
Technische Berichte Nr. 70

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

HPI Future SOC Lab -

Proceedings 2011

Christoph Meinel, Andreas Polze, Gerhard Oswald,
Rolf Strotmann, Ulrich Seibold, Doc D‘Errico (Hrsg.)

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 70

Christoph Meinel | Andreas Polze | Gerhard Oswald | Rolf Strotmann |
Ulrich Seibold | Doc D'Errico (Hrsg.)

HPI Future SOC Lab – Proceedings 2011

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.de/ abrufbar.

Universitätsverlag Potsdam 2013
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2013/6400/
URN urn:nbn:de:kobv:517-opus-64004
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64004

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-230-8

mailto:verlag@uni-potsdam.de

Contents

Spring 2011

Prof. Dr. Ben Juurlink, Architektur eingebetteter Systeme, Technische Universität
Berlin

A Benchmark Suite for Evaluating Parallel Programming Models 1

Prof. Dr. Christoph Meinel, Internet-Technologies and Systems Group, Hasso-Plattner-
Institut

Towards Multi-Core and In-Memory for IDS Alert Correlation: Approaches and Capabilities . 7

Elastic VM for Dynamic Virtualized Resources Provisioning and Optimization 13

VMs Core-allocation scheduling Policy for Energy and Performance Management 19

Prof. Dr. Holger Giese, System Analysis and Modeling Group, Hasso-Plattner-Institut

Towards Scalable and Self-Optimizing Software for Multi-Core and Cloud Computing II . . . 25

Dr. Martin von Löwis, Operating Systems & Middleware Group, Hasso-Plattner-
Institut

Buildbot Project Progress Report . 29

Prof. Dr. Andreas Polze, Operating Systems & Middleware Group, Hasso-Plattner-
Institut

Downtime Analysis for Pro-Active Virtual Machine Migration Report for the HPI Future SOC
Lab . 33

Prof. Dr. Rainer Thome, Business Administration and Business Information Integration,
University of Würzburg

Forward Business Recommendations – Realtime Management Support based on In-Memory
Technology . 41

Fall 2011

Prof. Dr. Christoph Meinel, Internet-Technologies and Systems Group, Hasso-Plattner-
Institut

Accurate Mutlicore Processor Power Models for Power-Aware Resource Management 45

Towards Multi-Core and In-Memory for IDS Alert Correlation: Approaches and Capabilities . 53

Prof. Dr. Felix Naumann, Information Systems, Hasso-Plattner-Institut

Duplicate Detection on GPUs . 59

i

Prof. Dr. Michael Schöttner, Betriebssysteme, Universität Düsseldorf

ECRAM (Elastic Cooperative RAM) HPI Future SOC Lab Project Report 63

Prof. Dr. h.c. Hasso Plattner, Enterprise Platform and Integration Concepts,
Hasso-Plattner-Institut

Performance Prediction for Main Memory Databases in Data Clouds 67

Prof. Dr. Andreas Polze, Operating Systems & Middleware Group, Hasso-Plattner-
Institut

Downtime Analysis for Pro-Active Virtual Machine Migration 73

ii

A Benchmark Suite for Evaluating Parallel Programming Models

Michael Andersch, Ben Juurlink, and Chi Ching Chi
Technische Universität Berlin

Einsteinufer 17
10587 Berlin

{andersch,juurlink,cchi}@cs.tu-berlin.de

Abstract

The transition to multi-core processors enforces soft-
ware developers to explicitly exploit thread-level par-
allelism to increase performance. The associated pro-
grammability problem has led to the introduction of
a plethora of parallel programming models that aim
at simplifying software development by raising the ab-
straction level. Since industry has not settled for a sin-
gle model, however, multiple significantly different ap-
proaches exist. This work presents a benchmark suite
which can be used to classify and compare such paral-
lel programming models and, therefore, aids in select-
ing the appropriate programming model for a given
task. After a detailed explanation of the suites de-
sign, preliminary results for two programming models,
Pthreads and OmpSs/SMPSs, are presented and ana-
lyzed, leading to an outline of further extensions of the
suite.

1. Introduction

The move towards multi-core architectures changes
the programmers view of the architecture and intro-
duces yet unresolved programmability issues. Increas-
ing performance now requires the explicit exploitation
of thread-level parallelism. The development of par-
allel programs is generally not a trivial task since an
appropriate parallel decomposition of the algorithms
needs to be found. Additionally, the programmer usu-
ally has to perform architecture-specific optimizations
such as thread-to-core mapping and page placement,
which could lead to different optimal parallelization
strategies for different platforms. Furthermore, the
verification and debug processes of such programs in-
troduce additional difficulties caused by the complex-
ity associated with sophisticated threads running in
parallel.
All this has led to the introduction of several program-
ming models in an attempt to relieve developers partly
or completely from such parallel programming issues.
These models, however, differ significantly in the pro-

vided underlying parallel principles, abstraction lev-
els, semantics, and syntax.
This work aims at providing some means of compar-
ison by introducing an evaluation suite consisting of
several applications to examine and classify the fea-
tures and qualities of shared memory parallel program-
ming models. These applications will not only be
used as benchmarks to measure performance levels of
programs developed in a particular model, but also
to evaluate the usability and features of that model.
Additionally, a first version of this suite is presented
along with preliminary results for two currently rele-
vant models. The contributions of this work can be
summarized as follows:

• We propose a benchmark suite specifically tar-
geted at the evaluation of performance and usabil-
ity of parallel programming models rather than
parallel machines.

• We focus on modularity and portability for the
benchmarks incorporated into the suite.

• We perform a case study, evaluating the novel
OmpSs programming model [10], using POSIX
threads as a reference for comparison.

This paper is structured as follows. Section 2 encom-
passes the top-level design decisions made in creating
the evaluation suite. In Section 2.1, we define gen-
eral requirements the suite must fulfill. In Section 2.2,
these requirements are utilized to create a preliminary
selection of benchmarks which are then presented in a
more detailed fashion. A case study using the bench-
mark suite is presented and analyzed in Section 3.
Section 4 discusses related work. Finally, in Section
5, conclusions are drawn and future perspectives are
given.

