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TEMPORAL SYMMETRY OF SOME CLASSES OF STOCHASTIC
PROCESSES

CHRISTIAN LÉONARD, SYLVIE RŒLLY, AND JEAN-CLAUDE ZAMBRINI

Abstract. In this article we analyse the structure of Markov processes and reciprocal
processes to underline their time symmetrical properties, and to compare them. Our
originality consists in adopting a unifying approach of reciprocal processes, independently
of special frameworks in which the theory was developped till now (diffusions, or pure
jump processes). This leads to some new results too.
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Introduction

The Markov property, classic concept of the probabilistic landscape since more than
one century, was presented by Doob in 1953 [Doo53] in a symmetrical way. This remark-
able point of view, often replaced by an asymmetric notion of the directed time, was
developped further by numerous authors, see references in the monograph from Chung
and Walsh [CW05].
A few decades after Markov, Schrödinger in his paper “Über die Umkehrung der Naturge-
setze” [Sch31] published in 1931, and then Bernstein [Ber32] one year later, introduced
in the framework of diffusion processes the concept of reciprocal processes which, as one
senses, is insensitive with respect to the direction of time.

We propose in this paper a new structural approach of the law of reciprocal processes,
called reciprocal probabilities, which disregards the specific contexts already treated in
the past - diffusions with continuous paths by Jamison [Jam74] (see also [Thi02], [TZ97b]
or [TZ97a]) or pure jump processes by Murr [Mur12]. We then present a unifying vision of
reciprocal notions and compare, in a general framework, different type of time symmetries
satisfied either by Markov or by reciprocal processes.

Date: February 8th, 2013.
First author partially supported by the ANR project GeMeCoD. ANR 2011 BS01 007 01.
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So, in Theorem 1.8, the multiplicative -characteristic- structure of the density of a Markov
probability with respect to an other one is made clear. In Theorem 2.20, we describe more
precisely this structure for elements of a reciprocal family.

Intentionally, we treat in this paper only the case of probability measures. We could
generalise most of the results to σ-finite measures, as for example diffusions having as
marginal at initial time a measure with infinite mass. More details on this generalised
framework are given in [Léoa].

Some notations. We consider the set Ω = D([0, 1],X ) ⊂ X [0,1] of càdlàg paths defined
on the finite time interval [0, 1] with state space X , which is supposed to be polish,
endowed with its Borel σ-algebra. As usual Ω is endowed with the canonical filtration A,
generated by the canonical process X = (Xt)t∈[0,1] :

Xt(ω) := ωt, ω = (ωs)s∈[0,1] ∈ Ω, t ∈ [0, 1].

For any subset S ⊂ [0, 1] and for any probability measure P on Ω one denotes

• XS = (Xs)s∈S the canonical process restricted to S,
• AS = σ(Xs; s ∈ S) the σ-algebra of the events observed during S,
• PS = (XS)#P the restriction of P to ΩS := XS(Ω).

For S = [s, u] ⊂ [0, 1] we use the peculiar notations:

• X[s,u] := (Xt; s ≤ t ≤ u)
• A[s,u] := σ(X[s,u]), the σ-algebra generated by the events occured between time s

and time u
• Ps := (Xs)#P is the projection of P at time s
• Psu := (Xs, Xu)#P is the marginal of P at times s and u simultaneously (P01 is

therefore the joint law of the initial and final conditions)
• P[s,u] := (X[s,u])#P is the projection of P on the time interval [s, u]
• P sx := P (· | Xs = x) is the measure P conditioned to be equal at δx at time s
• P sx,uy := P (· | Xs = x, Xu = y) is the measure P conditioned to be equal at δx at

time s and δy at time u.

In particular, for x, y ∈ X , we denote by

P xy := P 0x,1y = P (· | X0 = x, X1 = y)

the bridge of P on [0, 1], concentrated on x at initial time and on y at final time (a.s.
X0 = x and X1 = y).
The probability measure

P ∗ = (X∗)#P

is the law under P of the time reversed canonical process X∗ := (X1−t)0≤t≤1.

1. Time symmetry of Markov probabilities

We present in this section structural properties of Markov probabilities and of their
bridges. We especially underline their time symmetry, which has already been studied
in specific frameworks (see for example [CW05]). To make this paper self-contained, we
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sketch results even if they are already known in some special case (as in the diffusion
framework).

1.1. Definition and essential properties. Let us begin with the symmetrical definition
of the Markov property.

Definition 1.1 (Markov probability). A probability measure P on Ω is called Markov (or
the law of a Markov process) if for any t ∈ [0, 1] and for any events A ∈ A[0,t], B ∈ A[t,1]

P (A ∩ B | Xt) = P (A | Xt)P (B | Xt), P -a.s. (1.2)

The above property states that, under P , the future A[t,1] and the past A[0,t] are condi-
tionally independent, given the present time t. It is invariant with respect to time-reversal.

In the Theorem below, we recall equivalent descriptions of the Markov property, espe-
cially the identity (2) which states that a Markov probability forgets its past history.

Theorem 1.3. Let P be a probability measure on Ω. Then the following are equivalent:

(1) The probability P is Markov.
(1*) The time-reversed probability P ∗ is Markov.

(2) For all 0 ≤ t ≤ 1, and all sets B ∈ A[t,1],

P (B | X[0,t]) = P (B | Xt), P -a.e.

(2*) For all 0 ≤ t ≤ 1, and all sets A ∈ A[0,t],

P (A | X[t,1]) = P (A | Xt), P -a.e.

(3) For all 0 ≤ s ≤ u ≤ 1, and all sets A ∈ A[0,s], C ∈ A[u,1]

P (A ∩ C | X[s,u]) = P (A | Xs)P (C | Xu), P -a.e.

Proof. We will proof (3)⇒ (1)⇒ (2)⇒ (3).
• Proof of (3)⇒ (1). It is clear taking s = u.
• Proof of (2) ⇒ (3). For all sets A ∈ A[0,s] and C ∈ A[u,1] and all sets B ∈ A[s,u], the
equality

P (A ∩ B ∩ C) = E[1BP (A ∩ C | X[s,u])]

holds, just as

P (A ∩B ∩ C) = E[P (A ∩B ∩ C | X[0,u])]

= E[1A1BP (C | X[0,u])]

= E[1A1BP (C | X[s,u])]

= E[1BP (A | X[s,u])P (C | X[s,u])]

where property (2) is used in the second to last equality. Therefore

P (A ∩ C | X[s,u]) = P (A | X[s,u])P (C | X[s,u]).

• Proof of (1)⇒ (2). Let us show that if (1.2) is satisfied under P then P forgets its past
history. Let A ∈ A[0,t] and B ∈ A[t,1] be some events. Let us compute P (B | X[0,t]) by
using (1.2):

E[1AP (B | X[0,t])] = P (A ∩ B) = E(P (A ∩B | Xt)) = E[P (A | Xt)P (B | Xt)].
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On the other hand,

E[1AP (B | Xt)] = E[P (A | Xt)P (B | Xt)].

One obtains for any set A ∈ A[0,t], E[1AP (B | X[0,t])] = E[1AP (B | Xt)], which implies
P (B | X[0,t]) = P (B | Xt). This completes (1)⇒ (2) and finally the proof of (1)⇔ (2)⇔
(3).
Eventually the symmetry of the formulation of (3) leads to the equivalence between (2)
and (1∗). Assertion (2∗) corresponds to (2) applied to P ∗. �

One finds a first proof of (1) ⇔ (2) in the monograph by Doob [Doo53, Eq. (6.8) &
(6.8’)]. Dynkin [Dyn61] and then Chung [Chu68, Thm9.2.4] took it over.

