
Technische Berichte Nr. 72

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Explorative Authoring of
Active Web Content in a
Mobile Environment
Conrad Calmez, Hubert Hesse, Benjamin Siegmund,
Sebastian Stamm, Astrid Thomschke, Robert Hirschfeld,
Dan Ingalls, Jens Lincke

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 72

Conrad Calmez | Hubert Hesse | Benjamin Siegmund |
Sebastian Stamm | Astrid Thomschke | Robert Hirschfeld |

Dan Ingalls | Jens Lincke

Explorative Authoring of Active Web Content
in a Mobile Environment

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.de/ abrufbar.

Universitätsverlag Potsdam 2013
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2013/6405/
URN urn:nbn:de:kobv:517-opus-64054
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64054

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-232-2

mailto:verlag@uni-potsdam.de

Abstract

Developing rich Web applications can be a complex job – especially when it
comes to mobile device support. Web-based environments such as Lively Web-
werkstatt can help developers implement such applications by making the de-
velopment process more direct and interactive. Further the process of devel-
oping software is collaborative which creates the need that the development
environment offers collaboration facilities.
This report describes extensions of the webbased development environment
Lively Webwerkstatt such that it can be used in a mobile environment. The ex-
tensions are collaboration mechanisms, user interface adaptations but as well
event processing and performance measuring on mobile devices.

Zusammenfassung

Vielseitige Webanwendungen zu entwickeln kann eine komplexe Aufgabe sein
– besonders wenn es die Unterstützung mobiler Geräte betrifft. Webbasierte
Umgebungen wie Lively Kernel können Entwicklern helfen Webanwendungen
zu entwickeln, indem sie den Entwicklungsprozess direkter und interaktiver
gestalten. Zudem sind Entwicklungsprozesse von Software kollaborativ, d.h.
Enwicklungsumgebungen müssen so gestaltet sein, dass sie mit kollaborativen
Elementen zu unterstützen.
Diese Arbeit beschreibt die Erweiterungen der webbasierten Entwicklungsumge-
bung Lively Webwerkstatt, so dass diese in einer mobilen Umgebung genutzt
werden kann. Die Reichweite dieser Erweiterungen erstreckt sich von Kollab-
orationsmechanismen und Benutzerschnittstellen bis hin zu Eventbehandlung
und Performanzmessungen auf mobilen Geräten.

Table of Contents

1 Self-supporting web-based programming on mobile devices with Lively Kernel 1
1.1 Introduction . 1
1.2 Related Work . 3
1.3 Approach - Identify Workflows in Lively Kernel . 4
1.4 Touchscreen interaction vs. mouse and keyboard interaction 9
1.5 Implementation - Bring Lively’s Workflows to Mobile Devices 10
1.6 Results and Future Work . 17

2 Handling Touch Events on Mobile Devices for Lively Kernel 20
2.1 Introduction . 20
2.2 Events on Mobile Devices . 21
2.3 Handling Events in Lively Kernel . 24
2.4 Implementing Touch Events in Lively Kernel . 29
2.5 Related work . 41
2.6 Conclusion and Future Work . 42

3 Diffing and Merging of Lively Kernel Parts . 44
3.1 Introduction . 44
3.2 Identifying the problem areas: An example setting . 45
3.3 Approaches and decisions . 50
3.4 Implementation . 60
3.5 Evaluation . 68
3.6 Future work . 73
3.7 Related Work . 74
3.8 Conclusion . 74

4 Design and Implementation of Shared Workspaces in a Mobile and Desktop
Environment . 75
4.1 Introduction . 75
4.2 Approach / Problems . 77
4.3 Implementation . 84
4.4 Examples and Scenarios . 89
4.5 Performance Evaluation . 91
4.6 Related Work . 96
4.7 Future Work . 97
4.8 Conclusion . 99

5 Benchmarking Lively Kernel on Various Systems . 101
5.1 Introduction . 101
5.2 Benchmarking . 102
5.3 Profiling . 116
5.4 Results of the profiler . 124
5.5 Future Work . 125
5.6 Related Work . 125
5.7 Conclusion . 127

A Specifications of test sytems . 128
A.1 iMac . 128
A.2 Windows . 128

References . 129

Explorative Authoring of Active Web Content 1

1 Self-supporting web-based programming on mobile devices
with Lively Kernel

1.1 Introduction

Lively Kernel is a web application that allows users to create their own applications
in the web browser. This includes the users’ applications and even the system itself.
Lively is a self-supporting web system [30] that means the development environment,
e.g. editor, debugger is part of the system and always live. Instead of working on text
files containing source code, programmers interact and modify vivid objects.

Lively Kernel provides a user interface that enables users to prototype and create their
web applications quickly.

Web browsers are not only available on desktop devices but also on smaller devices
such as the iPad, smart-phones and other mobile devices. Due to the limited screen
space and different input device paradigms a different approach of user interaction is
necessary.

Figure 1: a current Lively Kernel World on an iPad 2 with prominent user interface elements: a) flap
b) world menu c) pie menu d) selection

2 Explorative Authoring of Active Web Content

Motivation Today web applications provide a wide variety in functionality typically
reserved for native desktop applications such as email, creation of presentation and doc-
uments. This is a trend which can be seen in mobile computing as well [58].

Similar to the PC market this is based on the many “good reasons” [37, p. 1] A first
reason for this is the inherent platform independence of web apps. In mobile computing
this fragmentation problem exist across different browsers-specific implementations [58].
This is stressed by the emergence of Sencha Touch, jQuery Mobile and other mobile web
development frameworks, which introduce a compatibility layer and offer a uniform
interface to web development technologies across different browsers.

Another good reason is that no software installation is necessary to run wherever a web
browser is available. Moreover software updates can be performed immediately at one
central system. Finally, content of web applications and access to mobile devices is not
limited by an application distribution system and other gatekeepers.

The Lively Kernel is built with the following three assumptions: [58]

1. The World Wide Web is the new target platform.
2. The Web Browser is the new operating system.
3. JavaScript is the de facto programming language of the Web.

The goal of this work is to enable software development on Lively Kernel on mobile
devices. We focus on how to transform the desktop centric paradigm to a kind of inter-
action that feels natural to users of mobile devices. For example we replace its extensive
use of mouse & keyboard interaction, screen clattering tools with direct object manipu-
lation through touch gestures.

This bachelor’s thesis focuses on a workflow oriented approach. First, we identify
workflows in the system. On a explorative basis we implement the workflows for mo-
bile devices. We compare the system to other native authoring applications and evaluate
its usability.

To enable basic touch interaction a lot of effort was spent on integrating Lively’s event
system into that of mobile web browsers. Sebastian Stamm describes this in detail in
his bachelor’s thesis “Handling Touch Events on Mobile Devices for Lively Kernel” (see
section 2).

Furthermore mobile devices have the additional problem of syncing and collaboration.
Conrad Calmez has worked on that in his bachelor’s thesis “Design and Implementa-
tion of Shared Workspaces in a Mobile and Desktop Environment” (see section 4) and
describes how we enable users to interact and cooperate with each other on mobile de-
vices.

The remainder of this thesis is organized as follows. Section 2 defines workflows which
cover essential parts of Lively’s toolset. Section 3 elaborates on related work. Section 4
describes differences in touch screen, keyboard and mouse interaction. Section 5 applies
known techniques for user interface design for mobile devices. Furthermore it discusses
the given alternatives. In Section 6 we discuss the lessons that were learned during the
porting efforts and provide ideas for future work. The last section concludes this thesis.

Explorative Authoring of Active Web Content 3

1.2 Related Work
We enabled software development on Lively Kernel on mobile devices. However there
were previous efforts to port Lively Kernel to mobile devices. In addition, touch devices
are objects of scientific observations for some time. With the rise of the consumer tablet,
such as the iPad or the much cheaper Android tablet Nexus 7 as mobile equipment
the software market already developed a series of software, covering aspects of Lively
Kernel.

In 2009, Mikkonen and Taivalsaari ported an earlier version of the Lively Kernel onto
a Nokia N810 [48]. They used two different approaches: regular web browser running
in the mobile device and a custom-built native execution environment. Of particular in-
terest were their findings to user interface and user input related issues. In the desktop
version of Lively Kernel its common to have many applications and widgets open. They
found that a small screen could not easily provide space for multiple parts and applica-
tions at the same time. Eventually they used the entire screen for a single application or
displayed much less widgets simultaneously.

Much earlier in 1972, Alan Kay foresaw the concept of the Dynabook that mobile de-
vices would tremendously alter the way computer are used [33]. Kay’s vision inspired
many as well as McDirmid [47] who proposed a do-it-yourself programming language
called YingYang in 2011. It is based on tile and behavior constructs similar to other
visual programming approaches, but specialized for touch-based devices. More work
has been done for visual programming approaches similar to LabVIEW, Prograph and
AgentSheets in general.

Further in 2011 Tillmann et. al. proposed a system called TouchDevelop [60]. It supports
the user to programm with a structured programming language, which is build using
only a touchscreen as input device.

Furthermore, commercial services ermerged. Codea1 allows content creation for the
iPad on a iPad, especially prototypes for games and simulations. Codea has one ad-
vantage against web-based solutions such as Lively Kernel: full hardware access, e.g.
native multi-touch and access to the accelerometer and other sensors2. Further there is
currently no way for web browsers to access camera, compass, and microphone without
external help. More HTML5 related standards emerge, e.g. WebRTC3 that allows web
browsers to use real-time communication such as audio and video chat, etc.

For that purpose where web framework such as Sencha Touch4 and jquery Mobile5 were
created. They allow users to program web applications that look and feel like native
mobile applications without the hassle to adapt the web application to every platform
and browser. PhoneGap6 is a mobile development framework that allows users to use the
mentioned missing features.

1 initially released in 2011
2 Actually there is W3C draft DeviceOrientation API http://dev.w3.org/geo/api/
spec-source-orientation.html (visited 29.06.2012) which gives access to the accelerom-
eter and is supported in iOS since Safari 4.2

3 Web Real-Time Communication: http://www.webrtc.org/ (visited 29.06.2012)
4 Sencha Touch: http://www.sencha.com/products/touch (visited 29.06.2012)
5 jQuer Mobile: http://jquerymobile.com/ (visited 29.06.2012)
6 PhoneGap: http://www.phonegap.com/ (visited 29.06.2012)

http://dev.w3.org/geo/api/spec-source-orientation.html
http://dev.w3.org/geo/api/spec-source-orientation.html
http://www.webrtc.org/
http://www.sencha.com/products/touch
http://jquerymobile.com/
http://www.phonegap.com/

4 Explorative Authoring of Active Web Content

The results of these contributions can not be underestimated for our work.

1.3 Approach - Identify Workflows in Lively Kernel

In this section we generalize an approach introduced by Lincke et. al. [43] for creating
applications using the PartsBin and existing parts. We illustrate a common workflow for
creating and augmenting applications with Lively Kernel. We now describe the over-
all high-level features of Lively Kernel. Later sections will discuss specific interaction
techniques and how they relate to the mentioned high-level application features.

Create active content with Lively Kernel The first step of nearly every applica-
tions creation with Lively Kernel involves dragging objects from the PartsBin [43] to the
working environment. Working environments are referenced as worlds in Lively Kernel.
The universe of worlds is called Webwerkstatt [37]. Lively implements a system called
Morphic7 where all these metaphors origin from. The PartsBin for example is a web
repository for parts in Lively Kernel.

Objects in Morphic, the so-called parts8 can differ in complexity. A part may have a low
complexity and consist of one morph, e.g. a button that changes its background if fired.
A part may also have a high complexity such as the PartsBin which is a part itself and
consist of 55 submorphs9. After dragging a part from the PartsBin, the user can modify
and combine it with other parts. The resulting part can be published in the PartsBin
again.

Interaction techniques From an input perspective, the interaction techniques used
in Lively Kernel can be distinguished into three categories: mouse input techniques,
keyboard input techniques and combination of both. Lively Kernel has more than 40
partly undocumented keyboard shortcuts10.

Create an application using parts As an example we want extent a color chooser
by a slider with the blue color component. We shortly elaborate on the current keyboard
and mouse based interaction. In Section 1.5 we exemplary show how a similar workflow
works on mobile devices.

In general creating and modifying applications can be broadly divided into four parts:

1. Write code,
2. compose parts,
3. inspect the current state of an object and
4. version control.

As seen in Figure 2 the user may repeat these steps in any order until the part has the
desired behavior and the corresponding tests run successfully.

7 originated from the programming language SELF [61]
8 visual objects, composition of multiple morphs, active web content
9 retrieved 27.06.2012 from the category “Basic”

10 an uncompleted list located at
http://lively-kernel.org/repository/webwerkstatt/documentation/
ShortcutList.xhtml (visited 28.06.2012)

http://lively-kernel.org/repository/webwerkstatt/documentation/ShortcutList.xhtml
http://lively-kernel.org/repository/webwerkstatt/documentation/ShortcutList.xhtml

Explorative Authoring of Active Web Content 5

Figure 2: Current workflow for changing and creating an application in Lively Kernel

The first step is to open a part. Lincke et al. [43, p. 697] stated that “creating applications
with the Lively Kernel involves combining and augmenting existing objects from the PartsBin.”
However it is also possible to open frequently used parts through the world menu. Al-
though technically this menu contains a series of links to the PartsBin, it differs from a
user point of view. Both methods use the mouse as input device. Note that opening a
world will deserialize parts in the saved world and make them available as vivid objects
again, but as this user interaction – opening a website – is outside the system. We do not
consider it further.

As depicted in Figure 3 our user wants to open the part ColorChooser. Therefore they
open the world menu through a right-click on the world. The PartsBin is the first menu
item. In the PartsBin the user enters “ColorChooser” via a keyboard interaction in the
search pane. The result list contains the wanted color chooser. While having the left
mouse button pressed, the user then drags the PartsBin item onto the world. This inter-
action typically requires 15 key strokes and four mouse clicks.11

11 measured on the 26.07.2012

6 Explorative Authoring of Active Web Content

Figure 3: Open the part ColorChooser through the PartsBin on a desktop computer

Figure 4: Compose a part in detail

The user can use the opened part for four further steps: Write new code and extend
existing code, inspect the parts state, change its properties, combine the part with another
part, e.g. through a concept called connections. Connections link a property change to a
script of an arbitrary object which uses the new property value as input12.

12 Its also possible to convert the given input and to link properties to other properties directly.

Explorative Authoring of Active Web Content 7

Figure 5: left: Morph composition and manipulation with halos originated from Etoys [3]. right:
Resize halo activated

As seen in Figure 4 we categorize part composition in two main aspects: morph compo-
sition and morph manipulation. Both are available through so-called halos a non-standard
user interface inherited from Etoys [42] which opens via cmd + click or right-click.

Morph composition again consists of two possible actions: connect two objects via a
connection or drag (G) one morph on another which creates a child-parent so-called
submorph relation. Whereas morph manipulation give a range of actions that change
the visual representation. The reference to the corresponding Halo in figure 5 is given
brackets:

– rotate (T), resize (R), scale (shift + T) change to the visual representation with direct
object manipulation through mouse and keyboard interaction

– drag (D) within a morph changes the position without changing the submorph rela-
tion. A (negative) offset over the edge of the parent morph is possible. This is the de-
fault behavior if the left mouse button is pressed over a morph and the mouse is then
moved while the button is pressed. Some morph such as buttons are not dragable
without Halos.

– edit style (S) changes the visual representation of the object as well, but indirect over
a style editor. A style editor usually has one static target per instance.

– delete (X) removes the visual representation of the morph

More actions are available over the morph menu (M)

To begin with the ColorChooser the user resizes (R) the morph. Then the user needs
to add a new slider. He could retrieve a new one from the PartsBin. Conveniently, its
sufficient to copy (C) one of the two sliders, e.g. the color slider. The copy functionality
is also available via shift + drag

8 Explorative Authoring of Active Web Content

Figure 6: step code transformation in detail

Figure 6 shows the process of write and edit in detail. There are two levels of content
editing in Lively Kernel: [58]

– editing objects scripts with an object editor
– editing classes with a system code browser that indirectly change the behavior of the

object

The general workflow concept show in Figure 6 equally applies to both, but different
tools are used.

In our example case ColorChooser the user has to adjust the color calculation which
takes place in the slider.

Furthermore, a reference to the new added slider inside the ColorChooser object has to
be established. Remarkably this can be done via the object inspector. Its original purpose
was to display, change and at best add object properties. However, in the current organic
grown implementation it contains a text field to execute arbitrary code13. The user first
has to select to statement to be executed and then press cmd + d

Finally as of version control the finished part can be published to the PartsBin. This is
done via the MorphMenu-Halo (M).

In this section we have seen Lively Kernel’s core functionality, which we need to port
to a mobile device.

13 To avoid hidden references Lively Kernel’s code convention is to use soft links in the form of
morph.get("anotherMorphName")

Explorative Authoring of Active Web Content 9

Figure 7: Two instances of the object editor. The one for the ColorChooser is blocked due to an
unsaved change. Additionally one object inspector in the middle

1.4 Touchscreen interaction vs. mouse and keyboard interaction

In this section we give an overview of the differences between Lively’s current input
devices such as the keyboard and mouse, and mouse interaction. Further we classify
Lively Kernels user input according to scientific literature.

The literature classifies pointing devices as follows:

– absolute positional information, e.g. on a touch screen and relative positional infor-
mation, e.g. with a mouse

– direct input, e.g. a touch on a touchscreen and indirect input, e.g. move a pointer
though a mouse

– discrete input, e.g. key presses or continuous input, e.g. a mouse movement

Touch screens have been praised in scientific literature: “Interaction on touch sensitive
screens is literally the most “direct” form of HCI, where information display and control are but
one surface.” [2]

Lively’s Kernel WIMP (windows, icons, menus and pointing) user interfaces require
frequent selection of very small targets. [12] For example, the window resize handles
are often to small. Furthermore, fingertips can occlude small targets

10 Explorative Authoring of Active Web Content

1.5 Implementation - Bring Lively’s Workflows to Mobile Devices

In Section 1.3 we identified and analyzed existing workflows. In this Section we imple-
ment them. After the initial porting of the event system Lively Kernel was somewhat
useable on mobile devices. Nevertheless the system was far from intuitive. We had to
replace the right mouse click, modifier keys and screen cluttering tools in an straight-
forward way.

Preconditions Prior to our work we were able to load a Lively page on an iPad with
iOS 5 Safari, but no functionality was possible due to the lack of mouse click support
of web browser on mobile devices. Lively Kernel a is self-supporting system. Our goal
was to the enable the Lively’s self-supporting capabilities on mobile devices such as the
iPad.

Therefore several issues have been addressed and influenced the following bachelor
theses.

– The browser event system and its form on mobile devices. Sebstian Stamm elab-
orates on that fundamental work in his bachelor thesis Handling Touch Events on
Mobile Devices for Lively Kernel (see section 2). Without understanding for the event
system in different browsers no touch interaction would be possible.

– Mobile devices are suitable for Collaboration. We put a lot of work into collabora-
tion tools. Conrad Calmez concludes in his thesis “the system [we build] is suitable
platform for collaboration research” (see section 4).

– Many collaboration features require diffing and merging objects. Astrid Thomschke
describes how we did that with Lively Kernel parts (see section 3).

– Performance is critical on mobile devices, because of the reduced computing power
and the more direct way of interaction. Benjamin Siegmund compares different plat-
forms in his work Benchmarking Lively Kernel on Various Systems (see section 5).

As seen in section 1.3 Lively Kernel makes heavy use of the right mouse click. We
currently use the tap-to-select model with the option to active a pie menu via touch-
and-hold. We have experimented with a few other models and decided against them, S.
Stamm elaborates in detail on that in his bachelor thesis (see section 2).

Figure 8: Step open part Mobile Tools Technically, the step Open a part requires the user to choose an object.
This object is then deserialized and made available as lively object again. In the sim-
plest case the user chooses an object to open from a textual list. Since all morphs have
a graphical representation its helpful to display a small preview of the corresponding
morph, because pictures can be more efficient than text14. Two main factors constrain
our implementation.

First we want to keep a drag out of PartsBin metaphor, because users quickly grasp how
to use the part then15. Therefore we can’t use a full-screen application, because we still
need space to drag the part to.

14 according to the Android Design Principles, https://developer.android.com/design/
get-started/principles.html (visited 29.06.2012)

15 Metaphors are strongly advised in both Apples iOS [9, Section: Human Interface Principles] and
Androids design guidelines [23, Section: Iconography]

https://developer.android.com/design/get-started/principles.html
https://developer.android.com/design/get-started/principles.html

Explorative Authoring of Active Web Content 11

Second, it is not trivial to retrieve an image of a part. The current implementation of
the PartsBin retrieves an HTML representation of the part and directly inserts that into
the visual representation of the part item. This results in a very large HTML document,
which takes long to render on the desktop. On mobile devices this takes even longer.
Therefore this solution is not acceptable.

To summarize, we want a screen view that consists of one flexible pane for the PartsBin
and another pane for the world. The iOS Guidelines suggest a use of the user interface
element Split View [9, Section: iOS UI Element Usage Guidelines] for that, but here both
panes are fixed and cannot be resized. Morphic provides a similar, but resizeable widget
for that purpose its called flap. Other implementations of morphic, such as Squeak [1]
also contain multiple flaps on the edge of every world. Finally, we realized a multi-
purpose flap and then adapted a PartsBin for that.

Figure 9: A half-extended flap as alternative user interface are consistent with Lively’s background
in Morphic and Etoys. Preselected category Basic.

In Figure 9 we see two closed flaps. There is a flap handle which can be dragged to
the right to open the flap (a)). What cannot be seen in the Figure is the selection of the
category Basic from a single-column list of multiple rows, a so-called table view.

Section b) shows a partly open flap. Its possible to scroll with a vertical swipe gesture.
The third section c) shows the PartsBin category Basic here its possible to drag a part
on the world with a gesture beginning on an item, resulting in an open item. Parts are
always the same size if a users drops them out. The PartsBin flap is zoom independent
(see Section 1.5)

12 Explorative Authoring of Active Web Content

Finally we replaced the HTML based thumbnail through a picture. In order to do this
we combined a server-side tool that can take a snapshot of a world [32] with another
world which is capable of displaying one specific part. We exposed its functionality
through a RESTful16 API.

Figure 10: compose part Compose parts As seen in Figure 4 there are various ways to combine and interact
with morphs on the desktop. A level which was not considered is that we need to dis-
tinguish between trigger a default action (on the desktop that’s a right-click, a tap on the
mobile device) and open halos. In addition, we want to avoid multiple instances of the
same tool, e.g. the style editor, opened simultaneously.

Selection That is why we have introduced a selection state that identifies a target for
various types of tools. Furthermore, halos and their mobile equivalents are opened only
on selected objects. Currently, only one object can be selected at a time. We use a quick
tap gesture to set the selection. This was confirmed to a suitable default for application
creation by a non-scientific survey in the Lively community and through user testing.
In addition, selected objects can be resized with a handle at all four corners as seen in
Figure 11. It’s also possible to rename a morph through a mobile device friendly rename
halo. This allows a much more direct and faster way of manipulation as proposed in the
iOS human interfaced guidelines [9, Section: Human Interface Principles].

Figure 11: The tool ColorChooser: a) selected morph. highlighted magnified slider knob b) selected
morph changed color and resized. changed color palette after clicking the right button

16 REpresentational State Transfer: style of software architecture

Explorative Authoring of Active Web Content 13

Pie Menu Pie menus or gesture menus have the menu items evenly distributed on a
circular arc. Pie menus have advantages over normal menus. The big advantage is that
an advanced user can learn directions instead of memorizing menu item positions. In-
stead of thinking of a certain icon, the user learns to swipe in a certain direction, after
selecting the morph. Pie menus reduce the search time and lower the error rate by re-
ducing the distance between the menu items and increasing the target size according to
Fitt’s Law.17 Pie menus can be significant faster than linear menus after a certain learning
phase. [14]

Our implementation is shown in Figure 13. It offers all the actions identified in Sec-
tion 1.3 (see Figure 4) starting from 12 o’clock clockwise: Morph Menu, delete, drag
within a morph, scale, rotate, connect, drag a morph, copy18. Additionally, we intro-
duced a new and fast way to connect a morph to a property of another morph. We de-
cided to use pictograms instead of letter to characterize the pie item. Again in order to
enforce a metaphor which facilitates the user to use the system. The color is kept simple
in order not to distract the eye from the content.

The implementation currently uses the tap-to-select model to select. Then it is possible
to activate the pie menu via touch-and-hold. Before a menu item is activated it lights
up slightly, so that a beginner can try without actually trigger an action and can abort if
necessary.

To sum up:

1. Select a morph to enable Pie Menu Gestures
2. Begin Touch on a morph
3. Swipe gestures invokes actions
4. Pie Menu is shown, when user does not perform any action

Tools Tools do all operations that cannot be accomplished by direct object manipula-
tion. That is, for example, the style editor, or the object editor. We have implemented a
number of tools, e.g. the ColorChooser (Figure 11) and the object editor flap (Figure 14).
Evidently tools can perform a variety of tasks For the ColorChooser we reduced the
color palette to lower reasonable number according to Hick’s Law19 and made the color
choices at least fingertip-size, for devices such as the iPad the means at least about 44 x
44 points [9, Section: iOS UI Element Usage Guidelines].

Figure 12: Step write codeWrite Code In this subsection we describe the work done on the object editor flap as
depicted in Figure 14. In Section 1.3 we have seen how the user currently activates a halo
to start one object editor for one morph. In Figure 14 our proposed mobile alternative
object editor in a flap can be seen. The object editor flap can be instantiated through the
world menu (Tools->Object Editor).

17 Fitts’ Law [21] predicts that the time required to select an object depends on its size and the
distance to the target.

18 Note that the step style is available through three new tools. resize is available through the selec-
tion handles

19 Hick’s Law [26] describes the time it takes for a person to make a choice is proportional on how
many choices there are.

14 Explorative Authoring of Active Web Content

Figure 13: Grab Halo and Pie menu grab in comparison

The functionality of the editor flap covers 3 out of 4 in figure 6 mentioned functions
(add new method, implement and move code, adjust method call, delete old method) ,
but one can’t remove existing methods. As we developed the object editor flap as the last
tool it is stil incomplete. The object editor flap has currently limited capacities to handle
connections. Editing classes in order to change core functionality of Lively Kernel is not
possible on mobile devices.

To be a really useful object editor the user needs to be disable auto correction and auto-
capitalization for text input. A split keyboard i as shown in figure 14 gives better context
of the working environment. Unfortunately there is currently no way to do this for a
single web page or out of a web page – it must be set system-wide.

While our work the desktop version of the object editor was independently further de-
veloped. It is now possible to the change goal of its actions with a mouse click. However
programmatically it was always possible to change the target.

Connections Another good example for how workflows differ on mobile devices with
touch input and desktop with mouse oriented input. Let’s first look at the desktop im-
plementation:

1. Open Halos on Source Morph
2. Open Morph Menu
3. Hover over Menu Entry connect
4. Select Source Property
5. Get a Droppable with the Source Property Name

Explorative Authoring of Active Web Content 15

Figure 14: Alternative Object Editor in a flap: use tabs to open multiple scripts. setHands is modified
so that the clock runs backwards. Available screen space is completely occupied.

6. Drop on Target that accepts Droppable
7. Select Target Property
8. Connection established

The user needs to know what his goal is. Errors while choosing sources and targets
lead to a restart. The users must know the properties they want to connect in advance,
but sometimes one need to add a script before that. Errors while choosing the property
lead to a restart. In addition, the workflow was not possible on mobile devices.

Our idea was to create an extra pie menu item for that purpose. As illustrated in Fig-
ure 13 the bottom left pie menu item, connections are represented through a chain. The
user first selects the source morph. The target is highlighted while aiming. However it
is still possible to change the target, the source and the corresponding properties. The
users can refine their choices in a top bar menu through two drop-down lists. If they are
ready they hit the OK button otherwise they cancel.

1. Open Pie Menu on Source
2. Select Connect Item
3. Drag arrow to Target
4. Top Bar Menu opens
5. Select Properties
6. Press OK
7. Connection established

16 Explorative Authoring of Active Web Content

Further Improvements In this section we present minor by-products, which have
emerged from our work and have proved to be useful.

Figure 15: A fixed mini map (for purposes of illustration increased size of factor 1.5)

Fixed morphs respond to the browsers’ gesture events, especially zoom and scroll events,
because the desktop way a CSS position: absolute it is not advised on mobile browsers.
See S. Stamm work for details (see section 2).

The mini map is a morph which shows the shape of every other morph in this world.
The view frame is highlighted through a red border. Clicking on the mini map will cause
the view frame to scroll to the clicked position. The reason we created the mini map for
mobile devices are: primarily mobile devices have small screen space and Lively worlds
are too large compared to the available screen size. Therefore users have to scroll and
zoom through the world. That means it’s very likely that the view frame changes its
position. But the user has the need for an overview of the world. Finally, the mini map
provides a convenient quick jump to a given point functionality.

The motivation for the Native Lists imitations was that HTML list boxes don’t look good.
We want lists that look like the ones in the iOS system settings. As alternative we imple-
mented a list with velocity (snap back on overscrolling) and integrated API20, so that we
can replace the HTML list with specialized lists for Lively. We then replaced the World
menu with a nice looking lists as seen in Figure 1. We even improved the lists further
by adding CSS transitions to the transitions of the menus. As a subproduct, it is possi-
ble to move morphs using CSS transition. Especially with many movements involved
that makes a difference in performance on mobile devices, because CSS transitions have
hardware-supported graphic acceleration.

Limitations This section is about limitations in the implementation of current system.
Any further thoughts will be discussed in section 1.6.

20 that means here: enable modifications via JavaScript interface, prior lists where read only

Explorative Authoring of Active Web Content 17

As a central component of system on mobile platforms flaps have to be more stable.
This includes, among other things: the PartsBin flap has currently no search functional-
ity. The margins between the objects in the PartsBin flap are too large. And if one drags
parts from the PartsBin it can happen that parts are not dropped on the world of the
world correctly, but remain in a hover state. This can be resolved by another manual
click, e.g. through touch and hold.

The object editor flap opens an empty overview, when a morph was selected, but no
script opened. The default should rather be an overview of all script of the selected
part. Finally it would be an enhancement to allow flaps to snap in different predefined
position, e.g. open or half-open.

