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Abstract The service-oriented architecture supports the dynamic assembly and runtime reconfigu-
ration of complex open IT landscapes by means of runtime binding of service contracts, launching of
new components and termination of outdated ones. Furthermore, the evolution of these IT landscapes
is not restricted to exchanging components with other ones using the same service contracts, as new
services contracts can be added as well. However, current approaches for modeling and verification
of service-oriented architectures do not support these important capabilities to their full extend. In
this report we present an extension of the current OMG proposal for service modeling with UML —
SoaML — which overcomes these limitations. It permits modeling services and their service contracts
at different levels of abstraction, provides a formal semantics for all modeling concepts, and enables
verifying critical properties. Our compositional and incremental verification approach allows for complex
properties including communication parameters and time and covers besides the dynamic binding of
service contracts and the replacement of components also the evolution of the systems by means of
new service contracts. The modeling as well as verification capabilities of the presented approach are
demonstrated by means of a supply chain example and the verification results of a first prototype are
shown.

Keywords Service-Oriented Architecture, Verification, Contracts, Evolution, Infinite State, Invari-
ants, Modeling, SoaML, Runtime Binding, Runtime Reconfiguration
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Chapter 1

Introduction

Service-oriented architecture enables more flexible IT solutions. At the level of the architecture the
runtime binding of service contracts, starting new component instances and terminating components
result in a dynamic assembly and runtime reconfiguration of complex open IT landscapes. As new
services contracts can be added at runtime as well, the dynamics goes even further and permit that the
IT landscapes evolves at the level of its components as well as service contracts. In the service-oriented
approach orchestration describes a collaboration with a single dedicated coordinator that enacts the
collaboration between the other parties. The choreography interaction scheme in contrast support the
free interplay of different roles within a collaboration.

The service-oriented approach in contrast to standard component-based architectural models employs
collaborations describing the interaction of multiple roles in form of service contracts (cf. [1, 2]). Current
approaches for modeling service-oriented architectures, however, do either only support scenarios where
the dynamics and evolution are restricted to static collaborations with fixed service contracts [3, 4, 5]
or an appropriate rigorous formal underpinning for the model for the conceptually supported dynamics
is missing [6]. While orchestration is often described by business processes or activity diagrams [7, 8],
for choreography it is less clear which kind of behavioral description is best suited [9].

1.1 State-of-the-Art

Proposals for the formal verification of service-oriented architectures are even more restricted and
do only support scenarios where the evolution has been so restricted that checking a bounded formal
model is sufficient [10]. A number of approaches support orchestration [11, 12] looking only into a single
collaboration, while others [13] also take into account how a fixed number of collaborations can interfere.
Approaches to verify also choreography also require a fixed number of participants [14]. Approaches
that are not dedicated to service-oriented systems, either have not the required expressiveness [15], do
not support verification [16, 17] or do not scale with the system size [18].

Therefore, the current proposals for modeling and verification do not support the beforehand outlined
dynamics and evolution of IT landscapes with orchestration and choreography but only checking specific
configurations.

Given a fixed system configuration you can of course use tests to detect compatibility problems. While
in case of in-house service-oriented architectures testing can thus provide some coverage in case the
dynamics and evolution of IT landscapes is restricted to the tested cases, for more dynamic scenarios
the high if not unbounded number of possible configurations results in a low coverage. Furthermore,

15



16 1 Introduction

in case of more advanced scenarios such as cross-organizational service-oriented architectures, digital
ecosystems [19] or ultra-large-scale systems [20], no overarching governance exists and thus the open
and dynamic character of these systems prevent that all possible combination of components and
service contracts can be systematically tested before they could become active.

In the literature several aspects are discussed, that we will also have to investigate. Summarizing we can
say, that most of the modeling approaches lack the capability to model dynamic collaborations. The
verification techniques, targeting service-oriented architectures, mostly only address the verification
of orchestrations, whereas approaches for the verification of dynamic systems are rare or assume a
bounded, previously known number of reconfigurations. Decompositional approaches exist, but to the
best of our knowledge, none of them provides techniques for the decomposition at type-level.

1.2 Contribution

In this report we present our approach for modeling services and their service contracts at different
levels of abstraction. It is an extension of SoaML the current OMG proposal for service modeling
with UML [1], provides a formal semantics for all used and newly introduced modeling concepts and
enables compositional verification of critical properties. The approach allows for complex properties
including communication parameters and time and therefore covers besides the dynamic binding of
service contracts and the replacement of components also the evolution of the systems by means of
new services.

This work conceptually continues earlier work to guarantee crucial safety properties for patterns/collab-
orations with a fixed number of roles using model checking [21], where the behavior of the interaction
of a collaboration and its roles could be verified separately. It uses and extends our own automatic
formal verification approach for systems with structural dynamics [22, 23] covering rules to join and
leave a collaboration. Also a first combination of the former two approaches to verify the coordination
for one collaboration and the outlined pure structural rules have been presented in [24]. However, this
former approach is limited to solutions where a collaboration is instantiated or terminated as a whole,
only a small, finite number of static roles per collaboration exist, the reactive behavior of the roles
itself has to be fully decoupled from the structural dynamics and the collaboration does not support
parameter passing.

1.3 Supply Chain Case Study

In this report we want to introduce the concepts of SoaML together with our running example. We
have chosen a service-oriented supply-chain network as application example. In a supply-chain network
arbitrary factories can participate as long as they fulfill some minimal requirements. A supply-chain
network can be recursively built from any factory delivering a product. The supply-chain network of a
factory C is the union of the supply-chain networks of all factories, C buys products from, with C being
the new root element. Factories that sell raw materials have a supply-chain network that contains
only themselves. In domains such as the automotive or avionic industry these supply-chain network
become easily very large. Also the business relationships among factories may change often, depending
on several constraints such as required product quality, production costs, delivery deadlines to only
name a few. However, despite all this it has to be ensured that each factory within the supply-chain
network delivers the requested product. The contract negotiation between two factories is established
through a service contract. The exact form of the contract is not specified as this might be dependent
on the different domains and products.

Figure 1.1 depicts an example for a small supply chain system or a snippet of a supply chain system.



1.4 Outline 17

Figure 1.1: Sketch of a small supply chain system instance

The system consists of four factories. The arrow between two factories indicates that the two factories
are in a contract relation with each other, where the supplier is marked by the arrow’s origin and the
customer is marked by the arrow’s target. The fifth factory (“Factory E”) of the example is currently
not connected with any of the other factories.

1.4 Outline

The report is organized as follows: In Chapter 2 we present a list of challenges that a modeling and
verification approach for open service-oriented systems has to fulfill. We introduce the extended OMG
proposal for service modeling using the supply chain example and discuss its limitations in Section 3.
The proposed extensions for modeling services to support abstraction as well as evolution is then
outlined in Section 4. Thereafter, we explain the employed compositional verification technique and
demonstrates its applicability using our running example in Section 5. The state-of-the-art for modeling
and verification of service-oriented systems is reviewed in Section 6. The paper closes with a final
conclusion and outlook on planned future work.





Chapter 2

General Challenges

The outlined supply chain case study also permits us to explain in more detail the challenges that
result for the modeling and analysis of SOA referring to the concrete case study where helpful. We will
use this list of challenges to discuss the shortcomings of SoaML in the succeeding Section 3.2 as well
as the benefits of the proposed approach concerning modeling in Section 4.4, concerning analysis in
Section 5.4, and concerning modeling and analysis of evolution in Section 2.3.

2.1 Modeling: Coverage & Dynamics

Modeling SOA (M1) The model has to cover the concepts of service-oriented systems such as
service contracts, roles, components, architecture and service landscapes.

Modeling Dynamics (M2) The model has to support also the dynamics of service-oriented systems
such as joining/leaving service contracts dynamically and adding components dynamically.

Transferred to our application example, challenge Modeling Dynamics (M2) requires that the modeling
language supports that factory E can establish a contract with any of the other factories and that
the existing contract relations can be terminated. Further, additional factories, not yet depicted in
Figure 1.1, could be added to the supply chain system.

2.2 Analysis: Scalability & Applicability

Scalable Analysis (A1) The service landscapes are potentially very large and thus checking all pos-
sible configurations may not scale.

Analysis of Reconfiguration (A2) The service landscapes change their configuration at runtime.
Therefore we can in principle not check each configuration in isolation but have to consider the
interplay between the regular behavior and reconfiguration behavior.

Analysis under restricted knowledge (A3) The analysis has to work also in the face of 1) no global
view and separated responsibilities, 2) IP constraints for component details and maybe even 3)
IP constraints for contract details.

19



20 2 General Challenges

Although, the exemplary sketch of an supply chain network, depicted in Figure 1.1, shows a small
instance situation, only, a supply chain network easily grows very large. This is especially the case for
the automotive or the avionic industry. Thus the checking of these large supply chain networks has to
scale with the network’s size and probably even a linear increase in computational complexity would
excess available computational resources. Challenge Analysis of Reconfiguration (A2) points out the
fact, that no fixed configuration generally exists. Last, challenge Analysis under restricted knowledge
(A3) mentions the restricted knowledge of the overall system each of the participants has. Thus in a
supply chain network it is unlikely that a customer knows all business relations of each of it’s suppliers.
For our application example this means that we cannot argue that Factory A knows for sure whether
or not Factory B is supplied by Factory D.

2.3 Evolution: Modeling & Analysis

Modeling Evolution (E1) The modeling has to cope with the uncoordinated introduction of new
types for service contracts and components at runtime.

Analyzing Evolution (E2) Also the analysis has to cope with the uncoordinated introduction of new
types for service contracts and components at runtime.

Expressed in the terms of our application example, challenge Modeling Evolution (E1) can be under-
stood in a way that the number of factories, that participate in the supply chain network is not fixed.
Also, the service contracts, i. e. the types, that are to be established between the different factories
might change, this could be the case if legal regulations require these changes or if new factories,
following a different business model, participate in the supply chain network. Challenge Analyzing Evo-
lution (E2) can be compared to challenge Analysis under restricted knowledge (A3), whereas Analyzing
Evolution (E2) targets the introduction of types and Analysis under restricted knowledge (A3) targets
the introduction of new instances. Thus, for Analysis under restricted knowledge (A3) the system’s
set of types does not change but the instance situation does, in contrast to Analyzing Evolution (E2),
which involves a change to the set of types, but not necessarily a change at the instance situation.



Chapter 3

Modeling with SoaML

The modeling language for Service-Oriented Architecture proposed by the Object Management Group
(OMG) is called SoaML1[25]. Although SoaML is not yet an official OMG standard major tool vendors
such as International Business Machines provide direct tool support for SoaML within their modeling
tools.

3.1 Modeling Concepts

SoaML is a meta-model and profile for the modeling of service-oriented systems using the UML. SoaML
mainly uses collaborations and components to describe the system’s structure, UML-behaviors are used
for the modeling of the behavior of the different parts. Further, SoaML defines different views on the
system, such as the service- and the participant-architecture. SoaML relies on UML collaborations as
their basic building blocks for modeling a services architecture as well as a single service. Services
are defined as collaboration among roles, components can participate in a service if they fulfill the
requirements of at least one of the roles.

3.1.1 Service Architecture

The most abstract service related view, available in a SoaML model is the ServicesArchitecture.
The intent of the ServicesArchitecture collaboration is to point out, which services exist and how
the different entities work together within those services. A service is modeled as a service contract
collaboration. Typically a service contract comprises roles and a behavior – the service’s choreography.
The choreography can be modeled using any UML behavior specification such as e. g. interaction and
activity diagrams. The roles that are defined in a service contract can be bound to components, which
provide a matching interface.

Figure 3.1 depicts an exemplary ServicesArchitecture for our supply chain system application ex-
ample.

1http://www.soaml.org
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Figure 3.1: The �ServicesArchitecture� for the SupplyChain application example

3.1.2 Participant Architecture

Components participating in a service contract instance are called Participants and their internal struc-
ture is described in a ParticipantArchitecture diagram. Especially in a situation where a participant
participates in multiple service contract instances at a time it is required that the participant provides
a behavior that coordinates the participant’s action within the different service contract. This behavior
is called orchestration behavior. Figure 3.2 depicts the ParticipantArchitecture for a factory from
our application example. The shown Factory component provides the two interfaces Customer and
Supplier via its two ports. Internally the component relies on an entry and an exit store and a pro-
duction unit to fulfill the request it receives via the supplier port. The internal component controller
orchestrates the interplay between the three other internal components. The service contracts used in
the Factory participant do not differ completely from the ones used between participants. The main
difference to the contract service contract is the fact that now a Controller component initiates
behavior and tells the others which action they actually have to execute.

Figure 3.2: ParticipantArchitecture for the Factory participant

The complete supply chain network can be modeled as a collaboration consisting of the roles Sup-

plier,Customer and Auctioneer (cf. Figure 3.1). The services that exist in this architecture are
Auction and BusinessToBusinessContract. The Auction service contract requires all three differ-
ent roles to be bound in order to be established, the BusinessToBusinessContract requires only that
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the supplier and the customer roles are bound. In our application example componnents can play
different roles, also more than one. The supply chain application example we describe the Factory

component. The Factory component specifies any type of factory that exists within the supply chain
network. For a fully functional supply chain system we would also need additional start- and end-
points. These could be for example special factory-components that do only use either their Supplier

or Customer roles.

Figure 3.3: An UML interaction diagram showing the BusinessToBusiness service contract

Each service is also connected to a specific behavior, the service choreography. For the BusinessTo-

BusinessContract service contract the choreography is depicted in Figure 3.3. The behavior describes
a simple request-response protocol that runs between Supplier and Customer. The Customer sends
the Supplier a ContractRequest and the Supplier eventually replies to this request with a Con-

tractOffer. The Customer can accept the proposed offer and a Contract will be instantiated
between the two roles. Each Contract is equipped with a recall date. A Contract becomes invalid
once the recall date has passed and it has not been updated by one of the involved participants. The
sequence diagram depicted in Figure 3.3 only depicts the scenario for a successful negotiation between
Supplier and Customer. The Auction service contract also aims at establishing a valid Contract

between a Supplier and a Customer but also owns a negotiation phase – in form of a classical auction
– where the highest price for the offer good is determined among a possibly varying set of bidders.
Bidders are allowed to join the Auction service contract as long as the service is in the auction stage.
A bidder also may leave the service contract at any time except he is the current leader in the auction.

Although, we only have introduced some different components and service contracts we can not be sure
that those are the only ones that are acutally involved in real supply-chain network. The current set of
collaboration and component types is referred to as a service landscape. For a fixed service landscape
multiple intstantiations can be created. An instantiation of a service landscape is called a serivce
landscape configuration. If we also refer to systems where the set of component and collaboration
types can change over time we call this a complex service landscape.

3.2 Discussion of SoaML

SoaML addresses challenge Modeling SOA (M1) by providing concepts of service-oriented systems such
as service contracts, roles, components, Services architecture and participant architecture. It does not
explicitly support to model also the dynamics of service-oriented systems such as joining/leaving service
contracts dynamically and adding components dynamically required for challenge Modeling Dynamics
(M2).

Also evolution is not directly supported and thus neither the modeling nor analysis of evolution of the
service landscapes as raised by challenge Modeling Evolution (E1) is covered.
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Challenges Coverage

Modeling SOA (M1) X
Modeling Dynamics (M2) ◦
Modeling Evolution (E1) ◦

Table 3.1: Coverage of the challenges for modeling with SoaML. Legend: X means the challenge is
fulfilled, ∼ means the challenge is partly fulfilled and ◦ means the challenge isn’t fulfilled.



Chapter 4

Modeling with rigSoaML

The previous chapter yields that SoaML has the capabilities to model the basic constituents of a
service-oriented system but does falls short of modeling the structural dynamism (cf. Table 3.1). In
this chapter we will introduce our modification of SoaML, called rigSoaML, that explicitly addresses
these issues.

4.1 Prerequisites

We need some formal concepts and clarifications to describe our approach rigSoaML. We will first
introduce the formal model and then connect the formal model with our modelling notations.

4.1.1 Semantic Model

The formal model we are going to use for rigSoaML can be roughly described as graphs are states and
graph transformation rules are the behavior. Further, we will introduce some methodologies to separate
system parts at the type and the instance-level, in order to be able to transfer the findings of our formal
reasoning to the running system. Graphs are defined in Definition B.2 and extended to attributed and
typed graphs in Definition B.10. We will refer to the empty graph as G∅. Graph transformation rules
are introduced in Definition B.11. However, we will use a simplified notation as we are not going to
add the control modes every time they should occur. In our application example, we only use clocks,
i. e. attributes that have a constant derivation of 1, and constants.