Identity (2) is often used as the definition of the Markov property, while A[0,t] and A[t,1]

are interpreted as past and future of the present time t. It is usually called one-sided
property, and creates the illusion that the Markov property is time asymmetric , which is
inaccurate.
Meyer already remarked in [Mey67] that the Markov property is invariant under time
reversal, unlike other interesting properties of processes.

Since each Markov process can be defined via its forward and backward transition
probability kernels, we recall how to construct it in a symmetrical way.

Definitions 1.4. Let P be a Markov probability on Ω.

(1) The forward transition probability kernel associated with P is the family of con-
ditional probabilities

(
p(s, x; t, ·); 0 ≤ s ≤ t ≤ 1, x ∈ X

)
defined for any 0 ≤ s ≤

t ≤ 1, and Ps-almost all x, by

p(s, x; t, dy) = P (Xt ∈ dy | Xs = x).

(2) The backward transition probability kernel associated with P is the family of
conditional probabilities

(
p∗(s, ·; t, y); 0 ≤ s ≤ t ≤ 1, y ∈ X

)
defined for any

0 ≤ s ≤ t ≤ 1, and Pt-almost all y, by

p∗(s, dx; t, y) := P (Xs ∈ dx | Xt = y).

Since these kernels satisfy the celebrated Chapman-Kolmogorov relations

∀0 ≤ s ≤ t ≤ u ≤ 1,

p(s, x; u, ·) =

∫

X

p(s, x; t, dy)p(t, y; u, ·) for Ps-a.a. x (1.5)

p∗(s, ·; u, z) =

∫

X

p∗(s, ·; t, y)p∗(t, dy; u, z) for Pu-a.a. z, (1.6)

one can construct the probability measure P in the following way.

Proposition 1.7. The Markov probability measure P is uniquely determined by one time
marginal Pu at some time u ∈ [0, 1], its forward transition probability kernels starting
from time u,

(
p(s, x; t, ·); u ≤ s ≤ t ≤ 1, x ∈ X

)
and the backward transition probability

kernels until time u,
(
p∗(s, ·; t, y); 0 ≤ s ≤ t ≤ u, y ∈ X

)
.
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Indeed, for any 0 ≤ s1 ≤ . . . sk ≤ u ≤ t1 ≤ . . . tl ≤ 1, and k, l ≥ 1, the finite dimensional
projection of P are given by

Ps1,...,sk,u,t1,...,tl = p∗s1;s2
⊗ · · · ⊗ p∗sk;u ⊗ Pu ⊗ pu;t1 ⊗ · · · ⊗ ptl−1;tl.

where we used the following intuitive notation

Pu ⊗ pu;t(dx, dy) := Pu(dx)p(u, x; t, dy).

1.2. Probability measure dominated by a Markov probability measure. We now
identify when a probability measure on Ω, which is dominated by a given Markov one,
inherits its Markovianity.
In the following result, we present a criterium concerning the multiplicative structure of
the Radon-Nikodym density, which should be time symmetrical.

Theorem 1.8. Let R be a reference probability measure on Ω and let P be a probability
measure dominated by R. Then the following are equivalent:

(1) The probability measure P is Markov
(2) For any time t ∈ [0, 1], the Radon-Nikodym density of P with respect to R factor-

izes in the following way:

dP

dR
= αt βt R-a.e. (1.9)

where αt resp. βt is a non negative A[0,t]- resp. A[t,1]-measurable functional.

Proof. • Proof of (2) ⇒ (1). Take two events, A ∈ A[0,t] and B ∈ A[t,1]. In terms of
Definition 1.1, we have to show that

P (A ∩B | Xt) = P (A | Xt)P (B | Xt), P -a.e.. (1.10)

To this aim, note that though the product αtβt is R-integrable, it is not clear why αt or
βt are separately integrable. Since we need this property, we may use the following fine
Lemma of integration theory, which assures the R(. | Xt)-integrability of the functionals
αt and βt P -a.e..

Lemma 1.11. Under hypothesis (2) of the above Theorem, the functionals αt and βt are
R(. | Xt)-integrable P -a.e., and

{
0 < ER(αtβt | Xt) = ER(αt | Xt)ER(βt | Xt), P -a.e.
0 ≤ ER(αtβt | Xt) = 1{ER(αt|Xt)ER(βt|Xt)<+∞}ER(αt | Xt)ER(βt | Xt), R-a.e.

Proof. See [Léoa, § 3]. �

Now Lemma 1.11 leads to

P (A ∩ B | Xt) =
ER(αtβt 1A1B | Xt)

ER(αtβt | Xt)
=

ER(αt 1A | Xt)

ER(αt | Xt)

ER(βt 1B | Xt)

ER(βt | Xt)
, P -a.e..

Choosing A = Ω or B = Ω in this formula, we obtain

P (B | Xt) = ER(βt 1B | Xt)/ER(βt | Xt) and P (A | Xt) = ER(αt 1A | Xt)/ER(αt | Xt).

This completes the proof of (1.10).
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• Proof of (1)⇒ (2). Take a Markov probability measure P with density Z with respect
to R : dP = Z dR. We denote by

Zt := ER(Z | X[0,t]), Z∗
t := ER(Z | X[t,1]) and ζt(z) := ER(Z | Xt = z) =

dPt

dRt
(z).

Remark that the last equality implies that ζt(Xt) > 0, P -a.e.,

ζt(Xt) = ER(Zt | Xt) = ER(Z∗
t | Xt), R-a.e. (1.12)

and that ζt(Xt) is R-integrable.
Fix three bounded non negative functions f, g, h respectivelyA[0,t]-,At- andA[t,1]-measurable.
One gets

EP (fgh)
(i)
= EP [EP (f | Xt) g EP (h | Xt)]

(ii)
= EP

[
ER(fZt | Xt)

ER(Zt | Xt)
g

ER(hZ∗
t | Xt)

ER(Z∗
t | Xt)

]

(iii)
= EP

[
g
ER(fhZtZ

∗
t | Xt)

ζt(Xt)2

]

(iv)
= EP [gEP̃ (fh | Xt)]

where we successively used in (i): Markovianity of P , in (iii) identity (1.12) and Marko-
vianity of R and in (iv), we introduce the probability measure

P̃ := 1{ζt(Xt)>0}
ZtZ

∗
t

ζt(Xt)
R. (1.13)

From all these identities one deduces that

P (· | Xt) = P̃ (· | Xt), P -a.e.. (1.14)

Define {
αt = 1{ζt(Xt)>0} Zt/ζt(Xt)
βt = Z∗

t .

Therefore (1.13) becomes

P̃ = αtβt R (1.15)

and

ER(αt | Xt) = 1{ζt(Xt)>0} and ER(βt | Xt) = ζt(Xt).

In order to identify P with P̃ , since (1.14) is satisfied, it is enough to show that their
marginals at time t are the same, which we now prove.