Finally we can imagine projects were the users need 2 or 3 categories very frequently,
but it is not possible to have multiple PartsBin flaps at the same time.

Backports Even we have not made any backports ourself, we were pleasantly sur-
prised when a member of the lively community integrated submenu indicators – small
black arrows. We originally developed these indicator for the adjusted world menu and
were pleased that idea also fits into the desktop menu morph. That shows we don’t need
to port fully touch based parts such as the object editor flap to the desktop to improve
the overall user experience – small contributions could be just as good.

1.6 Results and Future Work

The Lively Kernel web-based programming environment runs on iOS 5 Safari. Our im-
plementation consists of about 6800 additional lines of JavaScript code21. Theoretically,
the system should work on other platforms as well, when the event system is adapted
accordingly and standards are followed. In practice, porting to other platforms and
browsers however, requires some work. (see Section 1.2)

The native look-alike user interface we build allow Lively Kernel programmers to alter
and create their Lively application with a mobile device. Yet there is room for improve-
ment, but after this foundation we build, an expansion should be sufficiently easy.

On the other hand, the biggest problems that we have identified with our current solu-
tion are as follows:

– Text input was very hard as the font size was very small. In addition there were
non-reproduceable bugs, for example it is impossible to write the first character of
first the line of an input field on mobile Safari – sometimes. Furthermore Lively’s
code auto-completion is slow and hardly working on mobile devices.

– Searching items in the PartsBin flap is slow too, because there is no textual search
across multiple categories.

– The workflow step inspect state is not available on mobile devices. The user can use
the normal object inspector, which is difficult to use.

21 Measures with cloc on the 10.07.2012. This includes core/lively/Touch.js and our project folder
projects/BP2012, but excludes parts we worked on

18 Explorative Authoring of Active Web Content

– Editing Lively classes is not possible on mobile devices. On the desktop this is done
via the source code browser (SCB)

– Fat fingers are a problem for the morphic architecture and touch input. We imple-
mented a specialized solution for slider as seen in Figure11. Other parts also need
an specialized or generalized solution.

– Legacy applications with windows are not available as screen space saving on a
mobile device version.

– Hard to write a native-look alike application, because very few prefabricated stan-
dard user interface for mobile device layouts are present in the PartsBin as they are
described in the operating system guidelines

– Editing source code involves opening an object editor flap and following its menus.
That is slow at the moment.

We envisioned our user to be someone with software development background and ca-
sual experience on mobile device, coming to Lively Kernel. So we made the creation of
applications possible. But what if Lively Kernel applications are more used than altered
by users on an overall time scale. When the focus of most users of an application shift
from creating to using, we clearly have to adapt the application, not to make modifica-
tions hard, but to make simply using the application faster and easier. This also applies
for some the tools we developed.

For example its fairly easy to select an object using a tap and then alter its code through
an Object Editor Flap or its style through a ColorChooser. However for an user it might
be appropriate to use these fast gestures for others actions such as a click and move the
selection to a slower gesture such as the long-tap similar to how the Android uses its
selections [24] Other measures are also possible: For example PieMenus with less and
context-aware options.

Our current prototype is progressing towards an efficient and usable programming
environment. Nevertheless, it is still unclear how far the Lively Kernel can be improved
on a mobile device.

Below we give some ideas for improvement and further questions:

– Create a complete layer of abstraction from source code such as Etoys hybrid solu-
tion or a system tile-based input such as YinYang [47] proposed by McDirmid.

– Alternatively adapt and optimize textual input for source code. For example a context-
aware code auto-completion is needed.

– At the moment, a user can not create selections with multiple morphs. Some of
the alternative mobile tools, we implemented, use the selection as target for their
operations. One would have to rethink how tools operate in the future.

– Build a killer application, e.g. a game. Although this not a scientific problem. Lively
Kernel lives through its user. This is enforced through one single repository the
PartsBin and a single code base. So what is the best way to enhance the system and
to attract a creative and passionated users, who will use Lively as their end-user
programming environment.

– Event System unification. To attract more users an equal support for Android based
devices is necessary. From a software architecture point of view it is interesting here
how sophisticated system such as Sencha solve this problem.

Explorative Authoring of Active Web Content 19

– Full multi touch gestures. In the meantime we had one multi touch gesture for re-
sizing a morph. However that was replaced by the resize selection handle. Which
multi-touch gestures can be applied into the morphic system easily while maintain-
ing proper user interaction metaphors?

Conclusion The goal of this work was to enable software development on Lively Ker-
nel on mobile devices. We focused on how to transform the desktop centric paradigm
to a kind of interaction that feels natural to users of mobile devices. For example we re-
placed its extensive use of mouse and keyboard interaction, screen clattering tools with
direct object manipulation through various touch gestures. For example: the object edi-
tor flap, the PartsBin flap and the Colorchooser.

With the increasing use of the World Wide Web as an application platform – the Web
Browser as the new operating system – and more web-enabled mobile devices in all
price ranges, we added a new quality to code collaboration on mobile devices in Lively
Kernel.

As this bachelor’s thesis focused on a workflow oriented approach. It first identified
workflows in the system. It then implemented the workflows for mobile devices. This
thesis compared the system to other authoring applications and evaluated its usability.

In summary, we are looking forward to the development of mobile devices as casual
and professional content authoring devices. We think that with the further spread of
the Internet mobile devices will step out to be at least as powerful as desktop computer
in regard to the web. Differences between mobile web application and desktop web
application will vanish, which lead to an universal accessable web.

20 Explorative Authoring of Active Web Content

2 Handling Touch Events on Mobile Devices for Lively
Kernel

2.1 Introduction

The Web is an important platform for modern applications. Most of these applications
use keyboard and mouse as input devices. These work well on desktop computers, but
mobile computing is becoming more popular. Smartphones and tablet computers are
outnumbering regular desktop PCs. As mobile devices often have neither keyboard nor
mouse, the way users interact with applications is changing. Rather than having two in-
put devices22, there is only one touch enabled display. This display provides the possibil-
ity to recognize and trace multiple fingers simultaneously, which offers new possibilities
for user interaction. Applications need to adapt to this paradigm shift.

On mobile devices, we distinguish between native applications (apps), which are de-
veloped solely for these medium and Web applications (Web apps), which behave like
native apps, but are executed in a Web browser. Native apps are not supposed to work
on desktop computers and can take advantage of software development kits (SDK) op-
timized for multi touch input. Web apps however should work in both environments.
Therefore they must implement keyboard and mouse as well as touch optimized meth-
ods of user interaction. Most applications deliver distinct content for desktop and mobile
devices to solve this problem.

Web apps are executed in a Web browser, which is an event based system. Web develop-
ers implement the behaviour of their website based on the events the browser provides.
On a stationary desktop PC without a touchscreen interface, these are mainly mouse
and keyboard events. On a mobile device, these are touch events. When a website im-
plements handlers for touch events, users can interact with the site on mobile devices.
But many websites are not optimized for touch yet, so the mobile browser generates
mouse events based on the touch events to enable the user to interact with these sites
anyway. Tapping an element will therefore trigger both, a touch and a mouse event.
However, it is advisable not to rely on these generated mouse events, as they do not
take advantage of multitouch.

Mobile Web browsers also implement multitouch gestures to navigate the site, like
pinch to zoom or swipe to scroll. The browser provides events for these interactions,
so that developers can react to scroll and zoom events. It is also possible to prevent the
page from zooming and scrolling. However, developers must be careful when doing so
as users expect a website to behave in a certain way.

22 keyboard and mouse

Explorative Authoring of Active Web Content 21

Lively Kernel [29] is an online application in which users can create content directly
on a webpage. It uses the Morphic user interface to allow direct manipulation of objects
(morphs). [45] To do so, it has an event dispatcher to react to user input. During our bach-
elor’s project, we extended the Lively Kernel’s event dispatcher to include touch events.
We implemented event handler functions to support mobile devices. Beside adding sup-
port for native events like touchStart, touchMove, touchEnd and touchCancel,
we introduced the non standard events tap, doubleTap and hold. These events are not
part of the original set of touch events so they are not generated by the browser. To
implement these new events we observe the touch interaction based on the standard
events and call the handler functions when needed. This adds a more convenient way to
react to user input. We also have overwritten some native behaviour like scrolling and
zooming to implement features like zoom-independent tools.

The first part of this thesis will cover events on mobile devices. It will explain the in-
ternal structure of touch events as well as iPad specific issues. In section 3 we highlight
Lively Kernel’s event dispatcher and the event flow in Lively Kernel. The main part of
this thesis will cover our work on this event dispatcher and our process of implement-
ing touch events. We will examine various approaches to react on user input, different
methods to interact with morphs as well as the implementation of our non standard
events and zoom independent morphs.

2.2 Events on Mobile Devices

Touch events are essential when working on mobile devices. There are three impor-
tant touch events: touchstart, touchmove and touchend. Touch events consist of lists of
Javascript touch objects. [19] To make sure websites which are not optimized for touch
input work on mobile devices, browsers also emit mouse events based on the touch
events. This section we will highlight the internals of touch events as well as iPad spe-
cific issues when working with them.

Mobile browsing is becoming more and more popular. As more and more people have
a smartphone or a tablet PC with an internet browser, a different way to interact with
websites comes into focus. Instead of keyboard and mouse interaction, mobile devices
offer a touchscreen for user input. Websites need to adapt their user input handling of
these new devices.

Lively Kernel is an online framework to build prototypes and other content directly
on a webpage. It was developed for desktop usage and uses keyboard shortcuts and
mouse interaction such as right click, which are not available on mobile devices. To
enable users to use Lively Kernel on mobile devices, we needed to change and enhance
the user interaction possibilities to include touch input.

User input on websites is handled with events [39]. For almost every action a users
performs on a website, an event is fired. Javascript functions can register for these events
and react to the user input. On desktop PCs these events are mostly mouse and keyboard
events. On mobile devices, these are touch events.

22 Explorative Authoring of Active Web Content

Internal Structure of Touch Events The touch event interface was originally speci-
fied by Apple in their iOS 2.0 release. [54] They defined the different kinds of events for
single touch input23, multi touch input24 [5, 8], device movement25 [6] and other device
sensors26 [7].

There is no official standard for touch events at the time of this writing. The specifi-
cation of the World Wide Web consortium W3C [63] is currently in the candidate rec-
ommendation phase. [13] Most mobile devices implement the API Apple has specified.
However, this specification does not include events like tap, doubleTap or hold, while
there are events like click and dblclick for mouse events. [39]

We think that convenience events like tap or hold would enhance the productivity of
Web developers. Based on the given touchstart, touchmove and touchend events we
implemented tap, doubletap and hold for Lively Kernel27.

The basic structure of a single touch event is shown in figure 16.

7RXFK(YHQW

��DOW.H\
��FWUO.H\
��PHWD.H\
��VKLIW.H\

��URWDWLRQ
��VFDOH

��FKDQJHG7RXFKHV
��WDUJHW7RXFKHV
��WRXFKHV

)ORDW

%RROHDQ

7RXFK/LVW

��OHQJWK

��LWHP�LQGH[�

7RXFK

��LGHQWLILHU

��FOLHQW;
��FOLHQW<
��SDJH;
��SDJH<
��VFUHHQ;
��VFUHHQ<

��WDUJHW

Figure 16: A touch event consists of three TouchLists for all touches, changed touches and target
touches. A TouchList is a Javascript object, which behaves like an array. An entry in a TouchList is
a Touch object, which contains its target as well as the touch coordinates in various systems

23 scrolling and swiping
24 zooming
25 shaking the device or changing the orientation
26 compass
27 see section 4.3

Explorative Authoring of Active Web Content 23

A touch event object consists of three parts: The first part contains information about
pressed keys. These keypress information are required by the event standard of the
W3C. While the TouchEvent itself is not standardized by the W3C yet, it must still im-
plement the DOM event interface to be counted as an event. That is why the TouchEvent
object has these properties even if they are not as usable on mobile devices, as these usu-
ally have no keyboard attached. On the iPad with no external keyboard attached these
fields will always contain the value false, even if the shift key is pressed or held on the
virtual keyboard.

The second part contains information about rotation and scale. They are always 0 re-
spectively 1 when there is only one touch on the screen as a single touch can not perform
a zoom or pinch gesture. If there are two or more touches on the screen at the same time,
they will contain values describing the pinch/zoom gesture the user made. These values
are not associated with any DOM node but describe the global transformation the ges-
ture would apply. There are also gesture events which contain the same information, but
are only fired when two or more fingers touch the screen. Since a touch event contains
the same information as the gesture event, as well as information about single touches,
we suggest using the touch event rather than the gesture event.

The third part is the most valuable part for Web developers. It contains three arrays
each containing a TouchList. The TouchLists contain single touch objects. The touches list
contains all touches on the screen regardless of the position and the target of the touch.
The targetTouches list contains all touches which started on the element which handles
the current event. This is useful for identifying gestures on objects. The changedTouches
list contains all touches which values have changed since the last touch event.

The touch objects themselves contain an identifier, a target and the touch coordinates
in different coordinate systems. The identifier is unique for each touch and can be used
for identifying a touch between different touch events. The target of the touch object is
the DOM node where the touch started. This target never changes, so that if a user starts
a touch on object A and moves to object B, the target of the touch will still be object A.

The touch object itself is persistent between touch events. Developers can save refer-
ences to a touch object within their application and use them instead of the touchLists of
the touchEvents. They can also add custom properties to the touch object itself. We used
this to add functions to the touch object which calculate the distance to the start point of
a touch28.

iPad Specific Issues with Touch Events Even though mobile Web browsing is be-
coming more popular, many webpages do not have a specific handling for touch events.
Nevertheless these websites should be accessible and usable with mobile devices. There-
fore most mobile browsers emulate mouse events based on the touch input. The iPad
triggers mouse events after the corresponding touch events occured, but only if the
browser did not do any default action like scrolling or zooming. A touch event sequence
is followed by a mousemove, mousedown and mouseup, click sequence. All mouse ac-
tions have the coordinates of the touchend event. Figure 17 shows the action of events
triggered by a simple touch gesture given that no default behaviour occured.

28 see section 4.5

24 Explorative Authoring of Active Web Content

� � �

��WRXFKVWDUW ��WRXFKPRYH ��WRXFKHQG
��PRXVHGRZQ
��PRXVHPRYH
��PRXVHXS
��FOLFN

Figure 17: A simple touch gesture produces a series of events: (1) single touchstart event, (2) mul-
tiple touchmove events, (3) single touchend event, single mousedown event, single mousemove
event, single mouseup event, single click event. The mouse events all have the coordinates of the
touchend event.

Since mouse events are only fired if the browser did no default behaviour, their oc-
curence is hard to predict. One way to solve this is to prevent the browser from doing
default behaviour. This is done by calling evt.preventDefault() on the touchstart
event. preventDefault also disables scrolling and zooming. When zooming and scrolling
is not disabled, it is hard to predict when mouse events will be fired. This can lead to a
situation where buttons can get triggered twice29. For this reason it is not advisable to
rely on the simulated mouse events when zooming and scrolling is not disabled. In our
work, we disabled the native scrolling to implement scroll independend morphs30. The
default should not be prevented on editable text fields like input elements as preventDe-
fault also prevents the virtual keyboard from opening.

2.3 Handling Events in Lively Kernel

Lively Kernel uses a Morphic user interface. [45] In such interfaces, every object a user
can interact with is a morph. Morphs can have scripts which define their behaviour.
Scripts with a special name like onClick are treated as event handlers. Figure 18 shows
how an event can be registered for a morph in the Lively Kernel.

29 by the touch event handler and by the mouse event handler
30 see section 4.5

Explorative Authoring of Active Web Content 25

� � �

Figure 18: 1: Morph the event is registered on, 2: Javascript event handler function, 3: perceived
output when the event occurs

Note that despite the similarities in the syntax of the source code, registering an event
on a morph is significantly different from registering an event on a DOM node. For
registering an event on a morph, users have to create a script with a predefined name.
This name is based on the event names. The name for registering an event on click for
example is onClick. For touch events, users can simply use onTouchStart, onTouchMove
or onTouchEnd. Additionally to the touch and gesture events specified by the Apple
Developer Guidelines, we introduced onTap, onDoubleTap and onHold. Like every other
event handler in Lively Kernel, these handlers are just scripts on a morph with a spe-
cial name. We instrumentalized Lively Kernel’s event dispatcher to call these functions
when needed31.

Lively Kernel uses its own event dispatcher so that basic morph interaction like drag
and drop is still possible when the morph itself overwrites the event listeners responsible
for drag and drop behaviour. Figure 19 shows the process of registering an event for a
morph in Lively Kernel. We will have a look at each function and analyze its behaviour.

Morph – initialize initialize is called by the constructor of the morph. It gets executed
whenever a new morph is created. This function implements different cases for object
initialization. Initialize itself sets up some basic variables for the morph like arrays for
submorphs and scripts. Beside that, it calls prepareForNewRenderContext with the default
render context (HTML) as argument.

31 see section 4.3

26 Explorative Authoring of Active Web Content

5HQGHU&RQWH[W

UHJLVWHU+DQGOHU)RU(YHQW

(YHQW+DQGOHU

UHJLVWHU+70/$QG69*

DGG(YHQW/LVWHQHU

0RUSK

UHJLVWHU)RU(YHQWV

SUHSDUH)RU1HZ5HQGHU�
&RQWH[W

LQLWLDOL]H

UHJLVWHU)RU(YHQWV

UHJLVWHU)RU(YHQW
UHJLVWHU)RU(YHQWUHJLVWHU)RU(YHQW

UHJLVWHU)RU(YHQWV
UHJLVWHU)RU7RXFK(YHQWV

Figure 19: method calls for registering an event

Morph – prepareForNewRenderContext Lively Kernel was supposed to work
with render contexts apart from HTML. prepareForNewRenderContext calls functions to
initialize the renderer and create a graphical representation32 for the morph. It also calls
itself for the submorphs of the morph.

Morph – registerForEvents This method takes the argument handleOnCapture as pa-
rameter which is defined in the global Config object. handleOnCapture indicates whether
the eventListener should be called in the capturing phase33 of the event. Per default
Lively Kernel uses the capturing phase. registerForEvents dispatches the call to multiple
registerForEvent methods like registerForMouseEvents or registerForTouchEvents.

Morph – registerForTouchEvents registerForTouchEvents contains calls to register-
ForEvent with DOM event names as argument.

Morph – registerForEvent Every morph has an event handler which contains a dis-
patch table where all callback functions are stored. This dispatch table is an associative
array where the key is the name of the DOM event34 and the value is an event specifica-
tion. This event specification contains the type of the event, the target morph, the target
method name and the handleOnCapture flag. This function creates the event specification
object and calls registerHandlerForEvent on the render context of the morph.

32 for the HTML renderer this is a DOM node
33 rather than the bubbling phase
34 for example touchstart or mousemove

Explorative Authoring of Active Web Content 27

RenderContext – registerHandlerForEvent This method dispatches the call to dif-
ferent functions of the event handler regarding the render context. In the default case
the render context is HTML, so registerHTMLAndSVG is called.

EventHandler – registerHTMLAndSVG This methods adds the event listener to
the DOM node of the morph. The registered method is not the one the user implemented
like onClick or onTouchStart, but an anonymous function which just calls handleEvent on
the event handler. Since the event handler keeps its own dispatch table35 it can call the
associated function when the event occurs.

If the user interacts with the site, certain DOM events are fired. These are dispatched
by the browser and the registered callback function is executed. In Lively Kernel, this
callback function is the same for every event.

1 registerHTMLAndSVG: function (eventSpec) {
2 var handler = this;
3 eventSpec.handlerFunc = function(evt) {
4 handler.handleEvent(evt);
5 };
6 eventSpec.node.addEventListener(
7 eventSpec.type,
8 eventSpec.handlerFunc,
9 eventSpec.handleOnCapture

10);
11 }
12

13 handleEvent: function (evt) {
14 var eventSpec = this.dispatchTable[evt.type];
15 if (!eventSpec) {
16 return false;
17 }
18 var target = eventSpec.target;
19 if (target.eventsAreDisabled) {
20 return false;
21 }
22 target[eventSpec.targetMethodName](evt);
23 return true;
24 }

Code Example 1: process of registering an event handler to a DOM node and calling the user
defined method

35 see Morph - registerForEvent

28 Explorative Authoring of Active Web Content

The event handler of the morph is scoped into the callback function. The handleEvent
function checks if the event should be dispatched. Morphs have an eventsAreDisabled
flag. If this flag is set, the actual callback function will not be executed. The eventsAre-
Disabled flag is not to be confused with eventsAreIgnored, which is used by Lively Kernel’s
default actions for events. The eventsAreDisabled flag tells the dispatcher, that events for
this morph should be discarded. If events should not be ignored, the actual callback
function the user wrote will be called.

Lively Kernel uses the capturing phase, consequently events are dispatched top down
from the root node to the children. Figure 20 shows an example scene with the associated
DOM tree.

Figure 20: Example scene [36]

morph1 and morph2 are direct submorphs of the world. morph3 is a submorph of morph2,
but its shape overlaps with morph1. If an event occurs on position p1, the event handlers
of the world and the event handlers of morph2 are called. An event on position p2 will
trigger the handlers of the world, morph2 and morph3. Note that an event on position p3
will also trigger the handlers of the world, morph2 and morph3, but not morph1. morph1 is
only visually below morph3 on position p3, but in a different branch of the scene graph.
The path through the scene graph from the root node to morph3 does not include morph1.

If a script needs the morphs under a certain position rather than the scene graph hierar-
chy, developers can use the function morphsContainingPoint. This function does not use
the DOM but internal data structures to determine the position of morphs. It will return
an array of morphs which include the given point.

Explorative Authoring of Active Web Content 29

2.4 Implementing Touch Events in Lively Kernel

Mapping Touch Input to Mouse Events Before our work, the Lively Kernel loaded
on mobile Web browsers, but interactions were limited. We could press buttons, edit
text and navigate through the world. These interactions were only possible because of
the generated mouse events of Safari as Lively Kernel had no support for touch events
back then. The generation of the mouse events was very unpredictable36. The best case
scenario would be if every morph in Lively Kernel had event handlers for touch events.
Most morphs have event listeners for mouse interaction, so we decided to build upon
these handlers.

Concept The touch events are similar to mouse events, as there is a touchstart, touch-
move and touchend event which are similar to mousedown, mousemove and mouseup.
If we fire a mousedown whenever a touchstart occurs, a mousemove on touchmove and
mouseup on touchend, we could simulate normal mouse interaction on mobile devices.
All these mappings are only performed if and only if there is one touch on the screen.
This way users can still zoom and scroll using two fingers. We also prevent the browser
from firing mouse events itself so that buttons do not get triggered twice.

Implementation To generate events, Javascript provides the build-in functions
createEvent, initMouseEvent and dispatchEvent. This way, we can generate mouse events
on touch devices. We wrapped these functions in a fireMouseEvent method.

1 fireMouseEvent: function(evtType, touchObj, target) {
2 var buttonFlag = touchObj.buttonFlag }| 0;
3 if(buttonFlag === 0 }|
4 buttonFlag === 1 }|
5 buttonFlag === 2) {
6 var mouseEvent = document.createEvent('MouseEvents');
7 mouseEvent.initMouseEvent(/*a lot of arguments*/);
8 mouseEvent.fromTouch = true;
9 target.dispatchEvent(mouseEvent);

10 }
11 }

Code Example 2: the fire mouse event method which creates a mouse event on mobile devices
based on the parameters. The button flag is set by the caller and determines whether the event
should be a left or a right mouse button event. The variable fromTouch indicates that we generated
this event.

36 see iPad Specific Issues with Touch Events

30 Explorative Authoring of Active Web Content

This method is called if we want to fire a mouse event. A mouse event is always bound
to one mouse button (left, middle or right). Only if this button flag is set correctly, we
fire the event. We also add the fromTouch property. This property is used to distinguish
between generated mouse events and mouse events of the browser. We only want our
mouse events to be handled, so we discard every mouse event without this flag in Lively
Kernel dispatcher.
The right click metaphor for touch events is touch and hold. Unfortunatly we can not
predict on touch start if the user is going to do a normal tap37 or touch and hold38.
Consequently we can not fire a mouse event on touch start. Instead, we start a timeout
whose callback function will trigger a right mouse button down event, if no other mouse
event has been fired at this time.

1 onTouchStart: function(evt) {
2 var touch = evt.touches[0];
3 touch.buttonFlag = "unknown";
4 var that = this;
5 var touchAndHoldFct = function() {
6 if(touch.buttonFlag === "unknown") {
7 touch.buttonFlag = 2; // right click
8 that.fireMouseEvent('mousedown', touch, evt.target);
9 }

10 };
11 // check for right click after 750 milliseconds
12 window.setTimeout(touchAndHoldFct, 750);
13 }

Code Example 3: setting a timeout for right click mapping

Note that we are adding the buttonFlag directly to the touch object. Unlike the prop-
erties of other DOM events, the touch object is persistent between events. So the corre-
sponding touchend event will include the same touch object as the touchstart event. The
buttonFlag property tells the script whether this touch should become a right or a left
click. On touch start this is still unknown since we do not know how long the touch will
last.
We define a function, which will trigger a mousedown for the right mouse button after
750 milliseconds. We found this timespan by testing the system ourselves. To make sure
that we do not fire both: left and right mouse button click for a single touch, we only do
this if after the timeout it is still not clear if this touch is equivalent to a right or left click.
If we get a touchmove or touchend within the 750 milliseconds timespan, we know it
should be a left mouse button click and set the button flag accordingly.

37 equivalent to left mouse button
38 equivalent to right mouse button

Explorative Authoring of Active Web Content 31

1 onTouchMove: function(evt) {
2 if(touch.buttonFlag === "unknown") {
3 touch.buttonFlag = 0; // left mouse button
4 this.fireMouseEvent('mousedown', touch, evt.target);
5 }
6 this.fireMouseEvent('mousemove', touch, evt.target);
7 }

Code Example 4: firing mouse events on touch move

1 onTouchEnd: function(evt) {
2 if(touch.buttonFlag === "unknown") {
3 touch.buttonFlag = 0; // left click
4 this.fireMouseEvent('mousedown', touch, evt.target);
5 this.fireMouseEvent('mouseup', touch, evt.target);
6 this.fireMouseEvent('click', touch, evt.target);
7 } else {
8 this.fireMouseEvent('mouseup', touch, evt.target);
9 }

10 }

Code Example 5: firing mouse event sequence on touch end

The browser emits mouse events itself based on the touch input, for example if the user
presses a button. In our case this would trigger buttons twice39. To prevent that, we had
to patch Lively Kernel’s event handler. We added a layer which discarded the event if
the user agent matches a touch enabled device and the event is a mouse event which
was not generated by us. We implemented the latter by adding the flag fromTouch to the
mouse event object we generated.

Evalutation With this implementation, users are able to invoke and use halos and the
world menu. They could open the PartsBin, a workspace and other tools. Typing text is
also possible. However, using the touch and hold metaphor for right click is not efficient
as users have to wait at least 750 milliseconds until a right click is performed. This is es-
pecially unsatisfactory as the right click is extensively used by lively kernel for invoking
halos. It is not possible to move the mouse without firing a mousedown event40. Users
could not open the Parts submenu in the world menu. Scrolling through the world with
only one finger on the screen is also not possible as this invokes the selection box.

Interaction Techniques for Morphs The implementation of the touch to mouse
mapping taught us that there has to be a faster way to invoke halos on the iPad. Touch
and hold is the traditional right click metaphor on mobile devices, but since Lively Ker-
nel uses right click a lot, we decided to break this metaphor. Beside touch and hold we
implemented and tested two other methods to invoke the halo.

39 once by our implementation of touch to mouse mapping and by the events the browser emitted
40 hovering

32 Explorative Authoring of Active Web Content

1 handleEvent: function(evt) {
2 if(UserAgent.isTouch &&
3 !evt.fromTouch &&
4 (evt.type == "mousedown" }|
5 evt.type == "mousemove" }|
6 evt.type == "mouseup" }|
7 evt.type == "click")) {
8 evt.stop();
9 return false;

10 }
11 cop.proceed(evt);
12 }

Code Example 6: discarding mouse events on mobile devices which were not generated by us

The first implementation was to simply tap the morph to open the halo. This has the
advantage, that the interaction is very fast and allows quick manipulation of the morph.
The drawback of this method is, that a left click on a morph is often used to perform
actions like triggering a button. When a tap invokes halos, users can not trigger buttons
anymore without toggling the halo. Tap also opens the virtual keyboard for text editing
on the iPad, so we had to disable all text editing in order to make the halo work on text.
This was not acceptable.

To fix these issues, we implemented double tap to open halos. Users need to tap the
morph twice in order to interact with it. This is similar to performing a double click on
a desktop PC. With this implementation buttons can still be triggered by a tap and text
can still be edited. A double tap is not significantly slower than a single tap and much
faster than touch and hold. However, we needed to set a threshold for the delay between
the first and the second tap. This delay describes the amount of time which is allowed to
pass between two taps until it is not interpreted as double tap anymore. In our current
implementation this is set to 250 milliseconds. We found this timespan by testing the
system ourselves.

In our first implementation we took care of the timekeeping ourselves. We took the
time at each touchstart event handler and compared them in order to find out if the two
events occured within 250 milliseconds. However, the touchstart event handler script
could take more than 250 milliseconds itself to do expensive operations. Since Javascript
is noninterruptive the next event can only be handled after these expensive operations
are finished. [62] This leads to the case where we could not interact with the morphs
anymore, because our double taps were not recognized as double taps when the site
was under heavy load. We fixed this issue by using the timestamp attribute of the touch
events.

Pie Menus as an Alternative Way of Morph Interaction In this section we will
show how pie menus can replace the halo items for morph interaction on the iPad. A pie
menu is a two-dimensional, circular menu. [28] With a swipe in one direction one menu
entry is selected. We will show that halo items are not suitable for mobile devices and
that pie menus offer a faster and more direct way to interact with morphs.

Explorative Authoring of Active Web Content 33

Figure 21: A pie menu with eight menu entries, moving towards an entry will highlight it, when
the touch passes the defined section for the entry the associated method will be called.

Using tap events, we can easily implement methods to interact with morphs. On desk-
top PCs users interact with morphs using the halo items. They use right click to open the
halo and left click to activate the halo items. On mobile devices only touch interaction
is possible. In the previous sections we described three ways to select a morph. For the
implementation of pie menus we use a single tap to select all morphs except text and
buttons. These two kinds of morphs are selected via double tap. Buttons are triggered
on single tap and texts can be edited when tapped. This has technical reasons. We can
not trigger the virtual keyboard of the iPad with Javascript. Instead it opens automat-
ically when an editable morph is tapped. Consequently we can not use a single tap to
select text.

