the task in question, an estimation of when it happened might prove helpful. Then
obvious documentation errors could be corrected. Note that repaired values with most
likely time values need to be treated with caution, as they do not capture the uncertainty
in the values. If one is interested in the variance of duration values rather than the mean
durations, the random repair mode is preferable. Then, instead of the most likely values,
random samples from the posterior probability distributions should be used.

We need to be careful when sampling from normal distributions, as they are defined
in both the positive and the negative domain, i.e., a sample time could be negative.
Therefore, our assumption is that most of the probability mass is in the positive domain,
such that the error introduced by a simple correction mechanism like re-sampling
negative values is acceptable in these cases.

Once we determined probable values for the timestamps of all missing events in a
trace, we can proceed with the next trace starting another iteration of the algorithm.
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6 Evaluation

We have implemented our approach in ProM3. To evaluate the quality of the algorithm,
we follow the experimental setup described in Fig. 8. The problem is that in reality we do
not know whether events did not happen or were just not recorded. Therefore, we need to
conduct a controlled experiment. In order to have actual values to compare our repaired
results with, we first acquire traces that fit the model. We do this either by selecting
the fitting ones from original cases, or by simulation in artificial scenarios. In a second
step, we remove a percentage of the events randomly from these fitting traces to get the
first input to the algorithm. We pass the log with missing entries to the repair algorithm,
along with the model, according which we want to do the repair.
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Fig. 8: Approach used to evaluate repair quality.

The repair algorithm’s output is then evaluated against the original traces to see, how
well we could restore the missing events. We use two measures for assessing the quality
of the repaired log. The cost-based fitness measure as defined in [13] compares how well
a model fits a log. Here, we use it to compare the traces pairwise in the two logs. We
re-use the existing calculation methods and convert each original trace into a sequential
Petri net model and measure its fitness with the repaired trace.

Fitness deals with the structural quality, i.e., it is a good measure to check, whether
we repaired the right events in the right order. For measuring the quality of repaired
timestamps, we use a simple measure by comparing the real event’s time with the
repaired event’s time. This makes sense if we chose the correct event to be inserted. We
use the mean absolute error (MAE) of the events that have been inserted. This is the
mean of the absolute differences between repaired event times and original event times.

3 See package RepairLog in ProM http://www.promtools.org

14

http://www.promtools.org


6.1 Artificial Example

We first evaluate the repair algorithm according to the artificial model introduced in
Section 3 in Fig. 1.
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Fig. 9: Evaluation results for repairing 1000 traces of model in Fig. 1.

Figure 9 displays the resulting measures of the quality which we achieved by repair-
ing traces. The experiment was done with a log of 1000 simulated traces. Each dot is
based on the repair results of this log with a different percentage of randomly removed
events. On the left-hand side of the figure, you can see the performance values of the
alignment. The solid line with squares shows the number of synchronous moves. The
other two lines are the number of model moves (dotted line with circles) and the number
of log moves (gray dashed line with triangles) necessary to align the two traces.

Because of the structural properties of the model in Fig. 1, i.e., there is a choice
between two branches containing three (upper), and four (lower) activities, we can
restore the correct activities at low noise levels (around 30%). But we can not guarantee
for their ordering due to parallelism in the model. A change in the ordering of two events
in the repaired trace results in a synchronous move for one event, and a log move and a
model move for the other (to remove it from one position and insert it in another). Note
that at lower noise levels the number of log moves and model moves are equal. This can
be explained by incorrect ordering of parallel activities, while at higher noise levels the
number of model moves increase further. At higher noise levels, it gets more likely that
there remains no single event of an iteration of the loop in Fig. 1. The size of the gap
between model moves and log moves shows how much the repair quality suffers from
the fact that the deterministic algorithm (repairing with the most likely values) does not
restore optional paths of which no event is recorded in the trace.

On the right-hand side of Fig. 9 we can see the mean absolute error in the relative
time units specified in the model. The graph shows that the offset between original
event’s time and repaired event’s time increases with the amount of noise non-linearly.
From these results, we conclude that the repair algorithm can be used to repair logs, if
the amount of noise is relatively low.

6.2 Repairing a real example log of a hospital

In this second part of the evaluation, we look at the results obtained from repairing a
real log of a hospital. In contrast to the experimental setup, where we used the model
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to generate the example log, now the log is given, and we try to estimate the model
parameters. To avoid using a model that was learned from the events, which we try to
repair, we implemented the common 10-fold cross-validation method. That is, we divide
the log into ten parts and use nine parts to learn the model parameters and one to perform
the repair with.

We use the log of a Dutch clinic for the ambulant surgery process, described in [26].
The process is depicted as an SPN model in Fig. 10. It is a sequential process that deals
with both ambulant patients and ordered stationary patients. Each transition corresponds
to a treatment step that a nurse records in a spread sheet with timestamps. In the process,
the patient arrives in the lock to be prepared for the surgery. Once the operating room
(OR) is ready, the patient leaves the lock and enters the OR. In the OR, the anesthesia
team starts the induction of the anesthesia. After that, the patient optionally gets an
antibiotica prophylaxis treatment. The surgery starts with the incision, i.e., the first cut
with the scalpel, and finishes with the suture, i.e., the closure of the tissue with stitches.
Next, the anesthesia team performs the emergence from the anesthesia, which ends
when the patient has regained consciousness. Finally, the patient leaves the OR and is
transported to the recovery.