2. Suite Design

On a high level, the benchmark suite must fulfill sev-
eral critical requirements which can be derived from
its objective as a suite to evaluate the programmabil-
ity and performance of parallel programming models.

1

These criteria will then function as guidelines for the
selection of benchmarks and benchmarking practice.
In the following section, we identify six such criteria.
They assure comparability, fairness and ease of use as
well as enabling developers using the suite to gather
hands-on experience with the programming model in
use.Please read the following carefully.

2.1. General Requirements

1. A broad range of application domains must be
covered.

2. Various parallel patterns and characteristics must
be covered.

3. Various application sizes must be covered.

4. The suite must include input data sets of varying
size.

5. Simplicity, modularity and portability must be
ensured.

6. The parallelization approach must be fixed and
well documented.

2.2. Benchmark Suite

The current benchmark suite is presented in Table 1.
The K, W, and A identifiers in the second column are
a realization of the third requirement, grouping bench-
marks into one of three different categories, Kernels,
Workloads, and Applications. A kernel consists of
(a part of) the extracted core of a real-world appli-
cation. Kernels are, therefore, comparably small (<
1000 LOC) and exhibit only a single, isolated paral-
lelization pattern.
Workloads are either derived by combining several
kernels, thereby introducing additional data dependen-
cies and covering more parallelization patterns, or it is
a program considered too large to fit in the kernel class,
but still only an extracted part of a real application.
Applications are full-grown software products which
are widely used in industry or science and therefore
feature the highest number of subsystems, dependen-
cies and combinations of parallelization patterns.
Following is, in the order depicted in Table 1, a short
description of each benchmark. It should be kept in
mind this is a preliminary selection which shows the
current and not the final state of the suite and is sub-
ject to change and extension.

1) c-ray: c-ray is a simple, brute-force ray tracer
[17]. It is small (ca. 500 LOC for the serial version)
and renders an image in PPM binary format from a
simple scene description file. Despite its simplicity,
c-ray is a very compute-intensive benchmark, featur-
ing a high computation-to-communication ratio. The
parallelization approach is depicted in Figure 1.

TABLE I
BENCHMARKS

Name Type Application Domain Problem Sizes Code Size
c-ray K Offline Raytracing Computer Graphics 18 / 192 objects 500 LOC
md5 K MD5 Calculation Cryptography various 1000 LOC

rgbcmy K Color Conversion Image Processing 3.8 / 30.5 MP 700 LOC
rotate K Image Rotation Image Processing 3.8 / 30.5 MP 1000 LOC

kmeans K k-Means Clustering Artificial Intelligence various 600 LOC
rot-cc W rotate + rgbcmy Combined Workload 3.8 MP / 30.5 MP 1400 LOC
ray-rot W c-ray + rotate Combined Workload 18 / 192 objects 1300 LOC

h264dec A H.264 Decoding Video Processing Full HD / QHD video 20000 LOC

B. Benchmark Suite

The current benchmark suite is presented in Table I. The K,
W, and A identifiers in the second column are a realization of
the third requirement, grouping benchmarks into one of three
different categories, Kernels, Workloads, and Applications.

A kernel consists of (a part of) the extracted core of
a real-world application. Kernels are, therefore, comparably
small (< 1000 LOC) and exhibit only a single, isolated
parallelization pattern.

Workloads are either derived by combining several kernels,
thereby introducing additional data dependencies and covering
more parallelization patterns, or it is a program considered too
large to fit in the kernel class, but still only an extracted part
of a real application.

Applications are full-grown software products which are
widely used in industry or science and therefore feature the
highest number of subsystems, dependencies and combinations
of parallelization patterns.

Following is, in the order depicted in Table I, a short
description of each benchmark. It should be kept in mind this
is a preliminary selection which shows the current and not the
final state of the suite and is subject to change and extension.

1) c-ray: c-ray is a simple, brute-force ray tracer [2]. It
is small (ca. 500 LOC for the serial version) and renders an
image in PPM binary format from a simple scene description
file. Despite its simplicity, c-ray is a very compute-intensive
benchmark, featuring a high computation-to-communication
ratio. The parallelization approach is depicted in Figure 1.

Input

Compute

input image

Write to disk

Fig. 1. Parallel pattern for c-ray, rotate and rgbcmy kernels

2) md5: md5 is a benchmark utilizing a standard imple-
mentation of the MD5 hash algorithm [3] to produce hash
values. Since there is no exploitable thread-level parallelism
in the block cipher construction used in MD5, the benchmark
uses multiple input buffers consisting of predefined raw binary
data which it processes in parallel. This structure is shown in
Figure 2; hatched parts illustrate the exploitable parallelism.

Input

Compute

input buffer

input buffer

input buffer out

Fig. 2. Parallel pattern for md5 kernel

3) rgbcmy: The rgbcmy kernel converts an input RGB PPM
image to the CMYK color space used for image printing.
Parallelism is found in the different pixels (which can be
converted independently), visualized in Figure 1.

4) rotate: rotate is a benchmark which rotates an RGB im-
age in binary representation by 0, 90, 180 or 270 degrees. The
parallelization approach can also be visualised by Figure 1.

5) kmeans: The kmeans kernel executes the k-Means clus-
tering algorithm [4] used in the domains artificial intelli-
gence and data mining. It is derived from the correspondent
benchmark in the NU-MineBench benchmark suite [5]. The
algorithm is visualized in Figure 3.

Cluster centers

Points

n
ew

C
lu
st
er
S
iz
e

n
ew

C
lu
st
er
s

Fig. 3. Algorithm for kmeans kernel

6) rot-cc: As mentioned before, workloads consist of com-
binations of kernels. The first workload combines the rotate
and rgbcmy kernels and is therefore called rot-cc (for rotation
+ color conversion). The parallelization structure is illustrated
in Figure 4. Interesting cases are those where the rotation
changes the image orientation (90 and 270 degrees) since
this leads to a strided memory access pattern for the color
conversion kernel.