4.1.2 Results for Composing Pseudo-Type Separated GTS

We will further required some results concerning the combination of different GTS with respect to
the guaranteed properties and their interference with each other. We will use the follwoing terms,
throughout the paper to characterize possible interference:

type separated means that due to types two rules sets cannot interfere as they have no nodes with
the same type in common

25
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pseudo-type describes a special node t at instance-level that serves to identify a set of other nodes.
Therefore each node, that is supposed to be pseudo-typed by t has to be also connected to t by
a link. A node must not be pseudo-typed by two nodes. Pseudo-typing can be applied to rules
and properties.

pseudo-type separated means that due to pseudo-types two rules sets cannot interfere as they have
no nodes with the same type or pseudo-type in common; it also requires that all rules including
the two rule sets preserve the pseudo-typing.

The use of pseudo-typing is expressed in the following corollary, which is a more informal variant of
Corollary C.11

Corollary 4.1
The union of rule sets separated by pseudo-typing that both preserve their pseudo-typing also preserve
the pseudo-typed properties of each of the rule sets.

The complete proof and additional background information is contained in Appendix C. However, in
order for the lemma to be correct and to preserve the pseudo-typing it is of tremendous importance,
to forbid to specialize concrete collaborations or components. This ensures that all concrete collab-
orations/components are separated and only be linked through abstract collaborations used by ports
of concrete components. However, here the separation of the components is sufficient as all possible
concrete collaborations can in fact be linked to the port.

To make this work, we employ inheritance of types. Hence, a component with a role implementing
a role of an abstract collaboration will preserve the pseudo-typing for a concrete collaboration type,
the implements the same abstract collaboration type, even though it does not know the concrete
collaboration’s actual type, as it simply links it to the collaboration type node, which – by construction
– is a subtype of the collaboration type node of the abstract collaboration the component’s role refers
to.

4.1.3 Employed Notations for GTS

We will employ Class diagrams to specify the types and their attributes including clocks for the node
of the graphs. Thus the set of lables that are available for nodes and edges in graphs can be directly
derived from the modelled UML-class diagrams.

For graph transformation rules we use StoryPatterns as a modeling notation. StoryPatterns are an
extension of the UML instance diagrams, that allow the developer to also model side-effects, such
as creation and deletion of objects and links, within one diagram. Therefore two special stereotypes
�create� and �destroy� are used. Elements augmented with the create (delete respectively)
stereotype will be created (deleted) by the application of the StoryPattern. The applicability of Sto-
ryPatterns could be restricted by the use of negative application conditions (NAC), which describe
elements that must not exist in the current instance situation, and constraints above the attributes.
The translation of a StoryPattern into a graph transformation rule is an easy to accomplish task. All
elements that are to be deleted or remain unchanged specify the rule’s left hand side and all elements
that are to be created or remain unchanged specify the rule’s right hand side. The NACs are directly
translated, as they do not contain any side-effects. The labeling for nodes and edges is given by the
links’ and objects’ types.

StoryPatterns are also employed to specify graph pattern. However, in a StoryPattern that specifies
a graph pattern side-effects must not occur. I. e. only a situation is described, but no change to the
situation.
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Throughout the report we will refer to the global set of all rules as R.

Example 1: To illustrate the StoryPattern notation have a look at Figure 4.3. The figure shows a
StoryPattern that specifies the Contract creation between a Supplier and a Customer role. The
Contract node is marked with a �create� stereotype and thus created by the rule. The StoryPat-
tern is only applicable is both Customer and Supplier belong to the same ContractCollaboration

instance and no Contract has been created, yet.

4.2 Modeling Concepts

Amongst all the capabilities of SoaML, which we have roughly described in the above paragraphs,
the modeling concept of SoaML also has some limitations. The two service contracts BusinessTo-

BusinessContract and Auction could both be seen as specialized types of a abstract Contract

service contract. Service contracts in SoaML subtype the UML concept of collaborations and thus they
also support inheritance. Unfortunately the UML only defines the specialization of collaborations at
the role-level. SoaML reuses this definition but misses to clearly define what inheritance means to the
choreography of the specialized service contract. Further SoaML does not contain any concepts to
model that participants join or leave a running service contract as it is required for the Auction service
contract. If the modeled system should be verified the developer needs some guidance, that makes clear
what kind of specification is required in which modeling stage. SoaML is missing this guidance, what
is obvious as SoaML is a multi-purpose modeling language. Lastly, the notion of structural changes,
which naturally occur in a service-oriented system, can hardly be expressed with the concepts offered
by SoaML.

4.2.1 Service Roles

As SoaML does, we also make use of Roles to decouple collaborations and components. However, we
distinguish between abstract and concrete roles, what results in mainly three typical cases how roles
are used in rigSoaML:

abstract roles only define the concept but without behavior; are used to describe assumed/guaranteed
properties of participants even when their behavior is not defined

concrete roles (in abstract collaborations): definer role behavior such that components can refine it;
leave behavior of other roles and the network open

concrete roles (in concrete collaborations): definer role behavior such that components can refine it;
behavior of other roles and the network can also only be refined

Formally we can define a service role as follows:

Definition 4.2
A role type roi = (roi) consists of a role type node roi. The role type is concrete if it has an assigned
concrete behavior and otherwise abstract. It is further refined if role types exist that are subtypes.

A role instance of a role type roi is represented by a node of type roi. The rules that are assigned to
the role type roi have to have an instance of that type in their precondition. Thus, the rules are only
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applicable if an instance of that type exists. Further, the rules have to preserve a pseudo-typing over
role type roi (cf. Section 4.1.2) by linking all nodes, occurring in the rule, to roi.

Example 2:[Abstract Role] In the supply chain application example exist two abstract role types. For
the role types Customer and Supplier no concrete behavior is specified. These two role types get
refined through further role types that will be introduced within the supply chain example.

4.2.2 Service Contracts/Collaboration

rigSoaML uses collaborations to specify the different service-contracts that are available in a service-
oriented system. However, the basic notation as UML-collaborations, that is used in SoaML, is not
sufficient for our purposes, as we will need more information for a collaboration to be specified.

Definition 4.3
A collaboration type Coli = (coli, (ro

1
i , . . . , ro

ni
i ), CDi, Ri,Φi) consists of a collaboration type node

coli, a number of roles roji , an UML class diagram CDi, a function Ri : {coli, ro1i , . . . , ro
ni
i } 7→ 2R

assigning rules to roles, and guaranteed properties Φi. The collaboration type is concrete if all roles
are concrete (have an assigned concrete behavior) and otherwise abstract. It is further refined if
collaboration types exist that are subtypes, with the restriction that only abstract collaboration types
can be refined.

A collaboration instance of collaboration type Coli is represented by a node of type coli. All rules of
Coli also preserve a pseudo-typing linking of all nodes to coli. For two different roles roki and roli the
set of assigned rules has to be disjoint Ri(ro

k
i ) ∩Ri(roli) = ∅. The creation of collaboration instances

of collaboration type Coli is only possible through the collaboration type’s roles roki and their assigned
behavior Ri(ro

k
i ). The collaboration type Coli’s property have to be pseudo-type separated by the

collaboration type node coli.

The relation amongst the collaboration Coli’s roles ro1i , . . . , ro
ni
i and any additional data types that

are used within the collaboration are specified within the class-diagram CDi. The class-diagrams of
different collaborations have to be separated by different name-spaces. However, a collaboration Coli
being a subtype of collaboration Colj , is allowed to enhance the class diagram CDj with it’s own
types. Obviously, this is required as otherwise collaboration subtypes have no possibility to use the
super collaboration’s roles and data-types. Nevertheless, the new elements have to be defined in a
separated name-space.

The rules for creation of new role-instances and the connection of role-instances with collaboration-
instances are part of the roles’ behavior. For the creation of new role-instances we can distinguish two
different cases. First, a role owns a rule that specifies the creation of a new instance of an other role
instance (which is not necessarily of the same type as the creating role). Second, for a role-type a rule
exists, that allows instances of that type to connect with an existing collaboration-instance. Finally,
the combination of the two cases is allowed, too. However, then the first case has to be restricted to
the creation of roles of the same type as the creating role.

Within a collaboration both, synchronous and asynchronous, communication styles can be specified.
For asynchronous communication message passing schemes could be employed. I. e. an instance of role
A creates a new message and links/sends it to a role B. Later, role B can process the new message.
For a synchronous communication role A has to directly modify role B, e. g. setting a mode-flag of
role B.

The collaboration’s choreography will be modeled through Story Patterns. In Figure 4.3 an example
for a StoryPattern is depicted. The StoryPattern is applicable if both roles Supplier and Customer
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could be matched and they were connected by an ContractCollaboration instance. The result of
the StoryPattern is, that a new Contract instance becomes created, whose attribute recallDate

has to be greater than the ContractCollaboration’s now attribute.

For the modeling of the collaboration’s properties Φi we facilitate StoryPatterns, too, but we restrict
them to be side-effect free. I. e. it is forbidden that StoryPatterns for properties create or delete
elements. This restriction is possible as they are only used to identify sets of states that satisfy a
certain condition, the condition that is expressed through the StoryPattern. We say that a state – i. e.
an UML object diagram – satisfies a StoryPattern iff we can find a match for the StoryPattern in the
instance diagram. For the frequent case that we want to explicitly forbid certain situations we can
prefix the pattern P with the temporal logic expression AG¬∃P , meaning that the pattern P must
never occur in the instance graph. If P is always used in this way, we call P a forbidden pattern. An
example for a forbidden pattern is shown in Figure 4.2. This StoryPattern matches all states where
two Contracts are established between the same Customer and Supplier roles. This StoryPattern is
only used in combination with the temporal logic prefix AG¬∃ and is hence called a forbidden pattern.

Figure 4.1: Contract Collaboration Structure

Figure 4.2: Property: Not two Contracts between Customer and Supplier role.

Figure 4.3: The ContractCollaboration’s createContract rule

Example 3:[abstract collaboration] An example for an abstract collaboration is the contract collabora-
tion, whose structural diagram is depicted in Figure 4.1. The contract collaboration is specified as
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ColCC = (ContractCollaboration, (CustomerCC , SupplierCC), CDCC , RCC ,ΦCC). Although the
collaboration is abstract, there is behavior specified for the Customer role. The Customer role can
create a Contract between the Customer and the Supplier role (see Figure 4.3). The collabo-
ration network, does not have any assigned behavior. The collaboration’s properties specify that not
two Contracts exists between the Customer and the Supplier role. This is formally expressed as
ΦCC = AG¬∃twoContracts with twoContracts being the graph constraint depicted in Figure 4.2.

RCC(CustomerCC) = {createContract}
RCC(SupplierCC) = ∅

The rules for the collaboration’s Customer role can be used to exemplify pseudo-typing as introduced
in Section 4.1.2. The role’s CreateContract rule (cf. Figure 4.3) contains the collaboration node
of type ContractCollaboration, which is connected to all other nodes – also the created one –
contained in the rule. The rule is pseudo-typed over the node of type Contract-Collaboration.

Figure 4.4: Request Offer Collaboration Structure

Example 4:[Concrete collaboration] The abstract contract collaboration introduced in the previous
example is refined by the concrete collaboration Request Offer Collaboration (ROC) ColROC =
(RequestOfferCollaboration, (CustomerROC , SupplierROC), CDROC , NetROC , RROC ,ΦROC).
The ROC’s structure is depicted in Figure 4.4. The concrete role types CustomerROC and SupplierROC

refine the abstract role types CustomerCC and SupplierCC, respectively. The roles’ behavior is spec-
ified through two sets of story-pattern, which allow the CustomerROC to send a Request to the
SupplierROC, who in turn can answer by sending an Offer and finally if the Offer is acceptable to
both a Contract can be created. These rules are depicted in Figure 4.7. For the collaboration’s two
roles Customer and Supplier we get the following assignment of rules:

RROC(CustomerROC) = {sendRequest, createContract}
RROC(SupplierROC) = {sendOffer}

The rules describing the Customer role’s behavior are shown in Figures 4.7(a) and 4.7(c). The Sup-

plier role’s behavior is depicted in Figure 4.7(b).

In comparison with the Contract-Collaboration introduced in Example 3 the collaboration’s prop-
erties have been extended by three more graph constraints, depicted in Figure 4.6. The collaboration
type’s class diagram is depicted in Figure 4.5.
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Figure 4.5: Class Diagram CDROC for the Request Offer Collaboration

4.2.3 Service Provider/Components

In conformance with SoaML, rigSoaML employs components to implement the collaborations’ roles.
SoaML, however, does only support a syntactical refinement between roles and components, i. e. the
interfaces should look the same, whereas we further require a semantical refinement. Therefore it is
necessary to specify additional relations between roles and components. Our specification of components
will comprise safety-properties, that have to be fulfilled by the component’s implementation, too.

Definition 4.4
A component type Comi = (comi, (ro

1
i , . . . , ro

mi
i ), CDi, Ri, Ii,Ψi) consists of a component type

node comi, a number of roles roji , a class-diagram CDi, a function Ri : {comi, ro
1
i , . . . , ro

mi
i } 7→ 2R

assigning rules to roles, a set of initial rules Ii ⊆ Ri(comi), properties Ψi. The component type is
concrete if all roles and the implementation are concrete (have an assigned concrete behavior) and
otherwise abstract. It is further refined if component types exist that are subtypes. An initial rule
i ∈ Ii has to have an empty pre-condition and must only create elements, that are pseudo-typed to
comi.

A component instance of component type Comi is represented by a node of type comi, which also
fulfills the pseudo-typing requirements and thus separates elements from each other that belong to
different component instances. All rules of Comi preserve a pseudo-typing linking all nodes to comi.
The function Ri is defined as for collaboration types (see Definition 4.3). The only way a component
instance of type Comi can be created is through the execution of any of the creation rules in Ii.
The creation rules Ii may be refined through a component type Comj that has a create relation

Comj
create−−−−→ Comi to Comi. As for collaboration types the component types’ properties have to be

pseudo-typed over the component type node.

The component type’s class diagram CDi contains all class diagrams of the collaboration types that are
used by the component type.1 Additionally, the component itself, represented by a class comi (node
type), and all data-types required by the component are contained in CDi. If the component type
Comi refines the component type Comj parts of CDj might be contained in CDi, too. Again the
types, defined by different components, must be located in different (and disjoint) name-spaces.

We write Ri(ro
k
i ) ⊆ Ri(comi) to refer to the set of all rules that belong to the component Comi’s

implementation of role roki .

1A component type uses a collaboration type, if the component type implements a role that has been defined for this
collaboration type.
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(a) Two Requests (b) Two Offers

(c) Request and Offer

Figure 4.6: Properties ΦROC for the Request Offer Collaboration

Example 5:[Factory component] The two role types Customer and Supplier are both implemented
by a single component Factory (see Figure 4.8). The Factory component is formally given as:
ComFac =

(
comFac, (Customer

CC
Fac, Supplier

CC
Fac), CDFac, IFac,ΨFac

)
The company’s behavior is

again specified through a set of rules, that is depicted in Figure 4.10. We have the following assignment
of the component’s rules to it’s roles:

RFac(Customer
CC
Fac, ComFac) = {createRequest, createContract}

RFac(Supplier
CC
Fac, ComFac) = {createOffer}

In contrast to the collaboration’s rules (see Figure 4.7) the factory’s rules clearly allow to distinguish
which rule is assigned to which role. At the level of collaboration this assignment is not necessarily
directly visible, without having a look at the collaboration’s specification.

Figure 4.8 shows that the Factory component extends the AbstrFactory component, which
is specified as abstract. However, for the AbstrFactory component a property is specified:
ΨAFac = AG¬∃earlyRecall ∧ AG¬∃custNoCon. The corresponding graph constraints are de-
picted in Figure 4.11(a) and 4.11(b), respectively. The factory’s class diagram CDAFac is de-
picted in Figure 4.9. The component’s complete specification can be given as: ComAFac =
(comAFac, (CustomerAFac, SupplierAFac) , CDAFac, RAFac,ΨAFac) with R(SupplierAFac) =
R(CustomerAFac) = R(comAFac) = ∅.