The problem of the halo items is that they are too small for touch interaction. The
Apple user interface design guideline states, that “The comfortable minimum size of
tappable UI elements is 44 x 44 points.” [10] On a desktop PC the size of UI elements does
not matter so much as users can aim precisely with a mouse. On mobile devices, users
interact with their fingers, which are not as precise as a mouse pointer. They also can
not see what is below their finger. To solve these problems we increased the size of the
halo items to make them work on the iPad. This worked, but through the bigger items,
the halo itself became bigger and more distractive. Furthermore it was problematic to
arrange all halo items around a small morph.

34 Explorative Authoring of Active Web Content

At that point, our project partner Dan Ingalls suggested the use of pie menus. They are
a completely different approach to user interaction. Instead of clicking a visible element
on the page, users perform a swipe in a specified direction to select the entry. This form
of interaction is much more suitable for the iPad as the user does not need to click ele-
ments. Another advantage is, that the pie menu does not have to be displayed in order
to interact with it. Users can perform the gesture without the interface by remembering
the arrangement of the menu items. If users do not know how to interact with morphs
on mobile devices, they will naturally touch the morph. If they do not perform a ges-
ture within a certain timeframe, the pie menu is shown. This way they can see in which
direction they have to move to trigger the desired behaviour.

Experienced users however can perform the gesture without the menu because they
already know which direction triggers which action. In contrast to halo items, we don’t
have to create and render the pie menu, what makes the whole application more respon-
sive.

Implementation of Custom Events In Lively Kernel, event handlers are registered
by adding scripts with special names like onClick, onMouseDown or onMouseUp to a
morph. These scripts are registered by the event handler. We wanted to do the same for
the touch interface, so we extended the event handler to include registerForTouchEvents
and registerForGestureEvents. These methods work like the other registerForEvents meth-
ods41.

The standard event interface for touches includes only touchstart, touchmove, touchend
and touchcancel. We want to provide convenience methods like onTap, onDoubleTap and
onHold, which are not part of the original touch interface, but very useful for efficient
programming. To implement these methods we could not use registerForEvents as it just
calls the standard addEventListener method, which only recognizes the official event
interface.

Instead, we assign default event handlers to every morph, which call the onTap, on-
DoubleTap and onHold methods when needed. To do so we have to manage the touch
events. This is done by event handlers, which use the standard DOM event interface
(touchstart, touchmove, touchend) and decide if the series of standard events fulfill the
requirements for a custom event. The following code example shows the standard han-
dler for the touchstart event:

The default event handler for the touchstart event sets some variables on the morph
to make sure that the tap events are triggered correctly. Note that the handler is called
onTouchStartAction instead of onTouchStart. This way users can not overwrite our default
function when they implement their own onTouchStart event listeners. This corresponds
to the implementation strategy which is used for morph interaction with the mouse.

We assign a tapTouch property, which holds a reference to our touch object. This touch
object is persistent between touch events42. We need a reference to this touch to check
when the touch started and if the user moved the finger. A tap event should not be
triggered if the user made a fast flicking gesture. The moveTouch property is used for
our implementation of scrolling43.

41 see Handling events in the Lively Kernel
42 see Events on Mobile Devices
43 see Implementation of Zoom Independent morphs

Explorative Authoring of Active Web Content 35

1 onTouchStartAction: function (evt) {
2 if (evt.targetTouches.length === 1){
3 this.tapTouch = evt.targetTouches[0];
4 this.moveTouch = evt.targetTouches[0];
5 }
6 if (evt.touches.length === 1) {
7 $world.scheduleHoldIndicatorFor(this);
8 }
9 if (typeof this.onTouchStart === "function") {

10 return this.onTouchStart(evt);
11 }
12 }

Code Example 7: touchstart handler for tap events

If there is only one finger on the screen we also want to schedule a hold indicator for the
touched morph. The hold indicator is a morph, which indicates the necessary timespan
to trigger a hold event. The hold indicator is loaded from the PartsBin when the world
is loaded and is then used as a prototype for every hold interaction. There can only be
one hold indicator at any given time, so it is loaded only once. The hold indicator itself
takes care of calling the onHold function on the morph it is assigned to.

Lastly we also want to call the user defined function onTouchStart if it exists. We make
sure that we return the value the user defined script returns. This is important because
this return value is used within Lively Kernel’s event dispatcher.

The following code shows the default handler for the touchend event:

1 onTouchEndAction: function (evt) {
2 var out = false;
3 if (typeof this.onTouchEnd === "function") {
4 out = this.onTouchEnd(evt);
5 }
6 if (this.tapTouch &&
7 evt.changedTouches.include(this.tapTouch)) {
8 this.checkForTap(evt);
9 this.cancelHold();

10 }
11 return out;
12 }

Code Example 8: touchend handler for tap events

36 Explorative Authoring of Active Web Content

When the touchend event occurs, we first call the user defined onTouchEnd script of the
morph if it exists and save its return value. We do the onTouchEnd call before we check
if we must call any onTap event handler to meet the mouse metaphor. The standard
mouse event sequence is mousedown, mousemove, mouseup, click. Similar to this structure
we want our event sequence to be touchstart, touchmove, touchend, tap. That is why we
call onTouchEnd before the tap function. Nevertheless we want to return the user defined
return value so we have to save it locally.

Afterwards we check if the morph has a tapTouch assigned and if this touch has
changed in the event. We do this to ensure that a tap can only be performed with exactly
one finger on the morph. If this is not the case, the user performed a gesture and we do
not trigger tap events. If the touch qualifies as tap touch, we cancel the hold indicator
and call a function which checks if the touch fulfills the tap requirements:

1 checkForTap: function (evt) {
2 var delta = this.tapTouch.timeFromStartToLastUpdate();
3 if (delta <= 200 &&
4 this.tapTouch.getScreenDeltaToStart().r() <= 25) {
5 this.tapped(evt);
6 }
7 }

Code Example 9: checkForTap function which checks whether the touch input fulfill the tap re-
quirements

This function checks if the tap was fast enough to be interpreted as a tap. To do so we
use the timeFromStartToLastUpdate method, which is added to each touch event by the
patchTouchEvent method. This method uses the timestamp attribute of the event itself.
This way it is independend from the actual load of the page. If the touch lasted no longer
than 200 milliseconds and the finger moved no more than 25 pixel, we call the tapped
method of the morph.

We now know that a tap has occured, but it could be the second one in a row. In this
case we want to call onDoubleTap rather than onTap. We decided that in the event of a
double tap, only the onDoubleTap method is called and not both44. Users can still get the
other behaviour by calling onTap in the onDoubleTap method themselves.

We defined a maximum amount of time which is allowed to pass between two taps.
If we had a tap on this morph before and less than 250 milliseconds passed since then,
onDoubleTap is called if it exists. Otherwise we call onTap and set the lastTap property.

44 onDoubleTap and onTap

Explorative Authoring of Active Web Content 37

1 tapped: function (evt) {
2 var doubleTapTimeout = 250;
3 if (this.lastTap &&
4 new Date() - this.lastTap <= doubleTapTimeout) {
5 if (typeof this.onDoubleTap === "function") {
6 this.lastTap = false;
7 this.onDoubleTap(evt);
8 }
9 } else {

10 if (typeof this.onTap === "function") {
11 this.onTap(evt);
12 }
13 this.lastTap = new Date();
14 }
15 }

Code Example 10: tapped function which calls onTap respectively onDoubleTap

Implementation of Zoom Independent Morphs This section describes how we
implemented zoom and scroll independent morphs. With this functionality, we can build
tool morphs, which modify the currently selected morph. This way we only need one
tool for each purpose instead of one tool for each purpose and morph. Having less tools
on one page saves screen space on mobile devices.

Motivation The iPad has a native implementation for zooming and scrolling. To do this
fast, it stops the rendering of the page. This means that while the users scrolls the page,
positions of morphs can not get updated. It is not possible to set the position of a scroll
independent morph when the user scrolled or zoomed. Normally this behaviour can be
achieved by using the CSS attribute position fixed, but this does not work on mobile
devices. [35]
Furthermore the browser does not create an event for scroll interaction. All events we
get are touchstart, touchmove, touchend as well as gesture events. So we decided to im-
plement scrolling ourselves and not use the native iPad implementation. That has the
advantage, that we can control every phase of the scrolling and react to the user inter-
action by changing the position of fixed morphs appropriately. The drawback is, that
if we do this with Javascript, it is slower than the native implementation by the iPad.
With scrolling the performance was still okay, but we could not implement zooming
ourselves because the permanent redraw of the whole page made smooth zooming im-
possible. There are no explicit events for zooming. We utilized the gesture events, which
are only fired when two or more touches occur at the same time. This is exactly the ges-
ture which invokes the zooming. Consequently we can just use the gesture events to
react on the zooming.

Implementation of scrolling To implement scrolling we added a default touchmove
handler to every morph.

38 Explorative Authoring of Active Web Content

1 onTouchMoveAction: function (evt) {
2 if (evt.touches.length === 1 &&
3 this.tapTouch &&
4 evt.touches[0] === this.tapTouch) {
5 var delta = this.tapTouch.getScreenDeltaToStart();
6 if (delta.r() > 25) { // not hold
7 this.cancelHold();
8 }
9 }

10

11 if (evt.touches.length === 1 &&
12 this.moveTouch &&
13 evt.touches[0] === this.moveTouch) {
14 this.moveToTouchPosition(evt);
15 evt.stop();
16 }
17

18 if (typeof this.onTouchMove === "function") {
19 return this.onTouchMove(evt);
20 }
21 }

Code Example 11: default touchmove handler for every morph

We have to be careful with our implementation of tap events, especially the hold event.
If the user scrolls the page, the touch often lasts longer than the timeframe necessary to
trigger the onHold function. So we have to cancel the hold if a tapTouch exists45 and
the touch has moved more than 25 pixels. This threshold is necessary to make sure that
users do not not accidentally cancel the hold by moving their finger. To determine how
far the touch has moved, we use the getScreenDeltaToStart function of the touch object.
This function is patched to every touch in the emphpatchTouchStartEvent method.
If the morph has a moveTouch assigned, moveToTouchPosition is called. The moveTouch is
set in the onTouchStartAction handler46. As always, if the user defined an ontouchMove
function, we call it and return its return value.
The following method is called when the touch qualifies as scroll touch. It checks if it
reaches the threshold to initialize respectively emulate the scrolling.

45 that means that the hold is scheduled, see Implementation of Custom Events
46 see code example 7

Explorative Authoring of Active Web Content 39

1 moveToTouchPosition: function(evt) {
2 var delta = this.moveTouch.getScreenDeltaToStart();
3 if (this.scrolled }| delta.r() > 25) {
4 // scroll the world
5 if(!this.scrolled) {
6 $world.initializeBrowserScrollForTouchEvents(
7 this.moveTouch.startTouch);
8 }
9 this.scrolled = true;

10 $world.emulateBrowserScrollForTouchEvents(this.moveTouch);
11 }
12 }

Code Example 12: Function to check for the scrolling threshold. It triggers emulated scrolling if this
threshold is reached.

In this function we check if the touch has moved more than the 25 pixel threshold. If this
is the case, we initialize the emulated browser scrolling algorithm and call the emulate
method, which does the actual scrolling. We also set a scrolled field on the morph. We
need this because getScreenDeltaToStart only returns the absolute distance from the start
of the touch to the current position. If the touch passes the 25 pixel barrier and then goes
back near its starting position, delta.r() will return something smaller than 25, but
the scrolling must not be canceled. Therefore the information, that the touch has passed
the 25 pixel theshold once is stored in the scrolled field of the morph.
The following methods implement the calculation of the scroll position as well as the
Javascript call to set the viewframe.

initializeBrowserScrollForTouchEvents sets some fields on the world which are required
to calculate the scroll position later. It also sets the emulatedScrolling flag of the world to
true. This field is never read, but scroll independent morphs connect to this field so they
are notified when it changes. It is reset to false in the onTouchEndAction of the morph.
emulateBrowserScrollForTouchEvents calculates the target scroll position based on the cur-
rent touch position and the fields we set in the initialize method. It uses
window.scrollTo to set the viewframe of the page. This call produces an window
scroll event, which we use to update the scrollOffset variable of the world.
For zoom events we utilize the gesture events of the browser to set the property zooming-
InProgress in the same manner as emulatedScrolling. When the zooming is done, the
zoomLevel of the world is recalculated and stored in the zoomLevel property of the
world.

Implementation of fixed Position and Scale Now that we have a notification when the
world scrolled and zoomed, morphs can connect to the property and implement be-
haviour so that they are always displayed at the same position and in the same size. To
do so we added the method setFixed to each morph. A fixed morph does not change its
position or scale when the world is scrolled or zoomed.

40 Explorative Authoring of Active Web Content

1 initializeBrowserScrollForTouchEvents: function(touch) {
2 this.emulatedScrolling = true;
3 this.scrollStart = pt(document.body.scrollLeft,
4 document.body.scrollTop);
5 this.scrollTouchStart = pt(touch.clientX, touch.clientY);
6 }
7

8 emulateBrowserScrollForTouchEvents: function(touch) {
9 var touchDelta = pt(touch.clientX, touch.clientY).

10 subPt(this.scrollTouchStart);
11 var scrollTarget = this.scrollStart.subPt(touchDelta);
12 window.scrollTo(scrollTarget.x, scrollTarget.y);
13 }
14

15 onWindowScroll: function(evt) {
16 $world.scrollOffset = pt(window.pageXOffset,
17 window.pageYOffset);
18 }

Code Example 13: calculating and setting the scroll position of the viewport

1 onGestureStart:function (evt) {
2 this.zoomingInProgress = true;
3 }
4 onGestureEnd: function(evt) {
5 $world.zoomLevel = document.documentElement.clientWidth /
6 window.innerWidth;
7 $world.zoomingInProgress = false;
8 }

Code Example 14: Gesture event handlers which set the zoom level of the world. Morphs can
connect to the zoomLevel and zoomingInProgress field to get notified when changes occur.

This method calculates a normalized scale and position for the morph. These proper-
ties depend on the current zoom level of the world and the scroll offset of the browsers
viewport. We store the calculated normalized position and scale on two properties on
the morph and set connections to all properties we change in our zoom and scroll im-
plementation. This way the morph can react to any change that occurs.
As mentioned earlier, the iPad browser stops the rendering of the page when it is zoomed.
One possibility is to update the position and scale after the zooming. This would mean
that parts of the fixed morphs which should be invisible47 become visible when zoom-
ing. Alternatively, we could hide the morphs when zooming started and display them
with the correct scale and position after the gesture. This way fixed morphs would not
be displayed at all when the user zooms or scrolls. We implemented the second alterna-
tive48.
To make sure fixed morphs always are rendered before other morphs, we use remove and
addMorph to hide them. The update functions set the position respectively the scale of
the morph.
With this functionality we were able to implement morphs which always have the same
screen position and size. We used it to implement tools and widgets like a color chooser,
a minimap or flaps.

47 because they are fixed outside the viewframe
48 see code example 16

Explorative Authoring of Active Web Content 41

1 setFixed: function(fixed) {
2 this.fixedScale = this.getScale() * $world.getZoomLevel();
3 this.fixedPosition = this.getPosition().
4 subPt(pt(document.body.scrollLeft,
5 document.body.scrollTop)).
6 scaleBy($world.getZoomLevel());
7 connect($world, "zoomLevel", this, "updateZoomScale");
8 connect($world, "emulatedScrolling", this, "toggleScrolling");
9 connect($world, "zoomingInProgress", this, "toggleScrolling");

10 connect($world, "scrollOffset", this, "updateScrollPosition");
11 }

Code Example 15: setting connections to react to scroll and zoom events

1 toggleScrolling: function(isScrolling) {
2 if(isScrolling) {
3 this.remove();
4 } else {
5 $world.addMorph(this);
6 }
7 }
8

9 updateScrollPosition: function(newPosition) {
10 this.setPosition(this.fixedPosition.
11 scaleBy(1/$world.zoomLevel).
12 addPt(newPosition));
13 }
14

15 updateZoomScale: function(newZoom) {
16 this.setScale(this.fixedScale/newZoom);
17 }

Code Example 16: updating morph properties on scrolling and zooming

2.5 Related work

Sencha Touch Framework The Sencha Touch Framework49 is a popular framework
for developing mobile webpages. It is not limited to the iPad but works for most mobile
devices including Android and Windows tablets. To support the different touch APIs,
it provides a standardized interface offering tap, double tap, long press50, swipe, pinch
and rotate gestures. Like our solution it wraps the DOM events.

49 http://docs.sencha.com/touch/2-0/ (visited 29.06.2012)
50 equivalent to our hold

http://docs.sencha.com/touch/2-0/

42 Explorative Authoring of Active Web Content

Applications done with the Sencha framework are supposed to look like native appli-
cations. The framework offers widgets for touch interaction like menus, lists or icons.
This can be compared to Lively Kernel’s PartsBin, which also offers user build widgets
for everyone to use.

PhoneGap PhoneGap51 is a framework for developing native apps with HTML5, Java-
script and CSS. Unlike other HTML5 frameworks it embeds the Javascript source code
in a custom virtual machine. This way the application can take advantage of features
which are not accessible via plain Javascript, like vibration, notifications or contacts.
Using Javascript as programming language it avoids device specific APIs. The same
source code can be used for various platforms.

The drawback of this method is, that users can not simply go to a webpage and get
started. They have to install the app first. Sharing of creations is also limited, because
other users also have to install the app.

Morphic.js Morphic.js52 is an alternative implementation of the Morphic user inter-
face. It supports touch interactions, which act similar to our touch to mouse mapping.
Touch and hold opens the right click menu on a morph and all mouse click actions are
triggered on tap. It does not support scrolling the page. Instead users can drag and drop
morphs by simply dragging them on the screen. There is no dedicated selection mode.

2.6 Conclusion and Future Work

The way users interact with mobile devices is different from the way they interact with
desktop PCs. Instead of a mouse and a keyboard, mobile devices only have one single
touch enabled display. This offers the possibility to recognize and trace multiple fingers
simultanously. Web pages are required to adapt to this new situation.

In this bachelor’s thesis we have shown how we added support for touch interaction
in the prototyping framework Lively Kernel. We examined the internal structure of the
touch events Apple specified and had a look at the event registration process of Lively
Kernel. We showed how event handlers can be added in Lively Kernel to react to stan-
dard and non standard events. We introduced three non standard events tap, double tap
and hold, which developers can use to make their Lively application touch compatible.
More gestures like swipe, pinch or rotate can be added in the future.

To enhance the usability on mobile devices we implemented features like pie menus
or zoom independend morphs based on the work we did on touch events. We also im-
plemented widgets like scrollable lists, hold indicators or flaps. These widgets were suc-
cessfully tested in applications like an iPad PartsBin with a scrollable category list, an
object editor which always edits the currently selected morph and is located in a flap
in order to be easily made available. More widgets like formulars can be added in the
future.

51 http://phonegap.com/ (visited 29.06.2012)
52 http://chirp.scratchr.org/dl/experimental/JsMorphic/morphic.html (visited

29.06.2012)

http://phonegap.com/
http://chirp.scratchr.org/dl/experimental/JsMorphic/morphic.html

Explorative Authoring of Active Web Content 43

Our work was focused on the Apple iPad 2 with the default Safari Web browser. Future
work has to test the implementations on other mobile devices like tablet computers and
phones. Different browsers might provide other events. The Firefox mobile browser in
the version 6.0 for example has touchenter and touchleave events. Research has to find
out how to utilize these possibilities. The touch event API itself is a subject of change as
the W3C has not released an official standard for touch events yet.

There are still a lot of possibilities to explore regarding user interaction especially on
small devices like phones. Our work has laid the foundation for further support of touch
interaction on mobile devices in Lively Kernel.

44 Explorative Authoring of Active Web Content

3 Diffing and Merging of Lively Kernel Parts

3.1 Introduction

The Lively Kernel is a self-supporting, web-based prototyping environment that allows
designing active web content.
The content management concept of Lively Kernel is very similar to a wiki: each user
is capable of developing websites individually. Apart from designing static content, it
allows designing object interaction based on a morphic environment.
The morphic concept offers direct object manipulation and interaction with visual ob-
jects that form a scene graph (morph).
The Lively Kernel is built in JavaScript, which causes morphs to encapsulate behavior
and state in objects, represented by functions and properties.

Unlike most platforms that allow interactive prototyping, the Lively Kernel runs in
a web browser. Hence it can be transported from desktop to mobile devices without
switching between platforms.

Sharing concepts in Lively Kernel Because users of the Lively Kernel create web
content, they can very easily share their results. With worlds and parts, the Lively Kernel
provides two major sharing features.
Each page a user designs is accessible as a world and can be shared via a unique URL.
The visual content of a world is created by morphs.
Morphs that form proper applications or basic structural constructs are shared as parts
that are stored in a central repository, the PartsBin. The PartsBin can probably be best
described as an app store that provides parts instead applications. Parts are accessible
through copying them from the PartsBin.

Version control in the PartsBin As a central sharing mechanism of the Lively Ker-
nel, the PartsBin provides access to collaborative work and as well demands it. By giv-
ing every user access to every part, improving a part is not restricted to its originator.
The PartsBin concept rather stimulates users to refine parts individually, due to the self-
sustainability of the Lively Kernel.
The immense power the PartsBin obtains in the Lively Kernel is based on the possibil-
ity of re-using parts, combining them to complex objects and creating whole applica-
tions. [44]
Already during the implementation of part sharing, the PartsBin was characterized with
such attributes similar to github [53]. But also the need for proper version control, like
github provides it with git [34], can be observed, e.g. when "users want changes to take
effect in many places" [44] or two parallel development branches are supposed to be
re-joined.

Explorative Authoring of Active Web Content 45

Version control systems (VCSs) are most frequently used in software development.
When writing code, a VCS allows saving the state of program code and restoring it
when required. In addition to those two abilities VCSs provide mechanisms for version
difference detection (diffing), updating old versions, splitting development paths (branch-
ing) and joining such branches (merging).
By Design, the PartsBin already provides version control mechanisms. It is capable of
storing part versions, loading old versions, displaying revision comments and, by sav-
ing a part with a different name, branching. Yet some features are missing: There is no
possibility to view differences between part versions, or to propagate major improve-
ments to the community by allowing them to update a local copy of a part. Also, multi-
ple branches of parts already exist that cannot be reunited automatically due to missing
merge mechanisms.

Aim of this thesis Our implementation of PartsBin version control mechanisms is
supposed to add those features. First, it should allow the user to find out which changes
were done between part versions. Second, it should allow updating a local copy by ap-
plying changes made on graph structures, visual representation, scripts and properties.
Third, it should provide the possibility to update local copies of parts that are outdated.
Ideally it should also inform users that their copies are outdated, whenever they are
trying to accidentally overwrite a newer part version.. Finally, branches of parts are sup-
posed to be merged.

Yet another version control system? Technically, a classical text based version con-
trol system that is used to manage a codebase could handle those tasks. Version control
in the PartsBin is based on Apache Subversion (SVN) [34]. Each part version is stored as
a serialized JSON object, a text based JavaScript Object Notation.

There are two major reasons to not rely on version control mechanisms that come with
SVN in the Lively Kernel.
First, understanding changes made to morph properties based on textual diffs is impos-
sible due to the complexity of a morphs structure, resp. its serialized JSON representa-
tion.
Second, the LivelyKernel community is not exclusively formed by software developers,
whereas the use of revision control is still mainly restricted to software development.
We wanted to keep the mechanisms as simple and intuitive as possible: When a user
publishes a part that is outdated, he should be recommended to update the part. The
update then should be pulled, merged and be published. We do not want to force the
user to use a command line tool or a domain-specific equivalent.

3.2 Identifying the problem areas: An example setting

This chapter describes a challenge that evolved in the Lively Kernel between February
and June 2012. No diff or merge mechanisms were included in the PartsBin at this time.
Figure 27 shows the original version of the ObjectEditor, a part that is used as a tool for
manipulating morphs in the world. Four groups were improving the ObjectEditor. It is
used for writing scripts for morphs that define their special behavior, but it also allows
extending and establishing connections between morphs and evaluating code (doIt).

46 Explorative Authoring of Active Web Content

Figure 22: Fabian/originalVersion

During the month, six different ObjectEdiors in four different categories of the PartsBin
were created, all deriving from the same stable original version. Those branches had
very different aims:

– Fabian was the first to implement additional features. According to his commit mes-
sages, his main aspect was to implement tagging of scripts and thus sorting them
by those tags. This resulted in the Part Fabian/ObjectEditorII (Figure 23).
In a second branch, he refactored several scripts that he stored in Fabian/ObjectEditor.

Figure 23: Fabian/ObjectEditorII

– Willy was the second to improve the ObjectEditor. He added a button that when
clicked opens a ClassBrowser. The resulting branch is PartsClasses/ObjectEditor. Their
changes can be seen in Figure 24.

Figure 24: PartsClasses/ObjectEditor

– Third, Lauritz, Tim and Philipp collaboratively worked on Tools/ObjectGroupEdi-
tor. According to their commit messages, they implemented “saving and retriev-
ing of groups, using tags on the morphs” (2012-06-14, 13:09, timfelgentreff, revision
171073). They, too, refactored bits of the scripts. Figure 25 shows their changes.

Explorative Authoring of Active Web Content 47

Figure 25: PartsClasses/ObjectGroupEditor

– The last version was created by Jan who implemented a history view for scripts (see
Figure 26), so a user could revert changes at any time. He created the groupBejew-
eled/LimeMachineObjectEditor.

Figure 26: PartsClasses/LimeMachineObjectEditor

– Finally, the main branch Tools/ObjectEditor was improved and refactored, too. Fig-
ure 27 shows, that e.g. a search button was added.

Figure 27: PartsClasses/ObjectEditor

As the PartsBin is based on an underlying SVN repository, all those revisions were
given increasing revision numbers. Figure 28 naively guesses the possible history flow
of the example branches. This guessing is based on the naive assumtion that the revision
numbers imply not only the order of part creation, but also the instanciation order of
morphs that were later saved as parts. Therefore, if there are three part versions

– version A1 with revision number 1 ([A1,1]),
– version A1 with revision number 2 ([A1,2]),
– version A2 with revision number 3 ([A2,3]),

and we know that A2 was created out of A1, we assume the following order of actions:

48 Explorative Authoring of Active Web Content

1. a morph was created
2. the morph was published as [A1,1]
3. a local copy 1 of [A1,1] was created and modified
4. the local copy 1 was published as [A1,2]
5. a local copy 2 of [A1,2] was created and modified
6. the local copy 2 was published with a different name (branching) as [A2,3]

With that, we assume that [A2,3] derived from [A1,2]. The order could also have been
1-2-5-3-4-6, meaning that [A2,3] could also be derived from [A1,1].

Our task was to merge those many different branches back into the main part Tools/Ob-
jectEditor. We had to find out the correct branching history, find the best merge plan and,
one after another, merge the branches.
The resulting part should then include tag visualization, grouping, script history access
and opening the ClassBrowser. Also, the user interface providing access to these features
should include all required access points at the end.
Figure 29 gives an example of what the merge could look like.

Without an automatic merge strategy, this task may be very time-consuming. Apart
from the optical differences like resized, repositioned and added submorphs, many
changes were made in scripts and non-visual properties. Going through all those possi-
ble changes manually, performing a manual merge process in the end, turned out to be
very annoying due to several reasons: It requires a correct remembering of the changes
an author made and by that the real-time availability of the author for a version to merge.
And yet, a merge could probably be incomplete.
Merging two part version automatically requires

1. to avoid accidental overwriting of parts, warning mechanisms for outdated morphs
2. computing the correct history of a version to find its origin version
3. computing differences between part revisions
4. extracting updates that are not fast-forward (conflicts)
5. updating the part revision

We propose a merge workflow that assists the user during step 1 and 2 without doing
them automatically. With then three given versions, a common parent and two differing,
we want to be able to perform an automatic update, with respect to possible conflicts
that can occur if two users e.g. refine the same script.

Explorative Authoring of Active Web Content 49

Figure 28: The naive assumption of the merge history, only based on revision numbers and part
names.

50 Explorative Authoring of Active Web Content

Figure 29: The most probable merge result - The changes of differend part branches are highlighted.

For the last step, we want to implement features that support the awareness of collab-
orators. In many cases, a user of LivelyKernel copies a part to its world, refines it and
then publishes the new version. If another user, too, refined the part in the meantime, we
want to warn the overwriting user, present possibilities to merge and solve conflicts and
then publish a merged revision – so awareness of a collaborating user should be created
automatically by the system. Informing users that copied the old part version to their
worlds about the updates in the part could also be an aspect worth being implemented.
Such continuous integration features are supposed to avoid creating huge branches like
in the example in Figure 29.

We distinguish between continuous integration and branch merging. For continuous
integration, steps 1–5 are supposed to be done automatically, for branch merging we
only want to support the automatic execution of steps 2 and 3.

3.3 Approaches and decisions

Version control systems that support all the mechanisms shown in the example can be
based on several very different concepts.

This chapter is structured to first give the academic motivation for the need for merge
strategies and the reason for implementing a state-based comparison approach. It in-
troduces the copy event as trigger for a new version creation and a system to associate
those versions. With this background it describes more specific approaches to version
diffing and merging, in particular analyzing the two-way and three-way merge strate-
gies and proposes a morph representation that we used for comparison.
Those steps will be explained with the use of the example setting introduced in the pre-
vious chapter.

An optimistic source-management model Before thinking about branching and
merging, it is necessary to know about the motivation for those techniques.

Beginning at the very base of a version control system, its collaboration model can
be either pessimistic or optimistic. In pessimistic approaches collaboration conflicts are
actively avoided by applying blocking behavior to make sure that only one collaborator
can access a resource at one time.

Explorative Authoring of Active Web Content 51

By design this avoids scenarios that require merging two or more versions, but with the
huge disadvantage that collaboration can only happen sequentially instead of parallel.
The Lively Kernel PartsBin as well as world sharing mechanisms follows the optimistic
approach. It explicitly distinguishes between parts as commonly available objects and
morphs as local copies, ensuring that changes made to a morph do not propagate to the
whole system. But, as stated in [44], this must at one point result in different part ver-
sions and even whole development branches that need to be merged. Our ObjectEditor
challenge is a branching example as many versions existed that were further improved.
But modifications on a morph that are then published to the same part can bring up
merging issues, whenever there are two collaborators improving the same part at the
same time.