7) ray-rot: By chaining the c-ray and rotate kernels, we
obtain the ray-rot workload. It exhibits additional function-
level parallelism and is especially interesting because the
two phases are highly different in characteristics and must,
therefore, be load balanced to achieve high performance. ray-

Figure 1. Parallel pattern for c-ray, rotate
and rgbcmy kernels

TABLE I
BENCHMARKS

Name Type Application Domain Problem Sizes Code Size
c-ray K Offline Raytracing Computer Graphics 18 / 192 objects 500 LOC
md5 K MD5 Calculation Cryptography various 1000 LOC

rgbcmy K Color Conversion Image Processing 3.8 / 30.5 MP 700 LOC
rotate K Image Rotation Image Processing 3.8 / 30.5 MP 1000 LOC

kmeans K k-Means Clustering Artificial Intelligence various 600 LOC
rot-cc W rotate + rgbcmy Combined Workload 3.8 MP / 30.5 MP 1400 LOC
ray-rot W c-ray + rotate Combined Workload 18 / 192 objects 1300 LOC

h264dec A H.264 Decoding Video Processing Full HD / QHD video 20000 LOC

B. Benchmark Suite

The current benchmark suite is presented in Table I. The K,
W, and A identifiers in the second column are a realization of
the third requirement, grouping benchmarks into one of three
different categories, Kernels, Workloads, and Applications.

A kernel consists of (a part of) the extracted core of
a real-world application. Kernels are, therefore, comparably
small (< 1000 LOC) and exhibit only a single, isolated
parallelization pattern.

Workloads are either derived by combining several kernels,
thereby introducing additional data dependencies and covering
more parallelization patterns, or it is a program considered too
large to fit in the kernel class, but still only an extracted part
of a real application.

Applications are full-grown software products which are
widely used in industry or science and therefore feature the
highest number of subsystems, dependencies and combinations
of parallelization patterns.

Following is, in the order depicted in Table I, a short
description of each benchmark. It should be kept in mind this
is a preliminary selection which shows the current and not the
final state of the suite and is subject to change and extension.

1) c-ray: c-ray is a simple, brute-force ray tracer [2]. It
is small (ca. 500 LOC for the serial version) and renders an
image in PPM binary format from a simple scene description
file. Despite its simplicity, c-ray is a very compute-intensive
benchmark, featuring a high computation-to-communication
ratio. The parallelization approach is depicted in Figure 1.

Input

Compute

input image

Write to disk

Fig. 1. Parallel pattern for c-ray, rotate and rgbcmy kernels

2) md5: md5 is a benchmark utilizing a standard imple-
mentation of the MD5 hash algorithm [3] to produce hash
values. Since there is no exploitable thread-level parallelism
in the block cipher construction used in MD5, the benchmark
uses multiple input buffers consisting of predefined raw binary
data which it processes in parallel. This structure is shown in
Figure 2; hatched parts illustrate the exploitable parallelism.

Input

Compute

input buffer

input buffer

input buffer out

Fig. 2. Parallel pattern for md5 kernel

3) rgbcmy: The rgbcmy kernel converts an input RGB PPM
image to the CMYK color space used for image printing.
Parallelism is found in the different pixels (which can be
converted independently), visualized in Figure 1.

4) rotate: rotate is a benchmark which rotates an RGB im-
age in binary representation by 0, 90, 180 or 270 degrees. The
parallelization approach can also be visualised by Figure 1.

5) kmeans: The kmeans kernel executes the k-Means clus-
tering algorithm [4] used in the domains artificial intelli-
gence and data mining. It is derived from the correspondent
benchmark in the NU-MineBench benchmark suite [5]. The
algorithm is visualized in Figure 3.

Cluster centers

Points

n
ew

C
lu
st
er
S
iz
e

n
ew

C
lu
st
er
s

Fig. 3. Algorithm for kmeans kernel

6) rot-cc: As mentioned before, workloads consist of com-
binations of kernels. The first workload combines the rotate
and rgbcmy kernels and is therefore called rot-cc (for rotation
+ color conversion). The parallelization structure is illustrated
in Figure 4. Interesting cases are those where the rotation
changes the image orientation (90 and 270 degrees) since
this leads to a strided memory access pattern for the color
conversion kernel.

7) ray-rot: By chaining the c-ray and rotate kernels, we
obtain the ray-rot workload. It exhibits additional function-
level parallelism and is especially interesting because the
two phases are highly different in characteristics and must,
therefore, be load balanced to achieve high performance. ray-

Figure 2. Parallel pattern for md5 kernel

2) md5: md5 is a benchmark utilizing a standard im-
plementation of the MD5 hash algorithm [15] to pro-
duce hash values. Since there is no exploitable thread-
level parallelism in the block cipher construction used
in MD5, the benchmark uses multiple input buffers
consisting of predefined raw binary data which it pro-
cesses in parallel. This structure is shown in Figure 2;
hatched parts illustrate the exploitable parallelism.

3) rgbcmy: The rgbcmy kernel converts an input
RGB PPM image to the CMYK color space used for
image printing. Parallelism is found in the different
pixels (which can be converted independently), visu-
alized in Figure 1.

4) rotate: rotate is a benchmark which rotates an
RGB image in binary representation by 0, 90, 180 or
270 degrees. The parallelization approach can also be
visualised by Figure 1.

5) kmeans: The kmeans kernel executes the k-Means
clustering algorithm [8] used in the domains artifi-
cial intelligence and data mining. It is derived from
the correspondent benchmark in the NU-MineBench
benchmark suite [9]. The algorithm is visualized in
Figure 3.