4.2.4 Service Landscapes / Architecture / System

The rigSoaML counterpart to SoaML’s service landscapes are system types and systems. System com-
bine collaboration- and component-types to a conceptual unit.
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(a) createRequest Rule (b) createOffer Rule

(c) createContract Rule

Figure 4.7: Behavioral rules for the ROC’s roles

Figure 4.8: Structural overview of the Factory component

Definition 4.5
A system type Sys = ((Col1, . . . , Coln), (Com1, . . . , Comm)) consists of a number of collaborations
types Coli and a number of component types Comj .

Example 6: Using the previous Examples 5 and 4 we can define a first system type Sys1 =
((ColROC), (ComFac)).

Definition 4.6
A system is a pair S = (Sys,GS) with system type Sys = ((Col1, . . . , Coln), (Com1, . . . , Comm))
and an initial configuration GS that is type conform for Sys. A system is concrete iff all collaborations
Col1, . . . , Coln and components Com1, . . . , Comm are concrete.
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Figure 4.9: Class Diagram CDFac for the Factory component type

Complex Landscapes

A complex landscape describes a computing evnvironment that is formally given by a system type (cf.
Definition 4.5). Hence, for a fixed set of collaboration- and component types, a complex landscape
summarizes the structural changes that can happen at the instance level. A snapshot at a certain
point in time shows a landscape configuration, i. e. the components and collaborations togehter with
their connections between each other. In a landscape configuration only instances of components and
collaborations may occur whose type is defined in the corresponding system type.

From the developer point of view it is interesting to see, that it is sufficient to have information about
the relevant super-types for components and collaborations in order to develop a new constituent.
The required information is publicly available and, depending on the current landscape, no even the
complete system type specification has to be known to the developer. As a consequence, developers
only have to have knowledge of the occurring types within the system and not of the current instance
situation.

For a complex landscape, a combined class diagram can be given, that is derived by the combination
of the different class diagrams that are specified for components and collaborations. The joints for
the different class diagrams are the classes that the different class diagrams have in common, as they
use them. The pseudo-type separation and distinction between classes is guaranteed through unique
name-spaces. This is, each component and collaboration has to use an unique name-space such that
their own classes does not interfere with other components’ or collaborations’ classes.

The term complex landscape is closely related to the SoaML ServicesArchitecture, which basically is
a huge collaboration containing all specified service contracts and roles. However, the components are
not necessarily part of the SoaML ServicesArchitecture but are constituents of the complex landscape.
The other view SoaML specifies is the ParticipantArchitecture, which does only show the internal
architecture of one single participant, i. e. a component in our terms.

Landscape Evolution

One aspect of our motivation for this work is that complex landscape are subject to change and thus
the software engineering and verification methodologies have to be aware of these changes. We will use
the term landscape evolution to describe that a complex landscape changes. Especially this term will
be used, whenever the corresponding system type changes. The reasons, why such changes happen,
are manifold but the way the change looks can be roughly categorized in the following cases.
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(a) CreateRequest Rule (b) CreateOffer Rule

(c) CreateContract Rule

Figure 4.10: Behavioral rules for the ROC’s roles

Top-level changes Changes to the type system can be made at the top-most level. Mostly the types
that are added at this level are abstract types that do not necessarily provide any new behavior,
but are used to describe new concepts, that are required to further develop the current system.
It is possible to add component types as well as collaboration types. The removal of types is not
supported yet. For our application example it could be the case that at some point in time it
is necessary to add transport agents to the system that take care of delivering the goods being
dealt between some of the factories.

Implementation-level changes The more frequent case, however, will be changes at the
implementation-level. Thus, whenever a new party will participate in the running system it is
likely that they provide an own component or collaboration type, depending on the required
needs. Anyway, it is important to note that adding a new type at the implementation level is
beneficial, as the new type is compatible to the running system and inherits the already proven
safety properties.

SoaML does not contain any suitable equivalent to express landscape evolution. Nevertheless, it could
be added to SoaML as this is, what we have done in this work. In Figure 4.12 we show an exemplary
evolution diagram. The diagram can be horizontally split into two main parts, the abstract specification
at top and the implementation part below. The implementation part however can further be divided
into “swim-lanes”, one for each organization that provides an implementation for any of the abstract
concepts. The vertical order of the entities in the implementation part indicates a partial order, when
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(a) The earlyRecall graph constraint

(b) The custNoCon graph constraint

Figure 4.11: Properties for AbstrFactory component

they have been introduced. To support better discernibility, the evolution diagram separates different
versions with alternating background colors (light grey and white).

Definition 4.7
An extended evolution sequence is a sequence of systems (Sys1, G

1
S), . . . , (Sysn, G

n
S) such that (1)

Sysi+1 only extends Sysi by additional collaboration and component types, (2) Gi+1
S is also type

conform to Sysi, and (2) Gi+1
S can be reached from GiS in the system Sysi.

An evolution sequence is a sequence of system types Sys1, . . . , Sysn such that at least one related
extended evolution sequence (Sys1, G

1
S), . . . , (Sysn, G

n
S) exists.

4.2.5 Type Conformance

In order to have a scalable solution, we cannot directly approach correctness at the level of system types
as the number of collaborations and components in such systems can be already very high. Instead we
will only look at type conformance which is easily covered also for large system types. A system type
is then type conform if the collaboration and component types are consistently referring to each other.

Definition 4.8
A concrete system type Sys = ((Col1, . . . , Coln), (Com1, . . . , Comm)) is type conform iff for all roles
references in any component also a collaboration defining that role exists.

The overall class diagram CD (and thus the related node type set T ) is the union of the class diagrams
of the collaborations and components and it must hold for any type for a node or edge that it only
defined exclusively once, only used in subtype collaborations or components such that they are pseudo-
type separated there.

We now have to define what type conformance means for a system that also includes abstract types
by extending Definition 4.8.

Definition 4.9
A system type Sys = ((Col1, . . . , Coln), (Com1, . . . , Comm)) is type conform if for all roles references
in any component also a collaboration defining that role exists and all subtype relations of collaborations
and components are type conform.
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Figure 4.12: Evolution Diagram for an abstract specification and three independent organizations de-
veloping implementations

An obvious property of type conform systems is, that the application of type conform rules does
not invalidate the systems’ type conformance. This is property is straightly inherited from typed graph
transformation systems, that have exactly this property. Thus, in our modeling approach it is impossible
that a collaboration type instance is connect with a role, which it doesn’t know.

4.3 Mapping SoaML to rigSoaML

We will use this chapter to point out the direct expressions of SoaML modeling elements and rigSoaML
modeling elements. This chapter will also show where our modeling approach rigSoaML is more detailed
than the original SoaML.

4.3.1 Services Architecture

A service oriented system, that is modeled using the SoaML, as proposed by the OMG, necessarily con-
sists of at least one�ServicesArchitecture� collaboration diagram. This diagram contains services
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and roles, that are used within these services. Figure 4.13 depicts the �ServicesArchitecture� for
the Supply Chain application example.

Figure 4.13: Services Architecture for the SupplyChain application example

If we transfer the depicted diagram to our modeling language rigSoaML, we get a set of collaboration
type definitions (cf. Definition 4.3)

ColROC = (RequestOfferCollaboration, (Supplier, Customer), ∅, ∅, ∅)

and
ColAuction = (AuctionCollaboration, (Supplier, Customer,Auctioneer), ∅, ∅, ∅)

In the above collaboration types, several constituents are not yet defined and we wrote ∅ to make
this clear. Thus, a �ServicesArchitecture� collaboration diagram only gives us knowledge of the
collaboration types and the roles that are available.

The inheritance between service contracts is not directly reflected within our collaboration type defini-
tion, but we use this information for the verification. However, the conditions for a correct inheritance
are much stronger in rigSoaML than in SoaML, which mainly uses syntactic substitutability, whereas
in rigSoaML also behavioral refinement is required (as it will be defined in Definition 5.10).

4.3.2 Behavior specification

We have shown in the previous section that the �ServicesArchitecture� does not provide a
behavior specification for the modeled service contracts. However, in SoaML each collaboration has a
behavior specification that can be specified using any UML behavior – i. e. sequence diagrams, activity
diagrams, state machines. For the Request Offer Collaboration we have already given an exemplary
sequence diagram. We show it again in Figure 4.14.

In our modeling approach the sequence diagram has been translated in a set of graph transformation
rules. Each message in the sequence diagram, resulted in one graph transformation rule. The assignment
to the roles of the collaboration was straight forward: the sender of the message got the corresponding
rule assigned. However, although the approach looks very intuitive it is impossible to generalize it to
suit an arbitrary system. The important information, we miss here, is the rules’ “internal” structure.
The sequence diagram does not specify what the exact pre-conditions for sending a request are. Thus,
it is up to the modeler to give a solid translation of an UML behavior specification to a set of graph
transformation rules. Further, an UML sequence diagram does not necessarily specify the collaboration
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Figure 4.14: Sequence Diagram for the Request Offer Collaboration

type’s complete behavior but only a part of the behavior. Our specification approach, however, always
captures the collaboration and component types’ complete behavior.

4.3.3 Participant Architecture

The �ParticipantArchitecture� describes in SoaML the internal design of the participants
in the service-oriented systems. In our terms, a participant is a component and consequently a
�ParticipantArchitecture� becomes translated in a component type declaration. However, as
for the�ServicesArchitecture�, the�ParticipantArchitecture� only specifies the structural
constituents of a component type. The rules that declare the component type’s behavior have to trans-
lated from the corresponding UML behavior specification and the same restrictions and difficulties the
were already discussed in Section 4.3.2 apply here, too.

4.3.4 Safety Properties

The previous sections clearly showed, that SoaML models do only specify a part of the information we
need for complete rigSoaML model. Especially the safety properties that are required for collaboration
and component types are missing. The problem here is, that SoaML wasn’t designed to also declare
safety properties within the system model. Hence, no defined way to specify them exists. However, it
might be possible to specify them using OCL constraints that restrict the allowed instance situations,
one could use UML sequence diagrams to specify invalid behavior or explicitly point out those behavior
sequences that are allowed.

In consequence we can not give a precise and automatic way to derive the safety properties for collab-
oration and component types.

4.4 Discussion

In this section we want to review how well rigSoaML covers the challenges that result for the modeling
as introduced in Chapter 2.

Challenge Modeling SOA (M1) is as outlined in Section 3.2 already mostley covered by SoaML and
thus rigSoaML inherit this coverage. The model has to cover the concepts of service-oriented systems
such as service contracts, roles, components, architecture and service landscapes.

However, rigSoaML in contrast to SoaML (see Section 3.2) also covers challenge Modeling Dynamics
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(M2). rigSoaML supports dynamics of service-oriented systems such as joining/leaving service contracts
dynamically and adding components dynamically by means of the rules for roles and components.

The evolution can be modeled by step-wise adding types to the system type. Thus, also challenge
Modeling Evolution (E1) concerning the modeling of the uncoordinated introduction of new types
for service contracts and components at runtime is covered. Further, the newly introduced evolution
diagram illustrates the different changes, that occurred to the system during its lifetime.

Challenges SoaML rigSoaML
Modeling SOA (M1) X X
Modeling Dynamics (M2) ◦ X

Modeling Evolution (E1) ◦ X

Table 4.1: Comparison of the coverage of the challenges for modeling with SoaML and rigSoaML



Chapter 5

Verification of Complex Landscape
rigSoaML Models

The problem of verifying the correctness of complex landscapes is that existing formal approaches
do not scale, are not applicable to the specific settings of SOA with dynamic binding, and do not
support evolution. Formal verification usually operates at the level of instances and does only work
for rather small configurations with a fixed upper bound of elements and a fixed number of initially
defined element types, while complex landscapes may contain unbounded many elements and even the
defined element types may evolve. Therefore, instance-based formal verification approaches that look at
a particular configuration are in principle not applicable. For the same reasons also testing a particular
configuration, that does provide an even low coverage than formal verification, is not sufficient as well.
Furthermore, due to the dynamic nature of complex landscapes it cannot be assumed that any of the
involved organization has all relevant details of the concrete service implementations at hand to apply
formal verification techniques or testing techniques looking at the complete configuration.

Therefore, we propose to instead establish the required guarantees for the correctness for the collabora-
tion and component types as introduced for the suggested modeling approach. We will at first simplify
the problem by only considering landscapes with concrete type definitions (Section 5.1). Then, we
will in an additional step also consider abstract service contracts as a means to bind independently
developed components to each other and refine collaborations (Section 5.2). Finally, also the very
demanding case of landscape evolution where new collaboration and component types enter the scene
is considered (Section 5.3).

5.1 Concrete Service Landscapes

The simplification to approach the problem of service landscape verification followed in this section
is that any concrete system only instantiates concrete types and thus we will in a first step omit the
abstract types and evolution.

As a formal verification at the instance level seems impossible, we will instead approach the problem at
the type level. For the verification at the type level we will then show that the correctness proven for the
collaboration and component types and only type conformance for the system type will by construction
imply that the related correctness also holds at the instance level for any possible configurations of
related systems. The general idea of our verification approach is sketched in Figure 5.1. The figure is
virtually separated into two layers. The bottom layer shows the actual instance situation, for which

41
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we want to come up with a correctness-proof. The top layer shows the types that are instantiated at
the instance level – illustrated through the dashed vertical arrows. At the top-level grey boxes indicate
verification obligations, i. e. we have to verify that the RequestOfferCollaboration behaves correctly,
and the “Check Role Refinement” label indicates that we have ensure that the component correctly
refines the collaboration’s roles. The scalability of our approach comes from the fact, that the type
view is to some degree independent of the instance view.1 What we have to show as a general property
of our approach is that the results we yield for the type-level are valid for the instance-level, too.

Figure 5.1: Sketch of the general proof scheme

5.1.1 Correct Collaboration Types

We start our considerations with defining what we mean by correct types for collaborations and com-
ponents. A correct collaboration type requires that the resulting behavior ensures the guarantees if the
assumptions are guaranteed.

Definition 5.1
A concrete collaboration type Coli = (coli, (ro

1
i , . . . , ro

ni
i ), CDi, RiΦi) is correct if for the empty

configuration G∅ holds that the reachable collaboration configurations are correct

G∅, Ri(Coli) |= Φi

for Ri(Coli) = Ri(ro
1
i ) ∪ · · · ∪Ri(roni ) ∪Ri(coli)) the overall behavior of the collaboration.

Please note that looking only at the behavior of all roles and to consider only the initial empty G∅ is
sufficient to cover all possible behavior as only the behavior of the roles can create or delete roles or
other exclusive elements.

Example 7: To exemplify a correct collaboration type we will use the concrete collaboration type Request
Offer Collaboration (ROC), that has been introduced in Example 4. The ROC has two concrete role
types CustomerROC and SupplierROC, a network behavior is not specified. The properties the ROC

1As long as the types, that are instantiated at the instance level, do not change, the type level does not change.
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has to fulfill are those that are specified for the ROC. Consequently the property that has to be satisfied
by the ROC is AG¬∃noSupplier∧AG¬∃earlyRecall∧AG¬∃earlyRequest∧AG¬∃earlyOffer.
This property has to be satisfied by every graph transformation system that can be build using any
valid configuration as initial graph and the collaboration’s rules.

The following table summarizes the checks that are necessary to show that the ROC is a correct
collaboration.

Task Required? Time Memory

Verify ΦCC yes
- Check G∅, RROC(Colroc) |= ΦCC yes 1668 ms ≤512 MB
Verify ΦROC yes
- Check G∅, RROC(Colroc) |= ΦROC yes 5703ms ≤512 MB

The set of rules RROC(ColROC) is given as the combination of all rules of the RequestOfferCollabo-
ration’s roles: RROC(ColROC) = RROC(SupplierROC) ∪RROC(CustomerROC).

5.1.2 Correct Components Types

A correct component type requires that the resulting behavior ensures that the guarantees if the as-
sumptions are guaranteed and that the component’s implementation refines the combined role behavior.

Definition 5.2
A concrete component type Comi = (comi, (ro

1
i , . . . , ro

mi
i ), CDi, Ii,Ψi) is correct iff for the empty

configuration G∅ holds that the reachable component configurations are correct

G∅, Ri(comi) ∪ COMP (Comi) ∪ Ii |= Ψi (1)

and the component behavior Ri(comi) refines the orthogonally combined role behavior and creation
behavior

Ri(comi) v Ri(ro1i ) ∪ · · · ∪Ri(ro
mi
i ) ∪ Ii ∪

⋃
Comi→createComj

Ij . (2)

We employ here COMP (Comi) =
⋃

1≤l≤mi
COMP (Comi, ro

l
i) with COMP (Comi, ro

l
i) =

Rj(Colj) to add the collaboration behavior for each role without the role itself which is covered
by Ri(comi) to the component to derive a related closed behavior. To further differentiate the two
elements of correctness we refer to the first condition as correct concerning guarantees and for the
second condition as correct concerning refinement.