P̃t(dz) = ER (αtβt | Xt = z) Rt(dz)
(i)
= ER (αt | Xt = z) ER (βt | Xt = z) Rt(dz)

= ζt(z) Rt(dz) = Pt(dz)

where the Markovianity of R is used in (i). This fact, together with (1.14), implies the

equality P = P̃ . Eventually, since Zt is A[0,t]-measurable and Z∗
t is A[t,1]-measurable, αt

and βt are A[0,t]- resp. A[t,1]-measurable functionals. �
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Example 1.16. In the extremal case in which αt = f(X0) is A0-measurable and βt = g(X1)
is A1-measurable, one obtains from the above Theorem that any probability P of the form

P = f(X0)g(X1) R (1.17)

is Markov.

In Theorem 2.20 we will see that, under some restrictions for R, the probabilities P of
this form are the unique ones which are Markov in the class of the probabilities of the
form P = h(X0, X1) R.

1.3. A fundamental example: bridges. Since our aim is to carefully analyse the time
symmetry of probabilities on path spaces, it is reasonable to desintegrate them along their
initial and final values. One then describes a probability P on Ω as a mixture of pinned
probabilities at time t = 0 and at time t = 1, that is as a mixture of its own bridges:

P =

∫

X×X

P xy P01(dxdy). (1.18)

Since X is polnish, the product space X 2 is polnish too and this desintagration is mean-
ingful.

It is known but nevertheless remarkable that, to pin a Markov probability measure P
at initial and final times, does not perturb its Markovianity. We recall this important
result below. Note that the bridges of P are only P -a.s. defined (in the article [FPY92]
one finds a precise construction of bridges in the general framework of right processes.).

Proposition 1.19. (Almost-) all bridges of a Markov probability measure on Ω are
Markov.

Proof. Let P be a Markov probability, t be a time in [0, 1], A ∈ A[0,t] and B ∈ A[t,1] be
two events. We first show the following equality:

P (A ∩ B | X0, Xt, X1) = P (A | X0, Xt)P (B | X0, Xt, X1), P -a.s. . (1.20)

Indeed,

P (A ∩ B | X0, Xt, X1) = E[P (A ∩ B | X0, X[t,1]) | X0, Xt, X1]

= E[1BP (A | X0, X[t,1]) | X0, Xt, X1]

= E[1BP (A | X0, Xt) | X0, Xt, X1]

= P (A | X0, Xt)P (B | X0, Xt, X1).

Moreover, by Theoreme 1.3 (2*), P (A | X0, Xt) = P (A | X0, Xt, X1). Therefore

P X0,X1(A ∩B | Xt) = P X0,X1(A | Xt)P
X0,X1(B | Xt) P -a.s. ,

which characterizes the Markovianity of (P -almost) all bridges P X0,X1 via (1.2). �

In the sequel, we treat in particular the case where the Markov transition probability
kernels are sufficiently regular, that is they admit densities. We describe this situation as
follows.
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Hypothesis (H). There exists a σ-finite positive measure m on X such that the tran-
sition probability kernels of the Markov probability measure P satisfy

∀0 ≤ s < t ≤ 1, p(s, x; t, ·)≪ m pour Ps-p.t. x and p∗(s, ·; t, y)≪ m pour Pt-p.t. y.

By sake of simplicity, one also writes p, p∗ for the density functions with respect to m: for
all 0 ≤ s < t ≤ 1,

p(s, x; t, y) :=
dp(s, x; t, ·)

dm
(y) for Rs ⊗m-a.a. (x, y)

et p∗(s, x; t, y) :=
dp∗(s, ·; t, y)

dm
(x) for m⊗ Rt-a.a. (x, y).

Remark that Hypothesis (H) is not always satisfied. If P is a Poisson process with
random initial condition having a density on R, at any time s, Ps admits a density too.
But the support of the measure p(s, x; t, dy) is discrete and equal to x + N. Therefore
there does not exist any measure m such that for a.a. x, p(s, x; t, dy)≪ m(dy). We will
see in Example 1.30 (ii) how get round this difficulty.

In the rest of this section, we assume that the reference Markov Probability measure
R which we consider satisfies Hypothesis (H) with transition probability density denoted
by r. Therefore

R0(dx) =

∫
r∗(0, x; 1, y)m(dx)R1(dy) =

∫
r∗(0, x; 1, y)R1(dy) m(dx) =: r0(x) m(dx)

and symetrically,

R1(dy) =

∫
r(0, x; 1, y)m(dy) R0(dx) =: r1(y) m(dy).

This leads to

R01(dxdy) = r0(x) m(dx)r(0, x; 1, y)m(dy) = r1(y)m(dy)r∗(0, x; 1, y)m(dx),

in such a way that the function defined by

c(x, y) := r0(x)r(0, x; 1, y) = r1(y)r∗(0, x; 1, y),

is the density of the joint marginal R01(dxdy) with respect to m⊗m.

We now recall the general structural relation between the probability R and its bridges.
These latters are not globally absolutely continuous with respect to R (as the probabilities
considered in the last section), but they are locally absolutely continuous with respect to
R, on each time interval [s, t] strictly included in [0, 1]. The density is time symmetrical
and we do exhibit it in a simple way.

Theorem 1.21. Consider a Markov probability R on Ω satisfying (H). Denote r0 :=
dR0/dm, r1 := dR1/dm, and

c(x, y) := r0(x)r(0, x; 1, y) = r∗(0, x; 1, y)r1(y) m⊗m-a.e..
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Then for all 0 < s ≤ t < 1 and for R01-a.a.(x, y), the bridge Rxy of R restricted to A[s,t]

is dominated by R[s,t] with density given by

(Rxy)[s,t] =
r∗(0, x; s, Xs) r(t, Xt; 1, y)

c(x, y)
R[s,t]. (1.22)

Proof. We first show the following property:

c(x, y) = 0⇒ r∗(0, x; s, z)r(t, z′; 1, y) = 0, ∀(z, z′), Rst-a.e. (1.23)

On one side,

R01(dxdy) = c(x, y)m(dx)m(dy)

and on the other side, following Proposition 1.7,

R01(dxdy) =

∫

X×X

R0,s,t,1(dx, dz, dz′, dy)

=

∫

X×X

r∗(0, dx; s, z)Rs(dz)r(s, z; t, dz′)r(t, z′; 1, dy)

=

∫

X×X

r∗(0, x; s, z)r(s, z; t, z′)r(t, z′; 1, y)Rs(dz)m(dz′) m(dx)m(dy).

Then

c(x, y) =

∫

X×X

r∗(0, x; s, z)r(s, z; t, z′)r(t, z′; 1, y)Rs(dz)m(dz′)

and (1.23) holds. Moreover, for Rst-a.a. (z, z′), the probability measure r∗(0, dx; s, z)r(t, z′; 1, dy)
is dominated by R01(dxdy) and satisfies

r∗(0, dx; s, z)r(t, z′; 1, dy) =
r∗(0, x; s, z)r(t, z′; 1, y)

c(x, y)
R01(dxdy). (1.24)

Take two bounded measurable functions f, g and an event B ∈ A[s,t]. Thus,

ER[f(X0) 1B g(X1)]

= ER

[
1B ER(f(X0) | X[s,t]) ER(g(X1) | X[s,t])

]

= ER [1B ER(f(X0) | Xs) ER(g(X1) | Xt)]

= ER

[
1B

∫

X

f(x) r∗(0, dx; s, Xs)

∫

X

g(y) r(t, Xt; 1, dy)

]

= ER

[
1B

∫

X×X

f(x)g(y)r∗(0, dx; s, Xs)r(t, Xt; 1, dy)

]

X
= ER

[
1B

∫

X×X

f(x)
r∗(0, x; s, Xs)r(t, Xt; 1, y)

c(x, y)
g(y) R01(dxdy)

]

=

∫

X×X

f(x)ER

[
1B

r∗(0, x; s, Xs) r(t, Xt; 1, y)

c(x, y)

]
g(y) R01(dxdy),

where we used (1.24) at the marked equality. This proves (1.22). �
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Corollary 1.25 (Decomposition of a bridge). By introducing fs(z) := r∗(0, x; s, z) and
gt(z

′) =: c(x, y)−1r(t, z′; 1, y), (1.22) becomes

(Rxy)[s,t] = fs(Xs) gt(Xt) R[s,t]. (1.26)

In particular, at each time t ∈]0, 1[, the one dimensional marginal of the bridge Rxy is
dominated by the marginal Rt of the Markov probability R. Its satisfies

Rxy
t = ft(Xt) gt(Xt) Rt.