TABLE I
BENCHMARKS

Name Type Application Domain Problem Sizes Code Size
c-ray K Offline Raytracing Computer Graphics 18 / 192 objects 500 LOC
md5 K MD5 Calculation Cryptography various 1000 LOC

rgbcmy K Color Conversion Image Processing 3.8 / 30.5 MP 700 LOC
rotate K Image Rotation Image Processing 3.8 / 30.5 MP 1000 LOC

kmeans K k-Means Clustering Artificial Intelligence various 600 LOC
rot-cc W rotate + rgbcmy Combined Workload 3.8 MP / 30.5 MP 1400 LOC
ray-rot W c-ray + rotate Combined Workload 18 / 192 objects 1300 LOC

h264dec A H.264 Decoding Video Processing Full HD / QHD video 20000 LOC

B. Benchmark Suite

The current benchmark suite is presented in Table I. The K,
W, and A identifiers in the second column are a realization of
the third requirement, grouping benchmarks into one of three
different categories, Kernels, Workloads, and Applications.

A kernel consists of (a part of) the extracted core of
a real-world application. Kernels are, therefore, comparably
small (< 1000 LOC) and exhibit only a single, isolated
parallelization pattern.

Workloads are either derived by combining several kernels,
thereby introducing additional data dependencies and covering
more parallelization patterns, or it is a program considered too
large to fit in the kernel class, but still only an extracted part
of a real application.

Applications are full-grown software products which are
widely used in industry or science and therefore feature the
highest number of subsystems, dependencies and combinations
of parallelization patterns.

Following is, in the order depicted in Table I, a short
description of each benchmark. It should be kept in mind this
is a preliminary selection which shows the current and not the
final state of the suite and is subject to change and extension.

1) c-ray: c-ray is a simple, brute-force ray tracer [2]. It
is small (ca. 500 LOC for the serial version) and renders an
image in PPM binary format from a simple scene description
file. Despite its simplicity, c-ray is a very compute-intensive
benchmark, featuring a high computation-to-communication
ratio. The parallelization approach is depicted in Figure 1.

Input

Compute

input image

Write to disk

Fig. 1. Parallel pattern for c-ray, rotate and rgbcmy kernels

2) md5: md5 is a benchmark utilizing a standard imple-
mentation of the MD5 hash algorithm [3] to produce hash
values. Since there is no exploitable thread-level parallelism
in the block cipher construction used in MD5, the benchmark
uses multiple input buffers consisting of predefined raw binary
data which it processes in parallel. This structure is shown in
Figure 2; hatched parts illustrate the exploitable parallelism.

Input

Compute

input buffer

input buffer

input buffer out

Fig. 2. Parallel pattern for md5 kernel

3) rgbcmy: The rgbcmy kernel converts an input RGB PPM
image to the CMYK color space used for image printing.
Parallelism is found in the different pixels (which can be
converted independently), visualized in Figure 1.

4) rotate: rotate is a benchmark which rotates an RGB im-
age in binary representation by 0, 90, 180 or 270 degrees. The
parallelization approach can also be visualised by Figure 1.

5) kmeans: The kmeans kernel executes the k-Means clus-
tering algorithm [4] used in the domains artificial intelli-
gence and data mining. It is derived from the correspondent
benchmark in the NU-MineBench benchmark suite [5]. The
algorithm is visualized in Figure 3.

Cluster centers

Points

n
ew

C
lu
st
er
S
iz
e

n
ew

C
lu
st
er
s

Fig. 3. Algorithm for kmeans kernel

6) rot-cc: As mentioned before, workloads consist of com-
binations of kernels. The first workload combines the rotate
and rgbcmy kernels and is therefore called rot-cc (for rotation
+ color conversion). The parallelization structure is illustrated
in Figure 4. Interesting cases are those where the rotation
changes the image orientation (90 and 270 degrees) since
this leads to a strided memory access pattern for the color
conversion kernel.

7) ray-rot: By chaining the c-ray and rotate kernels, we
obtain the ray-rot workload. It exhibits additional function-
level parallelism and is especially interesting because the
two phases are highly different in characteristics and must,
therefore, be load balanced to achieve high performance. ray-

Figure 3. Algorithm for kmeans kernel

2

Name Type Application Domain Problem Sizes Code Size
c-ray K Offline Raytracing Computer Graphics 18 / 192 objects 500 LOC
md5 K MD5 Calculation Cryptography various 1000 LOC

rgbcmy K Color Conversion Image Processing 3.8 / 30.5 MP 700 LOC
rotate K Image Rotation Image Processing 3.8 / 30.5 MP 1000 LOC

kmeans K k-Means Clustering Artificial Intelligence various 600 LOC
rot-cc W rotate + rgbcmy Combined Workload 3.8 MP / 30.5 MP 1400 LOC
ray-rot W c-ray + rotate Combined Workload 18 / 192 objects 1300 LOC

h264dec A H.264 Decoding Video Processing Full HD / QHD video 20000 LOC

Table 1. Benchmarks

6) rot-cc: As mentioned before, workloads consist
of combinations of kernels. The first workload com-
bines the rotate and rgbcmy kernels and is therefore
called rot-cc (for rotation + color conversion). The
parallelization structure is illustrated in Figure 4. In-
teresting cases are those where the rotation changes
the image orientation (90 and 270 degrees) since this
leads to a strided memory access pattern for the color
conversion kernel.

Input

Compute

90◦ RGB CMYK

Fig. 4. Parallel patterns for rot-cc workload

rot can be visualized as two chained stages of the pattern in
Figure 1.

8) h264dec: h264dec is an H.264 decoder [6], derived from
FFmpeg, a free, universal video transcoder [7].

For the H.264 decoder benchmark, parallelism is exploited
at two levels: function-level and data-level parallelism (DLP).
First, in the decoder stages, each stage can be performed in
parallel in a pipeline fashion on different frames as shown in
Figure 5. Additionally, DLP is exploited within the entropy
(ED) and macroblock decoding (MBD) stages. This is illus-
trated in Figure 6. Here, hatched blocks denote data that can
be processed in parallel.