On the contrary, the Lively Kernel code base follows this global concept, ensuring the
existence of only one single development branch of the core system.

Comparison models With the challenge to merge branches that may have existed for
a long time, we need to be able to compare two existing states of a part.
A state-based diffing model provides a general approach to object comparison. Com-
puting a state-based diff, especially for complex objects like morphs, tends to be rather
time-consuming, a fact that we will evaluate in chapter 3.5.
A second diffing approach is to record each manipulation done to a morph in a single
iteration step. To update a revision, those iteration steps are put in the right order to one
big change set and are finally applied to the base version for both.
In the Lively Kernel, there is a huge number of possibilities to manipulate morphs which
were evaluated by Dannert during his implementation of WebCards in LivelyKernel
([16]). Dannert extracts the possibilities of exclusively using tools for morph manipula-
tion or utilizing convenient getter functions to hook into convenient events. He aims to
create command objects to propagate changes during a template modification. He de-
cides to utilize getter methods, finally being able to produce commands that propagate
visual changes on morphs.

Our merging approach requires possibilities to trace all kinds of property changes,
which would result in either creating a very large set of convenient access methods or
tracing general access events, like mouse and keyboard events. As both possibilities
include too many different options in the Lively Kernel, we decided for the state-based
diffing approach.

In connection with the state-based approach, we chose to consider a copy event as
indicator that a new version of a morph is being created.

Computing branching histories based on unique ids Due to this optimistic
source-management model, we will have to deal with different part versions. There can
be several reasons for creating new morph versions by copying them. A local copy of a
part in a world created a new, non-permanent morph version. Local copies can be meant
to

– improve a part by copying, refining and publishing it,
– be stacked to a composition of morphs, forming new parts,
– allow editing other morphs, the basic use case for lively tools and widgets.

52 Explorative Authoring of Active Web Content

Typically, if a local copy is supposed to be published to form a new part version, it only
exists a relatively short time (hours or days).
A branch is a copy of a part that was published in the PartsBin with another name. One
reason for branching is the development or completely new parts, but often, like in our
example, two similar branches represent two development directions that are supposed
be joined at one point. A branch that is aimed to refine a part is often supposed to exists
only over a time of days or weeks.

When a local copy of a part is created, its overall identity is stored as its parts bin meta
info directly on the morph. When publihsingin this morph a s part under another name
an with that creating a branch, this means changing its parts bin meta info and with that
changing a morphs identity. The part that results from the publishing has no relation to
the part it originated from anymore. When it comes to merging branches, an approach
must be found to identify their relation. Simply assuming their common history based
on the order of their revision numbers they get from the underlying SVN is a way we
tried in our example (see Figure 28). But without a part name and good guesses, the
commit order gives no hints at all as it is increased with every commit to any part.
The other very relevant issue is about finding related morphs within two morph ver-
sions. When scene graphs are supposed to be compared, it is an essential task to find out
correlating submorphs in both versions (see chapter 3.3).

There are several approaches to identify branch histories. SVN [34] tags branches with
meta data and git references a head revision for each copy. Due to the fact that parts
consist of morphs, part branches differ from branches in text-based approaches, because
submorphs need to remember their own identity. Only with that they can later be up-
dated as submorphs, too.

As parts and morphs are strongly connected concepts, branch history extraction and
submorph identification can be considered to be overlapping steps. We decided to im-
plement just one general strategy that suits both problems, by giving morphs (and
thereby parts) unique identifiers.
In the Lively Kernel, every morph is given an identifier (ID) when it is copied (from a
part or a morph). An ID is a four digit number that must neither be unique in one world
nor in the PartsBin. As we need unique identifiers, we reused an existing implemen-
tation in the Lively Kernel by Czuchra [15] in our approach and integrated the unique
identifiers in the live system.
To restore a parts history later on, we have to be able to keep track of the copy actions a
morph has gone through. We decided to not only keep track of publishing actions (which
require a copy, too) that create nuew part versions, but also local copying of morphs, to
preserve the possibility of local diffing and merging, too. To remember each copy action,
we simply stored the unique identifyers a morph was given through time, thus keeping
track of part version creations through the action of copying a morph to the PartsBin.
We implemented these mechanisms at a very early point of our project with the benefit
that the branches of the ObjectEditor were referencing complete derivationIds arrays.

This very general access to a morphs history allows us to compute branch histories
as well as finding related morphs in two different scene graphs by comparing sets of
derivation ids.
Based on this knowledge, we are able to correct our original assumption of the ObjectE-
ditor branch history and manually restore the actual one, which is shown in Figure 30.

Explorative Authoring of Active Web Content 53

Figure 30: The correct branching history, restored based on derivation ids. The most interesting
derivationids are displayed as annotations to the revisions.

54 Explorative Authoring of Active Web Content

The second benefit of derivationIds, morph relation computation, will be explained in
the next subsection.

Relationships and derivation Based on derivation ids it is now possible to find out
the relation between two morphs by analyzing their common history. Common deriva-
tion ids indicate a relation. The less derivation ids two morphs have in common, the less
they are related. There are three types of relations that can be identified here: unrelated,
parent-child relation and sibling relation. They are visualized in Figure 31.
We can determine that

– non-related morphs have no common derivation ids at all,
– the current id of a parent morph can be found within the derivation ids of its chil-

dren (a child was copied from its parent),
– siblings have a common history (i.e. non-empty intersections of derivationIds), but

the id of one sibling is never included in the derivationIds of the other one.

Figure 31: Relation types in Lively Kernel: The single numbers are current ids, the number lists are
derivation ids. Morph A is related to neither B, C or D. Morph B is a parent morph of C and D.
Hence, C and D are siblings.

Based on this idea, two Buttons in a scene graph are always related due to their iden-
tity as buttons. This becomes quite a problem when scene graphs are compared, as this
makes it hard to determine if two Buttons are siblings due to their classification (both are
Buttons) or if they are related even closer (one Button was copied from the other when
the part was copied).

Figure 32: Finding pairs of related Buttons in ObjectEditor revisions.

Explorative Authoring of Active Web Content 55

Figure 32 explains this problem by example. The PartsClasses/ObjectEditor and its parent
revision from the Tools/ObjectEditor branch are being compared. In the upper area, we
want to mark the relations of the Buttons. We can see that the Classes button must have
been added and want to find that out based on comparing derivationids.

Table 1 displays a simplified overview of the derivation ids for this setting, comparing
a Button that was just copied from the PartsBin with the save, the Classes and Test but-
tons from the ObjectEditor versions. For readability reasons, we shortened the ids and
exchanged equal lists of ids with the capital letters A to E. The four digit numbers in row
1 are leftovers from the time when identifiers in the Lively Kernel weren’t unique.

Tools/ObjectEditor PartsClasses/ObjectEditor
Button Tests save Tests Classes save

1 7251 7251 7251 7251 7251 7251
2 5EE2BB6065A6 279956A34FC2 413BD2FFA0D1 279956A34FC2 279956A34FC2 413BD2FFA0D1
3 A B A A B
4 8B5630CF2EDE 090B9817E099 8B5630CF2EDE 8B5630CF2EDE 090B9817E099
5 C D D C
6 2537402A6382 77DA5B862FA6 83FFD3D2AE15 2537402A6382
7 85AD9789CED9 93FD076B9089
8 E
9 475FD541703B

Table 1: Simplified listing of the derivation ids for Figure 32

Analyzing the steps we can state the following:

1. From row 1, we can see that all are descendants from the original Button part, as-
suming that the four digit id (a leftover from the old implementation od ids) is
unique within the PartsBin.

2. Tools/ObjectEditor - Tests is the parent of PartsClasses/ObjectEditor - Tests, as its deriva-
tion ids are completely contained in those of his child.

3. For the same reason, Tools/ObjectEditor - save is the parent of PartsClasses/ObjectEditor
- save, and Tools/ObjectEditor - Tests is the parent of PartsClasses/ObjectEditor - Classes.

4. From row 2, we can see that in the Tools/ObjectEditor version the Tests and the save
Button are siblings, so both were originally copied from the PartsBin.

5. Also from row 2, it becomes clear in PartsClasses/ObjectEditor the Classes button is
stronger related to the Tests Button than to the save Button, as their common history
is longer.

6. Tools/ObjectEditor - Tests and PartsClasses/ObjectEditor - Classes are siblings, but not
by their identity as Buttons, as their common history is longer than their common
history with a Button.

56 Explorative Authoring of Active Web Content

What we actually want to find out is that PartsClasses/ObjectEditor - Classes has no par-
ent match in Tools/ObjectEditor, but we found Tools/ObjectEditor - Tests in point 3 due to
transitive parent relations.
We therefore need to find out if a submorph was individually copied or copied with the
whole scene graph. Our solution is to compute the amount of versions that lay between
the two parts or morph versions, whose scene graphs are compared. If a scene graph
was copied n times, a child’s derivationIds array cannot be more that n times longer
that its parent’s.

Based on these approaches, we are now able to manually recreate branching histories
of parts and matching submorph relations between two morph versions.

Granularities Until this point we assumed that there is a need to find matching sub-
morphs withing two morphs under comparison. This chapter gives the reason for this
assumption.

Transferring the morphic version control approach to classical text-based diffing, morphs
and submorphs can be handled like folders, properties like files and property values like
file content. As functions in object oriented approaches like JavaScript are object proper-
ties, too, they can be handled like properties.
This model is a very generic one with quite a balanced granularity.
However, when moving away from this folder-file-content metaphor, the method of
comparing scene graphs as single units comes into view. This approach would include
handling a morphs submorphs as a property without distinguishing them.
Due to the intuitive approach of handling morphs as such we decided for the fine-
granular approach. Apart from being as intuitive and clear as possible, we wanted to
provide possibilities to notice if a morph was removed in one version or simply changed
its owner within the scene graph. When morphs are handled as properties, this is im-
possible.
Sow those submorphs are compared will be explained in the next chapter

Object structure In the Lively Kernel there are at least four representation types for
morphs.
First, there is the visual representation. For human eyes, it is very easy to see visual
modifications here, but impossible to find non-visual changes. Therefore, the visual rep-
resentation is not suitable for comparing objects algorithmically.
Second, there is the basic JavaScript Object. It consists of native types that are string,
number, object, function and unefined and references to such properties. JavaScript Objects
can contain recursive structures withing their properties.
Third, there is a linearized representation of JavaScript objects. During a linearization
process, recursive structures are removed from the JavaSctipt object and complex ob-
jects of no native type are split.
The fourth representation is a serialized JavaScript Object Notation (seriailzed JSON).
This is a text-based representation generated right from the linearized object.

Differences in two morph versions can be detected in each of these representations, as
it can be seen in Figure 33, but not all representations are suitable for a computational
morph comparison.

Explorative Authoring of Active Web Content 57

Figure 33: Two morph versions in different representations: (top-down) visual, JavaScript Object,
Linearized JavaScript Object, Serialized JavaScript Object Notation. In the visual representation, we
see that the circle changed its position which is marked in the on-visual representations.

It is impossible to directly compare JavaScript objects that contain recursive structures,
as we cannot ensure that such an algorithm terminates. The other extreme, a serialized
representation, is very suitable for a diffing approach, as it is not only in a text formate
but also without any recursive structures. Cosidering the usage of a third-party applica-
tion to compare the textual object representation, the result could be a basis to recalculate
the changes done to the actual objects.
The diff that a text-based diffing algorithm produces basically contains a line number
and the textual change. We consider it as ineffective to recalculate the correct modifica-
tion to a property out of these data and decided to implement our diffing algorithms
based on a linearized object structure, that represents an interstage where changes are
computable and still meaningful enough to recalculate the actual modification made to
the JavaScript object.

58 Explorative Authoring of Active Web Content

Diffing bases Two linearized JavaScript objects can basically be considered as equal
if they consist of the same subset of properties and all those properties are equal. There
are several reasons why this definition is not suitable in our implementation of version
control:

– The properties id and derivationIds cannot be equal in two versions of a morph due
to their design presumptions.

– There are properties that are simply way too complex to be compared recursively,
like the data object model (DOM) representation of a morph.

– We have rapidly changing properties that are not relevant for the object itself, like
references to a halo or pie menu, or connections that are established when a morph
is transformed

– There are use cases when certain properties should not be compared. In our example
application, the Add Script button keeps connections to the list that displays the
scripts. Those connections should be excluded from the comparison as they keep
hard links to target objects that exist in one version but are replaced by a copy in
another.

There are two approaches to ensure that a certain subset of properties is supposed
to be diffed: The first is to have a predefined subset (whitelist) of properties that will
be considered for the comparison, and the second is to define properties that will be
excluded from diffing (blacklist). A whitelist algorithm is very static, as the list of com-
parable properties has to be updated each time a property is added to the object. For a
flexible framework like Lively Kernel, the blacklist algorithm is much more appropriate,
although much more complex.

To compare two linearized objects, we traverse the linerarization array in both versions,
compare them step by step and store differences in a Diff object. The next chapter will
explain where in the update workflow those two-way diffs are being considered.

The three-way comparison There are two ways of comparing objects, a two-way diff
and a three-way diff.
The intuitive way is probably the two-way diffing strategy, that takes two objects and
compares their properties. Without any statement about possible relations between two
morphs, with a two-way diff we can find out that a submorph is present in one version
and not in the other version, that colors differ or that the set of scripts that defines morph
behavior differs.
We can, however, tell which version derived from the other. The statement “This but-
ton exists in only one version” can with that be clarified to “This button was added in
version X” or “The color was changed from yellow to blue”. So we can very well use a
two-way diff to compare parent morphs with children.

When merging branches, we are comparing sibling morphs where a two-way diff
looses this precision. Again, we could simply state that e.g. “One sibling is blue, the
other yellow.”, even if only the author of one version changed the color from yellow to
blue and the other did not modify this property.
By determining a parent version both siblings derive from and computing the modifica-
tions each author made to its own version, it is possible to make more precise statements.
Such a comparison between three morph versions is called a three-way diff.

Explorative Authoring of Active Web Content 59

sibling version focused version
added removed modified untouched

added ∅ (morph) ∅ ∅ ∅
diff (property)

removed ∅ OK conflict update
modified ∅ conflict diff update
untouched ∅ OK OK OK

Table 2: A three-way merge matrix

According to two-way diffing a morph to its parent, we isolated a set of different change
types that can be done to a morph. Considering a focused morph and a version it derives
from, this means it or its properties can be

– modified
– not modified
– added
– removed

Three-way diffing approaches take three morph versions: A source or parent version,
and two versions that represent derives of the sources. Lets call those the focused version
and its sibling.

A three way diffing algorithm computes changes made in both versions, the focused
and the sibling, and compares them. Whenever a morph or one of its properties was
modified in both versions, this is a possible conflict. The merge matrix in Table 2 is based
on the merge matrix proposed in [31] and is a basis for a three-way merge algorithm to
decide whether a property or morph modification is conflicted or not.

That merge matrix can be read as following example shows: If I modified a morph or
property that was removed in the sibling version (usually the current PartsBin version),
this is a conflict.

The matrix applies to modifications on morphs as well as modifications on properties.
We assume that the user wants to update the focus version with changes made to its
sibling respecting their common parent version. OK states that no update is required,
update states a non-conflicting modification to a property, conflict states a conflict that
has to be solved and diff means that both versions modified a morph or property and
that it may be conflicting. By comparing both modifications, it is possible to find out if
they conflict or were equal. If a meeting of both changes is impossible, this is marked
with ∅.

Based on this matrix, an applicable patch can be created that updates a morph. The next
section will explain ways of solving conflicts that cannot be included in such a patch.
After a three-way comparison has been done and a patch was created, this patch can be
used to merge the two versions.

60 Explorative Authoring of Active Web Content

Merge policies A merge policy can be automatic or manual. Manual does not mean
the fully manual merge of version without programmatic support, but a conflict solving
strategy.
Whenever two collaborators are developing a software or object version, their modifi-
cations can be conflicting when they are made to the same atomic unit. For text-based
software, a conflict could occur if the same file is modified in two concurring versions.
For morphs this can be transferred to properties, so whenever both versions manipulate
the same property of a morph, this can be conflicting if the results are not equal.

The manual merge policy is known from version control systems like git or SVN [34]:
Non-conflicting updates are pulled automatically, whereas conflicting updates are pre-
sented to the user, who then decides about the correct merge.
Automatic merge policies support time-critical merges best by finding indicators (e.g.
time of the modification or its author) that specify the modification that is more rele-
vant [31].

We implemented the manual approach for update mechanisms in the PartsBin, as cur-
rently there is no indicator for which version is the best. Still, as a merge can possibly
pull updates that are either dysfunctional per se because a version contains errors or
because they conflict too badly with the own implementation, an update must in every
case be revertible. We also want to allow to revert decisions made during the conflict
solving process, to test different combinations of merge possibilities.
The automatic merge policy in the online collaboration of the SyncMorph (see section 4)
uses the time of a change as an indicator for a ‘last commit wins’ policy. When there
are only very small iterations that result in a new version, an automatic merge policy is
suitable, as resulting mistakes can instantly be noticed.

With respect to the long-term iterations described in the example setting (see chap-
ter 3.2), we want to reduce the number of manual-merge requiring conflicts as much
as possible. A neatly isolated subset of merge relevant properties massively affects the
number of conflicts.

3.4 Implementation

When publishing a morph in the PartsBin, the user opens the morphs context menu and
uses the publish entry. This opens the publish window (Figure 35) that allows setting
the part name, choosing a category in the PartsBin, adding a comment for the part and
adding a revision comment.

Explorative Authoring of Active Web Content 61

Figure 34: The update workflow.

62 Explorative Authoring of Active Web Content

Figure 35: The publish dialog.

There is a publish button that uploads the part, also the process can be canceled. We
added a button check for updates that, when pressed, requests the web resource for the
part that is being published and, if there is a newer version, allows triggering a merge
process.
In most cases a user will simply press publish as he will not await that other users
updated the same part. To prevent collaborators from accidentally overwriting useful
changes, we extended the publish function by the same request that is done when check-
ing for updates, so the user can be warned if a newer version exists and gets a possibil-
ity to update his morph. The following paragraphs will explain what happens in those
cases.

Figure 36: Version find-
ing during update.

Version extraction of morphs and parts During the update process a three way diff
is performed which requires three revisions of the morph:

– focus: The local copy in the workspace (this)
– sibling: the current revision in PartsBin
– parent: The revision both sibling and focus derive from, i.e. the revisionOnLoad of

the focus.

Versions are stored in a backend SVN and can be accessed via a URL that is computed
out of the part name, part space (category in PartsBin) and its revision. The function get-
ParentPartVersion computes the original version by accessing the morphs revisionOn-
Load:

1 getParentPartVersion: function () {
2 /* returns the original PartsBin version of the morph */
3 var partItem = this.getPartItem(),
4 revision = this.getPartsBinMetaInfo().revisionOnLoad;
5 if (new WebResource(partItem.getFileURL()).exists()) {
6 return partItem.loadPart(false, null, revision).part;
7 }
8 }

Explorative Authoring of Active Web Content 63

Formerly, the loadPart function used the morph name, which caused problems when-
ever morph name and part name differed. For the computation of the sibling version,
the function getCurrentPartVersion utilizes loadPart without adding a special revision
number.

Based on the derivationIds of all three parts, we can find out how often each one was
copied from the parent version. As loadPart performs a copy action, all of the three
versions were copied at least once:

– The parent was copied exactly once
– The sibling was copied at least twice: loadPart, copyToPartsBin (which does not

perform a copy action), and again load loadPart
– The focused version was at least copied once, as well as the parent

1 timesCopied: function(parent) {
2 /* returns the number of copy actions
3 regarding preceding parent version */
4 return this.derivationIds.length -
5 this.derivationIds.intersect(parent.derivationIds).length
6 },

As stated in chapter 3.3, we use those findings as a hint to find out if submorphs were
added in a newer version.

Detecting changes The main part of the update workflow deals with change detec-
tion. As we want to compare submorphs based on a three-way diff, we first have to pro-
duce a change set for both versions, sibling and focused, for each submorph pairs. Only
after that we can compute the actual three-way diff. Figure 39 vizualizes this workflow.

Figure 37: Diffing steps
during the update.Part and morph relations: About UUIDs and derivation During the two-way diff of

a morph against an older version of it, it is necessary to find pairs of submorphs to
compare them. Those relations are computed based on the derivationIds of submorphs.

We begin with two different morph revisions (we call them focused and relative) and,
as shown in Figure 39, start searching pairs of corresponding submorphs. We begin with
the first submorph and hand it over to the function findAncestorIn, that compares it with
each submorph in the relative. Also, we hand over the number of times the focused (m)
and the relative (n) version were copied from their common parent (see page 63 for
computation of m and n).

Figure 38: Finding re-
lated submorphs during
a two-way diff.

prepareDerivationIds removes all those Ids from the derivationIds that were added dur-
ing the various copy events required to access the versions for our comparison. The last
identifier on the stack then must be the id of the youngest part revision both versions
directly derive from. If those equal, we found a sibling. If there cannot be any sibling
found, the morph was just added.

64 Explorative Authoring of Active Web Content

Figure 39: Two-way diff

Two-way diffing The two related submorphs found will then be compared. Functions
can simply be accessed via Functions.own(morph) and compared after converting them to
a string native. Also, it is theoretically possible to compare special structures, so that very
complicated morph classes like Text can be compared, too. Those become complicated
as they consist of RichText TextChunks, which is hard to read for a user that may have
to solve conflicts. Simply comparing two TextStrings is much easier and considered as a
sufficiently exact modification indicator.
The most interesting part of the two-way diff are a morphs properties, as those can
be recursive or very complex structures. For a property diff, we first linearize the two
morphs by sorting all object type properties that may keep recursive structures into a
list and accessing them by reference numbers, thus breaking recursive structures (see
Figure 33 for a comparison of possible object representations). We can then traverse the
linearization until we find atomic properties. We define an atomic property to be an
object that

Figure 40: Two-way diff
during diffing process.

Explorative Authoring of Active Web Content 65

1 findAncestorIn: function (scope, m, n) {
2 /* this morph has been copied m times from the common
3 parent, the scope morph has been copied n times. */
4 var myIds = this.prepareDerivationIds(m),
5 self = this;
6 if ((this.derivationIds.length - this.getIdOnLoad() < m)
7 return;
8 if (myIds) {
9 return scope.withAllSubmorphsDetect(function (ea) {

10 var otherIds = ea.prepareDerivationIds(n),
11 otherIsNew =
12 (ea.derivationIds.length - ea.getIdOnLoad()) < n;
13 if (otherIds && (!(iAmNew && otherIsNew)))
14 return otherIds.last() === myIds.last();
15 })
16 }
17 }

– is a JavaScript native type, i.e. number, string, undefined (function objects are not found
as property),

– is a null object,
– is an empty object, or
– defines an equals function that, with the corresponding property from the sibling

morph, does not return undefined.

As stated in chapter 3.3, we allow handing over a blacklist of strings representing prop-
erties that are not going to be compared.

This dispatch is done by the areEqual function. Because, like Czuchra already described
during his implementation of WebCards ([15]), undefined, null and empty objects are
hard to compare, this is a very central function in our implementation of a two-way diff.
We also added a possibility to compare NaN, which is a number type but does not equal
NaN by default.

Whenever two properties are comparable, areEqual returns either true or false. Based
on this result, we store both values in a Diff object that will be reused for the three-way
diff.
E.g., if the color of a morph was changed, the Diff object looks like displayed in Figure 41.

66 Explorative Authoring of Active Web Content

1 areEqual: function (a, b) {
2 /* compares two objects. Returns
3 true, if both are equal
4 false, if they are not equal
5 undefined, if they are incomparable */
6 if (typeof(a) === 'object' || typeof(b) === 'object') {
7 if (a == null) {
8 if (typeof(b) == 'number' && isNaN(b))
9 return true

10 }
11 else if (Properties.all(a).length === 0
12 || Properties.all(b).length === 0) {
13 return
14 Properties.all(a).length === Properties.all(b).length
15 }
16 else if (a.equals)
17 return a.equals(b)
18 else
19 return undefined
20 }
21 else if (typeof(a) === 'number') {
22 if (isNaN(a) && (isNaN(b) || b == undefined))
23 return true
24 }
25 return a === b
26 },

Figure 41: The Diff object

Explorative Authoring of Active Web Content 67

To make it easier for users to read a three-way diff and with that resulting conflicts, we
flatten these nested properties in the Diff object.
Also, properties are removed or added rarely, for a simple reason: The Lively Kernel
allows connecting to properties of an object. Those connections dysfunction whenever
their target or source property is deleted. For that reason we do not distinguish between
property additions, removals or modifications, but record such changes in Diff objects
with the oldValue or newValue set to undefined.

Figure 42: Three-way diff
during update process.

Comparing changes: The three way diff The three-way diff is a comparison of
two-way diffs. We want to merge properties and morphs based on the merge matrix in
Table 2 and therefore first compute which morphs were added, removed or modified in
which version.

For reasons of transparency, we combine both Diff lists to one based on following rules:

Definition 1. Let

– A{s,f} be the submorphs that were added,
– R{s,f} be the submorphs that were removed,
– M{s,f} be lists of AtomicDiffs of the properties that were modified, sorted by morph id in

the sibling or the focused version.

Then the three way diff between them has following properties:

– addedInSibling := As

– addedInFocus := Af

– removedInSibling := Rs \Mf

– removedInFocus := Rf \Ms

– conflicted := {i ∈ Ms ∩ Mf | Ms[i].newV alue 6= Mf [i].newV alue} ∪(MS ∩ Rf)
∪(Mf ∩Rs)

– modifiedInSibling := Ms \ conflicted
– modifiedInFocus := Mf \ conflicted

Preparing for a three-way merge, only those properties that are conflicted according to
Table 2 will be presented for the user. Those that were modifiedInSibling, removedInSi-
bling or addedInSibling can simply be added, removed or modified.

Applying change sets As soon as we have computed the three-way diff, we can apply
the changes to our local copy of the part. Naturally, this excludes the changes that are
conflicting.

Adding morphs that were added in the sibling version simply requires adding them
at the correct position, which means finding the correct owner by its identifier that we
remembered and adding the morph. Removing morphs works almost the same way:
find them by their identifier and remove them.

68 Explorative Authoring of Active Web Content

The interesting part is applying the new values from nested properties. What we com-
puted is an array that holds every layer of the nested property as a string. The change set
for the property '_Extent' of the 'shape' of a target morph would then exemplary
be

1 {
2 property: ['_Extent', 'shape'],
3 newValue: pt(0,0),
4 oldValue: pt(100,100)
5 }

The function applyNestedProperty takes the property array, a starting point as an object
(usually the morph) and a value that will be applied (the newValue, in particular):

1 applyNestedProperty: function (prop, pathArray, value) {
2 var subProp = pathArray.shift();
3 if (pathArray.length > 0)
4 this.applyNestedProperty(prop[subProp], pathArray, value)
5 else
6 prop[subProp] = value
7 }

During the automatic update, all non-conflicting changes are applied in that way.

Figure 43: The user has to
resolve conflicts.

UI decisions: How to present conflicts Due to our semi-automatic merge strategy,
conflicts have to be presented to the user visually. We have two important requirements
here:

– each change must be revertible individually
– all changes must be revertible as a whole

Therefore we decided to copy the morph that is updated, apply the changes to it and, if
the user is done with merging manually, apply the changes to the original morph. This
allows the user to revert single changes, e.g. to test their interoperability. If inherent con-
flicting changes (such that affect others without directly conflicting) should then make it
impossible to merge updates into the local copy of the part, this can simply be reverted
by deleting the copy, thus reverting the whole merge action.

For each individual change, we display an indicator for the submorph it belongs to,
that, when clicked, shows the diff with the new and old value. The user then can toggle
between both possibilities. Figure 44 gives an example of what this looks like.

After the user has resolved all the conflicts, he clicks OK and all the changes he chose
are applied to the original morph, and also are those changes that did not conflict.
Hence no change is applied to the original morph before this moment, and the user is
able to revert the whole update process whenever it is required.

3.5 Evaluation

Time complexity This chapter evaluates our diffing algorithm according to their time
complexity.

Explorative Authoring of Active Web Content 69

Figure 44: The user interface for solving conflicts. Conflicted morphs are marked with an X that,
when clicked, displays all the differences.

We evaluate two main parts of the three-way diff: two-way diffing including the rela-
tive finding and the actual diff, and the three-way diff itself.

Definition 2. Let n be the number of submorphs. We define

– c to be the constant time to search through all submorphs of a morph. This may differ, as a
container morph usually has more submorphs than e.g. a button. To ease calculations, we
used submorph structures with an average sumborph count of 2 submorphs per morph.

– l be the constant time it takes to linearize a morph without its submorphs
– p be the constant time it takes to compare two morphs
– t be the constant time it takes to compare two diffs

Then the time complexity for each part of the diffing process is the following:

– time(relative(n)) = n ∗ c
– time(diff(n)) = n ∗ (l + p)
– time(threeWayDiff(n)) = n ∗ t

This makes the overall computation time for a three way diff
time(relative(n)) + time(diff(n)) + time(threeWayDiff(n)) = n ∗ (c + l + p + t)
which is in O(n). Figure 45 confirms this calculation showing a linear rising of diffing
times.

70 Explorative Authoring of Active Web Content

Figure 45: Measurements of the three-way diff

The fact that morph diffing requires an average time of 40 ms up to 120 ms per morph
makes clear that, referring to a maximum acceptable response time of 4 s, we would
await to be able to compare parts with less than 50 submorphs in an acceptable time.
Basic Lively tools like the ObjectEditor or the PartsBin keep an average of 40 submorphs.

A desirable goal should be to reduce the average diffing time for those parts to one
second, a quarter of the current results. Trying to find areas that are worth improving,
Figure 46 shows that most of the time during a three-way diff is filled by two-way diff-
ing. Figure 47 shows time consumptions within the two-way diff, stating that Property
and Function iterations are very time relevant.

Here we are confronted with the drawbacks of a generous blacklisting algorithm.
Via whitelist approaches, such iterations could have been avoided, but the diff quality
would have been reduced.