Example 8: The concrete component Factory can be proved correct. The Factory component owns
an implementation and thus can be verified. The Factory has to satisfy it’s own guaranteed properties
Ψg
Fac – it’s assumed properties Ψa

Fac are empty by definition.

Task Required Time Memory
Verify G∅, RFac(ComFac) |= ΨFac Yes 12995ms ≤512MB
Check role refinement yes syntactically guaranteed

The rule set RFac(ComFac) is given as defined in Definition 5.2. RFac(ComFac) =
RFac(SupplierFac) ∪ RFac(CustomerFac). The correct role-refinement is syntactically guaranteed as
the rules for the Factory component do only enhance the rules for the RequestOffer Collaboration with
new types, defined in CDFac.
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5.1.3 Correct Collaboration Instances

After defining our notion of correctness for the types, we have to define what the related notion of
correctness at the instance level means.

Definition 5.3
All collaboration instances of a concrete system S = (Sys,GS) with system type Sys =
((Col1, . . . , Coln), (Com1, . . . , Comm)) are correct if it holds

GS , R(com1) ∪ · · · ∪R(comm) ∪R(col1) ∪ · · · ∪R(coln) |= Φ1 ∧ · · · ∧ Φn.

We can then show in the following Lemma that the correctness of the collaboration types ensures also
the notion of correctness at the instance level.

Lemma 5.4
All collaborations of a concrete system S = (Sys,G∅) with system type Sys =
((Col1, . . . , Coln), (Com1, . . . , Comm)) and rule function R are correct if (1) the system type Sys
is type conform, (2) all collaboration types Col1, . . . , Coln of Sys are correct, and (3) all component
types Com1, . . . , Comm of Sys are correct concerning refinement.
Proof. At first we can conclude that due to the fact that the concrete collaboration types and their
rules and properties are by definition separated by pseudo-types for coli and due to (2) we further know
that for all i holds (R(ro1i )∪· · ·∪R(roni

i )∪R(coli)) |= Φi. Due to Corollary C.9 we know that R∪R′
preserves the properties of R and R′ when R and R′ and the properties are pseudo-type separated and
thus we get as the collaborations are pseudo-type separated that

G∅, (R(ro11) ∪ · · · ∪R(ron1
1 ) ∪R(col1))∪

· · · ∪R(ro1n) ∪ · · · ∪R(ronn
n ) ∪R(coln)) |= Φ1 ∧ · · · ∧ Φn.

Also for the creation rules I1 ∪ · · · ∪ Im holds that they are pseudo-type separated and thus we get

G∅, (R(ro11) ∪ · · · ∪R(ron1
1 ) ∪R(col1))∪

· · · ∪R(ro1n) ∪ · · · ∪R(ronn
n ) ∪R(coln)) ∪ I1 ∪ · · · ∪ Im |= Φ1 ∧ · · · ∧ Φn.

Due to (1) we have type conformance which guarantees that the role types are only properly connected
to collaboration types. Thus by replicating them as well as the creation rules for each occurrence and
reordering them according to the concrete components types involved we get

G∅, (R(ro11) ∪ · · · ∪R(rom1
1 ) ∪ I1 ∪ · · · ∪ Im) ∪ · · · ∪ (R(ro1m)∪

· · · ∪R(romm
m ) ∪ I1 ∪ · · · ∪ Im) ∪R(col1) ∪ · · · ∪R(coln) |= Φ1 ∧ · · · ∧ Φn,

as replication of rules preserves the properties. We further know due to (3) that the implementation of a
component refines the combined role behavior (R(comi) v (R(ro1i )∪· · ·∪R(romi

i )∪I1∪· · ·∪Im) and
thus can derive the required condition for correctness of the system for all collaborations of Definition
5.3 by substitute R(comi) for (R(ro1i ) ∪ · · · ∪ R(romi

i ) ∪ I1 ∪ · · · ∪ Im as due to Corollary C.11 it is
ensured that refinement preserves the property Φ1 ∧ · · · ∧ Φn:

G∅, R(com1) ∪ · · · ∪R(comm) ∪R(col1) ∪ · · · ∪R(coln) |= Φ1 ∧ · · · ∧ Φn.

�

Example 9: To exemplify Lemma 5.4 let us consider the system type Sys, that has been introduced in
Example 6. The first condition we have to check is (1) (see Lemma 5.4). This condition is satisfied, as
the component types, that occur in Sys, only use roles, that are introduced by collaborations, that are
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part of Sys, too. Condition (2) – the correctness of all collaboration types – has already been shown in
Example 7. The remaining condition of the Lemma we have to show is condition (3), which enforces
a correct refinement between the component’s roles and the collaboration’s roles. In detail we have to
show that the roles SupplierCom and CustomerCom refine the roles SupplierROC and CustomerROC,
respectively. The role refinement for Sys is satisfied, as the component’s rules (see Figure 4.10) do
not alter the collaboration’s rules (see Figure 4.7) other than strengthening the rules’ preconditions.
In consequence the component’s rules do not introduce new situations, where the rules are applicable,
but reduce the amount of rule applications.

Summarizing, we have shown that any concrete system S = (G∅, Sys) where G∅ is the initial empty
configuration contains only correct collaboration instances.

5.1.4 Correct Component Instances

As done for collaborations, we now define what the related notion of correctness at the instance level
for components means.

Definition 5.5
All components of a system S = (Sys,GS) with system type Sys = (T , R, (Col1, . . . , Coln),
(Com1, . . . , Comm)) are correct if it holds:

GS , R(com1) ∪ · · · ∪R(comm) ∪R(col1) ∪ · · · ∪R(coln) |= Ψ1 ∧ · · · ∧Ψm.

We can show in the following Lemma that the correctness of the component types ensures also the
notion of correctness at the instance level.

Lemma 5.6
All components of a system S = (Sys,G∅) with system type Sys = ((Col1, . . . , Coln),
(Com1, . . . , Comm)) are correct if (1) the system type Sys is type conform, (2) all collaboration
types Col1, . . . , Coln are correct, and (3) all component types Com1, . . . , Comm are correct.
Proof. As for all i with 1 ≤ i ≤ m holds due to (2) that R(comi) ∪ COMP (Comi) ∪ Ii |= Ψi and
all R(comi) ∪ COMP (Comi) ∪ Ii are included in a refined manner in R(com1) ∪ · · · ∪ R(comm) ∪
R(col1) ∪ · · · ∪R(coln), we finally get due to Corollary C.9 the required result

G∅, R(com1) ∪ · · · ∪R(comm) ∪R(col1) ∪ · · · ∪R(coln) |= Ψ1 ∧ · · · ∧Ψm.

The disjoint type-graphs, required by Corollary C.9 are achieved through pseudo-typing and pseudo-
types preserving rules. Pseudo-typing guarantees that not two component instances can influence each
other directly. �

Example 10: For the system type Sys (cf. Example 6) we have only shown, yet, that the collaboration
instances in any system configuration are correct (cf. Example 9). The remaining proof, that the
component instances are correct, too, is a combination of our previous results. According to Lemma 5.6
we have to show, that the system type is correct (cf. Example 9), the collaborations types are correct
(cf. Example 7) and that the component types are correct (cf. Example 8). Following, the above lemma
yields that the system type contains only correct component instances, if the system started from a
correct configuration.

Example 11: For the system type Sys (cf. Example 6) we have only shown, yet, that the collaboration
instances in any system configuration are correct (cf. Example 9). The remaining proof, that the
component instances are correct, too, is a combination of our previous results. According to Lemma 5.6
we have to show, that the system type is correct (cf. Example 9), the collaborations types are correct
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(cf. Example 7) and that the component types are correct (cf. Example 8). Following, the above lemma
yields that the system type contains only correct component instances, if the system started from a
correct configuration.

5.1.5 Correct Systems

As done for collaborations and components, we now define what the related notion of correctness at
the instance level for systems means.

Definition 5.7
A concrete system S = (Sys,GS) with system type Sys = ((Col1, . . . , Coln), (Com1, . . . , Comm))
is correct if it holds:

GS , R(com1) ∪ · · · ∪R(comm) ∪R(col1) ∪ · · · ∪R(coln) |= Φ1 ∧ · · · ∧ Φn ∧Ψ1 ∧ · · · ∧Ψm.

We can then show in the following Theorem 5.8 that the type conformance of the system type and
the correctness of collaboration types and component types ensures correctness at the instance level
for the system.

Theorem 5.8
An system S = (Sys,G∅) with system type Sys = ((Col1, . . . , Coln), (Com1, . . . , Comm)) is correct
if (1) the system type Sys is type conform, (2) all collaboration types Col1, . . . , Coln are correct, and
(3) all component types Com1, . . . , Comm are correct.
Proof. The required result follows directly from combining the results of Lemma 5.4 and 5.6 as both
require the same or a weaker conditions and their composed results are equal to the required conclusion.
�

The presented Theorem 5.8 provides sufficient but not necessary conditions to ensure the correctness.
It permits to straight forward establish the required correctness of the types by checking refinement
and the guarantees for the properties using the rule sets as employed in condition (2) and (3).

Figure 5.1 (see Page 42) visualizes that, according to Theorem 5.8, the required guarantees for the
instance level can be established by only do checks at the type level. Therefore, we can conclude that
the complexity of checking the guarantees is only depending on the number of types and the complexity
of the checking problems of the collaboration and component types.

Example 12: Let us assume, that the System S = (Sys,G∅) is a concrete system of system type Sys
(cf. Example 6) and empty starting configuration G∅. In the previous Examples 12, 11, and 9 we have
shown that the conditions for Theorem 5.8 hold. We can thus conclude, that the System S is correct.

Task Required? Time Memory

Verify ΦROC yes
- Check G∅, RROC(Colroc) |= ΦROC yes 5703ms ≤512 MB

Verify G∅, RFac(ComFac) |= ΨFac Yes 12995ms ≤512MB
Check role refinement yes syntactically guaranteed

Sum 18698ms ≤512MB
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5.2 Service Landscapes and Abstraction

In the preceding section we have shown that the correctness of concrete component and collaboration
types by construction implies the correctness of all instances in a concrete system if it is type conform.
However, in complex landscapes the cooperation is usually not only defined using concrete collaborations
but also using abstract ones which allow that the concrete service contract participants can refine the
roles as suitable for their specific needs while still protecting their own IP.

To extend the results also to the abstract collaborations and components, we can exploit the fact that
no instances of abstract collaborations or components can exist, as the abstract concepts themselves
are never manifested in a system.

Furthermore, the required refinement relation between abstract collaborations and abstract compo-
nents and more concrete counterparts will ensures the required guarantees implied by the abstract
collaborations or components are also implied by all concrete collaborations and components refining
them.

5.2.1 Refining Role Types

The refinement resp. subtyping of role requires that the resulting behavior is a refinement.

Definition 5.9
For concrete role types roi and roj holds that roi refines roj (written roi v roj) if holds

R(roi) v R(roj),

5.2.2 Refining Collaboration Types

The refinement resp. subtyping of collaboration requires that with respect to all roles of the refined
collaboration the resulting behavior is still a refinement.

Definition 5.10
For a collaboration type Coli = (coli, (ro

1
i , . . . , ro

ni
i ), CDi,Φi) and an abstract collaboration type

Colj = (colj , (ro
1
j , . . . , ro

nj

j ), CDj ,Φj) holds that Coli refines Colj (written Coli v Colj) if holds
nj ≤ ni and the refinement results in stronger guarantees and that the refined assumptions plus
guarantees imply the assumptions

Φi ⇒ Φj (1).

For all Coli and its super type Colj holds that the subtype relation is correct if Coli v Colj .

For subtyping of collaborations we can show in the following Lemma that the guarantees of the correct
refined collaboration are preserved by refinement resp. subtyping.

Lemma 5.11
For a correct, concrete collaboration type Coli = (coli, (ro

1
i , . . . , ro

ni
i ), CDi,Φi) and any of its abstract

collaboration super types Colj = (colj , (ro
1
j , . . . , ro

nj

j ), CDj ,Φj) (Coli v Colj) holds

R(Coli) |= Φj .

Proof. For any collaboration type holds via induction that its local assumption and guarantees imply
the guarantees of any super type Colj (Φi ⇒ Φj). As for a correct, concrete collaboration holds by
definition R(Coli) |= Φi. Consequently, we can conclude R(Coli) |= Φj . �
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Example 13: The Request Offer Collaboration (ROC, for specification see Example 4) refines
the abstract collaboration Contract (Con, cf. Example 3). For the Contract Collaboration we had
to run the following checks:

Task Required
Verify R(Con) |= ΦCon yes see Example 7

Obviously, verification for the Contract Collaboration is comparatively easy as this collaboration
only specifies a few properties and does not inherit properties from super-collaborations. The Request

Offer Collaboration, however, inherits from the Contract Collaboration (see Figure 4.1) and thus
has to satisfy ΦgCon ∧ ΦgROC .

Task Required
Verify R(Con) |= ΦCon No
Verify R(ROC) |= ΦROC Yes see Example 7
check refinement Yes syntactically checked

For the Request Offer Collaboration it is not required to verify the property ΦaCom again, as the
collaboration’s rules refine the Contract collaboration’s rules. The rule refinement holds by construc-
tion, as for the Request Offer Collaboration’s createContract rule only the precondition of
the Contract collaboration’s createContract rule had to be strengthened. Therefore, according to
Lemma 5.11, the verification results for the property ΦaCom and the Contract collaboration also hold
for the Request Offer Collaboration.

5.2.3 Refining Component Types

The refinement resp. subtyping of components also requires that the resulting behavior is a refinement.

Definition 5.12
For a component type Comi = (comi, (ro

1
i , . . . , ro

mi
i ), CDi, Ii,Ψi) and an abstract component type

Comj = (comj , (ro
1
j , . . . , ro

mj

j ), CDj , Ij ,Ψj) holds that Comi refines Comj (written Comi v
Comj) if it holds mj ≤ mi and the refinement results in stronger guarantees and weaker assumptions

Ψi ⇒ Ψj (1).

For all Comi and its super type Comj holds that the subtype relation is correct if Comi v Comj .

For subtyping of components we can show in the following Lemma that the guarantees of the refined
components are preserved by refinement resp. subtyping.

Lemma 5.13
For a correct, concrete component type Comi = (comi, (ro

1
i , . . . , ro

mi
i ), CDi, Ii,Ψi) and any of its

correct component super types Comj = (comj , (ro
1
j , . . . , ro

mj

j ), CDj , Ij ,Ψj) (Comi v Comj) holds

R(Comi) |= Ψj .

Proof. For any component type holds via induction that its local assumption and guarantees imply
the guarantees of any super type Comj (Ψi ⇒ Ψj). As for a correct, concrete component holds by
definition R(Comi) |= Ψi. Consequently, we can conclude R(Comi) |= Ψj . In case of an abstract
refined component type and a correct refining component type it also holds due to condition (3). �
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Example 14: Let us take a look at the Factory component (cf. Example 5) to exemplify Lemma 5.13.
The Factory component’s super type is the abstract component AbstrComp (cf. Example 5). In
order to safely omit the check, that the Factory also satisfies the AbstrComp’s safety properties we
have, according to the above lemma, to show that the rule sets assigned to the components’ role are
in a valid refinement relation (see Definition 5.12). More concrete we have to show the following:

RCom(CustomerCC) v RACom(Customer)RCom(SupplierCC) v RACom(Supplier)

The conditions for a correct refinement between rule sets can be informally described as: the refining
rule set must not allow more behavior than the refined rule-set. The difference between the two rule
sets is that the rules of the Factory’s roles have a stronger pre-condition than the rules specified for
the AbstrComp. Hence, an easy syntactical check yield the required property.

5.2.4 Correct Systems with Abstraction

It now remains to show that the refinement ensure correctness for a system including the guarantees
for the abstract concepts. The following Theorem 5.14 then demonstrates that this correctness criteria
is met by construction if all types are correct and the refinement conditions for subtypes are fulfilled.