Read Display

Info 1 Info x

PIB

Pic 1 Pic n

DPB

Parse ED MBDED MBD

Fig. 5. Pipeline parallelism in h264dec

Entropy decode

P

2

B

3

B

4

Macroblock
decode

I

1

Fig. 6. DLP parallelism in ED and MD stages

III. CASE STUDY: PTHREADS VS. OMPSS

We now present performance results and the documentation
of usage experiences comparing two programming models,
Pthreads and OmpSs/SMPSs [1]. In Section III-A, we de-
scribe the features of the programming models in comparison.
After the experimental setup is presented in Section III-B,
Section III-C compares the speedup characteristics of the
different benchmarks. From this comparison, we then derive
information about the benchmark behavior and gain a first
impression on how the two models compare to each other.

A. Evaluated Programming Models

The POSIX thread library [8] provides basic threading
support for the C programming language. Synchronization
is achieved using mutexes to protect critical sections and
condition variables to achieve thread synchronization. The
threads themselves have to be created, managed (i.e., set
to a certain priority or in a detached state) and terminated
explicitly. Pthreads thus fully leaves the management of the
parallel algorithm to the programmer, enforcing him or her to

consider dependencies, synchronization points, and possible
race conditions in a direct, exposed way.

OmpSs/SMPSs [1] is the SMP instance of the OpenMP
SuperScalar model (OmpSs). It is a novel task-based pro-
gramming model which consists of a runtime library and a
source-to-source compiler. SMPSs requires the programmer to
annotate functions as tasks using #pragma css task directives
and label every task argument as an input, output, inout,
or reduction parameter. These keywords declare an argument
either read-only, write-only, read-write or as part of a reduction
operation. Once such a task is created, it will be added to
a runtime data structure, called the task dependency graph.
The task graph is maintained and populated by the underlying
runtime system which performs the dependency resolution and
the scheduling of tasks on worker threads. This is similar
to the way a superscalar processor dispatches instructions to
available execution units. The only additional synchronization
constructs SMPSs provides to the programmer are a barrier
directive, which requires all previously created tasks to finish,
a wait on directive, used to wait for a certain task to com-
plete, and a mutex, which currently is required for reduction
operations. An advantage of SMPSs is that the serial base
code is maintained, allowing profiling and debugging of the
sequential code with established tools. Its functionality can
easily be regained by compiling an SMPSs program with a
compiler not recognizing the preprocessor pragmas.

B. Experimental Setup

All available results have been obtained during the de-
velopment of this benchmark suite and are therefore neither
specifically optimized nor have been analyzed in detail. Their
main objective at this stage is to classify and analyze the
early benchmark behavior. Due to this early state of the
described benchmarks, results for kmeans and h264dec are not
yet included. Our evaluation platform is a 64-core cc-NUMA
system with the following features:

• 8x Xeon X7560 (Nehalem EX architecture),
• 2.26 GHz clock frequency,
• HyperThreading disabled,
• 2 TB RAM,
• 204.8 GB/s aggregate memory bandwidth.
Each reported result is the average of three runs. Timing

is done using timestamps inside the benchmarks and always
excludes the I/O-phases (i.e., loading the input from disk into
memory and cleaning up). Additionally, the execution time of
all programs has been measured using both a small and a large
input data set (see Table I for details).

C. Preliminary Scaling Results

In this section, the preliminary results for the Pthreads and
SMPSs versions of the benchmarks are discussed. The speedup
has been obtained by dividing the execution time on one
processor by the execution time on n processors for the same
program, thus normalizing the speedup factor for a single core
to one.

Figure 4. Parallel patterns for rot-cc
workload

7) ray-rot: By chaining the c-ray and rotate kernels,
we obtain the ray-rot workload. It exhibits additional
functionlevel parallelism and is especially interesting
because the two phases are highly different in char-
acteristics and must, therefore, be load balanced to
achieve high performance. ray-rot can be visualized
as two chained stages of the pattern in Figure 1.

8) h264dec: h264dec is an H.264 decoder [5], de-
rived from FFmpeg, a free, universal video transcoder
[6].
For the H.264 decoder benchmark, parallelism is ex-
ploited at two levels: function-level and data-level par-
allelism (DLP). First, in the decoder stages, each stage
can be performed in parallel in a pipeline fashion on
different frames as shown in Figure 5. Additionally,
DLP is exploited within the entropy (ED) and mac-
roblock decoding (MBD) stages. This is illustrated in
Figure 6. Here, hatched blocks denote data that can be
processed in parallel.

3. Case Study: Pthreads vs. OmpSs

We now present performance results and the docu-
mentation of usage experiences comparing two pro-
gramming models, Pthreads and OmpSs/SMPSs [10].

Input

Compute

90◦ RGB CMYK

Fig. 4. Parallel patterns for rot-cc workload

rot can be visualized as two chained stages of the pattern in
Figure 1.

8) h264dec: h264dec is an H.264 decoder [6], derived from
FFmpeg, a free, universal video transcoder [7].

For the H.264 decoder benchmark, parallelism is exploited
at two levels: function-level and data-level parallelism (DLP).
First, in the decoder stages, each stage can be performed in
parallel in a pipeline fashion on different frames as shown in
Figure 5. Additionally, DLP is exploited within the entropy
(ED) and macroblock decoding (MBD) stages. This is illus-
trated in Figure 6. Here, hatched blocks denote data that can
be processed in parallel.

Read Display

Info 1 Info x

PIB

Pic 1 Pic n

DPB

Parse ED MBDED MBD

Fig. 5. Pipeline parallelism in h264dec

Entropy decode

P

2

B

3

B

4

Macroblock
decode

I

1

Fig. 6. DLP parallelism in ED and MD stages

III. CASE STUDY: PTHREADS VS. OMPSS

We now present performance results and the documentation
of usage experiences comparing two programming models,
Pthreads and OmpSs/SMPSs [1]. In Section III-A, we de-
scribe the features of the programming models in comparison.
After the experimental setup is presented in Section III-B,
Section III-C compares the speedup characteristics of the
different benchmarks. From this comparison, we then derive
information about the benchmark behavior and gain a first
impression on how the two models compare to each other.