Based on those results we evaluated the efficiency of the update algorithm, measuring
the time it takes to call the update command until the conflicts are presented to the user.
We tested the ObjectEditor, PartsBin, Explorer and TestRunner by loading the second
last version (reseted state) and calling update on it. Table 3 shows the results.

Explorative Authoring of Active Web Content 71

Figure 46: Measurements of the three-way diff

Morph name number of submorphs time in milliseconds
Object Editor 40 6643
Explorer 13 1484
PartsBin 40 4931
TestRunner 43 11539

Table 3: Update time of chosen parts.

We can see that complex scene graphs with hard references between their submorphs
via properties show an increased average diffing time, but are acceptable with a response
time of less that 1.5 sec for the ObjectExplorer. This time already includes the rendering
of conflict indicators.

Quality evaluation and subjective durations Apart from the speed of an update
its quality is worth being evaluated. We tested our implementation with the challenge
described in chapter 3.2.
Like already described in 3.3, we manually reconstructed the correct branch history
based on derivation ids. This task took us roughly 15 min, which is an indicator that
automatizing the branch history computation is an idea worth thinking through.

72 Explorative Authoring of Active Web Content

Figure 47: Measurements of the three-way diff

Figure 48: Simplified merge plan for the ObjectEditor challenge

Based on that we created a merge plan that in a lean representation is shown in Fig-
ure 48. The merge took us another 15 min, due to several script merge conflicts (Script
merges are not included here as we applied them later on with the help of a text diffing
example in Lively Kernel). We collected following statements:

– Many conflicts were found that weren’t important. Those include invisible extent
corrections of Text morphs as well as Position differences of not noticeable pixel
amounts.

– Script conflicts were the only really solvable ones. The fact that they are only dis-
played as strings but not in an additional script environment was a huge drawback.

– Morphs were hard-referencing other morphs, that naturally do not exist in other
newer part revisions. This heavily increased the part size of merged versions. More
convenient reset functions that refresh those connections could have been a solution.

– A distinction between the different diff types would have been helpful, distinguish-
ing between e.g. morphs, scripts and properties.

Still, the result was a merged ObjectEditor with all the features available.

Explorative Authoring of Active Web Content 73

3.6 Future work

Based on the evaluation, we propose several points of interest in our implementation
that are worth being improved. Also, we suggest some features that could make the
merge functionality much more powerful and some the merge functionality could sup-
port.

Efficiency improvements of part merging First, it is easily possible to extend the
algorithm to find out if a morph was moved from one owner to another. This only re-
quires browsing all removed and added morphs and find out if one morph can be found
in both arrays. Moving a morph from submorph A to B would then only be a conflicting
operation, if in the other version it was also moved or removed.
We also do not consider the order of submorphs. By comparing the submorphs array of
a morph with its ancestors submorph array according to the position of the morphs, this
can easily be implemented, too.

We did not implement an exact algorithm for text comparison, due to the complexity
of RichText TextChunks and the long diffing times (see chapter 3.5). The equals functions
are already implemented, but they do have to be made faster to be really helpful.
We also did not implement the comparison of connections, as they keep hard links to
connection targets. One very general approach to solving that issue could actually be
soft links for connections, that find their source and target e.g. by id or name.

We think that a massive improvement to the merging process would be a fully devel-
oped script merge. Our algorithm could e.g. use techniques from text-based diffing ap-
proaches that are already available in the Lively Kernel. This idea is heavily connected to
distinguishing between types of conflicts to support a better understanding of them. By
distinguishing between conflicts in morph structure, properties and scripts, this could
as well be achieved by distinguishing between the aims of a refinement. E.g., if it was
automatically computable if a refinement aims at refactoring or implementing a new
feature, a user could choose changes implementing new features over refactoring.
Access to such an understanding could be given by analyzing a list of Diff objects ac-
cording to the number of added scripts and properties, and those that were modified: A
user could await that a new implementation requires more additions and that a refac-
toring often touches existing properties and scripts.

With derivation ids, object diffing in the Lively Kernel provides a hook to implement
automatic merging of global branches, by finding splitting points and ancestors auto-
matically. Also, an implementation of octopus merging [34] that allows merging mul-
tiple branches automatically by computing the best merge plan would improve this
workflow. The time spent on branch merging could then be reduced by 50% based on
our experiences.

World merging It would be a great advantage to extent the part diffing algorithm in
a way that it allows world comparison and merging, to support another LivelyKernel
sharing concept. As this brings up scaling issues (worlds tend to become larger that
parts), the algorithm should be made faster by then. A goal could be to reduce the diffing
time for an average morph to 10 ms. As the most time-consuming part of the diffing is
the comparison of linearized morphs, this should be speeded up.

74 Explorative Authoring of Active Web Content

Undo/Redo Undo and redo functionality is almost completely missing in Lively Ker-
nel. The classic software pattern is to create undo and redo patches with every command
that is processed in a system. Due to the huge variety of commands (see 3.3) this can only
be implemented with commands for a relatively small subset of changes, like Dannert
stated during his implementation of WebCards [16]. Our diffing approach could then
support undo/redo of the remaining property manipulation, as already guessed for Of-
flineWorlds [15].

3.7 Related Work

Jonathan P. Munson and Prasun Dewan proposed "A Flexible Object Merging Frame-
work" [31] in 1994. They concentrate on the concept of merge matrices and give a pseudo
code implementation of their approach.

OfflineWorlds [15] for LivelyKernel is an implementation includes storing changes of
morph versions in a world, providing offline support and auto-safe mechanism.

WebCards [16] is an re-implementation of HyperCard, a Macintosh application from
the 1990s that can loosely be defined as a powerful, programmable counterpart of pre-
sentation design programs. It provides template concepts by stacking cards on a ad-
justable background. Dannert proposes a command-based merging approach to propa-
gate changes on thebackground to its stacked cards.

Git ([34], git-scm.com) and SVN (subversion.apache.org) are widespread software ver-
sion control systems. They provide an exclusively file-based approach to version com-
parison.

Conrad Calmez’ implementation of shared workspaces (see section 4) utilizes our pro-
vided implementation of two-way diffing to support live collaboration in LivelyKernel.

3.8 Conclusion

Our implementation of part merging fulfilled the requirements for the proposed chal-
lenge of merging branches of the ObjectEditor. This almost completes the version control
mechanisms of the PartsBin that were missing according to [44].
In particular, we wanted to implement diffing algorithms to compare part versions, up-
dating copies of old revisions and merging branches. We are capable of comparing ver-
sions by producing change sets as JavaScript objects (as Figure 41 shows). Our very early
decision to implement unique identifiers and storing them as derivation ids turned out
to be an excellent method that allows restoring the complete history of morphs and
parts. Based on the same general approach, we were able to find ways to determine the
kind of interactions with morphs that were added, removed, copied or modified.

Although our implementation aims at asynchronous collaboration, it suited the im-
plementation of synchronous collaboration in shared workspaces (see section 4), so our
implementation proved as stable enough to be expanded with automatic merge mecha-
nisms.

Explorative Authoring of Active Web Content 75

4 Design and Implementation of Shared Workspaces in a
Mobile and Desktop Environment

4.1 Introduction
Wiki systems [40] offer an easy and accessible way for people to work together. Usually
users can create and save pages that can afterwards be edited by other users of the
wiki system. With such systems, work can be distributed over long distances. Lively
Kernel [30] offers such functionality via two system built-in mechanisms.

First, the system is split into worlds which are part of the Morphic Framework [46]
implementation that is a core component of the system. Those worlds can form a so
called Webwerkstatt [37] which collects the knowledge produced by the system’s users
just as other wiki systems do with pages.

Second, the PartsBin [43], as a way to publish written programs to the system, offers
an identical benefit on the level of applications.

Working in wikis surely enables users to work together, but the style of collaboration
is rather asynchronous since only one user can save the document at the same time. For
the ability to work together at the same time53, there need to be additional mechanisms.

As changes in a wiki can not be seen until someone saves them, duplication of work
can happen if the work to be done is not pre-coordinated. But such coordination creates
overhead on the process of working and disrupts the workflow of synchronous collabo-
ration. However, the synchronization of content is an important task that has to be done
in near real time to create a notion of synchronous work. Consequently, a system for syn-
chronous work should either be on one location54, so that synchronization does not have
to happen, or it has to synchronize the content in a way that creates the least overhead
on the actual process.

As Lively Kernel does not offer such functionality, we approached to implement such a
system. This bachelor thesis describes how we augmented Lively Kernel’s collaboration
facilities by creating a new application that enables its users to collaborate at the same
time no matter of what place they are. We compared our system with other collabora-
tion systems in the collaboration matrix in figure 4955. Since synchronous collaboration
is missing in Lively Kernel, most of the focus is on this particular style of collaboration.
In general, the intention of our application is to support collaboration for people work-
ing on a common goal. That is why the users should not have to take care of the asyn-
chronous collaboration style as well. Therefore, our system has asynchronous aspects as
well.

When users come together to work on a common goal, that is called a session. Those
sessions can be started if one user opens a new shared workspace within the system. In
order not to have to wait for all participants to join a session, the system needs to support
asynchronous collaboration styles. Users joining later need the content that has been
produced at the time they joined, as well as the updates that happens after joining. As
a consequence, our system does not only support synchronous, but also asynchronous
collaboration styles.

53 synchronous collaboration
54 meant is actually one machine / computer
55 The graphic is based upon the authors personal estimation and is not backed with measured

numbers. It only serves for an approximated comparison of systems.

76 Explorative Authoring of Active Web Content

Timesynchronous asynchronous

Location

same

most distant

PartsBin

Blackboard

SyncMorph

Git

SVN

Figure 49: Collaboration Matrix; The SyncMorph is the system of interest in this thesis. The PartsBin
is part of Lively Kernel.

Collaboration systems are very diverse in terms of how they use computers to support
the work of a team. One natural approach is to physically share one space. This has
the side effect that work can not be distributed over a distance. Since Lively Kernel is
a Web application that inherently has users all over the world, it should be possible to
distribute work all over the world as well. Hence, an important key assumption of our
system is that each user is working on his or her own machine. Conclusively, our system
embraces distributed as well as co-located work.

As our system is based on the usage of individual computers it needs a synchronization
mechanism. To synchronize the content, one needs to identify the content’s benefit.

As the Morphic Framework is a core functionality in Lively Kernel it is understood
that one wants to distribute morphs via our system that we called SyncMorph. To make
the workflow easy, we decided to use interaction that a user of Lively Kernel is used
to. In addition, our system is implemented as a morph. This suggests to use morph
interaction. Thus, the users can drop a morph onto the SyncMorph and it will take care of
the distribution to all other connected clients. Furthermore, if one user removes a morph
from the shared workspace the corresponding morph representations on all other clients
get removed.

Sharing content is a way to distribute knowledge, but if we want to enable users to
work together, they need to be able to alter the shared contents. Consequently a more
enhanced version of this SyncMorph also supports the editing of morphs on the shared
space. In the interest of making changes to the synchronization state immediate and
foreseeable it is also possible to see a morph as another user drags it onto the workspace
of the SyncMorph.

Explorative Authoring of Active Web Content 77

Working with Morphic enables users create UI and behavior of their application. Never-
theless, sometimes an idea is not as concrete as it could be directly implemented. There-
fore we decided to add drawing support to our collaboration system. The ability to draw
enables users to sketch ideas. The drawings get synchronized as well so that ideas can
be developed together. In order to create some freedom for the user while drawing, the
system allows the customization56 of pencils.

Having such a system, which synchronizes all contents to all clients, empowers the
users to have a common sense of how far the progress of work is. However synchroniza-
tion is not enough to create an awareness of what each collaborator is currently work-
ing on. In addition to the synchronization of contents, further mechanisms are needed
for a system that should support synchronous collaboration. Collaboration on a physi-
cally shared workspace does not have those problems. Looking at why collaborators are
aware of each other’s work using such systems, can lead to a solution for a distributed
system.

In a physically shared workspace like a large table, each team member is aware of the
area in which the others are working by seeing them work there. The current working
area in the digital sphere is where a user has its mouse pointer or finger57. By synchroniz-
ing the position of the mouse pointer or respectively the finger, an equivalent is found
for distributed systems. Assigning each user a unique color, that is different enough
from the others, enables the users to identify each of their collaborators.

Besides, communication on a table is uncomplicated as one just says something out
loud to pass the message to everyone. This kind of instant communication can be achieved
via a group chat functionality that we implemented as well. Further our intstant mes-
saging chat has the benefit that the message is only passed to everyone at the same table,
but not in the same room.

The following chapter will describe our approach and the problems to solve. The suc-
ceeding chapter will explain the implementation of the system. The fourth chapter will
evaluate the results by looking at some usage scenarios. Afterwards, the system will be
evaluated performance wise. The sixth chapter will present related work. After that, we
will give an outlook on how the system could develop. The last chapter will summarize
the findings of this work.

4.2 Approach / Problems
When people work together, they naturally gather at one place. Consequently, meetings
in the virtual world need to evoke the same advantages. Especially this has to be done in
order to escape the need of manual synchronization by the users. The term of the shared
workspace in this thesis is meant as an analogy to the physically shared workspace as it
is the model for the system that we built. An example of the user interface in action can
be seen in figure 50. This chapter describes the problems that occurred while implement-
ing our system. Additionally, it explains our approaches to solve the shown problems.

In pursuance to make a system that supports distributed, synchronous collaboration
work well it should be responsive. For responsiveness, it is crutial to synchronize the
state or the content in a relatively small time interval.

56 color, alpha, size, stroke style
57 on a touch device

78 Explorative Authoring of Active Web Content

1 2 3 4

Figure 50: User interface of the SyncMorph with (1) buttons to toggle and indicate connection state,
chat pane and pencilstyler (2) synchronization pane, (3) chat pane and (4) pencil styler

A high-level overview of our applications functionality is shown in figure 51. It is based
on message exchange to communicate modifications of the content. The figure shows an
example of how content can be produced synchronously on two independent worlds.

Client-Server Architecture We decided to implement the application with a client-
server architecture. The decision was made for the following reasons:

First of all, the server as a central unit knows all clients. Having such an actor makes
it easier to implement the distribution of messages. Althought, this does not say that
a distributed networking system might not be equally well. Our solution was just the
most suggesting one with the used technology.

Moreover, as the server receives all messages from all clients it is possible to store the
input data into a persistent storage. At the moment, the persistence is realized by clients
holding a certain state. This concept of persisting state in clients would of course work
with a distributed system, but in this case one loses the central server as an additional
archiving unit.

Beides, implementing a distributed system without central infrastructure might be con-
voluted in Javascript.

The client-server architecture also enables the implementation of alternative clients that
communicate over the same server. Since the server’s purpose is only the message dis-
tribution, and possibly persistence, there is no need to replace it with an alternative
implementation. Alternative clients could for example implement a different drawing
algorithm for the purpose of interoperability. Here again a set of polymorphic clients
without a central server unit is possible as well.

Furthermore, the server can act as a centeralized mixer [25] for messages [50]. This can
save bandwidth to increase the performance when using slower connections.

Data Exchange Format We decided to define a specific exchange format for message
exchange. With this format it should be possible for the user58 to decide who will get the
message that is going to be sent. In favor of applying59 messages in the correct order it
is also possible to augment the format in that way so that each message contains an ID
and a timestamp.

58 in this case a client application
59 or resending

Explorative Authoring of Active Web Content 79

3. Mouse Down + Move

1. Mouse Enters

4. Line Drawn

5. Mouse Move + Morph

6. Morph Added

7. Change Color

8. Color chaged

2. Indicator Added

Synchronization Server Client 2Client 1

time

Figure 51: High-level overview of functionality

80 Explorative Authoring of Active Web Content

The message packages itself are serialized JSON objects. The message format looks like
the following in code example 17.

1 {
2 message: "message content (not necessarily a string)",
3 me: false,
4 broadcast: true,
5 }

Code Example 17: simple version of the exchange messages

The message content can be string or a data object itself. The properties me and broad-
cast specify to whom the server should send the messages. Whereas me set to true means
that the message will return to its original sender. Moreover broadcast means that the
message will be sent to every user being connected to the same channel as the original
sender of the message but the original sender itself. These options can be extended by a
new property broadcastType which will determine on which level the broadcast will hap-
pen. This option should default to "channel" with which it will behave as described
above. Setting the option to "global" would mean that the message should be sent to
every client connected to the server except the client who initially sent the message. An
extended version of this exchange format can be seen in the following example.

1 {
2 message: "message content (not necessarily a string)",
3 id: "unique message id",
4 time: 1234567890,
5 me: false,
6 broadcastType: "global",
7 broadcast: true,
8 }

Code Example 18: extended version of the exchange messages; properties id, time and boadcast-
Type are added

Synchronization As our system should support distributed, collaborative work, a
synchronization mechanism is needed. This section examines the synchronization pro-
cess. Figure 52 shows an overview of the event – method mapping for the different kinds
of synchronization that are used within the application.

Scope of Synchronization Since work in Lively Kernel happens on so called worlds, it
is suggesting to synchronize whole worlds. The disadvantage of this approach is that
this would prevent the presence of private workspaces. Private workspaces are impor-
tant for various reasons. Users might feel a disturbance of their private sphere if all
their thoughts and work are synchronized immediately to all other team members [55].
Consequently, a good system has to offer the possibility to decide which content should
be synchronized. That is why we decided to implement our system as an application
that can be loaded into every world to augment it with the collaboration facilities our
system is offering. All data and objects outside of the application then belong to the pri-
vate workspace of the user. By dragging objects into the application they and all actions
on them get synchronized. Therefore, we build a clear boundary between private and
shared workspaces. Further, all work within the world remains the same just as the users
are used to.

Explorative Authoring of Active Web Content 81

M
ou

se
 E

nt
er

M
ou

se
 D

ow
n

M
ou

se
 U

p
Ti

ck
in

g
M

ou
se

 M
ov

e
M

ou
se

 L
ea

ve

"M
ou

se
"

"M
or

ph
G

ra
bb

ed
"

"M
or

ph
"

"D
ra

w
"

"C
ha

ng
e"

"M
or

ph
D

ro
pp

ed
"

M
or

ph
 in

 H
an

d? ye
s

M
or

ph
 u

nd
er

 c
ur

so
r?

ye
s

no

M
or

ph
 in

 H
an

d?

ye
s

M
or

ph
 in

 H
an

d?

"M
ou

se
"

+
+

Fi
gu

re
52

:e
ve

nt
–

sy
nc

hr
on

iz
at

io
n

m
et

ho
d

m
ap

pi
ng

82 Explorative Authoring of Active Web Content

However the development of a clear synchronization boundary makes the application
logic, and by that the implementation, more complex. Since our system is just another
application within Lively Kernel it is part of a world as well, just like every other morph.
The contents of the SyncMorph are created in one world. They can have references to
other objects in the same world. If a user now decides to synchronize such an object
having references to other objects in his or her own world the problem will arise that
this reference is actually missing in all other worlds where the object was added by
the synchronization algorithm. Naively, it is possible to implement a reference tracer in
order to synchronize the references as well. The problem is that the world is a morph
as well which can be referenced60. As a result, only one reference to the world would
cancel out the concept of this synchronization boundary, because the world would have
to be synchronized as well.

Synchronizing the world brings further problems. Since there is a world on every client,
and there should only be one world, the algorithm would have to merge as many worlds
as there are participants in one session. Moreover, the SyncMorph is part of the world
as well ergo it would have to be synchronized as well. This would lead to an infinite
recursion.

In conclusion, we decided not to synchronize references that point to objects which are
not in the space of the shared workspace. The topic of references is part of the future
work.

Synchronization of Generic Content For the synchronization of generic objects we
needed a serialization algorithm. The first possibility is to implement an algorithm that
uses a whitelist to create a serialized object with certain properties (e.g. the visual prop-
erties). On all other clients, an object of the same class would be created. The new proper-
ties would be applied to this object. Even if this approach needs less network bandwidth,
the focus is placed on certain properties which makes the application harder to extend.
To support additional properties, the serialization algorithm must be reworked.

Instead, the approach we took for serialization uses Lively Kernel’s serialization algo-
rithm to store worlds and morphs. The advantage is that the whole object is serialized,
no matter what it looks like. This approach uses more bandwidth since more informa-
tion are transmitted. Initially an object gets serialized via this algorithm. Afterwards
only changes (see section 3) on the object graph get synchronized in order to save net-
work bandwidth.

Generic objects and all changes on them are synchronized in an optimistic way which
means that they are first executed on the client and then communicated. This has the
benefit that the responsiveness of the system does not change by a considerable amount.

Synchronization of Specific Content For specific content with a limited benefit for the
user we took a different approach. Drawings are an example for such content with lim-
ited benefit. Communicating whole objects would use more network performance than
needed in this case. Restricting the sent information is acceptable, since the possiblities
to extend the drawing of lines are endless61. We consider the benefit of saving bandwith
here to be higher than the need of extensibility. The clients receiving such specific infor-
mation recognize what has to be done by the kind of event that delivered them. By that
our client application is a thick client [25]. With this, it is possible to create a responsive
drawing surface.

60 like any other morph
61 We augmented the sent information by line style, width and color

Explorative Authoring of Active Web Content 83

Specific content is again optimistically synchronized to keep the corresponing interac-
tions responsive.

Creation of Awareness Working together with a software that synchronizes its con-
tents can sometimes be surprising as a remote user makes an action whose result is
displayed on the user’s client. To reduce the effect of being surprised, the user actually
has to see the action happening on the remote client. Besides, the user should be able
to anticipate what action a collaborator will do. This concept is called awareness. If a
user is not surprised by what happens on the synchronized board he or she will be able
to plan his or her own work in a better way. Good planning of work by each user also
leads to less editing conflicts as well as less duplicate work. Consequently, awareness is
an important concept in collaboration systems [17,18]. We implemented two concepts to
create awareness.

Telepointers Looking at how users anticipate what and where a co-worker is doing
something when working at a physically shared work space62, we found a solution for
the anticipation problem. When a user sees another one approaching a certain object on
the work space he or she will think that it is likely that his or her co-worker is going to
interact with it63. Furthermore in a physically shared workspace users are able to point
on objects to talk about them.

Both actions are performed with the hands of the user. Consequently, it is suggesting
to synchronize the representation of the hand in a distributed workspace. By doing so,
a user gets a telepointer for each collaborator.

For the sake of being able to distinguish different users, each telepointer has a unique
color that is different enough from all colors of the other collaborators. Since we have a
synchronization server as a central communication unit that knows all clients we imple-
mented the user – color mapping there. When a new user logs into a shared workspace
the server will assign a new color to this user.

Telepointers are, like drawings, specific content that is optimistically synchronized
with a reduced set of information since the mouse and touch interaction needs to be
highly responsive with respect to a usable system.

Chat With the given system, it is straight forward to design a chat application. We use
our data exchange format to send textual messages between users. To enable the user
to see if the message was really sent, the messages are pessimisticly synchronized. This
means that a message is first sent to the server which distributes it to all clients. Each
client executes the action corresponding to the type of message.64 So if the connection is
broken, the user will recognize it by seeing that his or her chat message does not show
up in his or her chat client. The server itself stores chat messages not only by saving the
user name - message mapping. It extends the information by the time the message was
received by the server. With that, a chat log is created on the server that can be replayed
to clients that have been offline.

62 such as a table or a whiteboard
63 e.g. draw on the area; manipulate the object; move the object
64 In case of a chat message this would be to display the message and the username in the chat

GUI.

84 Explorative Authoring of Active Web Content

4.3 Implementation

In this chapter, the implementation of the system is illustrated. The implementation is
described feature by feature. For each feature we discuss the benefits it conducts and the
limitations that remain. The features can be divided in three main categories of features:
synchronization of morphs, synchronization of drawings and awareness features. Each
feature set is part of the same software system.

Synchronization of Morphs As morphs are the objects with which the users imple-
ment their applications, it is important to use the synchronization approach of generic
content in order not to restrict the possibilities Lively Kernel is offering.

Fast Sharing At the time we implemented the first version of the SyncMorph, we rou-
tinely used CouchDB [4] for storing data that we created in Lively Kernel. Consequently,
we used CouchDB here as well to store serialized morphs. The serialization was already
implemented and we just had to use it. It basically linearizes the object tree and writes
it into a JSON string.

On top of serialization, we needed some interaction event on that we would start the
synchronization process. Here again we were looking for something that Lively Kernel
was already offering. Since our application was implemented as a morph, we wanted it
to be as simple as adding another morph to it. After a morph is added our application
should take care of its distribution. The onDropOn method seemed to be a good place
to hook into since it is called on the target morph when a user drops a morph onto it.
We patched the behavior to the class Morph with a layer. Code example 19 shows this.
If a morph is dropped onto the SyncMorph, the method saveMorph will be called on
the SyncMorph. For convenience, we wrapped the usage of the built-in serializer in a
serialize method on the class Morph.

1 module('projects.BP2012.SyncMorph').requires().toRun(function() {
2 cop.create('SyncMorph').refineClass(lively.morphic.Morph, {
3 onDropOn: function (aMorph) {
4 if (aMorph.saveMorph) {
5 this.disableHalos();
6 aMorph.saveMorph(this);
7 } else {
8 this.enableHalos();
9 }

10 },
11 serialize: function () {
12 // ... implementation intentionally left out
13 return serializedObject;
14 },
15 });
16 SyncMorph.beGlobal();
17 })

Code Example 19: extension of class Morph

Explorative Authoring of Active Web Content 85

The functionality of saving a dropped morph to the database is of course implemented
on the SyncMorph. Apart from saving the morph to the database, metadata will be
added to the morph object in order to be able to manage65 the content as updates come
in.

1 function saveMorph(aMorph) {
2 aMorph.databaseID = undefined;
3 aMorph.databaseRev = undefined;
4 if (this.active) {
5 var newMorph = aMorph.serialize();
6 var result = this.getDB().save(newMorph);
7 if(result.error=="conflict"){
8 alert("an error occured while synching the morph");
9 } else {

10 aMorph.databaseID = result.id;
11 aMorph.databaseRev = result.rev;
12 }
13 this.updateDBObjectIDs();
14 }
15 }

Code Example 20: save functionality of SyncMorph

After this iteration, we were able to distribute morphs fast between worlds without us-
ing the PartsBin or a saved page. Though the conflict avoidance strategy was to disallow
interaction except grabbing for the morphs on the SyncMorph. So for being able to edit
the morph, the user had to grab it and drop it into his or her own world to enable the
editing features again. As a consequence synchronous collaboration was not possible
with this revision, but we fastened up the sharing process.

Message Passing Since the CouchDB server was quite slow if the SyncMorph contained
many morphs, we were looking for a faster alternative. We decided to do the message
passing ourselves and implement a synchronization server. We used node.js [59] for that.
Fortunately, Lively Kernel is offering a mechanism to create and run node.js servers. This
made it easy to develop this application completely within Lively Kernel.

The implementation of the synchronization server was straightforward since node.js
and socket.io [51] offer all features we need for a message passing server. First we need
to hold a reference to all clients that are connected to the server. Since node.js abstracts
different technologies to sockets, it was easy to accept incoming connections and close
them again as the client disconnects.

65 e.g. delete the morph if it was deleted on another client

86 Explorative Authoring of Active Web Content

The channel feature of socket.io was a way to implement different workspaces within
one system. Also, it was easy to send a message to all clients of a certain channel, as the
library offers a broadcast mechanism that sends a message to all clients66 of a channel
or the whole system. Further, we needed to define different message types for different
actions that should be synchronized. Figure 21 shows an exerpt of the implementation
of the synchronization server. We wrapped storage and message broadcasting function-
ality in an object called WhiteboardServer. The set of events that we need for the commu-
nication between clients was defined with the io object of socket.io. Lines 16 − 18 show
an example of such an event definition. The first parameter of the socket.on call is the
name of the event. Additionally, the second parameter is the functionality description of
the event as a Javascript function.

1 WhiteboardServer = {
2 port: 4000,
3 // ...
4 send: function (socket, channel, messageType, data) {
5 if (data.broadcast) {
6 socket.broadcast.to(channel).emit(messageType, data);
7 }
8 if (data.me) {
9 socket.emit(messageType, data);

10 }
11 },
12 }
13

14 io.sockets.on('connection', function (socket) {
15 // ... code intentionally left out
16 socket.on('ping', function (data) {
17 WhiteboardServer.send(socket, /*channel*/, 'pong', data);
18 });
19 // ... code intentionally left out
20 });

Code Example 21: code exerpt from synchornization server implementation

The version of our application after this iteration improved the performance of the
application when it contains many morphs. Still, the synchronous collaboration features
were not present at this time.

66 except the sender

Explorative Authoring of Active Web Content 87

Enabling Collaboration Finally we decided to integrate a diffing and merging algo-
rithm for objects (see section 3) in order to be able to only communicate changes instead
of whole morphs. Unfortunately an event for a change that happened on an object is
missing in Javascript. That is why we used a ticking script that observes the changes on
all morphs67 that are synchronized via the SyncMorph. This ticking script is executed in
a well defined time interval. It performs a diff to the current version of a morph. To have
a reference to compare to, we copy the morph after diffing as a current version.

When a change is detected, it is sent to the synchronization server that distributes that
message to all other connected clients. A client receiving a change merges that change
into the regarding morph.

After this iteration the SyncMorph is finally capable to support synchronous work.
The users will get updates of the morph shortly after they are done on the client of a
collaborator.

Synchronization of Drawings Drawings are an example for content that has a well
defined set of features and which therefore can be synchronized as specific content in
order to save network bandwith and by that improve the responsiveness of the system.

Drawing on Canvases The drawing facility needs to have a surface on which the users
can draw. We used the HTML5 canvas element for that purpose. The canvas element
offers an API to draw on it. Since Lively Kernel did not include a canvas morph at the
time we implemented this, we needed to create such a morph. Fortunately, Lively Kernel
is offering a flexible mechanism to create morphs. The only task we had was to create a
canvas element that we used as the shape for the morph.

For the ablity to send events to the synchronization server, we encapsulated the API
calls in own methods on the new morph that we called Whiteboard. Conveniently, the
API functionality of the canvas element matches our drawing metaphor as it has a func-
tion lineTo that acts as you would have a pencil. You can call it several times giving it a
point on the canvas in order to draw a line. The last drawn point is the point where the
next stroke would start as if there would be a virtual pencil. Aside from that function
moveTo that sets the position of the virtual pencil to a given point on the canvas.