One interprets (1.26) as a modulation of (1.17) on the time interval [s, t]: the density
of the bridge decomposes into a product of functions of the process at boundary times s
and t. This assures its Markovianity.

Naturally, forward and backward dynamics of the bridge are directly related to dynam-
ics of the original process.

Proposition 1.27. Let R be a Markov probability measure on Ω which satisfies hypothesis
(H).

(1) For any time t < 1 and for R01-a.a. (x, y), the bridge Rxy of R, restricted to A[0,t]

is given by

(Rxy)[0,t] =
r(t, Xt; 1, y)

r(0, x; 1, y)
R[0,t](· | X0 = x). (1.28)

(2) Analogously, for any time s > 0 and for R01-a.a. (x, y), the bridge Rxy of R
restricted to A[s,1] is given by

(Rxy)[s,1] =
r∗(0, x; s, Xs)

r∗(0, x; 1, y)
R[s,1](· | X1 = y). (1.29)

(3) The forward and backward transition probability kernels of Rxy satisfy for all 0 ≤
s < t ≤ 1 and Rst-a.a (z, z′),

rxy(s, z; t, dz′) = 1{r(s,z;1,y)>0}
r(s, z; t, z′)r(t, z′; 1, y)

r(s, z; 1, y)
m(dz′)

rxy
∗ (s, dz; t, z′) = 1{r∗(0,x;t,z′)>0}

r∗(0, x; s, z)r∗(s, z; t, z′)

r∗(0, x; t, z′)
m(dz)

with the conventions r(1, z; 1, y) = 1{z=y} and r∗(0, x; 0, z) = 1{z=x}.
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Proof. • Proof of (1). Define P x̃y :=
r(t, Xt; 1, y)

r(0, x; 1, y)
R[0,t](· | X0 = x) and take a bounded

non negative map f and an event B ∈ A[0,t]. Then,

ER

(
P x̃X1(B)f(X1) | X0 = x

)
=

∫

X

r(0, x; 1, y)P x̃y(B)f(y) m(dy)

=

∫

X

ER[1B r(t, Xt; 1, y)f(y) | X0 = x] m(dy)

= ER[1B

∫

X

r(t, Xt; 1, dy)f(y)m(dy) | X0 = x]

= ER[1B ER(f(X1) | Xt) | X0 = x]

= ER[1B ER(f(X1) | X[0,t]) | X0 = x]

= ER[1B f(X1) | X0 = x]

= ER[RxX1(B) f(X1) | X0 = x]

which proves (1.28).
• Proof of (2). It is analogous with (1).
• Proof of (3). It is a direct corollary of (1) and (2). �

Examples 1.30. Several kind of bridges.

(i) The first example is classic. Let W be a Wiener measure on the set of real-
valued continuous paths on [0, 1], with initial marginal law W0, admiting a density
function r0 with respect to Lebesgue measure m(dx) ≡ dx. Hypothesis (H) is then
satisfied and the forward and backward transition probability densities are given,
for x, y ∈ R, by:

r(s, x; t, y) =
1√

2π(t− s)
e
− (y−x)2

2(t−s) , r∗(s, x; t, y) =

∫
r0(z)r(0, z; s, x)r(s, x; t, y) dz∫

r0(z)r(0, z; t, y) dz
.

Therefore, due to (1.28), the Brownian bridge restricted to A[0,t] satisfies

(Wx,y)[0,t] =
1√

1− t
e
−

(
(y−Xt)

2

2(1−t)
−

(y−x)2

2

)

W[0,t](· | X0 = x).

Similarly

(Wx,y)[s,1] = F xy(s, Xs)W[s,1](· | X1 = y)

where

F xy(s, z) =
r∗(0, x; s, z)

r∗(0, x; 1, y)
=

∫
r0(x

′)r(0, x′; 1, y) dx′

∫
r0(x′)r(0, x′; s, z) dx′

r(0, x; s, z)

r(0, x; 1, y)

=

∫
r0(x

′)e−
(y−x′)2

2 dx′

∫
r0(x′)e−

(z−x′)2

2s
dx′

e
−

(
(z−x)2

2s
−

(y−x)2

2

)

.

Moreover, the density of the marginal at time t > 0 of the Brownian bridge
(Brownian motion pinned in x and y) with respect to the marginal of the “free”
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Brownian motion is given by

√
1

1− t

r0(x)
∫

r0(x′)e− (Xt−x′)2

2t
dx′

e
−

(
(Xt−x)2

2t
+

(y−Xt)
2

2(1−t)

)

.

(ii) Let P be the law of a Poisson process on the set of counting processes with general
initial condition, that is the càdlàg step functions with positive unit jumps. One
assumes that its marginal law at time 0 is a probability measure P0(dx) = r0(x)dx
on R. As already remarked, such a process does not satisfy hypothesis (H). How-
ever its dynamics is space- (and time-) homogeneous:

r(s, x; t, dy) = δx ∗ r(0, 0; t− s, dy)

and the transition kernel r(0, 0; u, dy) admits a poissonian density r with respect
to the counting measure m on N :

r(0, 0; u, dy) = r(u, y) m(dy) where r(u, n) = e−u un

n!
.

Therefore the proof of (1.28) can be generalised to this case, since it is enough to
exhibit a density of the bridge of the Poisson process between 0 and n on the time
interval [0, t] with respect to the standart Poisson process starting in 0.
Now, the density on the time interval [0, t] of the Poisson process pinned in x
et y with respect to the Poisson process starting in x satisfies for P0-a.a. x and
y ∈ x + N,

(Pxy)[0,t] =
r(1− t, y −Xt)

r(1, y − x)
P[0,t](· | X0 = x)

= et(1− t)y−Xt
(y − x)!

(y −Xt)!
P[0,t](· | X0 = x).

(iii) Let C be the law of a Cauchy process on Ω. We denote by C0 its marginal law at
time 0. The forward transition density r(s, x; t, y) is given, for each x, y ∈ R, by
the Cauchy law with parameter t− s :

r(s, x; t, y) =
t− s

π((t− s)2 + (y − x)2)

and for C0-almost all x,

(Cxy)[0,t] = (1− t)
1 + (y − x)2

(1− t)2 + (y −Xt)2
C[0,t](· | X0 = x).