Patient
ordered

arrival
in lock

depar-
ture of
lock

arrival
in OR

start of
induc-
tion

end of
induc-
tion

do
antibiotica
prophylaxis

inci-
sion

sutu- start of
emer-
gence

end of
emer-
gence

depar-
ture

of OR

arrival
in

recovery

departure
of

recoveryre

Fig. 10: Real surgery model for a surgical procedure in a Dutch hospital.

The log of this treatment process contains missing entries, which motivated the
research work in this report. Out of 1310 patient treatment cases, only 570 fit the model
shown in Fig. 10 perfectly. The other cases contain one or more missing events. We use
the 570 fitting cases to evaluate, how well we can repair them after randomly removing
events.

Figure 11 shows the evaluation results with the real log. Observe that the structure can
be repaired quite well in comparison to the artificial example in Fig. 9. This is due to the
sequential nature of the model with twelve events in sequence and two activities that are
optional. The number of synchronous moves gradually approaches twelve synchronous
moves, when the noise is very high. This is due to the algorithm being unable to repair
single undetected events that are optional.

The mean absolute error in the restored events is higher than the artificial example.
This value greatly depends on the variance in the activity durations. In the evaluation
example, the variance of certain activity durations in the model is quite high, e.g., the
duration of the start of emergence activity has a mean of 4.69 and variance of 18.292. The
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Fig. 11: Evaluation results for model in Fig. 10.

data underlying this model is right-skewed with most values small, and some outliers.
Here, the normal distribution is inappropriate, and other distributions might fit better.

Obviously, the ability to repair a log highly depends on the information content of
observed events in the trace and the remaining variability in the model. For instance, we
can repair a pure sequential model always with fitness 1.0 of the repaired log. Even, if
we observe just one activity. However, the chance to pick the same path through a model
composed of n parallel activities with equally distributed times is only 1

n! .
The deterministic repair mode, which we evaluated, is unable to restore optional

branches without structural hints, i.e., at least one activity on that optional branch needs
to be recorded. This affects single optional activities most, as their absence will not be
repaired. However, many real-life processes are sequential, and can be repaired correctly.

7 Conclusion

In this report, we presented a method to repair timed event logs in order to make them
available for further analysis, e.g., with process mining tools. The method works by
decomposing the problem into two sub-problems: (i) repairing the structure, and (ii)
repairing the time.

Repairing the structure is done with a novel extension of the alignment approach [13]
based on path probabilities. And repairing the time is achieved by using inference in a
Bayesian network representing the structure of the individual trace in the model. Both
parts can be done deterministically (to get the most likely result), as well as randomly by
Monte Carlo simulation (to account for variability). The algorithm can deal with a large
and representative class of process models (any free-choice workflow net).

Our preliminary evaluations indicate that we can repair the structure and the time
quite well, if noise is limited. Models exhibiting a high degree of parallelism are less
likely to be repaired correctly than models with more dependencies between the activities.
However, there are some limitations that we would like to address in subsequent research:
1. Separating structure from time during repair is a heuristic to reduce the compu-

tational complexity of the problem, as timestamps of events influence the path
probabilities, too.

2. The normal distribution, though having nice computational properties, is of limited
suitability to model activity durations, because its support covers the negative
domain, too.
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3. The independence assumption between activity durations and between traces might
be too strong, as resources play an important role in processes.

4. We assumed that the SPN model contains the truth, and deviations in the log
are caused by documentation errors, than by deviations from the process. This
assumption is only feasible for standardized processes with few deviations that are
reflected in the model. Therefore, we advise to use this approach with care and try
to correct documentation errors using repaired logs as assistance.

With this report, we paved the way for missing data techniques from the statistics
community to be used in the business process domain, too. This work can also be
considered as the first step towards eliciting a SPN model from logs with missing data in
a maximum likelihood or multiple imputation fashion. This way, allowing to take all the
observed data into account and get efficient estimations for the activity durations and
path probabilities.

In future work, we want to relax the assumption of normal distributions and broaden
the supported distributions to the class of Gaussian mixtures as described in [27]. Any
distribution can be approximated by a mixture of Gaussians. We also want to investigate
improvement possibilities in the structural part, i.e., look at ways to integrate temporal
information into performing the alignment.

Future work needs also to address the question of how to model causalities of
activities more directly. Thus, missing events that are very likely to be documentation
errors, e.g., the missing event for enter OR, when exit OR is documented, need to be
separately treated from missing events of rather optional activities, e.g., missing event
of do antibiotica prophelaxe, where it is not clear, whether the absence of the event is
caused by a documentation error or not. An integration with the proposed technique
in [10], seems promising to address this issue.
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