In addition, we defined which interaction event68 calls which API call.
First a client application sent out whole lines. This had the consequence that lines

popped up at remote clients. When drawing larger shapes this actually spoiled the pro-
cess of drawing together as the collaborators can not anticipate where another user is
drawing. To solve that, we implemented that each stroke on one line was synchronized.
Consequently, if a client receives a message from the synchronization server, it will call
the assotiated method on itself to draw the stroke.

With this implementation the users are able to make drawings together. Unfortunately,
the canvas does not seem to be fast enough when synchronizing single strokes of a line.
More importantly, this implementation does not work on the iPad. That is why we de-
cided to use a different technology for the drawing surface.

Drawing Lines Lively Kernel supports SVG rendering69 which was the reason why we
decided to use SVG paths for the drawings.

67 Morphs are usual Javascript objects as well.
68 mouse down, mouse move, mouse up and touch start, touch move, touch end
69 SVG rendering was actually the default rendering mechanism before HTML rendering was im-

plemented

88 Explorative Authoring of Active Web Content

As SVG does not have a convenient API for drawings such as HTML5’s canvas ele-
ment, we implemented a workaround in order to map the code to the drawing metaphor.
When an event arrives, that starts the drawing of a new line70, a new SVG line morph
is created. With each arriving event71 that indicates the continuation of the drawing, the
current position of the mouse or finger, which is stored in the regarding event, is added
to the vertices of the SVG line.

Additionally, we abstracted the call of drawing functions and the regarding events that
should trigger them. For example, we mapped the mouse move event to a method that
handles the process of drawing a new stroke. When we added touch interaction we only
had to map the touch move event to the same method.

Actually drawing at the same time on different clients requires that each message con-
tains a point72 and an identifier for a line. By providing these information, the client
application is capable of drawing multiple lines at the same time.

This version of the Whiteboard offers a way to draw together on a morph with a better
performance than the previous iteration.

Additional Features To better support the expressiveness of the drawings, we imple-
mented a virtual pencil that could be styled in different ways. We implemented the
customization of line thickness, color and line style. With that users have a versatile tool
at hand for different drawing tasks.

To implement this additional feature, we only had to set the width and color as well
as the style of the border of the SVG path. Moreover, we built a GUI tool to set all those
parameters in a convenient way. This GUI can be seen in figure 50 on the right.

Finally after this iteration we have a software that supports the collaborative drawing
on desktop and touch devices. Likewise, simultaneous drawing on different clients and
with a customizable pencil style is possible.

Awareness Features To increase awareness for the people collaborating via our ap-
plication we implemented some features described in the following.

Telepointers Javascript does contain events for mouse interaction and Lively Kernel
does contain events for touch interaction as well, which is an enhancement we made
that is described in the bachelor’s thesis of Sebastian Stamm (see section 2). Looking at
the move events for each interaction method one gets the current position of the rep-
resentation of the hand in the system. Since telepointers are specific content, they are
synchronized optimistically with a limited set of information. The mouse event that is
distributed by the server to its connected clients contains the position and identification
information for the telepointer. An example of how a mouse message event looks like
can be seen in code example 22.

The remote clients create and display a telepointer for each other client. With the iden-
tifier that is provided in the mouse message, the corresponding indicator can be found.
With each arriving event the remote clients update the position of the corresponding
indicator.

70 mouse down + mouse move or touch start
71 mouse move or touch move
72 that should be added to the vertices array of the SVG line

Explorative Authoring of Active Web Content 89

1 {
2 message: {
3 indicator: 120938479283,
4 position: {x: 42, y: 23}
5 },
6 me: false,
7 broadcast: true,
8 }

Code Example 22: an example of a mouse message event

Chat The implementation of a chat system was straightforward, since there is already
synchronization server that can distribute messages, and that is already able to commu-
nicate complex information. On the server side a new message type had to be added
that does nothing but simple routing of messages to the clients.

On the client side, the sending and displaying of messages had to be implemented. For
that, we build a separate GUI pane that users can trigger from the main view.73 The chat
pane consists of two elements for its two tasks: First, an input field where users can type
in text and send it by pressing the return key. To have this behavior implemented, we
watched on each key stroke74 if the return key was pressed. Second, a pane to display
incoming messages. This message log was realized by taking the data that is coming in
and concatenating the message’s content to the current content of the text pane.

In order to support shortcut commands for power users, we added commands that can
be entered in the same input field. Every command begins with a slash that is followed
by the name of the command. The commands are stored in an object that has the com-
mand name as a key and the description of the functionality of the command as a value.
The key is a string and the functionality description is a Javascript function. An exerpt
of the definition of this object can be seen in code example 23.

Having this object available, the functionality gets called by accessing the commands
object with the command string the user had just entered as a key and calling the apply
method on the function that was returned. The function will be applied to the chat pane
so that the description of a command must be written with that in mind. All parameters
given by the user will be routed to the function that is called on the chat pane.

Furthermore, the convenience feature of having a history of the entered text was im-
plemented by again watching the pressed keys. If the up or down keys were pressed,
the user will be able to cycle through an array of the entered messages. Those messages
were saved by pressing enter75.

4.4 Examples and Scenarios

This chapter points out some scenarios of usage that will be discussed on the basis of
the current version of the collaboration system we implemented.

73 This can be seen in figure 50
74 onKeyDown
75 The same mechanism as sending messages

90 Explorative Authoring of Active Web Content

1 this.commands = {
2 'nick': function (name) {
3 this.whiteboard.setUserName(name);
4 this.showMessage("changed nick to " + name);
5 },
6 'names': function () {
7 this.whiteboard.getConnectedUserNames();
8 },
9 'channel': function (channel) {

10 this.whiteboard.setChannel(channel);
11 },
12 'chan': this.commands['channel'],
13 'clear': function () {
14 this.whiteboard.clear();
15 },
16 /*
17 ... more commands intentionally left out
18 */
19 };

Code Example 23: exerpt of the command object

Exchange of Content Between Worlds Let us assume the following collaborative
scenario: Two users working in Lively Kernel on two different worlds want to exchange
ideas in form of an application written within the system. Having the PartsBin, the cre-
ator of the application can publish it. The other user can from now on load it using the
PartsBin.

This process invokes several problems when working together closely. First, the over-
head of publishing the application and writing a commit message might be too high to
justify the benefit of sharing the work. Second, the user that shall have a look at the work
of his or her coworker might not want to invest the time to search the application in the
PartsBin in order to load it. Besides, the progress made on the implementation might not
be in a state where one wants to publish it to a broad audience76.

Consequently, a fast exchange of applications77 should have the least overhead to share
the application with others.

The SyncMorph implements this workflow by letting the user simply drop the morph
into the synchronization pane. The system will take care of the synchronization. As an
effect, the morph appears in the coworker’s application without the need that this per-
son does anything except being connected to the server.

Developing Ideas Together Working with a system that follows the metaphor of a
wiki, a user will create content on its own and save the content page in the interest of
making it available to other users of the wiki system. The collaborators can open the
saved page to see what the user created and add their own ideas to it.

76 This is what the PartsBin actually does.
77 generally Morphs which are Javascript objects

Explorative Authoring of Active Web Content 91

This kind of conflict handling is called “Single Active Participant” [20]. This process is
relatively slow since every participant has to wait until someone saves the page to add
own content to it. If the style of work is highly asynchronous, this will not be a problem.
But as the system should support synchronous work, this approach does not fit the re-
quirements of simulaneous editing. Figure 53 shows the difference of asynchronous and
synchronous styles of working together.

Consequently, conflict handling in our application is not done in such a blocking man-
ner. Our approach is aiming at group dynamics to solve editing conflicts by giving each
user the information he or she needs to know where and what his or her coworkers
are doing. Furthermore, communication is important to create group dynamics. That is
why we implemented an instant chat that is located next to the synchronization pane.
Besides, the actual editing happens in a fully synchronized way. If a person makes an
update this change will be sent to every other client that is connected. With such a level
of synchronization, we create the feeling that the group is working on the same content.

Communication Within the System Communication in wiki systems is often done
via comments that are just another variation of content of a wiki page. Consequently,
this comes along the same problems as other content78 when working synchronously.

In favor of a synchronous working style, the system should distribute those messages
instantly. As mentioned in the previous section, the SyncMorph implements this instant
messaging with a chat interface that distributes messages to all users of a channel.

4.5 Performance Evaluation
This chapter deals with the evaluation of the performance of the system. Since synchro-
nization of contents is time critical for synchonous collaboration, the focus lies on how
fast messages are exchanged between clients using differnt networking technologies.
The experiments were all done using the same laptop computer. This machine was con-
nected over WiFi to an access point that was connected to the internet using one of the
following technologies: local network79, DSL, UMTS-Broadband, GSM. Further, the ex-
periments were realized using two clients connected to the server. Both clients ran on
the same machine and used the same networking technology.

For the sake of being able to interpret the results better, we first measured how long
it takes for a simple message to get from one client to the other and back. For this
roundtrip, we sent a ping message through the synchronization server to the other client.
The other client then responded with a pong message. As the pong arrived at the original
sender the time measurement was over. Figure 54 shows the results of the measurement.

The different technologies performed as expected. The roundtrip time in the local net-
work was 5.4 ms in average. Consequently, a message arrived at the other client after
approximately 2.7 ms. The other technologies performed worse as expected. For the DSL
internet connection, the roundtrip time was 172.4 ms in average which means that a mes-
sage was received by the other client after approximately 86.2 ms. UMTS-Broadband80

was not that much slower than DSL with 232.7 ms in average for a roundtrip meaning
that after approximately 116.4 ms the other client received the message. Using GSM as
an internet connection slowed the roundtrips of messages down to 4346.5 ms in average.
Consequently, a message arrives at the other client after more than 2 seconds.

78 see previous sections
79 refers to the same network the application server is in
80 also known as 3G or HSDPA = High Speed Data Packet Access

92 Explorative Authoring of Active Web Content

Peter

new version
of content

Mary

new version
of content

wait for collaborators
to save the page

Mary

new version
of content

Peter

new version
of content

1

2

Figure 53: Examplary comparison of (1) asynchronous and (2) synchronous collaboration style

Explorative Authoring of Active Web Content 93

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8

ti
m

e
 i
n

 m
s

run

local network
dsl

umts broadband
gsm

Figure 54: Roundtrip time of a simple ping message through the synchronization server, this dia-
gram uses a logarithmic scale on the y-axis

For messages with a considerable amount of content the throughput of the network
connection is important. Using the system ourselves we figured that a synchronization
time around 500 ms seems to be enough not to break the synchronous workflow.

Adding content to the messages has an effect on the timings of the messages. The
roundtrips in average were: 90.3 ms for the local network, which results in a time of
45.2 ms that the other user needs to wait for message arrival; 466.7 ms for the DSL
connection, so that messages arrive at their destination after approximately 233.4 ms;
564.6 ms for the UMTS-Broadband connection, so that messages arrive after approxi-
mately 282.3 ms; 7569.3 ms for the GSM connection, meaning that messages reach their
goal after approximately 3784.7 ms.

Conclusively, the throughput on connections using the local network, DSL or UMTS-
Broadband is good enough to use the system. Whereas, connections using GSM are
definitly too slim to use them for synchronous collaboration.

There are also messages that show a continuous action like the mouse moves on a
client that are represented by telepointers on the other clients. For those messages, the
throughput of the network connection is not important but speed of the network81 Those
message are not as large as a message with a morph as content since they basically
only contain a point that says where the mouse pointer moved. But since the action that
is shown is continuous and the users expect it to be continuous, the time it takes to
synchronize should be low.

81 How fast messages arrive at the destination.

94 Explorative Authoring of Active Web Content

 10

 100

 1000

 10000

 100000

 0 2 4 6 8

ti
m

e
 i
n

 m
s

run

local network
dsl

umts broadband
gsm

Figure 55: Roundtrip time of a message with a whole morph as content, this diagram uses a loga-
rithmic scale on the y-axis

On the local network it takes 4.3 ms rountrip time in average. So that the message ar-
rives approximately after 2.2 ms at the other client. This is as much time as it needs to
send a ping message. On the DSL connection it takes 128.3 ms for one roundtrip in aver-
age. So that a mouse message will arrive after approximately 64.2 ms on the other clients.
The UMTS-Broadband connection reaches 389.2 ms in average for a roundtrip. So that
the message will approximately arrive 194.6 ms after sending it. On the GSM connec-
tion a roundtrip takes 12267.2 ms which means that the message will arrive 6133.6 ms
after sending it at the destination. Again, as we used the system ourselves, we figure
that a time around 200 ms is enough to create a reasonable smooth continuous action on
remote clients.

Conclusively, connections using the local network, DSL or UMTS-Broadband are fast
enough to use them with our system. But connections using GSM are definitly too slow.

Explorative Authoring of Active Web Content 95

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8

ti
m

e
 i
n

 m
s

run

local network
dsl

umts broadband
gsm

Figure 56: Roundtrip time of a mouse message, this diagram uses a logarithmic scale on the y-axis

Another question is if the system is usable and responsive enough to collaborate with
people from all around the world. As an example we assume a work group that is
in Potsdam82 and Palo Alto. The distance between the two cities is about 9154 km83.
The fastest connection between the two cities would be a roundtrip time around 2 ×
9154 km/speed of light = 2 × 9154 km/299.792 km/ms ≈ 60 ms. The people work-
ing in Potsdam should not have a problem as they might use the local network. But the
question is if the system is usable and by that fast enough for the people in Palo Alto.

The actual roundtrip time would not be as low as 60 ms since the information has
to travel with the speed of light. Additionally, we can not assume the same network
performance as in the local network. Consequently, we will assume that the network
connection performs as well as a DSL connection. Adding the additional latency to the
values of the DSL connection results in times of 116.2 ms84 for a small message and
263.35 ms85 for a larger message to arrive. Since this estimation is based on the speed of
light and the direct connection between the two cities it is very optimistic. The latency
in reality might be higher. Conclusively, the user experience might not be good enough
that far away from the server.

82 Where the server of lively-kernel.org is located.
83 Queried at http://www.wolframalpha.com/input/?i=distance+from+potsdam+to+
palo+alto (visited 29.06.2012)

84 172.4ms+ 60 ms/2
85 466.7ms+ 60 ms/2

http://www.wolframalpha.com/input/?i=distance+from+potsdam+to+palo+alto
http://www.wolframalpha.com/input/?i=distance+from+potsdam+to+palo+alto

96 Explorative Authoring of Active Web Content

4.6 Related Work

In this chapter we shortly point out some related work that has been done by other
research groups. The work discussed here was done in the 1980s and 1990s.

WYSIWIS86 In 1987 a group of researchers at XEROX Palo Alto Research Center
worked on a collaboration system for meetings [55]. For that, they took a closer look
at the WYSIWIS principle that in their opinion supports many features an analog sys-
tem such as a whiteboard87 has. But they also hold that WYSIWIS interpreted strictly is
too inflexible. This work is an example of how to handle problems evoked by the strict
interpretation of the principle. It gives as well ideas for a collaborative drawing system.

Cognoter The same group who did the research on the WYISIWIS principle developed
an application named Cognoter that serves as a support system for collaborative orga-
nization of ideas [56]. They point out the benefits of working in a group. Further, they
have a closer look on how to support the process of finding ideas88, as well as organizing
and evaluating them.

GROVE89 In 1989 a group of researchers at the Microelectronics and Computer Tech-
nology Corporation in Austin, Texas worked on a collaborative outline editor named
GROVE [20]. In their findings they describe the difference between shared and private
workspaces. Along with that they developed synchronization boundaries for their sys-
tem. The work also contains a discussion about WYSIWIS. Concurrency control in syn-
chronous collaboration systems is also discussed by taking different approaches like
locking of content and operational transformations90 into account.

Portholes In 1992 researchers at Xerox PARC91 developed a system to increase aware-
ness of distributed work groups called Portholes [18]. The basic idea is that each collab-
orator has a camera and a microphone installed at his or her work place. The system
shows the images of the whole group in one view. Consequently one can see who is
actually working at a given time. With the microphones short audio messages could be
recorded. The system they developed made it possible to be aware of ones collaborators
without much need of information gathering. In their work they also describe the archi-
tecture of the system which consists of serveral servers for the different locations. Those
servers are responsible for the image processing of their connected clients. In addition,
the servers synchronize to the servers of the other locations so that a client only has to
query one server to get the information being stored by the whole system.

86 What You See Is What I See
87 Their metaphor is a chalkboard.
88 Brainstorming
89 GRoup Outline Viewing Editor
90 Optimistic approach to synchronization where an operation is executed immediately with the

possiblity to undo it later.
91 Locations in Cambridge, Great Britan and Palo Alto, CA, USA

Explorative Authoring of Active Web Content 97

ShrEdit In 1992 researchers at Xerox PARC in Cambridge did research on a collabora-
tive text editor as well [17]. In their findings they compare different approaches made by
other research teams. Moreover, their approach focuses on the concept of shared feed-
back. The main statement of the group is that giving a group enough information on
what is happening on the shared workspace and enabling them to communicate infor-
mally is better than predefined roles92.

TeamWorkStation In 1990 a group of researchers at NTT Human Interface Laborato-
ries developed an interesting approach to integrate virtual and actual workspaces [50].
The basic concept is to make video overlays of different workspaces. This creates a high
acceptence since each user can use the tools he or she is most comfortable with. Obvi-
ously a problem is to merge the work a group has done into one artifact. They integrated
microphone and camera as well to make communication between collaborators as easy
as they would sit next to each other.

Single Display Groupware In 1999 a group of researchers at the University of Mary-
land developed a collaboartion system that has its focus on local collaboration on one
computer [57]. The challenge of this work was to design a system that offers individial
input possibilities for each collaborator. At this time multitouch enabled devices where
not present and the guiding input principle was one mouse and one keyboard on one
machine. This work offers an insight on how collaboration support works on a level of
most narrow cooperation.

4.7 Future Work

As this work is only a part of a project that took place at Hasso-Plattner-Institut in 2012
there are some ideas that not have been implemented. This chapter will suggest some of
the work that might be done in order to improve our system.

Software Quality As the system served as a platform to experiment and try out dif-
ferent approaches, the software quality is not very high. In order to make the system
ready for productive use, there should be some work done to increase the quality of the
software. To achieve that, the used algorithms and architecture should be much more
robust since it seems to fail unexpectedly when using it. Note that the amount of tests is
rather small. To ensure that the written software does what we expect, there should be
at least a unit test suite that tests the functionality of the system.

Furthermore, to ensure a good extensibility and understanding of the system there
should be additional documentation. Especially the architecture and functionality should
be documented well for creation of better understanding.

Client Features As seen in the chapters above, the client application has some fea-
tures that support synchronous or asynchronous collaboration style. In order to create
more possibilities of working styles and improve the collaborative work we have some
features in mind that the client could support.

92 which would mean additional management overhead for the collaborative work session

98 Explorative Authoring of Active Web Content

Chat System The chat is a way to communicate within the system. However, the text
messages that are sent and displayed to all participants of a working session form a sin-
gle stream. As there might be groups of people within the workgroup working focused
on special features, a stream for the whole group might not work out well. Since differ-
ent threads in a single stream are difficult to read, an additional information to the chat
message can help to split the stream up into different topics. This additional information
could be a position within the shared workspace. We imagine a chat system which we
called ObjectTalk in which conversations happen around the object of interest. By doing
so, everyone who is interested in this coversation can scroll the view to the object where
the chat message are displayed as well.

Drawing The drawing of sketches works quite well in the current version of the sys-
tem. But an opposite operation is missing in the system. There is a way to clear the
whiteboard by deleting all contents, but when drawing users also want to erase single
strokes that are wrong. For deletion, we imagine to different kinds of erasers: The first
approach is an eraser that works just as a eraser on paper. Usability wise, it is just a
special pencil that deletes content instead of creating it. The second approach is a tool to
delete whole lines. The basic idea is that the user draws a line across all lines that he or
she wants to delete. With that approach, much content could be deleted with one action
by also being able to select what should be deleted.

Change Detection The detection of changes on properties93 which are part of the Mor-
phic Framework do not have to be discovered by diffing the objects over and over again.
For that pupose the Morphic’s getter and setter functions can be utilized. In addition,
other than properties, the addition of scripts to an object can be detected via the addScript
function of a morph. The need of diffing and merging of objects does not cancel out since
the adding and changing of arbitrary properties of the object must be detected as well.

Having this utilization of Morphic’s getter and setter functions, it is possible to keep
a log of the changes that have been made. This log allows to implement an undo-redo
feature for the changes on Morphic properties.

Conflict Handling Currently, the handling of conflicts is not actively done by the appli-
cation. Our approach is that the group will coordinate itself to avoid such editing con-
flict. Since human communication is not free of misunderstandings, the system should
somehow handle editing conflicts. A possible solution would be to accept the most cur-
rent change that happened on an object. For example, if two users change the size of a
morph in an overlapping way, the change that happened lastly will be applied. Doing
so the optimistic synchronization approach can still be used. The client which made the
change that is going to be accepted will discard the update it is receiving from the other
client because it’s change is more recent. The other client whose change is discarded will
apply the change it is receiving to its synchronization state.

Connections The current implementation does not synchronize connections since the
synchronization boundary does not allow to synchronize objects that were not dropped
onto the synchronization pane. In order to have connections available, we could at least
allow connections to objects that are already synchronized.

93 e.g. color, size, position

Explorative Authoring of Active Web Content 99

Creating Awareness of Changes Another problem occures when one user is rejoining
an existing session. The work that has been done in the time he or she was offline will
be synchronized completely to his or her client. This hard synchronization of the state
is lacking of awareness of what is changed. We imagine to create a timeslider with wich
the user can replay the actions at his or her own speed. Additionally, diffing to the latest
version of an object can create an understanding of what changed with the updates that
the user just received.

Snapshot of Drawings Currently drawings could not be reused since they can not be
accessed as usual morphs when the user interacts on the whiteboard. For recomposition
puposes we thought of a tool that would allow the user to take photos of the drawings
which are then pasted to a new morph that can be dragged around just like any other
morph.

Alternative Clients The design allows to implement different clients that communicate
over the same synchronization server. It would be interesting to implement clients in
systems different from Lively Kernel. That could attract new users and by that create
more freedom of the tools the users have to use.

Server Improvements The software of the synchronization server could improve as
well. By now when the server crashes it has to be restared by hand. By executing the
server in a loop that restarts the server as it crashes, this problem can be solved.

Further, we made sure that broadcasting is possible, but only on the level of channels.
To be able to send messages to every client that is connected to the server for example
for maintainance reasons there should be a way to broadcast messages to all connected
clients.

In order to enable a better integration into other existing systems we could use a stan-
dard instant messaging protocol like XMPP.

Lastly, it could be interesting to implement the system without a synchronization server.
Communication would have to happen in a peer-to-peer manner. A problem with that
approach could be that it would possibly use more bandwidth since one client has to
send its changes to multiple clients instead of just the server. Another problem could be
how the clients get to know each other.

4.8 Conclusion

This work builds a basic implementation of synchronous collaboration support in Lively
Kernel. We found solutions for fast sharing of content. This enables users to work to-
gether on synchronized objects. Further we illustrated how collaborative work can be
supported on the levels of idea finding and implementation.

Nevertheless two main problems remain that need to be faced in order to create a
productive collaboration system. First, the problem of overlapping actions [20] needs to
be solved. The present system does not handle actions that happen at nearly the same
time on the same object. As an example, one user might change the color of a morph. If
his or her collaborator is changing the color of the same morph before the change arrives
at his or her client both synchronization states will not be the same. This is because both
clients receive the update of the other client. An approach to solve this was given in
Future Work.

100 Explorative Authoring of Active Web Content

Secondly, the awareness for people (re-)joining a session needs to be improved. Cur-
rently there is no way to see what happend in the meantime94. We thought of a solution
for this problem as well. An approach could be a timeslider that enables the user to scroll
through the actions that happend.

The chapter Future Work showed that there are several ideas for features to improve the
system. Finally, built on Lively Kernel the system is a suitable platform for collaboration
research.

94 The time the participant was offline

Explorative Authoring of Active Web Content 101

5 Benchmarking Lively Kernel on Various Systems

5.1 Introduction

Lively Kernel is a highly interactive prototyping and development platform. It is de-
signed to enable intuitive and fluent development of both prototypes and rich applica-
tions. To enable fluent development you need fluent interaction. To have fluent inter-
action you need fluent action processing. A low performance can undermine the very
essence of Lively Kernel. To prevent this from happening, we have to be able to get
notified about, find and remove performance issues.

Although most performance issues show themselves sooner or later, most developers
tend to overlook them, because they are focused on other tasks at the moment. In ad-
dition it is very difficult to tell, which issue is the most important. Furthermore, issues
need to be found, before they strike the user. To enable this, we decided to use bench-
marks. Benchmarks provide us with a numerical score that varies over platform and
implementation.

There are already JavaScript benchmark suites, for example SunSpider, V8, Kraken
and Dromaeo. However, these focus on overall JavaScript performance while we want
a benchmark focused on Lively Kernel performance. In fact, we want it to change with
our implementation, so we can see any improvement or deterioration of performance.
So we need to implement our own, Lively Kernel specific benchmark suite.

When having found an issue, we want to fix it. To remove a performance issue, we need
to find the bottle neck, that causes the issue. A common way to find bottle necks is pro-
filing. Measuring the execution time of all called functions will unveil, which take the
most time. Profiling is available in some browsers already. In fact, we used the profiler
of Google Chrome successfully in the past. However, there are some features that can
only be achieved by a Lively Kernel specific solution. Google Chrome knows nothing
about the internal architecture of Lively Kernel, but we do. So we can provide addi-
tional information like object or class names. Furthermore we can use this knowledge to
exclude irrelevant functions. These are for example temporary functions created to serve
as callbacks in functions like setTimeout, forEach, map or reduce. Additionally to
the mere functionality, we will present a decent user interface.

Section 5.1 contains relevant details about Lively Kernel. Section 5.2 lists the features
we included in our benchmark suite and motivates the decision. Section 5.2 describes
the general approach we followed in our benchmark implementation. Sections 5.2 to 5.2
detail the implementation of the benchmarks representing the individual features. Sec-
tion 5.3 shows the implementation of the profiler and its user interface. Finally, sec-
tion 5.4 Presents the results of the benchmarks and insights from the profiler. Section 5.6
compares our benchmark to other JavaScript benchmarks. Section 5.5 shows our plans
for improvements and section 5.7 draws a conclusion.

Lively Kernel This Section shortly describes Lively Kernel and gives some details on
the most important features.

102 Explorative Authoring of Active Web Content

Lively Kernel is a self-sufficient developement plattform, that runs directly in the
browser. It enables you to create and run prototypes and even rich applications right
in the browser. These applications do not need to be deployed seperately, but run di-
rectly in Lively Kernel, even while you edit them.

The fundament of Lively Kernel is the morphic system. Morphic is a user interface
framework originally invented for squeak. It focuses on direct manipulation of graphical
objects. These Objects are called morphs. Each part of the user interface is a morph. A
window is a morph, a box is a morph, a text is a morph, a button is a morph. A morph
may be composed of other morphs, these are called its submorphs. The sumbmorph
relation forms a tree. The root of the tree of displayed morphs is the world. Morphs can
react on user behaviour and/or perform actions at regular intervalls. [45]

As an extension to the morphic System, Lively uses its web-based nature to provide
an online repository of morphs. This repository is called the PartsBin and the morphs
published there are called parts. The PartsBin includes virtually everything, from simple
shapes to UI widgets, system tools and even whole applications. As Lively is completely
self-sufficient, even the PartsBin is a part in the PartsBin. [44]

The PartsBin enables asynchronous cooperation in a basic way. When programmers
make different changes on the same object, Lively kernel can find the differences of the
versions and aid in merging them. (see section 3) Additionaly, Lively is beginning to
support live collaboration in form of a part, that synchronizes all its submorphs and
provides a simple whiteboard drawing interface. (see section 4)

Building on these collaboration features, Lively Kernel provides a wiki like environ-
ment called Webwerksatt. In the Webwerkstatt, users can create their own pages, create
prototypes or applications and save them. Then they can send a link to all their friends,
so they can try it and give feedback. These friends could also jump right into develope-
ment and improve the application right where they tried it.

All in all, Lively Kernel is a vision of people from all over the world being able to create
working prototypes and applications easy, fast and together.

5.2 Benchmarking

Benchmark Categories To Calculate a meaningful score, we need to find a represen-
tative set of functionality to test. This section describes what components of the system
are part of the benchmark suite and why we included them. The implementation is given
in the following subsections.

The most prominent and most important part of Lively Kernel is its implementation
of morphic. Morphic is a system that allows direct user manipulation of graphical ob-
jects. Each morph can be edited directly. Even the Tools in Lively Kernel are morphs.
When working with Lively Kernel, hundreds of morphs are created and destroyed each
minute. Therefore we want to include the creation and destruction of morphs in our
benchmark.

Explorative Authoring of Active Web Content 103

When working on projects in Lively Kernel, you work on morphs. The usual workflow
includes a lot of morph editing. (see section 1) That is why we want to measure how
long it takes to resize or rotate a morph, move it around, change its color, change its
border or add scripts.

Another characterizing feature of Lively Kernel is its ability, to save and load Morphs.
This ranges from single rectangles to whole worlds. While worlds are represented as
XHTML pages, other morphs are “published“ and can be loaded into any world from
the PartsBin. The normal start of a workflow in Lively Kernel is loading a part, the
normal end is publishing a new one or a new version. (see section 1) Morphs are stored
as JSON files on the server, which requires serialization and deserialization. Therefore
these two have to be included in our benchmark suite, too.

Lively provides a very easy way to use observer patterns, called connections. A con-
nection has a source and a target object and property. It is fired, whenever the source
property changes. It can directly write on the target property or call a function, using
the changed value as a parameter. Connections can be applied to each and every prop-
erty. One does not even need to write code to establish these connections, it can be done
via a menu entry of the morph menu. This feature is heavily used in Lively applications,
so we want it to be part of our benchmark suite.

Every text field in Lively Kernel, that can be edited, has the ability to evaluate the writ-
ten code, often in a custom context. A prominent example is the Workspace that is used
for nothing else but running experimental snippets or sharing snippets to execute before
using an application. Another one is the ObjectInspector, that can show the properties
of any JavaScript object. It has a text field to enter code, that can be executed via a key-
board shortcut. When evaluating this code, the variable this Even adding Scripts or
changing classes involves evaluating the new code. Evaluation is therefore so present in
Lively Kernel, that it cannot be left out of the benchmark suite.