The computation of the density of the bridge on the time interval [s, 1] follows the
same shema, using the backward transition density and the initial value C0. We
also could consider the reversible situation, corresponding to C0(dx) = dx. This
reversible measure can not be normalised but these techniques remain valuable
also for σ-finite measures, see [Léoa].
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2. Reciprocal probabilities and temporal symmetry

We now enlarge our framework to the class of probability measures called reciprocal,
which are not necessarily Markov but show a sort of natural time symmetry. Bernstein
introduced them in the particular framework of diffusion processes in his talk [Ber32] at
the International Congress in Zürich in 1932, characterizing their associated transition as
stochastiquement parfaites. Their symmetry property justifies their use in particular in
the study of Quantum mechanical (random) systems, as in [Nel67], [Nag93] or in [CZ03].

2.1. Definition and essential properties. Let us begin with the definition.

Definition 2.1 (Reciprocal probability). A probability measure P on Ω is called recipro-
cal (or the law of a reciprocal process) if for any times s ≤ u in [0, 1] and for any events
A ∈ A[0,s], B ∈ A[s,u], C ∈ A[u,1]

P (A ∩B ∩ C | Xs, Xu) = P (A ∩ C | Xs, Xu)P (B | Xs, Xu), P -a.s.. (2.2)

| |

s u 10

| |
A B C

The above property, formalised by [Jam74], states that under P the future of the time
u and the past of the time s are conditionally independent, given the knowledge of the
process at both times s and u. It is clearly time symmetrical.

In parallel to Theorem 1.3, we now present several characterisations of the reciprocal
property.

Theorem 2.3. Let P be a probability measure on Ω. Then the following are equivalent:

(1) The probability P is reciprocal.
(1*) The time-reversed probability P ∗ is reciprocal.
(2) For all 0 ≤ s ≤ u ≤ 1, and all sets B ∈ A[s,u],

P (B | X[0,s], X[u,1]) = P (B | Xs, Xu). (2.4)

(3) For all 0 ≤ v ≤ r ≤ s ≤ u ≤ 1, and all sets A ∈ A[v,r], B ∈ A[s,u],

P (A ∩B | X[0,v], X[r,s], X[u,1]) = P (A | Xv, Xr)P (B | Xs, Xu).

| | | |

sr uv 10

| |
A B

Proof. • Proof of (1)⇔ (1∗). Straightforward.
• Proof of (1)⇒ (2).
Let take B ∈ A[s,u]. P (B | X[0,s], X[u,1]) is the unique random variable A[0,s] ∨ A[u,1]-
measurable such that, for all A ∈ A[0,s] and C ∈ A[u,1],

P (A ∩B ∩ C) = E[1A1CP (B | X[0,s], X[u,1])].
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But, due to (2.2), one has

P (A ∩ B ∩ C) = = E(P (A ∩B ∩ C | Xs, Xu))

= E[P (A ∩ C | Xs, Xu)P (B | Xs, Xu)]

= E[E(1A1CP (B | Xs, Xu) | Xs, Xu)]

= E[1A1CP (B | Xs, Xu)].

This implies (2).
• Proof of (2)⇒ (1).
Let take 0 ≤ s ≤ u ≤ 1, A ∈ A[0,s], B ∈ A[s,u], C ∈ A[u,1] and f, g some measurable non
negative functions. By definition,

E[1A1B1Cf(Xs)g(Xu)] = E[P (A ∩ B ∩ C | Xs, Xu)f(Xs)g(Xu)]

holds. On another side,

E[1A1B1Cf(Xs)g(Xu)] = E[E(1A1B1Cf(Xs)g(Xu) | X[0,s], X[u,1])]

= E[1A1CP (B | Xs, Xu)f(Xs)g(Xu)]

= E[P (A ∩ C | Xs, Xu)P (B | Xs, Xu)f(Xs)g(Xu)].

Therefore

P (A ∩B ∩ C | Xs, Xu) = P (A ∩ C | Xs, Xu)P (B | Xs, Xu).

• Proof of (2)⇒ (3).
Take A ∈ A[v,r] and B ∈ A[s,u]. Then

P (A ∩ B | X[0,v], X[r,s], X[u,1])

= E
[
P (A ∩ B | X[0,v], X[r,1]) | X[0,v], X[r,s], X[u,1]

]

X
= E

[
P (A | Xv, Xr) 1B | X[0,v], X[r,s], X[u,1]

]

= E
[
E

(
P (A | Xv, Xr) 1B | X[0,s], X[u,1]

)
| X[0,v], X[r,s], X[u,1]

]

X
= E

[
P (A | Xv, Xr)P (B | Xs, Xu) | X[0,v], X[r,s], X[u,1]

]

= P (A | Xv, Xr)P (B | Xs, Xu)

where we used assumption (2) at the X-marked equalities.
• Proof of (3)⇒ (2).
It is enough to take A = Ω and v = t = s. �

Identity (2.4) states that a reciprocal probability is indeed a Markov field indexed by the
time, as one-dimensional continuous parameter: if one conditions the probability evolving
during the time interval [s, u] by the knowledge of the past of s and of the future of u, this
is equivalent to to condition it by the only knowledge at both boundary times s and u.
This property is sometimes called two-side Markov property, which is inadequate, because
one could get mixed up with (1.2) or 1.3-(3).
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2.2. Fundamental examples. For a probability, to be Markov is stronger than to be
reciprocal:

Proposition 2.5. Any Markov probability measure on Ω is reciprocal, but the contrary is
false.

Proof. Take P a Markov probability measure, 0 ≤ s ≤ u ≤ 1 and A ∈ A[0,s], B ∈ A[s,u] et
C ∈ A[u,1]. The following holds:

P (A ∩ B ∩ C) = E[P (A ∩ B ∩ C | X[s,u])]

(i)
= E[P (A | Xs)1BP (C | Xu)]

= E[P (A | Xs)P (B | Xs, Xu)P (C | Xu)]
(ii)
= E[P (A | Xs)P (B | Xs, Xu)P (C | X[0,u])]

= E[P (A | Xs)P (B | Xs, Xu)1C ]
(iii)
= E[P (A | X[s,1])P (B | Xs, Xu)1C ]

= E[1AP (B | Xs, Xu)1C ]

Equality (i) is due to Theorem 1.3 (3). To prove (ii) et (iii) we use the Markov property.
Therefore (2.4) holds.
In Examples 2.7 (ii) we obtain a counter-example which shows that the set of Markov
probability measures is strictly included in the set of reciprocal probabilities. �

The first proof of this assertion was done in [Jam70] in a Gaussian framework.

Let us mention the following class of reciprocal - but not Markov - probabilities. Take a
Markov probability R on Ω and m a probability measure on X . Suppose that m-a.e., the
bridges Rxx are well defined. Then

Rper :=

∫

X

Rxx m(dx)

is a probability concentrated on periodical paths, with initial marginal law m. Due to
Proposition 2.8, Rper is reciprocal, associated with the mixture probability π(dxdy) =
m(dx)δx(dy). Nevertheless Rper is not Markov since condition (2∗) of Theorem 1.3 is
denied: Let A ∈ A0 and t be a positive time. Following (2∗), P (A|A[t,1]) depends only on
Xt. Otherwise, A ∈ A0 = A1 ⊂ A[t,1]. Thus P (A|A[t,1]) = 1A, which only holds in the
degenerate case of Dirac probabilities.

We will discuss in a short while the typical structure of reciprocal probabilities.

2.3. To pin returns Markovianity. In Proposition 1.19 we recalled the stability of the
Markov property by pinning. Indeed, it is remarkable that pinning a reciprocal probability
not only respects its reciprocality but also transforms it in a Markov one.