Theorem 5.14
An system S = (Sys,GS) with system type Sys = ((Col1, . . . , Coln), (Com1, . . . , Comm)) is correct
if (1) the system type Sys is type conform, (2) all collaboration types Col1, . . . , Coln are correct, and
(3) all component types Com1, . . . , Comm are correct.
Proof. Due to Theorem 5.8 we can conclude that all properties of the concrete collaborations and
components are preserved. Based on the type conformance of the system type Sys, Lemma 5.13 and
Lemma 5.13 further guarantee that also all properties of the abstract collaborations and components
are preserved. �

Figure 5.2: Verification scheme for the verification of complex landscapes with abstraction

The general proof scheme including abstraction is depicted in Figure 5.2. The sketch differs from the
one in Figure 5.1 in such way as the type-level now contains abstract collaborations and components,
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too. Beside the already known verification obligation, we now also have to ensure that the inheritance
between the abstract and concrete entities is correct.

Example 15: Combining the system definition we gave in Example 6 and the examples on correct
collaboration and component types, 7 and 8, respectively, we can conclude that the system is correct,
too. The necessary arguments for Theorem 5.14 are all given in the respective examples.

The overall effort to verify the complete system can be seen in the following table. Note, that Con and
ROC are the shorthands for the Contract and the RequestOfferCollaboration, respectively.

Task Required? Time Memory

Verify ΦCC yes
- Check G∅, RROC(colroc) |= ΦCC yes 1668 ms ≤512 MB
Verify ΦROC yes
- Check G∅, RROC(colroc) |= ΦROC yes 5703ms ≤512 MB

Task Required Time Memory
Verify G∅, RFac(ComFac) |= ΨFac Yes 12995ms ≤512MB
Check role refinement yes syntactically guaranteed

Summarized 20366ms ≤512MB

Hence, the compositional capabilities of our approach allows us to sum up the times for the differ-
ent verification steps and avoid any overhead, that might be introduced through the composition of
collaboration-types and component-types. We in sum only need a little longer than 20 seconds to verify
a system or arbitrary size.

5.3 Service Landscape and Evolution

So far the presented results do not cover evolution. Therefore, in this section we will extend the former
results to also cover typical evolution scenarios such as adding new collaboration or component types.

If we look at our former result in more detail, we can see that the assumptions have been made that all
types are known at verification time. Furthermore, the transitive nature of the refinement required for
subtyping has been employed to also support abstraction along the static subtyping relation spanning
essentially a fixed finite tree of types.

These assumptions are not true for a steadily evolving system where type definition are added over
time and where the subtyping tree is thus not necessarily fixed. Furthermore, the different organizations
involved will only have partial view on the subtyping tree and the types they want to add and thus all
types cannot be not known.

For a given extended evolution sequence as defined in Definition 4.7 we can define correctness as
follows:

Definition 5.15
An extended evolution sequence (Sys1, G

1
S), . . . , (Sysn, G

n
S) with Sysn = ((Col1, . . . , Colp),

(Com1, . . . , Comq)) is correct if for any combined path π1 ◦ · · · ◦ πn such that πi is a path in Sysi
leading from GiS to Gi+1

S for i < n and that πn is a path in Sysn starting from GnS holds

π1 ◦ · · · ◦ πn |= Φ1 ∧ · · · ∧ Φp ∧Ψ1 ∧ · · · ∧Ψq.

An evolution sequence Sys1, . . . , Sysn is correct iff all possible related extended evolution sequence
(Sys1, G

1
S), . . . , (Sysn, G

n
S) are correct.
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A first observation is that Sysn contains all types defined in any Sysi. However, for a combined path
π1 ◦ · · · ◦πn such that πi is a path in Sysi leading from GiS to Gi+1

S for i < n holds not in general that
an equal path π in Sysn exists that goes through all GiS , as the rules added by later added types may
influence the outcome. E. g., they may be urgent and thus have to be executed or may block other
rules due to a higher priority.

However, we can exploit the above observation and construct a related system type that includes all
possible combined paths of any possible extended evolution sequences for a given evolution sequence.
We further abstract from the concrete ordering and only distinguish types that are defined already in
Sys1 or added later.

Definition 5.16
An dynamically evolving collaboration type E(Coli) = (coli, Ro

1
i , . . . , Ro

ni
i ),Φi) for a collaboration

type Coli = (coli, (Ro
1
i , . . . , Ro

ni
i ),Φi) results by adding a special collaboration node type tColi , ex-

tending all rules of Ro1i , . . . , Roni
i , and coli such that one node of type tColi is an additional condition

to be enabled, and add a special rule rColi to R(coli) that creates at most one node of type tColi using a
NAC and has only the additional pre-condition that all types it depends on have been activated already
(their respective node exists).

Example 16: Let us take the collaboration type for the RequestOffer-Collaboration, we have defined
in Example 4, and change it into an evolving collaboration type. In accordance with Definition 5.16
we have to change the collaboration’s rule set by adding the special rule rROC , which is shown in
Figure 5.3.

Figure 5.3: Special rule rROC for the RequestOfferCollaboration

The Contract Collaboration does not depend on any other component or collaboration type.
Therefore the precondition of rule rROC does only contain the NAC that prevents the rule from
being applied more than once. However if the Contract Collaboration would depend on other
collaboration types they would occur in the rule’s precondition.

Definition 5.17
Analogously, a dynamically evolving component type E(Comi) = (comi, (ro

1
i , . . . , ro

mi
i ), CDi, Ri, Ii,

Ψi) for a component type Comi = (comi, (ro
1
i , . . . , ro

mi
i ), CDi, Ri, Ii,Ψj) results by adding a special

component node type tComi , extending all rules of comi such that one node of type tComi is an additional
condition to be enabled, and adding a special rule rcomi to R(com′i) that creates at most one node of
type tComi using a NAC and having only the additional pre-condition that all types it depends on have
been activated already (their respective node exists).

Example 17: As we have done it for the collaboration type RequestOffer-Collaboration in the previous
example, let us change the Factory component type, introduced in example 5, into an dynamically
evolving component type as defined in Definition 5.17. The required addition rule is depicted in Fig-
ure 5.4. The Factory component type depends on the ContractCollaboration collaboration type.
The dependency is due to the fact that the Factory component type implements roles, that are defined
in the ContractCollaboration collaboration type. Thus, it is important that the ContractCol-

laboration type is present in the system, before the Factory type gets introduced. This is specified
in the above rule by adding the ContractCollaboration type to the rule’s precondition.
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Figure 5.4: Special rule rComp for the Factory component

Definition 5.18
Given a system type Sys1 = ((Col1, . . . , Colp), (Com1, . . . , Comq)) and given another system type
Sysn = ((Col1, . . . , Colp, . . . , Colp+r), (Com1, . . . , Comq, . . . , Comq+s)) extending the first one the
related dynamically evolving system type is given as

E(Sys1, Sysn) = ((Col1, . . . , Colp, E(Colp+1), . . . , E(Colp+r)),

(Com1, . . . , Comq, E(Comq+1), . . . , E(Comq+s)))

.

Example 18: To exemplify Definition 5.18 we can construct two small systems S1 = ((ColROC), ∅)
and S2 = ((ColROC), (ComComp)). The corresponding evolving system type E(S1, S2) can then be
specified as:

E(S1, S2) = ((ColROC), (E(ComComp)))

Hence, as the collaborations types do not change within the evolutionary step from S1 to S2 we do
not have to alter the set of collaboration types in the dynamically evolving system type E(S1, S2).
However, the set of component types changes, i. e. the Factory component is added, and thus we have
to add this component’s dynamically evolving component type (see Example 17) to E(S1, S2).

We can now exploit the fact that the related dynamically evolving system type includes all possible
extended evolution sequences to check also the correctness of an evolution sequence.

Theorem 5.19
An evolution sequence of systems Sys1, . . . , Sysn is correct if the related dynamic evolving system
type E(Sys1, Sysn) is correct.
Proof. For any extended evolution sequence (Sys1, G

1
S), . . . , (Sysn, G

n
S) for Sys1, . . . , Sysn and any

combined path π1 ◦ · · · ◦ πn such that πi is a path in Sysi leading from GiS to Gi+1
S holds that a

related path π′1 ◦ · · · ◦ π′n such that π′i is a path in E(Sys1, Sysn) leading from GiS to Gi+1
S exists

such that π′i = E(π, Sys1, Sysn) ◦ πr. The rule πr is an arbitrary sequential combination of all
rcoli and rcomj for collaborations and components that are in Sysi+1 but not Sysi. Consequently, if
E(Sys1, Sysn) has been proven correct, we can conclude that also all extended evolution sequence
(Sys1, G

1
S), . . . , (Sysn, G

n
S) have to be correct and thus Sys1, . . . , Sysn must be correct. �

In the following Corollary 5.20 we can characterize what is required when a evolution sequence is
extended by adding new types for collaborations and components.

Corollary 5.20
An evolution sequence of systems Sys1, . . . , Sysn with Sysn−1 = ((Col1, . . . , Colp),
(Com1, . . . , Comq)) and Sysn = ((Col1, . . . , Colp, . . . , Colp+r), (Com1, . . . , Comq, . . . , Comq+s))
is correct if (1) Sys1, . . . , Sysn−1 is correct (using the conditions of Theorem 5.19) and (2) if all
p < i ≤ p+ r E(Coli) are correct and all q < j ≤ q + s E(Comj) are correct, and (3) if all subtype
relations for any Coli with p < i ≤ p+ r and any Comj with q < j ≤ q + s are correct.
Proof. From (1), (2) and (3) we can directly construction the conditions to prove E(Sys1, Sysn)
when all conditions for E(Sys1, Sysn−1) have been proven already. �
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Corollary 5.20 provides a direct guideline what has to be done when you want to add a new type
for a collaboration or component. Note that an organization which wants to extend the system type
accordingly does not require to know all other types besides those which are refined. Furthermore, if
two independent extensions are done which do not refer to each other, the concrete order does not
matter as the checks remain the same. Therefore, each organization can simply check its own extension
and the ordering how they are enacted does not matter.

Lemma 5.21
For a correct collaboration type Col holds also that its dynamic extension E(Col) is correct. For a
correct component type Com holds also that its dynamic extension E(Com) is correct.
Proof. Due to its construction the additional rule does not affect the correctness as for any trace of
E(X) holds that it must start with an initial delay and then the additional rule while the rest equals
a trace for X. As the additional rule has an arbitrary timing, when eliminating the additional rule we
simply get traces that equal those of X and we can conclude that if a property is violated in E(X) it
would also be violated in X and vice versa. �

Consequently, it is thus sufficient due to Lemma 5.21 to simply check the collaboration and component
types and this already guarantees that any extended evolution sequence will aslo show correct behavior.

Figure 5.5: Incremental verification scheme for the verification of complex landscapes with evolution

Figure 5.5 depicts the incremental verification scheme for our verification approach. In the figure we
assume that the evolutionary step consists of adding the component-type AuctioneerImpl and the
collaboration-type Auction. The necessary verification steps are mentioned within the figure.

Example 19: We exemplify the incremental verification of evolving complex landscapes with the intro-
duction of a new implementation of the Contract collaboration. The Auction collaboration requires
a new role Auctioneer and changes the negotiation pattern between Supplier and Customer. Sup-
pliers create an auction together with an Auctioneer and as long as the auction is running Suppliers
can send bids to the Auctioneer. The Auctioneer checks the bid, whether or not it is higher than the
currently leading bid and marks the bid as leading or discards it. The Auction collaboration requires to
introduce a new role Auctioneer, a collaboration Auction that refines the Contract collaboration
and the two specialized roles Supplier and Customer.
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The Auction collaboration type is newly introduced and thus we have to verify that it satisfies it’s
own safety properties. Further the Auction collaboration type refines the Contract collaboration type
and thus has to satisfy the properties φCC . The correct refinement between Auction and Contract

collaboration type has to be checked, too. As well as the refinement between roles and new component
types. However, if we can show that the new component types and the Auction collaboration type are
correct, we can use Corollary 5.20 to conclude that the evolution sequence of systems Sys1, Sys2, Sys3
where Sys1 is our application example as explained prior to this example, Sys2 is Sys1 and the Auction

collaboration type and Sys3 is Sys2 extended by the AuctioneerImpl component type, is correct.
The following table gives an overview of the necessary checks:

Task Required?

Verify ΦAuc yes
- Check G∅, RAuc(colAuc) |= ΦAuc yes
Verify ΦCC yes

- Check g∅, RAuc(colAuc) |= ΦCC no
- Check correct refinement yes

Task Required?
Verify G∅, RAuctioneer(ComAuctioneer) |= ΨAuctioneer yes
Check role refinement yes

5.4 Discussion

While for SoaML no proper analysis support exists, for rigSoaML we have outlined how even complex
service landscapes can be analyzed. In detail we have provided lemmata that explicitly state which
pre-conditions have to be met in order to verify service-oriented systems. The basic idea, we follow, is
to start with the verification of small entities – i. e. collaboration- and component-types – and compose
these results into an argument for the overall system’s correctness. The compositionality of our approach
is expressed in Theorem 5.8, which uses the results of correct collaboration- and component instances
within a system, that have been introduced in Lemma 5.4 and Lemma 5.6, respectively. Further, we
presented a more generalized variant of Theorem 5.8 that also covers abstraction. These findings
accumulate in Theorem 5.14. In a last step we showed that our approach can be facilitated to verify
evolution of service-oriented systems, see Theorem 5.19 and Corollary 5.20.

5.4.1 Analysis: Scalability

As visualized in Figure 5.1, 5.2, and 5.5 the verification scheme only considers the types, supports
subtyping, and permits to address evolution by means of an incremental scheme where only new types
and their relations to existing types have to be checked.

Furthermore, as exemplified in the examples for checking a concrete system in Example 12, a system
with subtypes in Example 15, and an evolution step in Example 19 only requires to check the types. In
addition, the building blocks of checking that the collaborations types are correct in Example 7 and that
the component types are correct in Example 8 all require only moderate efforts. Therefore, rigSoaML
can be checked for arbitrary large service landscapes and thus scale as demanded by challenge Scalable
Analysis (A1).
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5.4.2 Analysis: Applicability

The rules in rigSoaML permit to also model that service landscapes change their configuration at
runtime and thus the model captures the regular behavior and reconfiguration behavior at once. Con-
sequently, the outlined analysis approach fulfills challenge Analysis of Reconfiguration (A2).

For our overall example of the supply chain case study this means, that the within the specifications
of components and collaborations – e. g. Factory and RequestOfferCollaboration – the rules
for terminating a relation are already included. Thus we do not only consider the pure business rules
of sending and receiving Request, Offer and Contract messages, but also describe exactly the
conditions, which allow participants, Factory-components in this case, to leave the collaboration
again.

The type based compositional approach for analysis works even if no no global view exists and there are
fully separated responsibilities. The abstraction concepts further permit that IP related to component
details and to some extent even the IP of service contract details can be protected. Therefore, rigSoaML
also fulfills challenge Analysis under restricted knowledge (A3).

In terms of our supply chain example this means that we do not have to know the exact business
logic of a particular component X-Factory as long as the component developer can prove that the
component conforms to the AbstrFactory and it’s implemented roles. Even other participants that
are involved in a service contract with an instance of X-Factory do not see more of the component
than the role allows and they do not need more information.

5.4.3 Evolution: Analysis

Due to the fact that the compositional analysis approach also works for evolution on the basis of the
types only, the analysis can be done incrementally as required for each added type in isolation covering
its local guarantees as well as the linkage to concepts it inherits guarantees or constraints from. Thus
also challenge Analyzing Evolution (E2) concerning the analysis of the uncoordinated introduction of
new types for service contracts and components at runtime is covered. Here it is particular important
that even for the evolution an incremental checking is possible such that even evolution sequences with
very large sets of defined types can be handled as long as in each evolution step only a small number
of additional types are introduced.

Let us recapitulate this again by mean of our application example. One possible evolutionary step,
that we have sketched, is the introduction of an Auction service contract, which differs from the
RequestOfferCollaboration in the way the negotiation between Producer and Consumer is
done. Further, this new service contract type required that we also introduce a new role Auctioneer

and a component, implementing this role. The introduction of these two new constituents made it
necessary to check for the Auction that it is safe, with respect to its own safety properties, and that
is a valid sub-type of the ContractCollaboration. The same holds for the new components that
implement the new roles. They have to satisfy their own safety properties, i. e. they have to be correct,
and they have to be correct role refinements.

5.4.4 Summary

As outlined our approach does scale due to compositional approach and fulfills the related analy-
sis challenges Scalable Analysis (A1)-Analysis under restricted knowledge (A3) by using abstraction
to decouple the different concrete elements via abstract ones. Furthermore, the evolution challenge
Analyzing Evolution (E2) is supported by an incremental and decentralized verification scheme.