Benchmark Framework All our benchmarks use the same base mechanism, that is
explained in this subsection.

Most operations in Lively Kernel are quite simple ones. Moving a Morph, changing a
color or displaying a script does not need a lot of computation time. The load caused
by Lively originates in the number of these operations. An average world contains 200
to 300 Morphs, that have to be created and rendered on load. Whenever the Mouse is
moved or a Finger swipes over the Touchscreen, hundreds of events are fired and need
to be processed. This type of load needs to be reflected by our Benchmarks. Therefore
we want a possibility to execute relatively small operations several times in a row and
measure, how fast the browser completes this task. This is called a micro benchmark.

Micro benchmark come with another ability. We can minimize variation of the results
by running the operation more times. We can even run for a certain time and count the
number of successful runs instead of completing a certain task and taking the time.

We chose a path, that combines both ways of Benchmarking. Each benchmark has
a repeatable operation, that can be executed several times in a row. This operation is
executed a minimum number of times and for a minimum amount of time. This way a
fast browser can run it a lot of times, while a slow browser is not stuck in the Benchmark
for hours.

104 Explorative Authoring of Active Web Content

Benchmark

+setUp()
+run()
+tearDown()
+performRepeatbaleAction()
+getCalibrationFactor()
+getMinimalTimeMillis()
+getMinimalRepetitionCount()

CreateMorphsBenchmark

+setUp()
+performRepeatableAction()
+performRepeatableAction()
+getMinimalRepetitionCount()

MorphManipulationBenchmark

+setUp()
+performRepeatableAction()
+getCalibrationFactor()
+getMinimalRepetitionCount()

SimpleSerializationBenchmark

+setUp()
+performRepeatableAction()
+getCalibrationFactor()
+getMinimalRepetitionCount()

ComplexSerializationBenchmark

+setUp()
+performRepeatableAction()
+getCalibrationFactor()
+getMinimalRepetitionCount()

SimpleDeserializationBenchmark

+setUp()
+performRepeatableAction()
+getCalibrationFactor()
+getMinimalRepetitionCount()

ComplexDeserializationBenchmark

+setUp()
+performRepeatableAction()
+getCalibrationFactor()
+getMinimalRepetitionCount()

ConnectBenchmark

+setUp()
+performRepeatableAction()
+getCalibrationFactor()
+getMinimalRepetitionCount()

EvalBenchmark

+setUp()
+performRepeatableAction()
+getCalibrationFactor()
+getMinimalRepetitionCount()

Figure 57: Benchmark Classes

This behavior is realized by a number of classes. The class Benchmark specifies the
interface and implements the running framework described above. Each Benchmark
overrides performRepeatableAction, setUp and tearDown as needed. The sub-
classes also provide the minimum number of runs and the calibration factor themselves,
whereas the minimum running time is always set to 10 seconds, because some browsers
tend to stop, if a script runs for more time. (See section 5.4)

1 run: function(){
2 var before = new Date();
3 var minTime = before.valueOf() + this.getMinimalTimeMillis();
4 var minCount = this.getMinimalRepetitionCount();
5 var c = 0;
6 do {
7 this.performRepeatableAction();
8 c++;
9 } while ((c < minCount || new Date().valueOf() < minTime));

10 var after = new Date();
11 var delta = after.valueOf() - before.valueOf();
12 this.result = this.getCalibrationFactor() * c / delta;
13 }

Code Example 24: running a benchmark

Explorative Authoring of Active Web Content 105

The run Method can be seen in code example 24. Before the real benchmark Operation
starts, we remember target time and the minimal number of runs. Then we continue
executing the repeatable action specified by the subclass, till both requirements are met.
Meanwhile, we count the number of runs. Finally we calculate the time passed since the
beginning and calculate the resulting score.

The Score is calculated from the number of successful runs, the time needed and a
calibration factor. This factor is used to normalize the results of the Benchmarks, so they
can be compared among each other. Instead of a time you have to evaluate yourself
you get a score. Instead of serialization taking far longer then morph creation (which is
normal), you now see both having a similar score. The exact formula used for calculation
of the score is calibrationfactor× numberofruns

timepassed
. The resulting score is better, the higher

it is.

To make the calculated Score meaningful, we need to find meaningful calibration fac-
tors. We decided to use a reference system that should receive 100 Points on each bench-
mark. This reference System should satisfy some criteria:

1. Used with Lively Kernel
2. Common Software Configuration
3. Common Hardware Configuration

Lively Kernel users use a variety of Systems, one can nevertheless find some tenden-
cies:

1. Windows and Mac dominate
2. Hardware of Windows machines varies largely
3. Hardware of Macs is mostly limited to iMacs and MacBooks
4. most users use the Google Chrome web browser

As our goal was a widely known and used configuration, we decided to use Google
Chrome on an iMac 11. The full System specification of the iMac can be found in the
appendix. Google Chrome was at version 19.0.1084.56. The calibration was performed
on 2012-06-13.

The following sections show the implementation details of each benchmark, that is part
of our suite, individually.

Benchmarking Morph Creation The morphic system is the base of the whole Lively
Kernel user interface. A morph is a graphical object, that can be manipulated directly on
screen. You can for example move, rotate or resize it. Everything visible in Lively Kernel
is a morph. opening a tool means creating dozens of morphs and adding them to the
world. It is essential that this operation is fast, otherwise Lively Kernel is of no use.
Therefore, it is included in our Benchmark.

106 Explorative Authoring of Active Web Content

1 setUp: function($super, world){
2 $super(world);
3 this.morphClasses = [
4 lively.morphic.Box,
5 lively.morphic.Text,
6 lively.morphic.Button
7];
8 this.bounds = rect(pt(0,0), pt(50,50))
9 }

Code Example 25: setting up the morph creation benchmark

1 performRepeatableAction: function(){
2 var self = this;
3 this.morphClasses.forEach(function(klass){
4 var morph = new klass(self.bounds);
5 morph.setExtent(pt(100,100));
6 self.world.addMorph(morph);
7 morph.moveBy(pt(50,50));
8 morph.setExtent(pt(20,20));
9 morph.remove();

10 });
11 }

Code Example 26: running the morph creation benchmark

To get a representative value, we decided to use the most common morphs of the sys-
tem, a box, a text and a button. These classes are stored in an array when the benchmark
is set up. Additionally a rectangle providing the bounds is stored, because we do not
want to measure rectangle instantiation.

The measured action itself performs typical steps, that are executed, when a morph is
created. The morph is instantiated, resized and moved. To ensure the world is in the
same state after the action, we finally remove the morph.

Resizing and moving the morph also belong to morph manipulation, so they are taken
into account twice. This is on purpose, as these are used far more often than other ma-
nipulations like changing the fill or rotating the morph.

Benchmarking Morph Manipulation The Morphic System is the base of the whole
Lively-Kernel user Interface. A Morph is a graphical Object, that can be manipulated
directly on Screen. Everything visible in Lively Kernel is a Morph. Whenever anything
in the user interface changes, morphs are manipulated in several ways. It is of high
importance, that this happens very fast. That is why it is part of our benchmark.

To manipulate morphs, we need morphs and actions. We use the same basic morphs for
this task as for the other benchmarks, a box, a text and a button. To ensure the morphs
can be reset after each execution of the repeatable action, we define a base style and
apply it to each morph. After completing this step, we add the morphs to the world.

Explorative Authoring of Active Web Content 107

1 setUp: function($super, world){
2 $super(world);
3 var bounds = rect(pt(0,0), pt(50,50));
4 this.morphs = [
5 new lively.morphic.Box(bounds),
6 new lively.morphic.Text(bounds),
7 new lively.morphic.Button(bounds)
8];
9 this.baseStyle = {

10 position: pt(0,0), extent: pt(50,50),
11 scale: 1, origin: pt(0,0),
12 fill: Color.blue,
13 borderWidth: 1, borderColor: Color.black,
14 rotation: 0, borderRadius: 0
15 }
16 var self = this;
17 this.morphs.forEach(function(morph){
18 morph.applyStyle(self.baseStyle);
19 self.world.addMorph(morph);
20 });
21 var proto = lively.morphic.Morph.prototype;
22 this.actions = [
23 //... see Code Example 1.5
24]
25 }

Code Example 27: setting up the morph manipulation benchmark

The actions used in this benchmark should include all important ways of morph ma-
nipulation. The actions we identified are: changing size and position by different meth-
ods, changing the origin of a morph, changing fill and border color, changing the border
width and radius and adding scripts. We specified each of this actions as an object that
includes the function to call and the arguments, that are to be passed to the function.

Having created the morphs and specified the actions, running the benchmark is only it-
erating over both and executing the actions. We use the method apply of the Function
object to bind the function to the morph, pass the arguments and run it. After all actions
have been executed, we reset the morphs to their base style.

Benchmarking Morph Serialization Lively Kernel is able to transmit whole morphs
from one machine to another in several ways. One way is saving a world containing that
morph and opening it on another machine. Another way, that allows transmission be-
tween worlds, is publishing it to the PartsBin and loading it from there to any world.
While this is asynchronous, a synchronous way of sharing morphs has recently been
introduced by the SyncMorph. The SyncMorphs allow it to share a part of your screen
with coworkers. (see section 4)

108 Explorative Authoring of Active Web Content

1 var proto = lively.morphic.Morph.prototype;
2 this.actions = [
3 {func: proto.setExtent,
4 args: [pt(100,100)]},
5 {func: proto.moveBy,
6 args: [pt(20,20)]},
7 {func: proto.setBounds,
8 args: [rect(pt(70,70), pt(150,150))]},
9 {func: proto.setScale,

10 args: [2]},
11 {func: proto.setOrigin,
12 args: [pt(40,40)]},
13 {func: proto.setFill,
14 args: [Color.green]},
15 {func: proto.setBorderWidth,
16 args: [2]},
17 {func: proto.setBorderColor,
18 args: [Color.red]},
19 {func: proto.setRotation,
20 args: [1.07]},
21 {func: proto.setBorderRadius,
22 args: [5]},
23 {func: proto.addScript,
24 args: [function testScript(x, y){
25 this.moveBy(pt(x-y, y-x));
26 }
27]}
28]

Code Example 28: The manipulation actions performed on the morphs

1 performRepeatableAction: function(world){
2 var self = this;
3 this.morphs.forEach(function(morph){
4 self.actions.forEach(function(action){
5 action.func.apply(morph, action.args);
6 });
7 morph.applyStyle(self.baseStyle);
8 });
9 }

Code Example 29: running the morph manipulation benchmark

All these ways of sharing need to transform the morphs in a transmittable form of data.
In our case, this is a JSON string. It is therefore of high importance, that this serialization
can be performed quickly. So we included it in our benchmark suite.

Explorative Authoring of Active Web Content 109

While serialization itself can be a complex and expensive task, benchmarking it is quite
simple. We just need to take some morphs and call the serialization method. However, as
serialization is quite expensive, getting a good sample of data with morphs of different
complexity might consume a lot of time. Web browsers tend to stop script execution, if
a script takes too long to complete a task, therefore we split the serialization benchmark
in two parts: simple morphs and complex morphs.

The simple morphs are the same as in the other benchmarks, a box, a button and a text.

1 setUp: function($super, world){
2 $super(world);
3 this.morphs = [];
4 var bounds = rect(pt(0,0),pt(100,100));
5 this.morphs.push(new lively.morphic.Box(bounds));
6 this.morphs.push(new lively.morphic.Button(bounds));
7 this.morphs.push(new lively.morphic.Text(bounds));
8 }

Code Example 30: setting up the simple serialization benchmark

As complex morphs, we selected three commonly used parts from the tools category of
the PartsBin. The ObjectEditor is the tool that can add scripts to morphs. The ObjectIn-
specor gives detailed information about JavaScript objects and is a valuable debugging
tool. The StyleEditor is used to change the visual properties of morphs. We load them
from the PartsBin using the method loadPartItem of the world.

1 setUp: function($super, world){
2 $super(world);
3 this.morphs = [];
4 this.morphs.push(
5 this.world.loadPartItem("ObjectEditor","PartsBin/Tools")
6);
7 this.morphs.push(
8 this.world.loadPartItem("ObjectInspector","PartsBin/Tools")
9);

10 this.morphs.push(
11 this.world.loadPartItem("StyleEditor","PartsBin/Tools")
12);
13 }

Code Example 31: setting up the complex serialization benchmark

As said before, the execution of the benchmark consists only of calling the serialization
method for each morph.

110 Explorative Authoring of Active Web Content

1 performRepeatableAction: function(world){
2 this.morphs.forEach(function(morph){
3 lively.persistence.Serializer.serialize(morph);
4 });
5 }

Code Example 32: running the serialization benchmark

Benchmarking Morph Deserialization Transmitting morphs from one computer
to another. It is used for the PartsBin, the SyncMorph and the saving and loading of
worlds. To send a morph, it needs to be serialized. So the receiver needs to recreate the
morph from the JSON string. This deserialization takes place, when one loads a world,
opens a tool or loads a part to work on. It is crucial, that this does not block the user
from using Lively Kernel for long. Therefore we included it in our benchmark.

Similar to serialization, deserialization is easy to benchmark, but it takes a lot of time.
As we do not want the browser to interfere with our script because it is running too
long, we divided our benchmark into two smaller benchmarks: deserialization of simple
morphs and complex morphs.

The simple morphs are the same as in the other benchmarks, a box, a button and a
text. We serialize them and keep the JSON strings to deserialize them when running the
benchmark.

1 setUp: function($super, world){
2 $super(world);
3 this.jsons = [];
4

5 var bounds = rect(pt(0,0),pt(100,100));
6

7 var box = new lively.morphic.Box(bounds);
8 box = lively.persistence.Serializer.serialize(box);
9 this.jsons.push(box);

10

11 var button = new lively.morphic.Button(bounds);
12 button = lively.persistence.Serializer.serialize(button);
13 this.jsons.push(button);
14

15 var text = new lively.morphic.Text(bounds);
16 text = lively.persistence.Serializer.serialize(text);
17 this.jsons.push(text);
18 }

Code Example 33: setting up the simple deserialization benchmark

Explorative Authoring of Active Web Content 111

As complex morphs, we selected three commonly used parts from the tools category of
the PartsBin. Two of them are identical to the ones in the serialization benchmark. The
ObjectEditor and the ObjectInspector. The StyleEditor tends to throw errors on mobile
devices. This may interfere with the benchmark, so we use the PartTestRunner instead.
It is used for the execution of automated tests on parts from the PartsBin. Again, we only
keep the serialized versions.

1 setUp: function($super, world){
2 $super(world);
3 this.jsons = [];
4

5 var objectEditor =
6 this.world.loadPartItem("ObjectEditor", "PartsBin/Tools");
7 objectEditor =
8 lively.persistence.Serializer.serialize(objectEditor);
9 this.jsons.push(objectEditor);

10

11 var objectInspector =
12 this.world.loadPartItem("ObjectInspector", "PartsBin/Tools");
13 objectInspector =
14 lively.persistence.Serializer.serialize(objectInspector);
15 this.jsons.push(objectInspector);
16

17 var partTestRunner =
18 this.world.loadPartItem("PertTestRunner", "PartsBin/Tools");
19 partTestRunner =
20 lively.persistence.Serializer.serialize(partTestRunner);
21 this.jsons.push(partTestRunner);
22 }

Code Example 34: setting up the complex deserialization benchmark

The execution is also similar to the serialization benchmark. We only need to call the
deserialization function for each JSON string.

1 performRepeatableAction: function(world){
2 this.jsons.forEach(function(json){
3 lively.persistence.Serializer.deserialize(json);
4 });
5 }

Code Example 35: running the deserialization benchmark

112 Explorative Authoring of Active Web Content

Benchmarking Connections Lively Kernel allows the implementation of observer
patterns in an easy to use way called connections. A connection has a source and target
object and property. If you connect an attribute with another attribute, each change on
the first one is applied to the second one. If you connect an attribute to a method, the
method is called on each change, providing the new value as the only argument. Con-
nections are widely used in Lively Kernel, mostly to keep the user interface in sync with
internal variables. There is even a possibility to “fire” a connection without changing the
attribute, that is e.g. used to fire buttons. It is spread so far through the system, that it
cannot be ignored by the benchmark.

Although every property of every object can be connected, we decided to use only
morphs, because connections between morphs are more common. Our Example set con-
sists of a box, a text, and a button. The box has a script, so we can include all kinds of
connections.

1 setUp: function($super, world){
2 $super(world);
3 var bounds = rect(pt(0,0), pt(50,50));
4 this.box = new lively.morphic.Box(bounds);
5 this.text = new lively.morphic.Text(bounds);
6 this.button = new lively.morphic.Button(bounds);
7 this.box.addScript(function onFire() {});
8 }

Code Example 36: setting up the connection benchmark

There are for connections we want to benchmark. The first one connects a custom
fired signal to a script. The second one connects an attribute to a method, providing
the new value as parameter. The third one connects an attribute to another attribute.
The forth one again connects an attribute to a method. This type is included twice, be-
cause it is more common. We use connect()to set the connections. It is important to
use disconnect here, as we want everything to be in the same state before and after
the repeatable action.

Benchmarking Eval Lively Kernel is a dynamic and self-sufficient system. That means
especially that one can edit every part of the system out from inside the system. This is
possible, because javascript is a scripting language, that can execute code provided as a
string at runtime. This is not only used to load the lively Kernel, but also when adding
scripts to morphs and when modifying modules. The user can also execute code snip-
pets in text fields. So it is very important to us, that this can be done fast and should
therefore be included in our benchmarks.

We chose two snippets to execute, that shall represent eval actions without contatin-
ing expensive operations. The first one executes some basic arithemtic operations and
checks the result for validity. The second one defines a function and executes it to check,
if it was created correctly. Allthough we do not expect any modern browser to produce
wrong results, we included this validity checks to be sure everything went right.

Explorative Authoring of Active Web Content 113

1 performRepeatableAction: function(){
2 connect(this.button, "fire", this.box, "onFire");
3 connect(this.box, "scale", this.text, "setScale");
4 connect(this.button, "rotation", this.text, "textString");
5 connect(this.text, "position", this.button, "setLabel");
6 disconnect(this.button, "fire", this.box, "onFire");
7 disconnect(this.box, "scale", this.text, "setScale");
8 disconnect(this.button, "rotation", this.text, "textString");
9 disconnect(this.text, "position", this.button, "setLabel");

10 }

Code Example 37: running the connection benchmark

1 setUp: function($super, world){
2 $super(world);
3 this.snippets = [
4 "var t = 5;\n"+
5 "var t2 = 5*t;\n"+
6 "var t3 = 7*t2 + 2*t;\n"+
7 "t++; t2++; t3++;\n"+
8 "if(t3 !== 361){\n"+
9 " console.error(\"FAIL!\");\n"+

10 "}",
11

12 "var solveSqr = function(a, b, c){\n"+
13 " var p2 = b/a/2;\n"+
14 " var q = c/a;\n"+
15 " var det = p2*p2 - q;\n"+
16 " if(det < 0){\n"+
17 " return [];\n"+
18 " }\n"+
19 " var sqrt = Math.sqrt(det);\n"+
20 " return [-p2+sqrt, -p2-sqrt];\n"+
21 "}\n"+
22 "var res = solveSqr(2,2,-12)\n"+
23 "if(res[0] !== 2 || res[1] != -3){\n"+
24 " console.error(\"FAIL!\");\n"+
25 "}"
26];
27 }

Code Example 38: settng up the eval benchmark

Running this benchmark is quite simple, as it only involves calling the native function
eval() for each snippet.

114 Explorative Authoring of Active Web Content

1 performRepeatableAction: function(){
2 this.snippets.forEach(function(ea){
3 eval(ea);
4 });
5 }

Code Example 39: running the evaluation benchmark

Lively Score on different Systems We have run the described benchmark on dif-
ferent platforms using different browsers. The following subsections shows the results
and draws conclusions.

Figure 58 shows the benchmark results of the iMac 11 using different browsers. The
browser versions are:

– Google Chrome 19.0.1084.56
– Firefox 13.0.1
– Safari 5.1.7

We had to increase the configuration value dom.max_script_run_time for Firefox,
as it shows a dialog to stop the script after 10 seconds, that pauses script execution.
Google Chrome does similarly, but its dialog does not pause the script. Safari did not
show a dialog at all during our tests.

As we used Google Chrome on this machine as the reference system, results with
Google Chrome are at a constant score of 100. The overall result of Safari is 135. That
means Safari performs better than Google Chrome. To be exact: Safari took 1/1.35 = 0.74
as long to execute an action as Google Chrome on average. Firefox got a result of 98,
which means it performs about as good as Google Chrome.

The detailed results of the different benchmarks provide even more interesting in-
sights. Apparently, Google Chrome is especially good in evaluating scripts(about twice
as fast as Safari and six times as fast as Firefox), while Safari and Firefox are better in
Serialization (Firefox is about twice as fast as Google Chrome, Safari even 2.3 times).

The results of the same benchmarks run on a comparable windows machine can be seen
in figure 59. They are very similar to the iMac. Safari performs a bit better on the iMac
while Firefox profits from Windows, this is probably caused by the primary target plat-
forms for these browsers. Google Chrome performs almost equally on both machines,
with one exception: the evaluation of scripts under windows is twice as fast as under
Mac. We are not sure where this huge difference comes from, but suspect either a plat-
form specific optimization trick or the all-in-one binary of the Mac version to be the
source.

As Lively Kernel is being adjusted to provide a decent mobile interface, the perfor-
mance on mobile devices is especially interesting. We were able to get our hands on
some mobile devices to run the benchmarks on. An iPad2 with iOS 5.1, an iPhone 4S
with iOS 5.1, and an HTC Desire S with Android.

Explorative Authoring of Active Web Content 115

Figure 58: Benchmark results on the IMac 11, different browsers. Google Chrome sets the reference
value of 100. Higher is better.

Figure 59: Benchmark results on a Windows machine, different browsers. Higher is better.

As expected, the iPad2 performs best, it has a total score of 18, which means it needs
about 5 times as long to perform an action as the iMac with Google Chrome. As the
browser is a Safari, the individual results match those from the iMac version of Safari.
They are high for serialization and deserialization and low for connections and eval.
The iPhone is a bit slower but has a very similar distribution. That was expected, as they
vary mostly in hardware and only slightly in software.

The Android phone performs about 0.57 times as good as the iPhone which is about 0.44
times as good as the iPad. This was also quite expected, as the HTC Desire S is an older
phone than the iPhone4S and was sold in a lower price category. The score distribution
varies from the one of the apple devices. Again, the Google Software performs better in
eval and worse in serialization.

116 Explorative Authoring of Active Web Content

iPad2
iPhone4S
HTC Desire S

morph creation

serialisation I

serialisation II

deserialization I

deserialization II

manipulating morp...

settin
g connections

eval
5

10

15

20

25

30

Figure 60: Benchmark results on different platforms, using Google Chrome where possible, Safari
on the iPad2. Google Chrome on the iMac sets the reference value of 100. Higher is better.

The benchmarks confirm, what we felt when using Lively Kernel on different devices
ourselves. It is usable on the iPad, but has yet to be more optimized. Smartphones are
not fast enough to support the current system. So an overall score between 12 and 17
seems to be the minimal score indicating a suitable system.

5.3 Profiling

This section describes, how we measure the execution time of methods in order to find
bottle necks.

Now that we are able to find out, if there are performance issues and measure increases
ore decreases of performance, we need a way to track down the issues. Virtually every
performance issue is caused by a single bottle neck, a system component that can not
process the data as fast as it is provided. To find these bottlenecks, it is very helpful to
monitor the execution time of methods, to profile function calls.

Profiling single functions To measure the execution time of the individual func-
tions, we need to track when we enter and leave them. Having this information we can
calculate the time spent in each function. There are several methods to gather this infor-
mation.

The first and probably most efficient one would be to utilize the JavaScript VM. In
fact most modern browsers provide a profiler with access to the VM either native or as
a plug-in. However, we want a cross-browser solution, that is optimized on the Lively
Kernel architecture. As we have no access to the VM itself, we need an other option.

Fortunately, JavaScript is very dynamic and self-reflective. Each Method and each func-
tion is an object, that can be replaced. So we can replace it with a new function, that per-
forms additional tracking steps before and after the execution of the original function.

Explorative Authoring of Active Web Content 117

From here on, we will use the following bottles of beer function as an example to il-
lustrate the explanations. The function alertOK(text) is a lively function, that shows
text in a green box.

1 bottles = function(n) {
2 if(n>0) {
3 alertOK(
4 n + " bottles of beer on the wall, " +
5 n + " bottles of beer.\n" +
6 "Take one down and pass it around. " +
7 (n-1) + " bottles of beer on the wall."
8);
9 bottles(n-1);

10 } else {
11 alertOK(
12 "No more bottles of beer on the wall," +
13 "no more bottles of beer.\n" +
14 "Go to the shop and buy some more," +
15 "99 bottles of beer on the wall."
16);
17 }
18 }

Code Example 40: bottles of beer - example used for illustration purposes

The first idea to implement this approach would be just remembering the time of en-
trance and then calculating the time spent in the function after the execution has fin-
ished, adding up these results to retrieve the overall time spent in the function.

The method apply(context,arguments) is JavaScript native and executes a func-
tion. The variable this inside the function is bound to context.The contents of the array
arguments are passed as arguments to the function. As we want to preserve the con-
text, we pass the context of the new function to the old one. The variable arguments is a
magic variable in JavaScript. It contains all arguments passed to the current function call,
no matter how many arguments are expected in the definition. As we want to preserve
them, we pass them to the original function unchanged. We can put the original function
back in place by calling setting window[functionName] to
window[functionName].orig;.

This approach gives correct results, as long as no recursion occurs. Have a look at
figure 61. It shows a possible call tree of the beer function. The data provided is not
actual meassured data, it is just an example. The numbers at the edges of the tree denote
the total execution time of the called function. The numbers next to the nodes denote the
execution time of the functions without the time taken by subroutines.

118 Explorative Authoring of Active Web Content

1 var functionNames = ["bottles", "alertOK"];
2 functionNames.forEach(function(functionName){
3

4 var newFunction = function () {
5 var before = new Date().valueOf();
6 var out = newFunction.orig.apply(this, arguments);
7 newFunction.totalTime += new Date().valueOf() - before;
8 return out;
9 }

10

11 newFunction.totalTime = 0;
12 newFunction.orig = window[functionName];
13 window[functionName] = newFunction;
14 }

Code Example 41: naive profiling approach

beer(2)

beer(1) alertOK()

beer(0) alertOK() 10ms

10ms

24ms 10ms

36ms

2ms

12ms

2ms

10ms

10ms

alertOK() 10ms

2ms

Figure 61: Call tree of an example run of the beer function (no actual data). Numbers on edges
denote the running time of the called function. Numbers next to nodes denote the running time of
the function without subroutines.

The naive approach described above would now add up all execution times of the beer
function. That means it tells beer ran for 36 ms + 24 ms + 12 ms = 72 ms, which is
200% of the total running time. This is obviously not the value, we wanted to see. That
is the reason we need to remember, if a function has been called in the current call stack
already. Only the execution time of the first call per stack should be added to the overall
sum.

Explorative Authoring of Active Web Content 119

1 var functionNames = ["bottles", "alertOK"];
2 functionNames.forEach(function(functionName){
3

4 newFunction = function () {
5 var before = new Date().valueOf();
6 var newFunction.recursionDepth++;
7 var out = newFunction.orig.apply(this, arguments);
8 newFunction.recursionDepth--;
9 if (recursionDepth === 0) {

10 newFunction.totalTime += new Date().valueOf() - before;
11 }
12 return out;
13 }
14

15 newFunction.totalTime = 0;
16 newFunction.recursionDepth = 0;
17 newFunction.orig = window[functionName];
18 window[functionName] = newFunction;
19 }

Code Example 42: profiling approach that takes recursion into account

This approach counts 36 ms for beer and 30 ms for alertOK. These are the correct
total execution times of the functions. However, it is not very helpful, when looking for
bottlenecks. The function beer has a higher execution time than alertOK, nevertheless,
most time is spent executing alertOK. This is because beer includes alertOK, but
does not perform expensive operations itself. The time spend in beer without alertOK
is only 6 ms. According to the Google Chrome profiler, we call this time the self time.

To measure the self time, wee need to keep track of the call stack. Normally this fea-
ture is provided by JavaScript, but different browsers vary in their interpretation of the
standards. So this feature is not reliable and we need to implement our own tracking.

Fortunately, we already replaced all the functions, that are interesting to us, so we can
build a stack of these functions and thereby have a reference to the calling function. So
we can subtract the time the called function needed from the self time of the calling
function. As we subtract recursive calls, too, self time measurement does not need to
handle recursion different than other calls.

Instrumenting whole objects We now have achieved the ability to measure the ex-
ecution time of single functions, but this is not all we want. When looking for bottle
necks, the programmer seldom knows a small set of functions, that contain it. So we
need to be able to instrument all methods of multiple objects to find the functions taking
the most time. There is no need to build an extra method to instrument classes, because
they are only an abstraction of the prototypical inheritance of JavaScript. This results
in every class holding a reference to a prototype object for all its instances that can be
instrumented in the same way as normal objects.

120 Explorative Authoring of Active Web Content

1 var callStack = [];
2 var functionNames = ["bottles", "alertOK"];
3 functionNames.forEach(function(functionName){
4

5 var newFunction = function () {
6 var before = new Date().valueOf();
7 newFunction.recursionDepth++;
8 callStack.push(newFunction);
9 var out = newFunction.orig.apply(this, arguments);

10 callStack.pop();
11 newFunction.recursionDepth--;
12 var delta = new Date().valueOf() - before;
13 if (recursionDepth === 0) {
14 newFunction.totalTime += delta;
15 }
16 newFunction.selfTime += delta;
17 if (callStack.last()){
18 callStack.last().selfTimes -= delta;
19 }
20 return out;
21 }
22

23 newFunction.totalTime = 0;
24 newFunction.selfTime = 0;
25 newFunction.recursionDepth = 0;
26 newFunction.orig = window[functionName];
27 window[functionName] = newFunction;
28

29 }

Code Example 43: profiling approach with self time

Instrumenting whole objects is quite simple. First we use the Lively Kernel method
Functions.own to get a list of the names of all functions defined on this object itself.
The list does not contain functions inherited from prototypes, as we want to instrument
these via instrumenting the prototype. The only other change is replacing the global
namespace window with our object.