Theorem 2.6. Let P be a reciprocal probability on Ω. Then, for P01-almost all (x, y) ∈
X 2, the bridge P xy is a Markov probability.
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Proof. Take two events A ∈ A[0,t] and B ∈ A[t,1]. Equation (1.20) holds under P : it is
enough to do similar computations as in the proof of Theorem 1.19 and to apply property
(2.4) to A with s = 0 and t = u. By symmetry one then obtains

P (A ∩ B | X0, Xt, X1) = P (A | X0, Xt)P (B | X0, Xt, X1)

= P (A | X0, Xt, X1)P (B | X0, Xt, X1),

which characterises the Markovianity of any bridge P X0,X1 via (1.2). �

In the next subsection we study how to mix pinned probabilities without perturbing
their nice properties.

2.4. To mix in a right way preserves reciprocality. To complete the previous sub-
section we analyse in which way mixing probabilities perturbs their reciprocality and/or
Markovianity.

To mix Markov probabilities sometimes preserves the Markovianity - but not always.
Similarly, by mixing reciprocal probabilities the result is sometimes reciprocal - but not
always. The following examples illustrate these sentences. Moreover, we construct in (ii)
an example of a reciprocal probability which is not Markov.

Examples 2.7 (Various mixtures of determinist paths.). Let X = {a,b,c} be a finite state
space with three elements. We denote by δw, w ∈ Ω, the Dirac measure at the path w.
Any δw is Markov since the path w is determinist.

(i) One denotes by acb ∈ Ω the following path:

acb(t) := 1[0,1/3)(t) a + 1[1/3,2/3)(t) c + 1[2/3,1](t) b.

Similar notations are used for paths which jump only at time 0, 1/3 or 2/3.
The probability measure P on Ω defined by

P =
1

4
(δabc + δaba + δcba + δcbc)

is a uniform mixture of determinist Markov paths, and therefore is Markov too.
Indeed P0 = 1

2
(δa + δc) and the - non trivial - transition probabilities are given by

P (X1/3 = b | X0 = a) = P (X1/3 = b | X0 = c) = 1

and
P (X2/3 = a | X1/3 = b) = P (X1/3 = c | X1/3 = b) = 1/2.

Moreover, since P a,c = δabc, P
a,a = δaba, P

c,a = δcba, P
c,c = δcbc, we observe that P

is the uniform mixture of its four bridges.
(ii) The probability on Ω

P =
1

2
(δabc + δcba),

is reciprocal but not Markov. Indeed, it is clearly reciprocal since each boundary
condition determines the path, as in (i) : P a,c = δabc, P

c,a = δcba . Nevertheless we
observe that P is not Markov since

P (X1 = a | X0 = a, X1/2 = b) = 0

while
P (X1 = a | X1/2 = b) = 1/2.
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(iii) Let us now define paths with four states and three jumps at fixed times 1/4, 1/2
et 3/4, like

abab(t) := 1[0,1/4)(t) a + 1[1/4,1/2)(t) b + 1[1/2,3/4)(t) a + 1[3/4,1](t) b.

The probability measure P := 1
2
(δabab + δcbcb) on Ω, mixture of reciprocal deter-

minist paths (which are its own bridges) is no more reciprocal. Indeed

P (X2/3 = a | X[0,1/3], X[4/5,1]) = 1{X0=a}

while
P (X2/3 = a | X1/3, X4/5) = P (X2/3 = a) = 1/2.

Let R be a reciprocal probability measure on Ω. We would like to test the reciprocal
character of any mixture of its bridges. If one wants to work in a general framework, the
first difficulty comes from the fact that the bridges Rxy are only R01-a.s. well defined.
Therefore there are two possibilities: either one works with probabilities R whose bridges
are defined for all x, y and smooth enough as function of the boundary conditions (x, y).
In that case, any mixture is allowed. Or one considers only special mixture measures,
whose support is included in the support of R01.
Let us first assume that there exists a regular version of the bridges of R.

Proposition 2.8. Let R be a reciprocal probability on Ω, such that the map (x, y) ∈
X ×X 7→ Rxy is well defined and continuous. Then, for any probability measure π on
X×X , the probability measure

P (·) =

∫

X×X

Rxy(·) π(dxdy)

is reciprocal. Moreover, the bridges of P coincide with those of R P -a.s..

Proof. Let us show (2.4) under P . Let 0 ≤ s ≤ t ≤ 1, A ∈ A[0,s], B ∈ A[s,u] and C ∈ A[u,1].
Then

EP [1AP (B | X[0,s], X[u,1])1C ] = P (A ∩ B ∩ C)

=

∫

X×X

Rxy(A ∩B ∩ C) π(dxdy)

X
=

∫

X×X

ERxy [1AR(B | Xs, Xt)1C ] π(dxdy)

= EP [1AR(B | Xs, Xt)1C ]

where reciprocality was used at the marked equality. Thus P (B | X[0,s], X[t,1]) only de-
pends on (Xs, Xt) and

P (B | X[0,s], X[t,1]) = R(B | Xs, Xt), P -a.e..

which completes the proof. �

Remark that this results does not contradict Example 2.7-(iii): There, P was expressed
as a mixture of its own bridges, but not as a mixture of bridges of a reciprocal probabil-
ity. There does not exist indeed any reciprocal probability R such that δabab = Rab and
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δcbcb = Rcb.

The previous Proposition allows to construct classes of reciprocal probabilities based
on some reference one, letting vary the way to mix the bridges. Therefore, we now recall
the definition of an important concept.

Definition 2.9 (Reciprocal class associated with R). Suppose that R is a reciprocal prob-
ability on Ω such that (x, y) ∈ X×X 7→ Rxy is well defined und continuous. The set of
probabilities on Ω defined by

Rc(R) := {P : P (·) =

∫

X×X

Rxy(·) π(dxdy), with π any probability measure on X×X}
(2.10)

is called the reciprocal class associated with R.

The index c in Rc(R) recalls the first letter of the word class. Later we will introduce
another set of probabilities called reciprocal family, which will be denoted by Rf (R).

In the case of a discrete state space X , the continuity hypothesis of (x, y) 7→ Rxy is
useless. One only should make sure that the support of the mixture measure π is included
in the support of R01, in such a way that (2.10) makes sense.

Remarks 2.11 (about this definition). The concept of reciprocal class is due to Jamison,
[Jam74] Section 3, for a Markov reference probability whose transition kernels satisfy
hypothesis (H).
In the particular case where R is a Brownian diffusion defined on the space of continuous
paths, the class Rc(R) can be characterized by two functionals of the drift of R, called
reciprocal invariants. This was conjectured by Krener in [Kre88] and proved by Clark in
[Cla91, Thm1]. Thereafter, Thieullen and the second author gave rise to an integration
by parts on the path space, in which appear the reciprocal invariants of the Brownian
diffusion R and which characterises completely the associated reciprocal class. See [RT04]
for one-dimensional diffusions and [RT05] for the more-dimensional case.
When R is a counting process (X is one-to-one with N), one finds in [Mur12] a description
of reciprocal invariant associated with Rc(R), as well as a characterisation of the reciprocal
class through a duality formula. An extension of this work for more general jump processes
is in preparation.

2.5. Time reversal and reciprocality. We already have seen in Theorem 2.3 that
a probability is reciprocal if and only if its time-reversed probability measure on Ω is
reciprocal too. We can now precise this assertion.