56 5 Verification of Complex Landscape rigSoaML Models

Challenges Coverage by rigSoaML

Scalable Analysis (A1) X
Analysis of Reconfiguration (A2) X
Analysis under restricted knowledge (A3) X

Analyzing Evolution (E2) X

Table 5.1: Coverage of the challenges for analysis with rigSoaML



Chapter 6

Related Work

The approach, we have presented in this report, touches several field of computer science that have
already been widely investigated. In the following paragraphs we will outline the distinctions between
our approach and the related pieces of work.

6.1 Modeling

Modeling using roles and focusing on collaborations rather than components is not new: Since the 1970s
the OOram Software Engineering method [26] has been developed which provides a clear distinction
between roles and objects and separates different collaborations in form of role models. The idea of
contracts, which has been introduced in [27], also already supports a number of participants and in
addition results in some contract obligations the classes that take over the role of the participants have
to fulfill. Lohmann et al. extend in [28, 4, 29] the concept of contracts to visual contracts that also
use StoryPatterns as notation. However, their technique is used for run-time checks and less for the
specification of the behavior. Also a less clear historical connection between roles/collaborations and
design pattern [30] exists, which is reflected today by the fact that design patterns can be modeled
in UML using collaborations. The modeling of design patterns in UML is advocated in [31, 32]. The
authors in [31], however, do not use UML collaborations for the modeling of design patterns, but develop
a own meta-model and use UML sequence diagrams, which potentially describe partial behavior. Kent
and Lauder [32] instead propose an own visual notation, but use sequence diagrams for the behavior
modeling, too.

A more formal approach to the modeling of patterns and behavior is presented by Kim and Carrington
in [33]. They use Object Z for modeling design patterns and their behavior. Although Object Z is a very
versatile formal language, the approach of Kim and Carrington does not support dynamic collaborations.

The use of collaborations for the modeling of services has been proposed by several authors (cf. [34, 2])
as well as all proposals for a UML Profile and Meta-Model for Services [1, 35]. In [34] static but
hierarchic UML collaborations and the distinction between the collaboration and the collaboration use
are presented. However, the authors omit the definition of the roles’ behavior. An approach not using
UML that overcomes this limitation is presented in [2] which uses sequence diagrams for potentially
incomplete early behavior specifications. The UML Profile [1] is conceptually similar to [34]. It further
extends [34] also supporting behavior specifications for the different roles.

UML class diagrams for the structure and graph transformations for the behavior modeling are also
employed in [36] to model service-oriented architectures, but in contrast to our approach services are
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not modeled as collaborations. This approach has been extended to also capture “behavior-preserving
architecture refinement” [37]. The refinement, however, is reduced to a reachability problem, which
is then tackled with graph-transformation and model-checking tools. Our notion of refinement differs
from the one in [37] as we rely on static checks for refinement.

To some extent the systems, we describe in this report, can be seen as ensembles, as introduced by
Hölzl and Wirsing [38]. The formal model that is presented in [38] is very expressive, but lacks the
possibility to encapsulate the services’ behavior into collaboration - or similar constructs. Further, no
analysis techniques exist, yet.

We can conclude that none of the modeling concepts supports dynamic collaborations as addressed in
this work.

For the formal modeling of concurrent and distributed systems often process calculi are used. The best
suited calculus to model service-oriented self-adaptive systems is the π-calculus [39], as it specifically
allows the modeler to dynamically create new communication channels. Although, the π-calculus has
been used to formally describe service-oriented systems [40, 41] and business processes, it lacks the
expressiveness of attributed and typed graph-transformation systems. Nevertheless, the π-calculus is
well suited to check systems for bi-similarity and refinement [42]. Approaches, that allow the model
checking of π-calculus specifications are available, but typically only allow to verify a restricted subset
of the π-calculus. Yang et al. describe an approach to model check π-calculus specifications with logic
programming [43], but they had to forbid processes that do not contain finite replication or the parallel
composition of processes. The Mobility Workbench [44] allows only a finite number of processes, too.

In the context of dynamic software updates for controllers, evolving system specifications are discussed
by Ghezzi et al. [45]. The authors allow system specifications, which are a variant of life sequence
charts (LSC), to be changed by adding new LSC to them. The authors then give some arguments,
under which conditions a controller is in a state, such that it can be safely updated. However, this
approach can not be used to our class of system as we do not have local updates, that are only valid
for one controller, exclusively, but we update component and collaboration types, which influence the
complete system. For the complete system, however, the current state is not known.

6.2 Verification

6.2.1 Service specific

To our best knowledge no work exists which especially addresses the problem to verify dynamic col-
laborations, however, a number of related approaches for the verification of service-oriented systems
exist. Model checking has been employed to check business process models with varying number of
active process instances. In [46, 14, 47], for example, standard BPEL models are enriched by resource
allocation behavior to ensure the correct detection of deadlocks and safety violations for web services
compositions under resource constraints. The same underlying analysis technique – LTSA - Labeled
Transition System Analyser – is used by the authors of [48] for the verification of service compositions.
This approach lacks the functionality to verify dynamic systems, as the compositions have to be known
a priori. A transformation based verification technique is presented in [49]. Web-service compositions
become transformed into a equivalent model, that is based on coloured petri nets and then verifica-
tion tools dedicated to the verification of CP-nets are employed. This approach does not support the
dynamic structural changes, that are present in our systems. The work of Cheng et al. [50] follows a
similar approach. In [51] an approach dedicated to the compositional verification of middleware based
software architectures is presented. The verification of a software architecture is divided into the verifi-



6.2 Verification 59

cation of properties, which hold for the middleware and those, which hold for the complete architecture.
However the approach does not cover structural dynamics and is restricted to finite state systems.

For systems with structural dynamics like our earlier work [22] some work has been published, which
does not cover dynamic collaborations to their full extent: An approach which has been successfully
applied to verify service-oriented systems [36] is the one of Varró et al. It transforms visual models based
on graph theory into a model-checker specific input [52]. A more direct approach is GROOVE [53] by
Rensink where the checking works directly with the graphs and graph transformations. DynAlloy [54]
extends Alloy [55] in such a way that changing structures can be modeled and analyzed. For operations
and required properties in form of logical formulae it can be checked whether given properties are
operational invariants of the system. Real-Time Maude [56], which is based on rewriting logics, is the
only approach we are aware of covering structural changes as well as time. The tool supports the
simulation of a single behavior of the system as well as bounded model checking of the complete state
space, if it is finite. An approach that pre-computes all possible reconfigurations of a system and then
applies model-checking for the verification is described by Zhang et al. [10]. This approach is not able
to verify systems that don’t have a finite set of possible reconfigurations, as our systems generally have.

However, all these approaches do not fully cover the problem as they require an initial configuration and
only support finite state systems (or systems for which an abstracted finite state model of moderate
size exist).

There are only first attempts that address the verification of infinite state systems with dynamic
structure: In [57] graph transformation systems are transformed into a finite structure, called Petri
graph which consists of a graph and a Petri net, each of which can be analyzed with existing tools for
the analysis of Petri nets. For infinite systems, the authors suggest an approximation. The approach
is not appropriate for the verification of the coordination of autonomous vehicles even without time,
because it requires an initial configuration and the formalism is rather restricted, e. g., rules must not
delete anything. Partner graph grammars are employed in [58] to check topological properties of the
platoon building. The partner abstraction is employed to compute over approximations of the set of
reachable configurations using abstract interpretation. However, the supported partner graph grammars
restrict not only the model but also the properties, which can be addressed a priori.

Niebuhr and Rausch [59] advocate an approach that uses run-time testing to guarantee the correctness
of dynamic adaptive systems. The authors argue that at design time a check of the correct bindings
between components is not possible and hence introduce run-time testing at the binding-time of
components. In our opinion this could only be an additional task to build correct systems, as situations
where the binding has to be executed in order to guarantee the correctness can only be addressed
through an approach that uses formal verification.

6.2.2 Compositional approaches

In [18] Gradara et al. presented an approach for the decompositional verification of Calculus of Commu-
nicating Systems (CCS) processes. The systems therefore have to be decomposed into modules, which
are specified as CCS processes. The modules can be separately verified and the verification results
can be combined as long as the system follows some structural constraints. System evolution is sup-
ported through the possibility to update modules. In comparison to our work they follow an bottom-up
approach for the verification. Hence, the system has to be known in advance, whereas our approach
is – concerning the verification – more like a top-down approach. In our approach the verification is
performed at the type-level, whereas in [18] the instance-level is checked. Further, reconfiguration is
not addressed.

In [17] Dam and Fredlund present an approach to verify open and distributed systems. Their approach
is mainly based on the π-calculus as formal language and does not directly provide a tool for automatic
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verification, however, the authors state that certain steps of the verification could be automated. Dam
and Fredlund describe process networks with changing communication structures. But although their
approach allows for compositional reasoning, the evolution of the system and reuse of already verified
system parts is not part of their work.

6.2.3 Type-centric approaches

Types are a standard element of modern programming languages, consequently they have also been
used and reflected concerning the verification of programs. Interesting for our work are especially
so called behavioral type systems, which not only subsume data elements but also behavior. In [15]
Igarashi and Kobayashi present a framework for the specification of systems of behavioral types for
the π-calculus. The basic idea of their approach is to express types as abstract processes. Together
with a less expressive calculus that is used for the abstract processes this allows them to verify more
complex π-calculus specifications. As the process calculus for the abstract processes does not support
an operator for the creation of new channels, the approach does not reach the expressiveness of our
approach. The use of behavioral types for service contracts is advocated by Meredith et al. in [60], but
without any contributions for their verification.

Liskov and Wing [16] give a definition of types and subtypes that is not purely syntactical but also
implies behavioral compatibility. Mainly, they describe a set of constraints that have to be satisfied for
a correct subtype relation. However, they define their theory at a very abstract level of programming
languages, where methods are abstracted to pre- and post-conditions and invariants for types. Further,
they do not provide an automatic proof for the subtype relation.

6.2.4 Discussion

The previous sections have shown that for almost each of our requirements approaches exist, that
provide sufficient capabilities to satisfy them. Only the “Analysis under restricted knowledge (A3)”
requirement is, if at all, only partially fulfilled. However, an approach that is able to model and verify
self-adaptive service-oriented systems, is not described in the literature. A comparison of all presented
related work is shown in Table 6.1.
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Table 6.1: Coverage of the challenges for SoaML, rigSoaML, and the related work. Please note that the
strong simplification in the table (X,◦, and ∼) makes approaches look similar that are very different.
For more detailed description please refer to the approaches descriptions.





Chapter 7

Conclusion

In this report we have presented a combination of a modeling together with a verification technique,
that allows to tackle some problems that arise in the context of self-adaptive and service-oriented
systems. The origin for these problems is the potentially open nature of those systems that confronts
the developer with a situation, where only little knowledge of the current system is available. To
overcome these problems we presented a modular modeling technique that builds atop of SoaML and
thus collaborations and components as first class citizens. The approach we have presented in this report
allows to model no service-contracts or participant based on a relatively small amount of knowledge
concerning the system’s other consituents. It is only required that the constituents that are reachable,
when traversing the inheritance relations to the root, are known. This allows to easily introduce new
components and service-contracts into the system. Concerning the verification our approach makes
heavy use of behavior refinement. The strict use of refinement eases the verification of new consituents
in two points. First, for a newly developed consituent only those properties have to be verified, that
are specific for this new constituents. All properties that are inherited and have been verified before,
remain valid if the consitutent follows the guidelines for refinement. Second, refinement is used to show
substitutability, which is required to prove correctness of complex service landscapes.

The presented approach scales very well in the size of system. For an increasing number of instances of
a verified system type, no additional verification is necessary. For a changed system type the required
modeling and verification effort is small, as depicted above.

7.1 Future Work

At the current state our approach only supports the addition of new types into the system. The removal
of types is not covered. In the future we plan to overcome this limiation which bears some difficulties.
A type can only be removed after all of it’s instances have been removed. The detection that there
are no remaining instances is difficult for a highly distributed and de-centralized scenario, that we are
investigating. Therefore, we plan to introduce a lease mechanism. Components and service-contract
instances have to lease their type. Once the lease period is finished the lease has to be renewed. For a
type that is to be deleted the renewal of the lease will not be granted. Removal of types that are no
leaves in the inheritance tree is difficult to handle, too.

It is to be noted that also weaker conditions for the correctness of a system at the instance level are
possible where besides the types and rules the behavior constraints only visible at the instance level are
taken into account. We can, for example, establish guarantees or refinement using state-space based
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techniques in case of finite state models of a collaboration or component, if we can establish in addition
to the pseudo-type separation guarantees that the collaborations and components are separated at the
instance-level. A separation at the instance level would mean that by construction the behavior related
to different collaboration or component instances can never directly effect each other. The rules applied
for one instance can never effect the elements employed by another collaboration or component. What
is still possible also in case of instance-level separation would be that the behavior related to two roles
within a single component instance effects each other. However, this is covered by the compositional
verification scheme.

A further direction of research is to use testing to check the properties. Of course, testing can not
provide the same comprehensive support as formal verification can do, but testing is an alternative for
situation, where formal verification can not be applied. Testing can be applied at two different stages
of development. First, one could use classical testing approach during the design stage. These approach
would have to ensure the same properties, we checked using formal verification, i. e. safety properties
and refinement checks. The second approach is to use run-time testing. Using run-time testing one
would test the compatibility of roles and components each time, a link is newly established.

From the practical perspective we also have to consider the task of going from a purely theoretical
model to a running system. Although, we can use the capabilities of the Story-Diagram-Interpreter to
directly execute the components’ behavioral rules, we still have to cope with the decentralized nature of
the developed systems. Thus, not all entities that appear in a Story-Pattern rule are physically located
at the machine, that executes the rule.
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[2] Manfred Broy, Ingolf H. Krüger, and Michael Meisinger. A formal model of services. ACM Trans.
Softw. Eng. Methodol., 16(1):5, 2007.

[3] Lai Xu. A multi-party contract model. ACM SIGecom Exchange, 5(1):13–23, July 2004.

[4] Marco Lohmann, Stefan Sauer, and Gregor Engels. Executable Visual Contracts. In 2005 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2005), 21-24 Septem-
ber 2005, Dallas, TX, USA, pages 63–70. IEEE Computer Society, 2005.

[5] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web services. In
Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 261–272, New York, NY, USA, 2008. ACM.
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refinement of service-oriented architectures. Software and Systems Modeling, 5(2):187–207, 2006.