Profiling the whole system Now that we can instrument whole objects, we want
to be able to instrument all classes of the system at once. As said before, instrumenting
a class can be achieved by instrumenting the prototype-object in the same way as any
other object thanks to JavaScript prototypical inheritance. Getting a list of all classes is
also quite easy, we can get a list by calling Global.classes(true).

Explorative Authoring of Active Web Content 121

1 var callStack = [];
2 var functionNames = Functions.own(obj);
3 functionNames.forEach(function(functionName){
4

5 newFunction = function () {
6 //as before ...
7 }
8

9 newFunction.totalTime = 0;
10 newFunction.selfTime = 0;
11 newFunction.recursionDepth = 0;
12 newFunction.orig = obj[functionName];
13 obj[functionName] = newFunction;
14

15 }

Code Example 44: instrumenting a whole object for profiling

1 var callStack = [];
2 Global.classes(true).forEach(function(klass){
3 var obj = klass.prototype;
4 var functionNames = Functions.own(obj);
5 functionNames.forEach(function(functionName){
6

7 //as before ...
8

9 }
10 }

Code Example 45: instrumenting a whole object for profiling

This is already very promising, however, running this code would break the system.
When instrumenting classes, especially the basic ones, we have several problems. Firstly,
the prototype holds a reference to the constructor. Although the constructor is a func-
tion, it is not a method of the prototype and must therefore be excluded from the list of
methods wrapped.

When wrapping all methods of all classes, we may also wrap e.g. pop and push of
the class Array. As these are called by our profiling function, this results in endless
recursion. Yet we want to include these functions, as they might be important in the
profiled application.

To be able to include functions in the profiling, that are used by the profiler itself, we
need to be able to turn the profiling on and of for snippets of code without uninstru-
menting the functions.

122 Explorative Authoring of Active Web Content

This is exactly what context oriented programming (COP) does. [27] Lively Kernel in-
cludes ContextJS, a JavaScript COP implementation, so it would be quite easy to use. A
method tracer has even been implemented before using ContextJS. [41] However, Con-
textJS has a decent amount of execution time overhead. [38] As functions with deep call
trees are affected by the overhead more than flat ones, too much overhead may change
the results, rendering the profiler useless.

We decided to solve the problem with a minimalistic implementation of a COP like
functionality. A variable accessible to all profiling functions holds a Boolean value that
defines if the profiling steps should be executed or not.

1 var newFunction = function () {
2 if(active){
3 active = false:
4 //as before...
5 active = true;
6 }
7

8 var out = newFunction.apply(this, arguments);
9

10 if(active){
11 active = false;
12 //as before...
13 active = true;
14 }
15 return out;
16 }

Code Example 46: instrumenting a whole object for profiling

As you can see, we can not avoid calling the method apply of the system class Function
with active set to true. However, as this function should normally be native and very
fast, we can safely exclude it from our list of functions we want to instrument.

User Interface In this section we described, how to measure execution times in or-
der to find bottle necks. Collecting this data is only half the work, though. In order for
humans to be able to read it and find the problem, we need to present it in a compre-
hensible fashion. The user should furthermore be able to trigger the profiling easy and
intuitively.

Explorative Authoring of Active Web Content 123

Figure 62: User Interface of the Morph Profiler. Example data retrieved via “Just profile everything
I do”.

The user interface we ended up with so far can be seen in figure 62. It consists primarily
of two parts: on the left side one can choose what to profile and how, on the right side the
results are presented. We decided to base the Profiling on morphs, so users need to put
the morph under test in the upper left area. The profiler then automatically displays all
scripts of that morph. To run a script, users select it in the left list and provide parameters
via the right list and the small text pane. Note that the provided text is evaluated before
running the script, so they can be retrieved by a script, but will not change throughout
the profiling process. Finally, the users configure the number of times to run the script
in a row, this can help reducing variances in the execution time. The users can start the
profiling by pressing “Run”.

The profiler then copies the morph to make sure the original is not changed. The chosen
script will be executed the chosen number of times with the described profiling process
enabled. Finally the copy and the wrapper functions will be removed and the results
displayed. They are displayed as average per-run values, so the users are not bothered
with unnecessary large numbers.

124 Explorative Authoring of Active Web Content

However, not every user knows exactly which function to run or which arguments
to supply. Some times only the workflow causing trouble is known. For this case we
created the “Just profile everything I do” button. When pressing this button, profiling
will be turned on and all user interaction and resulting actions are measured. This is still
limited to the morph under test. When finished, the user presses the button again (It will
now read “I am done”) and the profiling is finished. All results will then be displayed in
the right pane. Note that the “Result (per call)” field is not updated, as there is no such
information.

The result view on the right displays the name of the object (or class), the name of
the function and the measured times for each function that has been called during the
profiling process. To find the bottle necks faster, the list can be sorted by any column in
any order by just clicking the header.

Instrumenting all classes can be very expensive in multiple ways. It needs time to
install all the wrapper functions, the functions themselves produce some overhead and
the huge amount of generation will need some time to be displayed. Apart from the
performance, it might even hide the true bottle neck amongst all those entries. That is
why profiling classes is optional, it is turned of by default, as this profiler is primarily
designed for the development of parts.

This user interface still needs much improvement.(see section 5.5). Anyhow, it enables
all Lively Kernel users to profile their parts and makes the search for bottle necks a real
search rather than a guess and test scenario.

5.4 Results of the profiler

This section provides some examples of information gathered using the described pro-
filer.

Insights from the Profiler When developing the profiler, we actually had some per-
formance issues with the User Interface. The profiling itself is smooth, but showing the
results needs quite a lot of time. So we decided to use the profiler on itself. We did not
profile the profiling process itself, because this would lead to way too many levels of
indirection. In fact even one Profiler may exceed the maximum call stack size, as the
stack depth of the call is almost doubled. Two nested profilers cause way to many of
these exceptions to deliver reliable meassurements. We could nevertheless profile the
aggregation and rendering of the results. This way we found out, that the creation and
rendering of the morphs building the table eats up the time. See section 5.5 for our ap-
proach to solve this problem.

We also used the profiler as an experimental tool, one example: We encountered three
ways to iterate over arrays, that were described having different speeds by different
sources. To find out what was really happening, we created a box morph, that executed
all three of them as seperate functions. The profiling result for this functions could then
be compared to compare the speed of the iteration. We could see, that all three methods
performed equally good and there is no performance argument for choosing one over
the other.

Explorative Authoring of Active Web Content 125

5.5 Future Work

This section describes which steps could be taken to improve the benchmarks and the
profiler described above.

The benchmarks provide a good impression of the overall performance of Lively Ker-
nel on various Systems. However, the selection of system components represented in
the benchmarks is made solely on manual observance of usage. This does not guaran-
tee the selection to be representative. A better way would be collecting usage statistics
over a couple of weeks. These statistics can be used to create benchmarks resembling
real interaction. Nevertheless, to preserve comparability, these would have to be new
benchmarks and should not replace the others.

As described in section 5.4, the rendering of the information of a profiling session takes
a lot of time. This originates in the huge number of morphs that need to be created,
styled, positioned and rendered to build up the table. A possible solution to this perfor-
mance issue could be a “table-morph”, that would not build the table out of submorphs
but rather use an html table.

The profiler gives a lot of information, too much in some cases. Allthough it provides a
sortable view of the results, it can get difficult to find the bottle neck among the dozens of
called functions. The profiler of the Google Chrome debugging tools solves this problem
with a tree view, that resembles a call tree with the additional information of runtime
per node. This could be usefull for the Lively Kernel profiler, too. As this requires more
information to be stored, we would need to evaluate the cost of the higher overhead
againts the use of the tree view.

The userinterface of the profiler is only a very simple one, one could say a first draft. It
would probably enhance the usability to revise it in multiple design iterations. Possible
changes could inlcude for example a possibility to enter a list of classes to instrument or
a recording feature for workflows, so one can retest them automatically.

5.6 Related Work

We have created a benchmark suite specialized on Lively Kernel, but it is still a JavaScript
benchmark. There are several other benchmarks that aim to achieve a comparison of the
overall performance. This section compares these to our benchmark.

There are several different JavaScript benchmarks. We have chosen some prominent
examples to compare our results with, namely SunSpider, V8 benchmarks, Kraken and
Dromaeo.

The SunSpider benchmark was developed by the WebKit team and was one of the
first attempts to measure the performance of “actual problems developers solve with
JavaScript today”. [11] It avoids micro benchmarks, which repeat small tasks severall
times, because the designers think these are not representative. This is a huge difference
to our Lively Kernel benchmark suite. SunSpider runs tasks like ray tracing, cryptogra-
phy and decompression. It aims to keep a balance between different language features
of JavaScript and determines an error range of the results. [11]

126 Explorative Authoring of Active Web Content

The V8 benchmarks are developed by Google as a reference to optimize their JavaScript
engine of the same name. It includes some heavy tasks and some micro benchmarks and
gives better results with Google Chrome than other browsers, because Google Chrome
uses V8 and is therefore optimized to achieve good results in this suite. [22]

The Kraken benchmark from Mozilla is similar to the SunSpider, in the way it runs
its small number of heavy tasks and determines error ranges. It uses other example
tasks however, that are even more complex. Examples are image manipulation, path
finding and audio processing. Mozilla developers aimed for more realism than other
benchmarks. [49]

The Dromaeo test suite is an attempt of Mozilla to unify all the different Benchmarks
and tests available. It executes micro benchmarks as well as larger tasks from different
sources. SunSpider, V8 and several other suites are included in Dromaero. Mozilla ex-
panded this already large collection by some own tests and implemented a test system
with a minimal number of runs and a minimal running time similar to ours. [52]

We ran these 3 benchmark suites on our most relevant test devices to compare them
to our benchmark. We used SunSpider 0.9.1, V8 benchmarks version 7, Kraken 1.1 and
Dromaero at 2012-06-29. We did not run the DOM tests of Dromaero, because the mo-
bile Safari kept timing out and crashing. We ran only the JavaScript tests (options: dro-
maero|sunspider|v8).

Figure 63: Results of different JavaScript Benchmarks. All run in Google Chrome, where possible,
Safari on the iPad. Higher is better.

The results of these benchmarks compared to ours can be seen in figure 63. Note that
we scaled all results to our reference system to achieve comparability. It is clearly visible,
that our benchmark suite favors Windows over the iMac and grants the iPad a higher
score than the other benchmarks. This means the subset of JavaScript tested by our suite
is probably well supported by the mobile Safari, although it lacks in some features we
did not use.

Explorative Authoring of Active Web Content 127

5.7 Conclusion

Performance is crucial to Lively Kernel. The highly interactive character and the goal of
fluent programming require fast processing and computation.

In this thesis we described and implemented two tools, that can help us on the way to
a perfomant system. A benchmark suite to provide objective information about perfor-
mance and a profiler to track down bottle necks.

The benchmarks allow us to compare the performance of Lively Kernel on diferent
devices, using different browsers and across time (and therefore state of Lively Ker-
nel). It provides an objective meassurement of performance that could only be feeled
and guessed before. We selected a representative set of features to base our benchmarks
upon and created an implementation framework, that allows for easy extension and
configuration of the benchmark suite. We implemented our suite and ran it on severall
plattforms.

The profiler is helpfull when fixing performance issues. It provides an efficient and
empirical way to find the bottle neck. We implemented the profiling mechanism using
wrapper functions and build a decent user interface. All resulting data is presented hu-
man readable in a sortable table. We are now able to profile scripts of parts or the whole
class system. We can even run a script severall times in order to compensate statistical
variances.

Our work has paved the way towards a fluent user experience by providing objective
meassurements and tools to notice, fund and fix performance issues.

128 Explorative Authoring of Active Web Content

A Specifications of test sytems

A.1 iMac

– iMac 11.2
– Intel Core i3
– 3.06 GHz
– 2 Cores
– 256 L2 Cache per Core
– 4 MB L3 Cache
– 4 GB 1333 MHz DDR3 RAM
– 5.86 GT/s
– Boot-ROM-Version IM112.0057.800
– SMC-version 1.64fS

A.2 Windows

– Windows 7 Enterprise SP 1
– Intel Core i5
– 2.66 GHz
– 4 Cores
– 4 x 32 KBytes L1 Cache
– 4 x 256 KBytes L2 Cache
– 8192 KBytes L3 Cache
– 6 GB 667 MHz DD3 RAM (3 x 2 GB)

Explorative Authoring of Active Web Content 129

References

1. Alan Kay, Dan Ingalls, T.K.: Squeak smalltalk (05 2012), http://squeak.org, vis-
ited 19.06.2012

2. Albinsson, P.A., Zhai, S.: High precision touch screen interaction. In: Proceedings
of the SIGCHI conference on Human factors in computing systems. CHI ’03, ACM,
New York, NY, USA (2003)

3. Allen-Conn, B.J., Rose., K.: Powerful ideas in the classroom. Viewpoints Research
Institute, Inc. (2003)

4. Anderson, J.C., Lehnardt, J., Slater, N.: CouchDB: The Definitive Guide Time to Re-
lax. O’Reilly Media, Inc., 1st edn. (2010)

5. Apple Inc.: Touchevent class reference (12 2010), http://developer.apple.
com/library/safari/navigation/, visited 16.06.2012

6. Apple Inc.: Devicemotionevent class reference (06 2011), http://developer.
apple.com/library/safari/navigation/, visited 16.06.2012

7. Apple Inc.: Deviceorientationevent class reference (10 2011), http://developer.
apple.com/library/safari/navigation/, visited 16.06.2012

8. Apple Inc.: Safari web content guide (10 2011), http://developer.apple.com/
library/safari/navigation/, visited 16.06.2012

9. Apple Inc.: iOS Human Interface Guidelines (06 2012), https://
developer.apple.com/library/ios/documentation/userexperience/
conceptual/mobilehig/MobileHIG.pdf, visited 19.06.2012

10. Apple Inc.: iOS Human Interface Guidelines (03 2012), http://developer.
apple.com/library/safari/navigation/, visited 21.06.2012

11. Apple Inc: SunSpider JavaScript Benchmark (06 2012), http://www.webkit.
org/perf/sunspider/sunspider.html, visited 29.06.2012

12. Benko, H., Wilson, A.D., Baudisch, P.: Precise selection techniques for multi-touch
screens. In: Proceedings of the SIGCHI conference on Human Factors in computing
systems. CHI ’06, ACM, New York, NY, USA (2006)

13. Brubeck, M., Moon, S., Schepers, D.: Touch events (12 2011), http://www.w3.
org/TR/2011/CR-touch-events-20111215/, visited 25.06.2012

14. Callahan, J., Hopkins, D., Weiser, M., Shneiderman, B.: An empirical comparison of
pie vs. linear menus. In: Proceedings of the SIGCHI conference on Human factors in
computing systems. CHI ’88, ACM, New York, NY, USA (1988)

15. Czuchra, M.: Offline Worlds. Automated Client-Side Persistence in Lively Kernel.
Master’s thesis, Software Architecture Group, Hasso-Plattner-Institute, University
of Potsdam, Germany (2012)

16. Dannert, J.: WebCards. Entwurf und Implementierung eines kollaborativen,
graphischen Web-Entwicklungssystems für Endanwender. Master’s thesis, Soft-
ware Architecture Group, Hasso-Plattner-Institute, University of Potsdam, Ger-
many (2009)

17. Dourish, P., Bellotti, V.: Awareness and coordination in shared workspaces. In: Pro-
ceedings of the 1992 ACM conference on Computer-supported cooperative work.
CSCW ’92, ACM, New York, NY, USA (1992)

18. Dourish, P., Bly, S.: Portholes: supporting awareness in a distributed work group.
In: Proceedings of the SIGCHI conference on Human factors in computing systems.
CHI ’92, ACM, New York, NY, USA (1992)

19. Ecma International: Ecmascript language specification (06 2011), http:
//www.ecma-international.org/publications/files/ECMA-ST/
Ecma-262.pdf, visited 16.06.2012

http://squeak.org
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/MobileHIG.pdf
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/MobileHIG.pdf
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/MobileHIG.pdf
http://developer.apple.com/library/safari/navigation/
http://developer.apple.com/library/safari/navigation/
http://www.webkit.org/perf/sunspider/sunspider.html
http://www.webkit.org/perf/sunspider/sunspider.html
http://www.w3.org/TR/2011/CR-touch-events-20111215/
http://www.w3.org/TR/2011/CR-touch-events-20111215/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

130 Explorative Authoring of Active Web Content

20. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. SIGMOD Rec.
18(2), 399–407 (06 1989)

21. Fitts, P.M.: The information capacity of the human motor system in controlling the
amplitude of movement. Journal of experimental psychology 47(6), 381–391 (06
1954)

22. Google Inc: V8 Benchmark Suite - version 7 (06 2012), http://v8.googlecode.
com/svn/data/benchmarks/v7/run.html, visited 29.06.2012

23. Google Inc. and the Open Handset Alliance: Iconography | android developers (05
2012), https://developer.android.com/design/style/iconography.
html, visited 19.06.2012

24. Google Inc. and the Open Handset Alliance: Selection | android developers (05
2012), http://developer.android.com/design/patterns/selection.
html, visited 19.06.2012

25. Graham, T., Phillips, W., Wolfe, C.: Quality analysis of distribution architectures
for synchronous groupware. International Conference on Collaborative Computing:
Networking, Applications and Worksharing 0, 41 (2006)

26. Hick, W.E.: On the rate of gain of information. Quarterly Journal of Experimental
Psychology 4(1), 11–26 (1952)

27. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented Programming
(03 2008), http://www.hirschfeld.org/writings/index.html, visited
29.06.2012

28. Hopkins, D.: The design and implementation of pie menus. Dr. Dobb’s J. 16(12),
16–26 (12 1991)

29. HPI Software Architecture Group: Lively - an explorative authoring environment,
http://lively-kernel.org/lively/index.html, visited 16.06.2012

30. Ingalls, D., Palacz, K., Uhler, S., Taivalsaari, A., Mikkonen, T.: The lively kernel a self-
supporting system on a web page. In: Hirschfeld, R., Rose, K. (eds.) Self-Sustaining
Systems, Lecture Notes in Computer Science, vol. 5146. Springer Berlin / Heidelberg
(2008), 10.1007/978-3-540-89275-5_2

31. Jonathan P. Munson, P.D.: A flexible object merging framework (1994)
32. Just, H.: ActiveParts: A Server-Side Lively Kernel Runtime. Master’s thesis, Hasso-

Plattner-Institut, Potsdam (05 2005)
33. Kay, A.C.: A personal computer for children of all ages. In: Proceedings of the ACM

National Conference. Boston, Estados Unidos (08 1972)
34. Knittl-Frank, D.: Analysis and Comparison of Distributed Version Control Systems.

bachelor thesis, University of Applied Sciences, Upper Austria (2010)
35. Koch, P.P.: The fifth position value (12 2010), http://www.quirksmode.org/

blog/archives/2010/12/the_fifth_posit.html, visited 18.06.2012
36. Krahn, R.: Mouse and keyboard events in lively (08 2011), http:

//lively-kernel.org/repository/webwerkstatt/documentation/
Events.xhtml, visited 16.06.2012

37. Krahn, R., Ingalls, D., Hirschfeld, R., Lincke, J., Palacz, K.: Lively wiki a development
environment for creating and sharing active web content. In: Proceedings of the 5th
International Symposium on Wikis and Open Collaboration. WikiSym ’09, ACM,
New York, NY, USA (2009)

38. Krahn, R., Lincke, J., Hirschfeld, R.: Efficient Layer Activation in ContextJS (01 2012),
http://www.hirschfeld.org/writings/index.html, visited 27.06.2012

39. Leithead, T., Rossi, J., Schepers, D., Höhrmann, B., Hégaret, P.L., Pixley, T.: Docu-
ment object model (dom) level 3 events specification (06 2012), http://www.w3.
org/TR/DOM-Level-3-Events/, visited 16.06.2012

http://v8.googlecode.com/svn/data/benchmarks/v7/run.html
http://v8.googlecode.com/svn/data/benchmarks/v7/run.html
https://developer.android.com/design/style/iconography.html
https://developer.android.com/design/style/iconography.html
http://developer.android.com/design/patterns/selection.html
http://developer.android.com/design/patterns/selection.html
http://www.hirschfeld.org/writings/index.html
http://lively-kernel.org/lively/index.html
http://www.quirksmode.org/blog/archives/2010/12/the_fifth_posit.html
http://www.quirksmode.org/blog/archives/2010/12/the_fifth_posit.html
http://lively-kernel.org/repository/webwerkstatt/documentation/Events.xhtml
http://lively-kernel.org/repository/webwerkstatt/documentation/Events.xhtml
http://lively-kernel.org/repository/webwerkstatt/documentation/Events.xhtml
http://www.hirschfeld.org/writings/index.html
http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/

Explorative Authoring of Active Web Content 131

40. Leuf, B., Cunningham, W.: The Wiki way: quick collaboration on the Web. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (2001)

41. Lincke, J., Krahn, R., Hirschfeld, R.: Implementing Scoped Method Tracing with
ContextJS (07 2012), http://www.hirschfeld.org/writings/index.html,
visited 27.06.2012

42. Lincke, J., Krahn, R., Ingalls, D., Hirschfeld, R.: Lively fabrik a web-based end-user
programming environment. In: Proceedings of the 2009 Seventh International Con-
ference on Creating, Connecting and Collaborating through Computing. C5 ’09,
IEEE Computer Society, Washington, DC, USA (2009)

43. Lincke, J., Krahn, R., Ingalls, D., Röder, M., Hirschfeld, R.: The lively partsbin–a
cloud-based repository for collaborative development of active web content. Hawaii
International Conference on System Sciences 0 (2012)

44. Lincke, J., Krahn, R., Ingalls, D., Röder, M., Hirschfeld, R.: The lively partsbin-a
cloud-based repository for collaborative development of active web content. In:
HICSS (2012)

45. Maloney, J.: Morphic: The Self User Interface Framework (07 1995), http://ftp.
squeak.org/docs/Self-4.0-UI-Framework.pdf, visited 21.06.2012

46. Maloney, J.: Morphic: The Self User Interface Framework. Sun Microsystems, Inc.,
2550 Garcia Avenue, Mountain View, CA 94043 USA (1995)

47. McDirmid, S.: Coding at the speed of touch. In: Proceedings of the 10th SIGPLAN
symposium on New ideas, new paradigms, and reflections on programming and
software. ONWARD ’11, ACM, New York, NY, USA (2011)

48. Mikkonen, T., Taivalsaari, A.: Creating a mobile web application platform: the lively
kernel experiences. In: Proceedings of the 2009 ACM symposium on Applied Com-
puting. SAC ’09, ACM, New York, NY, USA (2009)

49. Mozilla Foundation: Kraken JavaScript Benchmark (version 1.1) (06 2012), http:
//krakenbenchmark.mozilla.org/, visited 29.06.2012

50. Ohkubo, M., Ishii, H.: Design and implementation of a shared workspace by inte-
grating individual workspaces. SIGOIS Bull. 11(2-3), 142–146 (03 1990)

51. Rauch, G.: socket.io (2012), http://socket.io, visited 27.06.2012
52. Resig, J.: Dromaeo: JavaScript Performance Testing (06 2012), http://dromaeo.

com/, visited 29.06.2012
53. Sebastian Herzberg, D.D.: Content-Tracking mit Git. Beleg zur Lehrveranstaltung

Softwareentwicklungswerkzeuge (2011)
54. Smus, B.: Multi-touch web development (06 2011), http://www.html5rocks.

com/en/mobile/touch/, visited 16.06.2012
55. Stefik, M., Bobrow, D.G., Foster, G., Lanning, S., Tatar, D.: Wysiwis revised: early

experiences with multiuser interfaces. ACM Trans. Inf. Syst. 5(2), 147–167 (04 1987)
56. Stefik, M., Foster, G., Bobrow, D.G., Kahn, K., Lanning, S., Suchman, L.: Beyond the

chalkboard: computer support for collaboration and problem solving in meetings.
Commun. ACM 30(1), 32–47 (01 1987)

57. Stewart, J., Bederson, B.B., Druin, A.: Single display groupware: a model for co-
present collaboration. In: Proceedings of the SIGCHI conference on Human factors
in computing systems: the CHI is the limit. CHI ’99, ACM, New York, NY, USA
(1999)

58. Taivalsaari, A., Mikkonen, T., Ingalls, D., Palacz, K.: Web browser as an application
platform. Software Engineering and Advanced Applications, Euromicro Conference
0, 293–302 (2008)

59. Tilkov, S., Vinoski, S.: Node.js: Using javascript to build high-performance network
programs. IEEE Internet Computing 14, 80–83 (2010)

http://www.hirschfeld.org/writings/index.html
http://ftp.squeak.org/docs/Self-4.0-UI-Framework.pdf
http://ftp.squeak.org/docs/Self-4.0-UI-Framework.pdf
http://krakenbenchmark.mozilla.org/
http://krakenbenchmark.mozilla.org/
http://socket.io
http://dromaeo.com/
http://dromaeo.com/
http://www.html5rocks.com/en/mobile/touch/
http://www.html5rocks.com/en/mobile/touch/

132 Explorative Authoring of Active Web Content

60. Tillmann, N., Moskal, M., de Halleux, J., Fahndrich, M.: Touchdevelop: program-
ming cloud-connected mobile devices via touchscreen. In: Proceedings of the 10th
SIGPLAN symposium on New ideas, new paradigms, and reflections on program-
ming and software. ONWARD ’11, ACM, New York, NY, USA (2011)

61. Ungar, D., Smith, R.B.: Self. In: Proceedings of the third ACM SIGPLAN conference
on History of programming languages. HOPL III, ACM, New York, NY, USA (2007)

62. WHATWG: Timers (06 2012), http://www.whatwg.org/specs/web-apps/
current-work/multipage/webappapis.html, visited 20.06.2012

63. World Wide Web Consortium: http://www.w3.org/, visited 16.06.2012

http://www.whatwg.org/specs/web-apps/current-work/multipage/webappapis.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/webappapis.html
http://www.w3.org/

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

71 978-3-86956-

231-5
Vereinfachung der Entwicklung von
Geschäftsanwendungen durch
Konsolidierung von Programmier-
konzepten und -technologien

Lenoi Berov, Johannes Henning,
Toni Mattis, Patrick Rein, Robin
Schreiber, Eric Seckler, Bastian
Steinert, Robert Hirschfeld

70 978-3-86956-
230-8

HPI Future SOC Lab - Proceedings 2011 Christoph Meinel, Andreas Polze,
Gerhard Oswald, Rolf Strotmann,
Ulrich Seibold, Doc D'Errico

69 978-3-86956-
229-2

Akzeptanz und Nutzerfreundlichkeit der
AusweisApp: Eine qualitative
Untersuchung

Susanne Asheuer, Joy
Belgassem, Wiete Eichorn, Rio
Leipold, Lucas Licht, Christoph
Meinel, Anne Schanz, Maxim
Schnjakin

68 978-3-86956-
225-4

Fünfter Deutscher IPv6 Gipfel 2012 Christoph Meinel, Harald Sack
(Hrsg.)

67 978-3-86956-
228-5

Cache Conscious Column Organization in
In-Memory Column Stores

David Schalb, Jens Krüger,
Hasso Plattner

66 978-3-86956-
227-8

Model-Driven Engineering of Adaptation
Engines for Self-Adaptive Software

Thomas Vogel, Holger Giese

65 978-3-86956-
226-1

Scalable Compatibility for Embedded
Real-Time components via Language
Progressive Timed Automata

Stefan Neumann, Holger Giese

64 978-3-86956-
217-9

Cyber-Physical Systems with Dynamic
Structure: Towards Modeling and
Verification of Inductive Invariants

Basil Becker, Holger Giese

63 978-3-86956-
204-9

Theories and Intricacies of
Information Security Problems

Anne V. D. M. Kayem,
Christoph Meinel (Eds.)

62 978-3-86956-
212-4

Covering or Complete?
Discovering Conditional Inclusion
Dependencies

Jana Bauckmann, Ziawasch
Abedjan, Ulf Leser, Heiko Müller,
Felix Naumann

61 978-3-86956-
194-3

Vierter Deutscher IPv6 Gipfel 2011 Christoph Meinel, Harald Sack
(Hrsg.)

60 978-3-86956-
201-8

Understanding Cryptic Schemata in Large
Extract-Transform-Load Systems

Alexander Albrecht,
Felix Naumann

59 978-3-86956-
193-6

The JCop Language Specification

Malte Appeltauer,
Robert Hirschfeld

58 978-3-86956-
192-9

MDE Settings in SAP: A Descriptive Field
Study

Regina Hebig, Holger Giese

57 978-3-86956-
191-2

Industrial Case Study on the Integration of
SysML and AUTOSAR with Triple Graph
Grammars

Holger Giese, Stephan
Hildebrandt, Stefan Neumann,
Sebastian Wätzoldt

56 978-3-86956-
171-4

Quantitative Modeling and Analysis of
Service-Oriented Real-Time Systems
using Interval Probabilistic Timed
Automata

Christian Krause, Holger Giese

ISBN 978-3-86956-232-2
ISSN 1613-5652

	Title
	Imprint

	Abstract
	Zusammenfassung
	Table of Contents
	Self-supporting web-based programming on mobile devices with Lively Kernel
	Introduction
	Related Work
	Approach - Identify Workflows in Lively Kernel
	Touchscreen interaction vs. mouse and keyboard interaction
	Implementation - Bring Lively's Workflows to Mobile Devices
	Results and Future Work

	Handling Touch Events on Mobile Devices for Lively Kernel
	Introduction
	Events on Mobile Devices
	Handling Events in Lively Kernel
	Implementing Touch Events in Lively Kernel
	Related work
	Conclusion and Future Work

	Diffing and Merging of Lively Kernel Parts
	Introduction
	Identifying the problem areas: An example setting
	Approaches and decisions
	Implementation
	Evaluation
	Future work
	Related Work
	Conclusion

	Design and Implementation of Shared Workspaces in a Mobile and Desktop Environment
	Introduction
	Approach / Problems
	Implementation
	Examples and Scenarios
	Performance Evaluation
	Related Work
	Future Work
	Conclusion

	Benchmarking Lively Kernel on Various Systems
	Introduction
	Benchmarking
	Profiling
	Results of the profiler
	Future Work
	Related Work
	Conclusion

	Specifications of test sytems
	iMac
	Windows

	References
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