Proposition 2.12. Let R be a reciprocal probability on Ω as in Definition 2.9. Then

P ∈ Rc(R) ⇐⇒ P ∗ ∈ Rc(R
∗).

Proof of Proposition 2.12. We first prove following auxiliary lemma.

Lemma 2.13.
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(a) Consider the diagram Ω
Φ→ Φ(Ω)

θ→ Y where mentioned sets and maps are measurable.
Then, for any bounded measurable function f : Φ(Ω)→ R,

EΦ#P (f |θ) = α(θ) with α(y) := EP (f(Φ)|θ(Φ) = y).

(b) Consider the diagram Y θ← Ω
Φ→ Ω where mentioned sets and maps are measurable.

Suppose that Φ is one-to-one with measurable inverse Φ−1. Then,

Φ#

[
P (· | θ = y)

]
=

[
Φ#P

]
(· | θ ◦ Φ−1 = y), y ∈ Y .

• Proof of (a). For any bounded measurable function u : Y → R,

EΦ#P

[
EΦ#P (f |θ)u(θ)

]
= EΦ#P (fu(θ)) = EP

[
f(Φ)u(θ(Φ))

]

= EP

[
EP (f(Φ)|θ(Φ)) u(θ(Φ))

]
= EΦ#P (α(θ) u(θ))

• Proof of (b). We add a bounded measurable function u to the diagram:

Y θ← Ω
Φ→ Ω

u→ R and compute, for y ∈ Y ,

EΦ#P (·|θ=y)(u) = EP

[
u(Φ)|θ = y

]
= EP

[
u(Φ)|θ ◦ Φ−1 ◦ Φ = y

] (i)
= EΦ#P (u|θ ◦ Φ−1 = y)

where equality (i) is a consequence of the above result (a).
In particular (b) implies that

(Rxy)∗ = (R∗)yx, pour R-a.e. x, y ∈ X . (2.14)

Let P ∈ Rc(R), then P (·) =
∫
X×X

Rxy(·) P01(dxdy). We now compute the integral of a
function u under P ∗ :

EP ∗ [u(X)] = EP [u(X∗)] =

∫

X×X

E(Rxy)∗(u) P01(dxdy)

(2.14)
=

∫

X×X

E(R∗)yx(u) P01(dxdy) =

∫

X×X

E(R∗)xy(u) (P ∗)01(dxdy).

This means that P ∗(·) =
∫
X×X

(R∗)xy(·) (P ∗)01(dxdy), and the proof of Proposition 2.12
is completed. �

2.6. Reciprocal families. To precise our structural analysis of reciprocal probabilities
staying in a general framework, we prefer to introduce a slightly more restrictive concept
than the one of reciprocal class, which we call reciprocal family associated with R. This
set only contains probabilities which are dominated by the reference probability R.

Definition 2.15 (Reciprocal family associated with R). Suppose that R is a reciprocal
probability on Ω. The set of probabilities on Ω defined by

Rf (R) := {P ∈ Rc(R) with mixture measures π on X×X satisfying π ≪ R01} (2.16)

is called the reciprocal family associated with R.

Remarks 2.17 (about this definition). (a) Due to the domination from π by R01, it is no
more necessary to suppose any regularity of Rxy as function of x, y.

(b) Due to Proposition 2.8, we notice that a reciprocal family, as subset of a reciprocal
class, contains probabilities which are reciprocal.
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(c) We denote by P ≺ R if P desintegrates as in (2.16). Note that the relation ≺ is
transitive but not a priori symmetrical, if the marginal laws at time 0 and 1 are not
equivalent. Therefore a reciprocal family is not an equivalence class. If one wants to
define a "true" equivalence relation ∼ between probabilities on Ω one should assume
that marginal laws at time 0 and 1 are equivalent. Then P ∼ R if and only if P ≺ R
and R ≺ P .

Now, the structure of probabilities in a reciprocal family is remarkably simple.

Theorem 2.18. Each probability measure P in the reciprocal family Rf(R), defined by
(2.16), is dominated by R and satisfies

P =
dπ

dR01

(X0, X1) R.

Reciprocally, if P is defined by
P = h(X0, X1) R (2.19)

where h is a non negative measurable map, then P ∈ Rf (R) and more precisely, it is a
π-mixture of bridges of R where

π(dxdy) := h(x, y) R01(dxdy).

Proof. Let P ∈ Rf (R) and f any non negative bounded map. Due to Definition (2.16),
since π ≪ R01,

EP (f) =

∫

X×X

ER(f | X0 = x, X1 = y) π(dxdy)

=

∫

X×X

ER(f | X0 = x, X1 = y)
dπ

dR01

(x, y) R01(dxdy)

= ER

(
ER(f | X0, X1)

dπ

dR01
(X0, X1)

)

= ER

(
dπ

dR01
(X0, X1)f

)
,

which proves the first assertion.
For the second assertion, note that

P (·) =

∫

X×X

P xy(·) π(dxdy) =

∫

X×X

h(x, y)Rxy(·) R01(dxdy).

�

The specific structure of P which appears in (2.19) reminds the h-transform of Doob
([Doo57]), symmetrised on the time interval [0, 1].

2.7. Markov probabilities of a reciprocal family. Since Markovianity is more re-
strictive than reciprocality, we naturally would like to describe the subset of a reciprocal
family containing probabilities which are Markov. With others words, we are looking at
the specific mixture probabilities which preserve Markovianity.
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In the rest of the subsection, R is a reference Markov probability on Ω. If a probability
of Rf (R) admits a density which is decomposable as a product map as in Example 1.16,
we already know that it is Markov. This property is (almost) characteristic, as we now
prove.

Theorem 2.20. Let P ∈ Rf (R) where R a reference Markov probability. One considers
following assertions:

(1) The probability P is Markov.
(2) There exists two measurable non negative maps f and g such that

dP

dR
= f(X0)g(X1), R-a.e. . (2.21)

Then assertion (2) implies assertion (1).
If we suppose, moreover, that there exists 0 < to < 1 and a measurable subset Xo ⊂ X
such that Rto(Xo) > 0 and, for all z ∈ Xo,

R01 ≪ Rt0z
01 := R((X0, X1) ∈ ·|Xto = z), (2.22)

then assertions (1) and (2) are equivalent.

Proof. • Proof of (2)⇒ (1). It is contained in Example 1.16; indeed Hypothesis (2.22) is
not necessary.
• Proof of (1)⇒ (2). Since P is Markov, Theoreme 1.8 applied with t = to leads to

dP

dR
= α(X[0,to])β(X[to,1]) R-a.e. (2.23)

with α and β two measurable non negative functionals. On an other side, since P belongs
to the reciprocal family of R, following Proposition 2.18, its Radon-Nikodym derivative
looks like

dP

dR
= h(X0, X1)

with h a measurable non negative map on X 2. This implies

α(X[0,to])β(X[to,1]) = h(X0, X1) R-a.e.

which can hold only if the functionals α and β have the form

α(X[0,to]) = a(X0, Xto) and β(X[to,1]) = b(Xto , X1), R-a.e.

with a and b two measurable non negative functions on X 2. They satisfy

a(x, z)b(z, y) = h(x, y) ∀(x, z, y) ∈ N c ⊂ X 3,

where the set N ⊂ X 3 is R0,to,1-negligible. Now, with the notation

Nz := {(x, y); (x, z, y) ∈ N} ⊂ X 2,

we get

0 = R0,to,1(N ) =

∫

X

Rt01
01 (Nz) Rto(dz)
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which implies that Rt01
01 (Nz) = 0 for Rto-a.a. z ∈ X0. Due to assumption (2.22), one

deduces that there exists zo ∈ Xo such that R01(Nzo
) = 0. Taking f = a(·, zo) et g =

b(zo, ·), we obtain

h(x, y) = f(x)g(y), R01(dxdy)-a.e.,

which proves that dP/dR has the form expressed in (2.21). �

Remarks 2.24. (a) This result belongs to “folk” facts in the framework of reciprocal pro-
cesses, and is often used without correct detailed proof. In particular hypothesis (2.22)
does rarely appear. A partial version of Theorem 2.20 could be found in [Jam74,
Thm. 3.1]. Jamison proved, under the assumption that the Markov probability R
admits smooth transition densities, that P ∈ Rc(R) if and only if there exists two
probabilities on X , ν0 and ν1, such that

P01(dxdy) = r(0, x; 1, y)ν0(dx)ν1(dy).