[38] Matthias Hölzl and Martin Wirsing. Towards a System Model for Ensembles. In Gul Agha, Olivier
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Appendix A

Complete Case Study

A.1 abstract contract collaboration interface

Figure A.1: Abstract contract collaboration: create contract rule (see also Figure 4.3)

Figure A.2: Abstract contract collaboration: create collaboration rule
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Figure A.3: Abstract contract collaboration: delete contract urgent rule

Figure A.4: Abstract contract collaboration: destroy collab rule

Figure A.5: Abstract contract collaboration: unrecalled contract forbidden

Figure A.6: Abstract contract collaboration: two contracts forbidden (see also Figure 4.2)
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A.2 abstract factory interface

Figure A.7: Abstract factory interface: Class diagram (see also Figure 4.9)

Figure A.8: Abstract factory interface: customer recall guarantee

Figure A.9: Abstract factory interface: The property the system has to fulfill (see also Figure 4.11(b))

Figure A.10: Abstract factory interface: supplier recall guarantee
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A.3 Factory implementation

The factory implementation is still incomplete. To make it work the contract update has to be divided
into two steps. 1) propose update 2) accept and perform update

Figure A.11: ClassDiagram for the Factory implementation (see also Figure 4.9)

Figure A.12: Factory implementation: create ROCollab
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Figure A.13: Factory implementation: constrain contract offer - forbidden

Figure A.14: Factory implementation: customer create contract (see also Figure 4.10(c))

Figure A.15: Factory implementation: Customer create last Contract. This rule preempts the other
createContract rule.
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Figure A.16: Factory implementation: customer create Request (see also Figure 4.10(a))

Figure A.17: Factory implementation: Supplier create Offer (see also Figure 4.10(b))

Figure A.18: Factory implementation: guaranteed property

Figure A.19: Factory implementation: guaranteed property supEarlyRecall
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Figure A.20: Factory implementation: guaranteed property CustLateRecall

Figure A.21: Factory implementation: guaranteed property supEarlyPropRecall

Figure A.22: Factory implementation: guaranteed property sup2Comp

Figure A.23: Factory implementation: guaranteed property OfferButNoCustCon

Figure A.24: Factory implementation: guaranteed property OfferButNoMarker

Figure A.25: Factory implementation: guaranteed property MarkerButNoCon
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Figure A.26: Factory implementation: guaranteed property Cust2Comp

Figure A.27: Factory implementation: guaranteed property Comp2Marker
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A.4 Request offer contract collaboration

Figure A.28: Request offer contract collaboration: create collaboration rule

Figure A.29: Request offer contract collaboration: create contract rule

Figure A.30: Request offer contract collaboration: delete contract urgent rule
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Figure A.31: Request offer contract collaboration: delete invalid offer urgent rule

Figure A.32: Request offer contract collaboration: delete invalid request urgent rule
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Figure A.33: Request offer contract collaboration: destroy collaboration rule

Figure A.34: Request offer contract collaboration: send offer rule

Figure A.35: Request offer contract collaboration: send request rule
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Figure A.36: Request offer contract collaboration: unrecalled contract, forbidden

Figure A.37: Request Offer contract collaboration: guaranteed property notTwoOffers

Figure A.38: Request Offer contract collaboration: guaranteed property notTwoRequest
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Figure A.39: Request Offer contract collaboration: guaranteed property notTwoContracts

Figure A.40: Request Offer contract collaboration: guaranteed property notOfferandContract

Figure A.41: Request Offer contract collaboration: guaranteed property noOfandRequest





Appendix B

Formal Foundations

B.1 Graphs

Definition B.1 (Type-graph)
A type-graph T is a labeled and directed graph, given as a tupel T = (V,E, lV , lE , s, t) where V is
a set of vertexes,E ⊆ V × V is a set of directed edges, lV : V 7→ A is a vertex labeling function,
lE : E 7→ A is an edge labeling function, s, t : E 7→ V returns for each edge it’s source and target
vertex, respectively. A is a globally defined alphabet holding all possible types for nodes and edges.

A type-graph T is said to be well-defined if the types assigned to the vertexes and edges are pair-wise
disjoint.

Definition B.2 (Typed Graph)
A typed graph G is given as a tupel G = (V,E, lV , lE , s, t, T ) where V is a set of vertexes, E ⊆ V ×V is
a set of directed edges, lV : V 7→ VT assigns each vertex in V a type in the type-graph T ,LE : E 7→ VE
assigns each edge in E a type in the type-graph T ,s, t : E 7→ V returns for each edge it’s source and
target vertex, respectively, and T is a type-graph.

A graph G conforms to it’s type-graph T iff:

∀e : e ∈ E =⇒ lV (s(e)) = s(lE(e)) ∧ lV (t(e)) = t(lE(e))

A graph G′ is called a subgraph of G iff, V ′ ⊆ V and E′ ⊆ E and is denoted as G′ ≤ G. We write
G′ < G ff V ′ ⊂ V or E′ ⊂ E.

The set of all graphs is denoted as G

In some cases it is useful to restrict a graph G, typed over type-graph T , to a set of nodes and edges.
This can be done by defining a type-graph T ′ ≤ T and removing all elements from G that are not
typed over elements contained in T ′. We write this as G′ = G|T ′ . Where G′ is given as follows:
V ′ = {v|v ∈ V ∧ lV (v) ∈ VT ′} and E′ = {e|e ∈ E ∧ lE(e) ∈ ET ′}

Definition B.3 (Graph morphism)
A graph morphism m = (mv,me) is a structure and type preserving mapping between two graphs
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G,H ∈ G with mv : VG 7→ VH and me : EG 7→ EH such that:

∀(v, v′) :(v, v′) ∈ mv → lv(v) = lv(v
′)

∀(e, e′) :(e, e′) ∈ me → le(e) = le(e
′) ∧ (s(e), s(e′)) ∈ mv

∧ (t(e), t(e′)) ∈ mv

A morphism between G and H is denoted as G
m−→ H or G→ H for short. If the functions mv,me are

injective functions we say that m is an injective morphism and denote this as G ↪→ H or G
m
↪→ H if we

want to explicitly name the morphism. If the morphism m consists of two bijective functions, we say
that G and H are isomorphic to each other. We denote two isomorphic graphs G and H as G ≈ H,
if we further want to stress the isomorphism we make it explicitly as G ≈m H. m is then called an
isomorphism.

A subgraph isomorphism between two graph G,H ∈ G exists if there is a subgraph G′ ≤ G and a
isomorphism m, such that G′ ≈m H. A subgraph isomorphism is denoted as G .m H

Definition B.4 (Graph constraint)
A graph constraint C is given as C = (∃P,

∧
i∈I Ni) where P and each Ni for i ∈ I is a graph with

P < Ni and P
ni−→ Ni. A graph G satisfies a constraint C iff

∃q : P
q−→ G

6 ∃q′i : Ni
q′i−→ G such that q′i ◦ ni = q ∀i ∈ I

We shall denote G |= C if a graph G satisfies a constraint C.

The above definition of graph constraints conforms to the widely used definition that is given in [61]
for application conditions with the difference that our definition does not allow for nesting of graph
constraints.

B.2 Graph Transformations

Definition B.5 (Graph Transformation Rule)
A graph transformation rule r is defined as r = (L,R,K, l, r, A−) where: L,R,K ∈ G are three graphs
with VL ∩ VR = VL ∩ VK = VK ∩ VR = ∅, that are typed over the same type graph, l = (lv, le), r =

(rv, re) are total and injective graph isomorphism, with L
l←− K and K

r−→ R and A− is a set of graphs

encoding negative application conditions (NACs) with Ni ∈ A−, L
ni
↪→ Ni and L ≤ Ni. L and R are

called left- and right-hand-side, respectively, and K is called interface graph. We also denote a graph
transformation rule as L← K → R. The rule deletes all elements that are in L but not in ran(l) and
creates elements that are in R but not in ran(r).

Definition B.6 (Applicability of Graph Rules)
A graph rule L

l←− K
r−→ R is applicable to a graph G if we can find a match L

m−→ G which satisfies
the dangling condition: all edges e adjacent to the image mv(v) of a deleted node v are also part of
the image of m, e ∈ ran(m). The identification condition meaning ∀e1, e2 : e1, e2 ∈ L ∧ e1 6= e2 →
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m(e1) 6= m(e2), i. e. m has to be injective.
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And for each Ni ∈ A− we must not find an injective morphism qi such that ni ◦ qi = m. The
applicability of a graph transformation rule r can be encoded as a graph constraint Appl(r) such that
the rule r is applicable in graph G iff G |= Appl(r)1.

Definition B.7 (Graph Transformation Systems)
A graph transformation system (GTS) S is given as a tuple S = (G0, R, p, T ) where G0 ∈ G is the
initial graph, R is a set of graph transformation rules, p : R 7→ R is a transitive function that indicates
preempting rules, and T is a type-graph such that G0 and all rules in R are typed over T .

Definition B.8 (Semantics of GTS)
The semantics of a GTS S is given through a labeled transition system (LTS) LS = (S0, S, δ) where S
is a set of states, S0 ∈ S is the system’s initial state and δ : S×S is the LTS’ transition relation. Each
state in S we assign a graph, such that G0 is assigned to S0 and the pair (S, T ) ∈ δ if there exists a

rule r ∈ R and a morphism m such that GS
r,m⇒ GT and it does not exists a rule r′ and morphism m′

with (r′, r) ∈ p and GS
r′,m′⇒ GT ′ . Where GS and GT refer to the graphs that are assigned the states

S and T , respectively.

B.3 Hybrid Graph Transformations

Hybrid graph transformations differ from the variant that has been introduced above in that they not
only specify discrete behavior but also have a continuous part. The continuous part is typically modelled
through a set of attributes and laws that describe the change of the attributes’ valuations over time.
At the level of type-graphs we will specify the attributes that are assigned to any node of a given type.
At graph level we assign a valuation to all pairs of nodes and attributes. Graph transformation rules
will be enriched with a jump condition, that constrains the attribute valuations for which the graph
transformation rule will be enabled and allows us to encode an update of the attributes’ valuation.

Before we can define attributed type graphs and attributed graphs we have to introduce A a global set

of attributes and
.

A the first derivation over the time of A. The attribute’s derivation is controlled by
laws. These laws can change depending on the overall system’s behavior. Therefore we will model the
laws through special nodes that are called control modes. Control modes can be written, i. e. created
and deleted, and read, i. e. matched and forbidden, by hybrid graph transformation rules. An alternative
the introduction of control modes, would have been the use of a special mode attribute but then the
laws had to be also dependent of the mode attribute.

Definition B.9 (Attributed Type Graphs)
An attributed type graph TGA is given as a tuple TGA = (V,E, lv, le, s, t, Attr, CM) where
V,E, lv, le, s, t are defined as in Definition B.1 and Attr : A 7→ V is a partial function that as-
signs the global set of attributes to the nodes of the type graph and CM ⊂ V is a special set of nodes

1The applicability constraint for a graph transformation rule R : L ← K → R is basically given through the rule’s
left-hand-side L, the rule’s negative application conditions and additional NACs that encode the dangling condition
(cf. [62]).
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called control modes. Each control mode is only allowed to be adjacent to exactly one other node.
Further, each control mode cm ∈ CM has a function fcm : R≥0 7→ (Av 7→ R) where v is the node
adjacent to cm and Av = {a|a ∈ A ∧Attr(a) = v}.

Obviously, in the above definition the function fcm is a compact representation for a differential
equation. For any positive real number r ∈ R≥0 the function has a mapping to an attribute valuation
Av 7→ R. The above definition of attributed type graphs is somehow related to the definition of hybrid
automata by Alur et al. [63]. The difference clearly is that the number of attributes or variables, as
[63] calls them, is not fixed but depends on the nodes that are available in the actual graph. The fact
that in attributed type graphs a node can have different control modes (also only one at a time) is not
an advantage compared to hybrid automata as this is supported through different activities (cf. [63]).

Definition B.10 (Attributed Graph)
An attributed graph is a graph that is additionally equipped with a valuation β. The attributed and
typed graph G = (V,E, lV , lE , s, t, T, β) is defined as a graph introduced in Definition B.2 and has a
valuation β : A× V 7→ R such that

∀a, v, r : ((a, v), r) ∈ β ∧ a ∈ Attr ∧ v ∈ V ∧ r ∈ R =⇒ AttrT (a) = lV (v)

and
∀a, v : a ∈ A ∧ v ∈ V ∧Attrt(a) = lV (v) =⇒ ∃r : r ∈ R ∧ β((a, v)) = r

We say an attributed graph is well-formed if each node v ∈ V with lV (v) being adjacent to a set of
nodes C with C ⊂ CMT is adjacent to exactly one node v′ with lV (v′) ∈ C.

From an attributed graph G we can derive the attributed graph G′ = G ⊕ t with t ∈ R which differs
from G only in the valuation β′. In β′ for each node v ∈ V being adjacent to a control mode c the
valuation for the variable subset Av is replaced by the valuation fc(t).We use (G, β) as a shorthand
notation for an attributed graph if it’s single constituents are not important for understanding.

The above definition of attributed graphs gives us graphs that are enriched with a valuation function
that assigns each valid pair of nodes and attributes exactly one value. A pair of attributed and nodes
is valid if and only if the graph’s type-graph connects the node’s type with the attribute. Further the
valuation has to be defined for all valid pairs of nodes and attributes that occur in the attributed graph.
In the further we will use v.a as a shorthand reference to the attribute of type a ∈ A that is connected
to the node v.

Definition B.11 (Hybrid Graph Transformation Rule)
A hybrid graph transformation rule P = (L,R,K, l, r, A−, φ) where the first constituents of the tuple
are defined as in Definition B.5 and φ : (A× (VL ∪ VR) 7→ R) 7→ B assigns the valuation pairs for the
left- and right-hand side of the rule a boolean value.

The application of a hybrid graph transformation rule is defined as follows:

Definition B.12 (Hybrid Graph Transformation Rule Application)
A hybrid graph transformation rule P = (L,R,K, l, r, A−, φ) is applicable to the attributed graphs

G,H iff the (discrete) graph transformation rule P ′ = (L,R,K, l, r, A−) is applicable to G
P ′,m
=⇒ H

and the graphs valuations in the image of m and m∗ satisfy φ

φ(βmG ∪ βm
∗

H ) ≡ true

Where βm denotes the valuations of the attributed graphs G and H, respectively that are translated over

the morphism m. The application of a hybrid graph transformation rule is denoted as G, βG
P,m
=⇒ H,βH .
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Given the constructs we have defined above we can now introduce in complete analogy to the discrete
scenario hybrid graph transformation systems and define their semantics. A hybrid graph transformation
system (HGTS) is defined as a (discrete) GTS, but now the initial graph is an attributed graph, the rules
are hybrid graph transformation rules and in addition to the priorities we also introduce the concept of
urgent rules. Urgent rules in contrast to non-urgent rules have to be applied, once they are enabled.

Definition B.13 (Hybrid Graph Transformation Systems)
A hybrid graph transformation systems (HGTS) S = (G0, R, prio, T,Ru) is given as an initial attributed
graph G0, a set of hybrid graph transformation rules R, a priority function prio : R 7→ N, an attributed
type graph T and a set of urgent rules Ru ⊆ R.

The semantics of an HGTS has to be defined differently compared to a discrete GTS, as we now have
to consider the continuous changes of the attributes’ valuations over the time.

Definition B.14 (Semantics of HGTS)
The semantics of a hybrid graph transformation systems S are given through a labeled transition
systems L = (S0, S, δ) where S is a set of states, each of them corresponding to a graph GS , S0 ∈ S
is the LTS’ initial state and corresponds to G0. The transition relation δ ⊆ S × R × S ∪ S × R × S
is given as (SP , r, SQ) ∈ δ with ST , SQ ∈ S and r ∈ R iff ∃m such that GT , βT

r,m
=⇒ GQ, βQ and

(SP , t, SQ) ∈ δ with SP , SQ ∈ S and t ∈ R iff GQ = GS ⊕ t and if 6 ∃0 ≤ t′ < t and ru ∈ Ru such
that ru is applicable in Gs ⊕ t′.





Appendix C

Traces & Refinement

In this chapter we will introduce the formal underpinning of our approach. We will use traces and
refinement of traces as semantic model and use this model to describe the refinement of rule sets.

C.1 Traces

Definition C.1 (Trace)
A trace t is given as t = (G0, S) where G0 is the initial graph and S is a sequence of morphism /

graph transformation rule pairs or positive real numbers r ∈ R≥0, such that:

G0 → G1 → . . . Gi−1 → Gi → . . .

where each step → is either a rule application Gi
ri−→mi

Gi+1 with ri a graph-rule and mi a matching

morphism or a continous step with Gi
r−→ Gi+1. A continuous step has to follow the restrictions that

are mentioned in Definition B.14. For a given set of rules R we denote the set of all traces starting
with initial graph G0 as T (G0, R). The set of all traces that can be constructed using the set R from
any graph is denoted as T (R). A sub-trace of trace t starting at the i-th position is denoted as ti for
i ∈ N+

A trace t is a possible path through a GTS’ reachability graph starting at the GTS’ initial graph.
Following, T (G0, R) is an equivalent notation for the GTS’ reachability graph given through G0 and
R1. We can restrict any trace t ∈ T (G0, R), where G0 and the rules in R are typed over type graph
T to a rule-set R′ typed over T ′ ≤ T , denoted as t|T ′,R′ by restricting each graph Gi ∈ t to Gi|T ′

and changing each step Gi
ri−→ Gi+1 to Gi|T ′

r′i−→ Gi+1|T ′ iff ri ≺ r′i and Gi|T ′
τ−→ Gi+1|T ′ otherwise.

Valuations are dependent on the available control-modes, and each control-mode has the exclusive
control over a set of attributes. Following in a restricted graph the valuations becomes restricted, too,
but for the attributes and control-modes, that are not removed, the valuation after a continuous step
is the same in the restricted graph as in the unrestricted graph. The fact that jump-conditions of
refined graph-rules only strengthen the refined graph-rule’s jump-condition ensures that corresponding
graph-rules in the restricted trace are correctly applied.