A. Evaluated Programming Models

The POSIX thread library [8] provides basic threading
support for the C programming language. Synchronization
is achieved using mutexes to protect critical sections and
condition variables to achieve thread synchronization. The
threads themselves have to be created, managed (i.e., set
to a certain priority or in a detached state) and terminated
explicitly. Pthreads thus fully leaves the management of the
parallel algorithm to the programmer, enforcing him or her to

consider dependencies, synchronization points, and possible
race conditions in a direct, exposed way.

OmpSs/SMPSs [1] is the SMP instance of the OpenMP
SuperScalar model (OmpSs). It is a novel task-based pro-
gramming model which consists of a runtime library and a
source-to-source compiler. SMPSs requires the programmer to
annotate functions as tasks using #pragma css task directives
and label every task argument as an input, output, inout,
or reduction parameter. These keywords declare an argument
either read-only, write-only, read-write or as part of a reduction
operation. Once such a task is created, it will be added to
a runtime data structure, called the task dependency graph.
The task graph is maintained and populated by the underlying
runtime system which performs the dependency resolution and
the scheduling of tasks on worker threads. This is similar
to the way a superscalar processor dispatches instructions to
available execution units. The only additional synchronization
constructs SMPSs provides to the programmer are a barrier
directive, which requires all previously created tasks to finish,
a wait on directive, used to wait for a certain task to com-
plete, and a mutex, which currently is required for reduction
operations. An advantage of SMPSs is that the serial base
code is maintained, allowing profiling and debugging of the
sequential code with established tools. Its functionality can
easily be regained by compiling an SMPSs program with a
compiler not recognizing the preprocessor pragmas.

B. Experimental Setup

All available results have been obtained during the de-
velopment of this benchmark suite and are therefore neither
specifically optimized nor have been analyzed in detail. Their
main objective at this stage is to classify and analyze the
early benchmark behavior. Due to this early state of the
described benchmarks, results for kmeans and h264dec are not
yet included. Our evaluation platform is a 64-core cc-NUMA
system with the following features:

• 8x Xeon X7560 (Nehalem EX architecture),
• 2.26 GHz clock frequency,
• HyperThreading disabled,
• 2 TB RAM,
• 204.8 GB/s aggregate memory bandwidth.
Each reported result is the average of three runs. Timing

is done using timestamps inside the benchmarks and always
excludes the I/O-phases (i.e., loading the input from disk into
memory and cleaning up). Additionally, the execution time of
all programs has been measured using both a small and a large
input data set (see Table I for details).

C. Preliminary Scaling Results

In this section, the preliminary results for the Pthreads and
SMPSs versions of the benchmarks are discussed. The speedup
has been obtained by dividing the execution time on one
processor by the execution time on n processors for the same
program, thus normalizing the speedup factor for a single core
to one.

Figure 5. Pipeline parallelism in h264dec

Input

Compute

90◦ RGB CMYK

Fig. 4. Parallel patterns for rot-cc workload

rot can be visualized as two chained stages of the pattern in
Figure 1.

8) h264dec: h264dec is an H.264 decoder [6], derived from
FFmpeg, a free, universal video transcoder [7].

For the H.264 decoder benchmark, parallelism is exploited
at two levels: function-level and data-level parallelism (DLP).
First, in the decoder stages, each stage can be performed in
parallel in a pipeline fashion on different frames as shown in
Figure 5. Additionally, DLP is exploited within the entropy
(ED) and macroblock decoding (MBD) stages. This is illus-
trated in Figure 6. Here, hatched blocks denote data that can
be processed in parallel.

Read Display

Info 1 Info x

PIB

Pic 1 Pic n

DPB

Parse ED MBDED MBD

Fig. 5. Pipeline parallelism in h264dec

Entropy decode

P

2

B

3

B

4

Macroblock
decode

I

1

Fig. 6. DLP parallelism in ED and MD stages

III. CASE STUDY: PTHREADS VS. OMPSS

We now present performance results and the documentation
of usage experiences comparing two programming models,
Pthreads and OmpSs/SMPSs [1]. In Section III-A, we de-
scribe the features of the programming models in comparison.
After the experimental setup is presented in Section III-B,
Section III-C compares the speedup characteristics of the
different benchmarks. From this comparison, we then derive
information about the benchmark behavior and gain a first
impression on how the two models compare to each other.

A. Evaluated Programming Models

The POSIX thread library [8] provides basic threading
support for the C programming language. Synchronization
is achieved using mutexes to protect critical sections and
condition variables to achieve thread synchronization. The
threads themselves have to be created, managed (i.e., set
to a certain priority or in a detached state) and terminated
explicitly. Pthreads thus fully leaves the management of the
parallel algorithm to the programmer, enforcing him or her to

consider dependencies, synchronization points, and possible
race conditions in a direct, exposed way.

OmpSs/SMPSs [1] is the SMP instance of the OpenMP
SuperScalar model (OmpSs). It is a novel task-based pro-
gramming model which consists of a runtime library and a
source-to-source compiler. SMPSs requires the programmer to
annotate functions as tasks using #pragma css task directives
and label every task argument as an input, output, inout,
or reduction parameter. These keywords declare an argument
either read-only, write-only, read-write or as part of a reduction
operation. Once such a task is created, it will be added to
a runtime data structure, called the task dependency graph.
The task graph is maintained and populated by the underlying
runtime system which performs the dependency resolution and
the scheduling of tasks on worker threads. This is similar
to the way a superscalar processor dispatches instructions to
available execution units. The only additional synchronization
constructs SMPSs provides to the programmer are a barrier
directive, which requires all previously created tasks to finish,
a wait on directive, used to wait for a certain task to com-
plete, and a mutex, which currently is required for reduction
operations. An advantage of SMPSs is that the serial base
code is maintained, allowing profiling and debugging of the
sequential code with established tools. Its functionality can
easily be regained by compiling an SMPSs program with a
compiler not recognizing the preprocessor pragmas.