Unlike Jamison, we underline here the importance of the multiplicative structure of
the density between P and R.

(b) Since R is Markov, assumption (2.22) is equivalent to

∀z ∈ Xo, R01 ≪ Rt0z
0 ⊗ Rt0z

1 .

(c) Without any additional condition on R, both assertions of the above Theorem are not
equivalent. We furnish a counter-example, constructing a probability R which does
not satisfy hypothesis (2.22), and a Markov probability P whose density with respect
to R does not have the mentioned structure.
Let R be the Markov probability on Ω with state space X = {a, b}, with initial law

R0 = (δa + δb)/2 and infinitesimal generator

(
0 0
λ −λ

)
for some λ > 0. The support

of R is concentrated on two types of paths: those identically equal to a or à b, or
those starting in b with one jump to a after an exponential waiting time with law
E(λ) and realisation in (0, 1). One verifies that R does not satisfy (2.22). Indeed, for
all t ∈]0, 1[,

Rta
01({(b, b)}) = 0 but R01({(b, b)}) =

e−λ

2
> 0 thus R01 6≪ Rta

01

and Rtb
01({(a, a)}) = 0 but R01({(a, a)}) =

1

2
> 0 thus R01 6≪ Rtb

01 .

One now consider the Markov probability P , charging uniformly two determinist con-
stant paths equal to a or to b. It is dominated by R with density:

dP

dR
(X) =





1, if X ≡ a

eλ, si X ≡ b

0, siX0 6= X1

.

This density dP/dR has not the product form (2.21), since the system





f(a)g(a ) = 1
f(b )g(b ) = eλ

f(b )g(a ) = 0
does not have any solution.
Remark that the functionals α and β defined in (2.23) could be chosen as follows:
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α(X) = β(X) = 1 if X ≡ a, α(X) = 1 if X ≡ b, β(X) = eλ if X ≡ b and
α(X) = β(X) = 0 otherwise.

3. Reciprocal probabilities as solution of the Schrödinger problem

We conclude this note by going back to the historical problem of Schrödinger intro-
duced in [Sch31] and developped in [Sch32]. This problem comes from statistical physics
and is the starting point of the theory of time-reversed Markov diffusions and reciprocal
diffusions. We now present results which are detailed in the review paper [Léob] (see the
references therein too).

The mail tool is the concept of relative entropy, defined as usual. The relative entropy
of a probability p with respect to a probability r on a measurable space Y is given by

H(p|r) :=

∫

Y

log

(
dp

dr

)
dp ∈ [0, +∞]

when p is dominated by r, and +∞ otherwise.
The dynamical formulation Sdyn of the Schrödinger problem means the following. As

reference probability measure R one takes the Wiener measure on the space Ωc of contin-
uous paths with values in X = R and µ0, µ1 are given probability measures on R (called
the constraints). The aim is now to minimize the map P 7→ H(P |R) where P varies in
the set of probability measures on Ωc such that P0 = µ0, P1 = µ1.

By projection of this variational problem on the set R
2 of initial and final positions, one

obtains the following associated static formulation S:to minimize the map π 7→ H(π|R01)
where π varies in the set of probability measures on R

2 such that π0 = µ0, π1 = µ1

(π0(dx) := π(dx× R) and π(dy) := π(R× dy) are the marginal laws of π).
Recall the uniqueness result obtained by Föllmer [Föl88] in the slightly more general

case where R is a Brownian diffusion with drift.

Proposition 3.1 (Föllmer). Both Schrödinger problems - dynamic and static - admit at
most one solution P̂ resp. π̂. If Sdyn has P̂ as solution, then π̂ = P̂01 is the solution of
S. Reciprocally, if π̂ solves S, then Sdyn admits as solution

P̂ (·) =

∫

R×R

Rxy(·) π̂(dxdy) ∈ Rf (R). (3.2)

Sketch of the proof. As strictly convex minimisation problem, Sdyn and S admits at most
one solution.
Using the desintegration formula

H(P |R) = H(P01|R01) +

∫

R×R

H(P xy|Rxy) P01(dxdy),

one obtains H(P01|R01) ≤ H(P |R) with equality (for H(P |R) < +∞) if and only if

P xy = Rxy for P01-almost all (x, y) ∈ R
2, which corresponds to P ∈ Rf (R). Thus, P̂ is

the solution of Sdyn if and only if its desintegrates as (3.2). �



24 CHRISTIAN LÉONARD, SYLVIE RŒLLY, AND JEAN-CLAUDE ZAMBRINI

We finally present an existence and uniqueness result for Sdyn and S, obtained by the
first author in a general framework where R is any Markov probability on the space Ω of
càdlàg paths with values in a general set X . The reader can find the proof in [Léob].

Theorem 3.3. Let R be a reference Markov probability on Ωc, with identical marginal
laws at time 0 and 1, denoted by m. Suppose that R satisfies the following assumptions:

(i) there exists 0 < to < 1 and a measurable set Xo ⊂ X such that Rto(Xo) > 0 and

R01 ≪ R
(
(X0, X1) ∈ ·|Xto = z

)
, ∀z ∈ Xo.

(ii) there exists a non negative measurable map A on X such that

R01(dxdy) ≥ e−A(x)−A(y) m(dx)m(dy).

Suppose also that the constraints µ0 and µ1 satisfy

H(µ0|m) + H(µ1|m) < +∞ and
∫

X

A dµ0 +

∫

X

A dµ1 < +∞.

Then S admits a unique solution π̂ of the form

π̂(dxdy) = f0(x)g1(y) R01(dxdy)

where the maps f0, g1 : X → [0,∞) are m-measurable, non negative and solutions of the
so-called Schrödinger system:{

f0(x) ER[g1(X1) | X0 = x] = dµ0/dm(x), for m-a.a.x
g1(y) ER[f0(X0) | X1 = y] = dµ1/dm(y), for m-a.a. y

Moreover Sdyn admits as unique solution

P̂ = f0(X0)g1(X1) R (3.4)

which is Markov too.

Remark 3.5. In the Schrödinger system, ER[f0(X0) | X1] and ER[g1(X1) | X0] are well
defined even if f0(X0) and g1(X1) are not R-integrable. In fact, f0 and g1 are measurable
and non negative; therefore, only positive integration is needed, see [Léoa].

Generalising Föllmer’s result, we obtain without additional effort.

Corollary 3.6. The solution P̂ of the variable problem Sdyn, if it exists, belongs to the
reciprocal family Rf (R).
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