Note that in a restricted trace containing a τ -step Gi
τ−→ Gi+1 it is not necessarily the case that

Gi ≈ Gi+1

1Under the assumption that all rules have the same priority. If different priorities are present the set of valid traces in
the HGTS’s reachability graph is smaller.
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In a restricted trace it is not unlikely that isomorphic graphs are repeated several times. The stutter -
operator \ can be used to remove the repetition of finite sequences of identical states from a trace t.
Given a trace t, \t is given as the trace where each sequence

Gi → Gi+1 → . . .→ Gj → Gj+1

with Gi+1 ≈ Gk for i+ 1 < k ≤ j gets replaced by the sequence

Gi → Gi+1 → Gj+1.

Note that the stutter-operator does not combine sequences of continuous steps into one longer con-
tinuous step. If the stutter-operator were defined this way, the traces would lose information and in
consequence it could happen that the trace t satisfies a property φ but \t does not. Let us assume we
have a trace t = . . . Gi−1

r1−→ Gi
r2−→ Gi+1 where the graph Gi is essentially required for t |= φ, then

the trace t′ = . . . Gi−1
r1+r2−−−−→ Gi+1 does not satisfy φ as the graph Gi is missing in t′.

C.2 Properties

In order to be able to specify what correct behavior means, we have to be able to express properties
and have to define what it means, if a trace satisfies a properties. The properties are given as a word
of the language L. The properties language L is based on the LTL temporal logic without the next
operator. Thus, it is possible to use globally, future and holds until operators. AP defines a set of
atomic properties, that could be satisfied by system states. The language L of LTL formula as used in
our approach is recursively given as:

a ∈ L ∀a ∈ AP
φ ∧ ψ ∈ L ∀φ, ψ ∈ L
¬φ ∈ L ∀φ ∈ L
Fφ ∈ L ∀φ ∈ L
Gφ ∈ L ∀φ ∈ L

φU ψ ∈ L ∀φ, ψ ∈ L

Given two atomic properties φ, ψ ∈ AP we assume that they both can be evaluated independent of
each other and we do not have any interference between them (i. e. no binding of elements to variables
is allowed).

For the case of traces that stem from graph transformation systems the set of atomic properties AP is
given through graph constraints (cf. Definition B.4). Satisfaction of properties for a trace t can formally
be expressed as:

t |= φ with φ ∈ AP iff G0 . φ

t |= φ ∧ ψ with φ, ψ ∈ L iff t |= φ ∧ t |= ψ

t |= ¬φ with φ ∈ L iff t 6|= φ

t |= Fφ with φ ∈ L iff ∃i : i ∈ N ∧ i ≥ 0 ∧ ti |= φ

t |= Gφ with φ ∈ L iff ∀i : i ∈ N→ ti |= φ

t |= φUψ with φ, ψ ∈ L iff ∃i : i ∈ N ∧ ∀j : 0 ≤ j < i→ tj |= φ ∧ ti |= ψ

Lemma C.2 (Stutter invariant properties)
Given two traces t, t′ with t′ = \t and a property φ ∈ L then t |= φ =⇒ t′ |= φ
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Proof. The properties that could be specified with our property language L only consider existence of
states and do not consider the properties of the next state. The stutter operator \ removes repeating
states from the trace. Obviously if the trace t contains a state s the trace \t does contains this state,
too. Only the ordinal number of the state within the trace did change. Said this it can be easily followed
that the lemma holds. �

C.3 Refinement

Definition C.3 (Trace Refinement)
Given a trace t ∈ T (G0, R) where G0 and the rules in R are all typed over the type-graph T and a
trace t′ ∈ T (H0, R

′) where H0 and R′ are all typed over T ′ with T < T ′ we say that t′ refines t iff we
can find a mapping ord : N 7→ N such that the restricted trace

t′r = t′|T,R = H0|T → H1|T → Hi|T →

satisfies the following conditions:

ord(0) = 0

∀i, j : i, j ∈ N ∧ i > j → ord(i) > ord(j)

Hord(i)|T ≈ Gi

Hord(i)|T
r′ord(i)−−−−→ Hord(i)+1|T ∈ t′|T,R → r′ord(i) ≺ ri ∧Hord(i)+1|T ≈ Gi+1

∀i, j : i ∈ N ∧ ord(i) < j ≤ ord(i+ 1)→ Hj|T ≈ Gi+1

We denote the refinement relation between traces t and t′ as t ≺ord t
′ or simply t ≺ t′ if the mapping

ord is not necessary.

Lemma C.4 (Refinement invariant trace properties)
Given two traces t and p with type-graphs T and P with T < P and t ≺ p and a property φ ∈ L,
where the atomic properties of φ are typed over T , then t |= φ =⇒ p |= φ holds.

Proof. The property φ can only be defined atop of types given in T , as otherwise t |= φ could not hold.
Thus, it is sufficient to have a look at the restricted trace p|T,Rt

. Definition C.3 gives us that p|T,Rt
is

equivalent to t modulo the stuttering2. Together with Lemma C.2 we get that the lemma holds. �

C.4 Syntactical Refinement

A concept we will often need in the following sections is the concept of rule-sets.

Definition C.5 (Rule sets)
A rule-set S = (R, p,Ru) is given through a set of rules R, a transitive preemption relation p : R×R3

and a set of urgent rules Ru. The rules in Ru have to be applied once they are enabled the other rules
can be applied. A rule r ∈ R can be applied to a graph G if G

r−→ G′ is a valid graph-rule application

and if not exists a rule r′ ∈ R with G
r′−→ G′′ and (r′, r) ∈ p, i. e. if no rule applicable rule r′ exits

that preempts the rule r.

2In plvertT,Rt occur only states that occur in t, too. But some states, that stem from rule applications, which have
no correspondent in Rt become repeated.

3Note that the preemption relation p, can sometimes be expressed through a total mapping R 7→ N.
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The compositional verification scheme that is presented in this thesis strongly relies on the notion of
rule refinement. In this section we will introduce how refinement is formally defined and how this could
be algorithmically checked, within our tool.

Definition C.6 (Rule Refinement)
Given two graph transformation rules R1 and R2, that are typed over the type-graphs TG1 and TG2

with TG1 < TG2, we say that R2 refines R1, if there exists a graph morphism m with LR1
7→m LR2

and if the elements in LR2
\ ran(m) are typed over TG2 \ TG1.

For hybrid graph transformation rules having jump-conditions φ1 and φ2, respectively, we require that
φ2 ≡ φ1 ∧ φ′2. We denote the refinement relation between R1 and R2 as R1 ≺ R2.

Informally spoken, two rules are in a refinement relation if the more concrete one enhances the more
abstract one’s precondition without removing any elements. Hence, the applicability of the rule gets
decreased through refinement. The above definition also takes care that the original rule’s negative
application conditions do not become violated through the refinement. This is due to the required
existence of an isomorphism between the original and the refined rule.

Definition C.7 (Rule-set Refinement)
Given two sets of graph-transformation rules R = {R1, R2, . . . , Rn} and R′ = {R′1, R′2, . . . , R′m} with
n ≤ m. We say that set R′ refines set R if for each trace t′ ∈ T (R′) there exists a trace t ∈ T (R)
such that t′ ≺ t. We write this as R′ ≺ R.

Refining rule-sets faces several difficulties. In general rule sets might be augmented with priorities, such
that the applicability of a rule depends on the non-applicability of all other rules having a higher priority.
In the refined rule set it has to be assured that rules, being preempted in the abstract variant are also
preempted in the refined variant. In Figure C.1 a sketch of this situation is depicted. Above the dashed
line the LTS of the abstract rule-set is shown and the refined one below. In the abstract LTS rule r2
is applicable but preempted by the also applicable rule r1 due to r1’s higher priority. The refinement
of r1 and r2 to r′1 and r′2, respectively, may end in a situation where r′1 is not applicable (remember:
refinement means strengthening the rule’s precondition), but r′2 still is. Hence, in the refined system
exists a trace, which is impossible to exist in the abstract one and following the refined system does
not simulate the abstract one any longer.

In consequence we have to ensure that whenever a graph-rule preempts the application of a lower
priority rule, this preemption does also occur in the refined set of graph-rules. The easy way to do this
is to prohibit the refinement of any rule that has not the lowest priority. Obviously this restriction would
severely limit the applicability of our approach. A more versatile solution is to allow refinement for such
rules, but require that for each possible situation an applicable refined rule exists in the refined rule-set.
Being more precise the rules r1 and r2 will generally be refined by a two sets of rules r′1,1 . . . r

′
1,n

and r′2,1 . . . r
′
2,m. For the refined rules it has to hold, that whenever the rule r1 would be applicable

and additionally any of the lower-priority rules r′2,1 . . . r
′
2,m is applicable, then we require also at least

one of the rules r′1,1 . . . r
′
1,n is applicable, which then preempts the lower priority rule refining r2. In

the following we will denote this characteristics by a predicate Preempt(R,Q) where R is a set of
graph-transformation-rules and Q is a set of graph-transformation-rules that refine R. Preempt(R,Q)
is true whenever the refining rules in Q preserve the preempting behavior of the rules in R.

For timed- and hybrid graph-rules we also have to consider the urgent rules. These rules are comparable
to higher priority rules and thus the arguments made above also hold for them. If urgent rules are refined,
the set of refined rules has to capture all possible application situations. Meaning that whenever an
urgent rule ru would be applicable we have to have at least one rule in the set of refining rules
r′u,1 . . . r

′
u,n that is applicable, too. The difference here compared to the preemption of rules, which is

discussed in the paragraph above, is that urgent rules have to be applied and behavior that is captured
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Figure C.1: Rule Refinement Sketch

by urgent rules has to happen. Otherwise safety criterions often could not be met by the system. In
analogy to the Preempt-predicate we define a predicate Urgent(R,Q).

Lemma C.8 (Rule-set Refinement)
Given two sets of graph transformation rules RS = (R, p,Ru) with R = {r1, . . . , rn} and RS′ =
(R′, p′,R′u) with R′ = {r1, . . . , rm}. RS′ ≺ RS if

∀ri, rj , r′i, r′j : ri, rj ∈ R ∧ r′i, r′j ∈ R′ ∧ r′i ≺ ri ∧ r′j ≺ rj ∧ (rj , ri) ∈ p
=⇒ (r′j , r

′
i) ∈ p′

Preempt(R,R′) ∧ Urgent(R,R′)

With the set S(r) for r ∈ R being given as S = {r′k|r′k ∈ R′ ∧ r′k ≺ ri}

Proof. According to Definition C.7 the rule-set R′ refines the rule-set R iff for all traces t′ ∈ T (R′)
we can find a trace t ∈ T (R) such that t′ ≺ t. We will prove the lemma by contradiction and thus
we assume that a trace t′ ∈ T (R′) exists such that no trace corresponding trace in T (R) can be
found. Without loss of generality we further assume that we have two traces t′ ∈ T (R′) and t ∈ T (R)
that are in a valid refinement relation for the first i steps in the abstract system and then diverge. By
construction the divergent behavior can only originate from rules that are present in both the abstract
and the refining rule-set. Rules that only occur in R′ and do not refine a rule in R are only allowed to

read elements of R’s type-graph but not to write them. Thus, the steps Gi
ri−→ Gi+1 and G′j

r′j−→ G′j+1

with j ≥ i must be performed through rules ri 6≺ r′j . We have three different possibilities for this
situation to occur: (i) r′j ≺ rk with (rk, ri) ∈ p, (ii) r′j ≺ rk with (ri, rk) ∈ p, and (iii) r′j ≺ rk with

(rk, ri) 6∈ p ∧ (ri, rk) 6∈ p4.

4This depicts a situation were both rules can not preempt each other.
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For (i) we have r′j → G′j and ri → Gi←rk with (rk, ri) ∈ p. If rk would be applicable to Gi the
application ri → Gi would be preempted due to (rk, ri) ∈ p. However, if r′j → G′j and Gi ≈ G′j and
r′j ≺ rk then by construction rk → Gi, what contradicts our assumption of divergent behavior.

Case (ii) describes a situation where a preempting rule is not applicable in the concrete trace and thus
a preempted rule is applied. Hence, we have r′j → G′j , ri → Gi, rk → Gi and (ri, rk) ∈ p. Further, it
must exist at least one rule r′i ∈ R′ that refines ri. For this rule r′i we know that (r′i, r

′
j) ∈ p′, but as

r′j → G′j is applied r′i→G′j must hold. However, the rule r′i cannot exist in our refined rule-set R′ as
Preempt(R,R′) and Urgent(R,R′) holds.

Finally, the third case remains. We have r′j → G′j , ri → Gi ← rk and (rk, ri) 6∈ p ∧ (ri, rk) 6∈ p. Thus
rk is applicable in Gi and following a trace of the rule-set R has to exist, that applies rule rk instead
of ri in this case, we do not have a divergent behavior a position i. The applicability of rk to Gi is
given through the applicability of r′j to G′j . Hence in this case, the behavior does not diverge, as we
only need one trace in the abstract rule-set that conforms to the refined rule-set.

We have shown that either the divergent behavior does not exist or that the assumptions we made
earlier were wrong. Following we can conclude that the assumed existence of a trace, showing divergent
behavior, was wrong and thus the lemma holds. �

The lemma above is necessary for the general case, however, in some situations it is possible to ease the
checking obligations due to the rules’ properties. This is the case for the combination of two rule-sets,
which are defined on disjoint type-graphs.

Corollary C.9 (Combination of rule-sets)
Given two rule-set RS1 = (R1, p1,R1

u) and RS2 = (R2, p2,R2
u) that rules in R1 and R2 are defined

above two disjoint type-graphs TG1 and TG2, we can construct a combined rule-set RS = (R, p,Ru)
with R = R1 ∪R2, p = p1 ∪ p2 and Ru = R1

u ∪R2
u. For the new rule-set holds, that RS ≺ RS1 and

RS ≺ RS2

Proof. The disjoint type-graphs TG1 and TG2 imply that all graphs that are reachable for RS can
be partitioned into two unconnected parts, one being typed over each type graph. We know further,
that applications of graph-transformation-rules do not consume time. Consequently, the predicates
Urgent(RS,RS1), Urgent(RS,RS2), Preempt(RS,RS1) and Preempt(RS,RS2) hold. Further,
each rule r refines itself and hence we have the necessary conditions for Lemma C.8. �

As a consequence of Corollary C.9 we get that, if RS1 |= φ1 and RS2 |= φ2 with φ1 being typed over
T1 and φ2 being typed over T2 then RS |= φ1 ∧ φ2. This follows directly from the fact that the two
type-graphs are strictly disjoint and the Urgent and Preempt predicates are satisfied.

In the case that the rule-set we want to combine are not defined over strictly disjoint type-graphs, but
are “pseudo-type separated” Corollary C.9 can not be applied.

Definition C.10 (Pseudo-typed graphs)
Let P be a set of nodes called pseudo-types. A graph G is pseudo-typed iff each node in v ∈ VG\P with
lv(v) 6∈ CM is adjacent to exactly one node nP ∈ P . A graph transformation rule R is pseudo-typed
if the graphs specifying R’s left- and right-hand-side, respectively, are pseudo-typed.

The definition of pseudo-typed clearly excludes control-mode instances from the need to be adjacent to a
pseudo-type. But as control-modes have to adjacent to exactly one node, which has to be pseudo-typed,
of course, this exception will not violate any of the further results.Pseudo-type separated rule-sets, are
rule-sets whose rules are pseudo-typed as in Definition C.10. The pseudo-types have the same effect
on the rule-sets as oridnary types have and thus the combination of pseudo-type separated rule-sets
has the same properties as the combination of rule-sets defined above disjoint type-graphs has.
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Corollary C.11 (Combination of pseudo-typed rule-sets)
Given two rule-set RS1 = (R1, p1,R1

u) and RS2 = (R2, p2,R2
u) that rules in R1 and R2 are pseudo-

typed over disjoint pseudo-types P1 and P2, we can construct a combined rule-set RS = (R, p,Ru)
with R = R1 ∪ R2, p = p1 ∪ p2 and Ru = R1

u ∪ R2
u. For the new rule-set holds, that R ≺ RS1 and

R ≺ RS2.

Proof. The two rule-sets RS1 and RS2 are pseudo-typed. A pseudo-typed graph-transformation rule
can only be applied to a graph, that is pseudo-typed over the same pseudo-type-node, but we know that
P1 ∩ P2 = ∅. Followingly, in the combined rule-set RS the rules stemming from RS1 do not interfere
with the rules stemming from RS2. Thus, we can recall the arguments from the proof of Corollary C.9
and get the desired results. �
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