B. Experimental Setup

All available results have been obtained during the de-
velopment of this benchmark suite and are therefore neither
specifically optimized nor have been analyzed in detail. Their
main objective at this stage is to classify and analyze the
early benchmark behavior. Due to this early state of the
described benchmarks, results for kmeans and h264dec are not
yet included. Our evaluation platform is a 64-core cc-NUMA
system with the following features:

• 8x Xeon X7560 (Nehalem EX architecture),
• 2.26 GHz clock frequency,
• HyperThreading disabled,
• 2 TB RAM,
• 204.8 GB/s aggregate memory bandwidth.
Each reported result is the average of three runs. Timing

is done using timestamps inside the benchmarks and always
excludes the I/O-phases (i.e., loading the input from disk into
memory and cleaning up). Additionally, the execution time of
all programs has been measured using both a small and a large
input data set (see Table I for details).

C. Preliminary Scaling Results

In this section, the preliminary results for the Pthreads and
SMPSs versions of the benchmarks are discussed. The speedup
has been obtained by dividing the execution time on one
processor by the execution time on n processors for the same
program, thus normalizing the speedup factor for a single core
to one.

Figure 6. DLP parallelism in ED and MD
stages

In Section 3.1, we describe the features of the pro-
gramming models in comparison. After the experi-
mental setup is presented in Section 3.2, Section 3.3
compares the speedup characteristics of the different
benchmarks. From this comparison, we then derive
information about the benchmark behavior and gain a
first impression on how the two models compare to
each other.

3.1. Evaluated Programming Models

The POSIX thread library [7] provides basic thread-
ing support for the C programming language. Syn-
chronization is achieved using mutexes to protect crit-
ical sections and condition variables to achieve thread
synchronization. The threads themselves have to be
created, managed (i.e., set to a certain priority or in
a detached state) and terminated explicitly. Pthreads
thus fully leaves the management of the parallel algo-
rithm to the programmer, enforcing him or her to con-
sider dependencies, synchronization points, and possi-
ble race conditions in a direct, exposed way.
OmpSs/SMPSs [10] is the SMP instance of the
OpenMP SuperScalar model (OmpSs). It is a novel
task-based programming model which consists of

3

a runtime library and a source-to-source compiler.
SMPSs requires the programmer to annotate functions
as tasks using #pragma css task directives and label
every task argument as an input, output, inout, or re-
duction parameter. These keywords declare an argu-
ment either read-only, write-only, read-write or as part
of a reduction operation. Once such a task is created,
it will be added to a runtime data structure, called
the task dependency graph. The task graph is main-
tained and populated by the underlying runtime sys-
tem which performs the dependency resolution and the
scheduling of tasks on worker threads. This is simi-
lar to the way a superscalar processor dispatches in-
structions to available execution units. The only addi-
tional synchronization constructs SMPSs provides to
the programmer are a barrier directive, which requires
all previously created tasks to finish, a wait on direc-
tive, used to wait for a certain task to complete, and a
mutex, which currently is required for reduction op-
erations. An advantage of SMPSs is that the serial
base code is maintained, allowing profiling and debug-
ging of the sequential code with established tools. Its
functionality can easily be regained by compiling an
SMPSs program with a compiler not recognizing the
preprocessor pragmas.

3.2. Experimental Setup

All available results have been obtained during the de-
velopment of this benchmark suite and are therefore
neither specifically optimized nor have been analyzed
in detail. Their main objective at this stage is to clas-
sify and analyze the early benchmark behavior. Due to
this early state of the described benchmarks, results for
kmeans and h264dec are not yet included. Our evalu-
ation platform is a 64-core cc-NUMA system with the
following features:

• 8x Xeon X7560 (Nehalem EX architecture),

• 2.26 GHz clock frequency,

• HyperThreading disabled,

• 2 TB RAM,

• 204.8 GB/s aggregate memory bandwidth.

Each reported result is the average of three runs. Tim-
ing is done using timestamps inside the benchmarks
and always excludes the I/O-phases (i.e., loading the
input from disk into memory and cleaning up). Addi-
tionally, the execution time of all programs has been
measured using both a small and a large input data set
(see Table 1 for details).

3.3. Preliminary Scaling Results

In this section, the preliminary results for the Pthreads
and SMPSs versions of the benchmarks are discussed.

The speedup has been obtained by dividing the execu-
tion time on one processor by the execution time on n
processors for the same program, thus normalizing the
speedup factor for a single core to one.

The speedup results for up to 64 cores for the Pthreads
programming model using small input data sets are
shown in Figure 7(a), the ones for large input data in
Figure 7(b). The corresponding ones for SMPSs can
be found in Figures 8(a) and 8(b).

The figures show that the behavior varies widely
across the applications. For the highest thread count
of 64, the Pthreads benchmarks achieve speedup fac-
tors ranging from 2.53x to 11.4x for the small and
from 10.1x to 31.7x for the large input data sets. For
the same number of threads, the SMPSs benchmarks
achieve speedups between 1.7x and 33.4x for the small
and 3.0x and 52.5x for the large input data sets. The
differences observed between small and large input
sizes are caused by the naturally higher amounts of
DLP, leading to a coarsened granularity of the work
units and thus diminishing the impact of the thread-
ing overhead. The results show that regarding only
speedup and not real execution time, for these bench-
marks, SMPSs performs on average two times bet-
ter than Pthreads. For SMPSs, the runtime must be
initialized before and shut down after any calls to it
are made. This is excluded from the timing, while
for Pthreads, thread creation is mostly tightly coupled
with the actual execution and is therefore generally
included. This is one of the reasons for the higher
speedups of SMPSs.

The highest speedups are achieved for benchmarks
which include ray tracing. This is expected since c-ray
has a high computation-to-communication ratio. The
performance of the Pthreads version of the c-ray ker-
nel for large inputs saturates, however. In this case,
performance increases by only 8% when going from
32 to 64 threads, compared to an average 70% for the
other test cases (Figures 7(a), 8(a), 8(b)). This is fully
reproducable and will be investigated further.

The lowest speedups are achieved by benchmarks
which include the rotate kernel (and do not also in-
clude ray tracing). The reason for this supposedly
is the cc-NUMA evaluation platform. Because there
is only a small amount of computation in the rotate
kernel, increasing the thread count does not improve
performance but instead leads to memory contention,
causing a high amount of (coherence) traffic. This is
especially the case for the transition from 32 to 64
threads where four additional processor sockets are
used for 64 threads, resulting in a lower speedup than
for 32 threads.

A deeper analysis of these observations and further
machine-specific optimizations are future work.

4

0

2

4

6

8

10

12

14

16

18

20

S
p
ee
d
u
p

1 2 4 8 16 32 64

Thread count

Model: Pthreads [input size: small]

c-ray

rotate90

rotate180

rgbcmy

md5

ray-rot90

ray-rot180

rot-cc90

rot-cc180

(a) Small input size

0

10

20

30

40

50

60

S
p
ee
d
u
p

1 2 4 8 16 32 64

Thread count

Model: Pthreads [input size: large]

c-ray

rotate90

rotate180

rgbcmy

md5

ray-rot90

ray-rot180

rot-cc90

rot-cc180

(b) Large input size

Fig. 7. Baseline performance for Pthreads

0

2

4

6

8

10

12

14

16

18

20

S
p
ee
d
u
p

1 2 4 8 16 32 64

Thread count

Model: SMPSs [input size: small]

c-ray

rotate90

rotate180

rgbcmy

md5

ray-rot90

ray-rot180

rot-cc90

rot-cc180

(a) Small input size

0

10

20

30

40

50

60

S
p
ee
d
u
p

1 2 4 8 16 32 64

Thread count

Model: SMPSs [input size: large]

c-ray

rotate90

rotate180

rgbcmy

md5

ray-rot90

ray-rot180

rot-cc90

rot-cc180

(b) Large input size

Fig. 8. Baseline performance for OmpSs/SMPSs

The speedup results for up to 64 cores for the Pthreads
programming model using small input data sets are shown in
Figure 7(a), the ones for large input data in Figure 7(b). The
corresponding ones for SMPSs can be found in Figures 8(a)
and 8(b).

The figures show that the behavior varies widely across the
applications. For the highest thread count of 64, the Pthreads
benchmarks achieve speedup factors ranging from 2.53x to
11.4x for the small and from 10.1x to 31.7x for the large
input data sets. For the same number of threads, the SMPSs
benchmarks achieve speedups between 1.7x and 33.4x for the
small and 3.0x and 52.5x for the large input data sets. The
differences observed between small and large input sizes are
caused by the naturally higher amounts of DLP, leading to a
coarsened granularity of the work units and thus diminishing
the impact of the threading overhead. The results show that
regarding only speedup and not real execution time, for these
benchmarks, SMPSs performs on average two times better
than Pthreads. For SMPSs, the runtime must be initialized
before and shut down after any calls to it are made. This is
excluded from the timing, while for Pthreads, thread creation
is mostly tightly coupled with the actual execution and is
therefore generally included. This is one of the reasons for
the higher speedups of SMPSs.

The highest speedups are achieved for benchmarks which

include ray tracing. This is expected since c-ray has a high
computation-to-communication ratio. The performance of the
Pthreads version of the c-ray kernel for large inputs saturates,
however. In this case, performance increases by only 8% when
going from 32 to 64 threads, compared to an average 70% for
the other test cases (Figures 7(a), 8(a), 8(b)). This is fully
reproducable and will be investigated further.

The lowest speedups are achieved by benchmarks which
include the rotate kernel (and do not also include ray tracing).
The reason for this supposedly is the cc-NUMA evaluation
platform. Because there is only a small amount of computation
in the rotate kernel, increasing the thread count does not
improve performance but instead leads to memory contention,
causing a high amount of (coherence) traffic. This is especially
the case for the transition from 32 to 64 threads where four
additional processor sockets are used for 64 threads, resulting
in a lower speedup than for 32 threads.

A deeper analysis of these observations and further
machine-specific optimizations are future work.

IV. RELATED WORK

Benchmark suites have been developed previously, includ-
ing several proprietary, domain-specific products [9], [10].
They are, however, mainly non-compliant with the portability
concept our work chooses to follow.

Figure 7. Baseline performance for Pthreads

0

2

4

6

8

10

12

14

16

18

20

S
p
ee
d
u
p

1 2 4 8 16 32 64

Thread count

Model: Pthreads [input size: small]

c-ray

rotate90

rotate180

rgbcmy

md5

ray-rot90

ray-rot180

rot-cc90

rot-cc180

(a) Small input size

0

10

20

30

40

50

60

S
p
ee
d
u
p

1 2 4 8 16 32 64

Thread count

Model: Pthreads [input size: large]

c-ray

rotate90

rotate180

rgbcmy

md5

ray-rot90

ray-rot180

rot-cc90

rot-cc180

(b) Large input size

Fig. 7. Baseline performance for Pthreads

0

2

4

6

8

10

12

14

16

18

20

S
p
ee
d
u
p

1 2 4 8 16 32 64

Thread count

Model: SMPSs [input size: small]

c-ray

rotate90

rotate180

rgbcmy

md5

ray-rot90

ray-rot180

rot-cc90

rot-cc180

(a) Small input size

0

10

20

30

40

50

60

S
p
ee
d
u
p

1 2 4 8 16 32 64

Thread count

Model: SMPSs [input size: large]

c-ray

rotate90

rotate180

rgbcmy

md5

ray-rot90

ray-rot180

rot-cc90

rot-cc180

(b) Large input size

Fig. 8. Baseline performance for OmpSs/SMPSs

The speedup results for up to 64 cores for the Pthreads
programming model using small input data sets are shown in
Figure 7(a), the ones for large input data in Figure 7(b). The
corresponding ones for SMPSs can be found in Figures 8(a)
and 8(b).

The figures show that the behavior varies widely across the
applications. For the highest thread count of 64, the Pthreads
benchmarks achieve speedup factors ranging from 2.53x to
11.4x for the small and from 10.1x to 31.7x for the large
input data sets. For the same number of threads, the SMPSs
benchmarks achieve speedups between 1.7x and 33.4x for the
small and 3.0x and 52.5x for the large input data sets. The
differences observed between small and large input sizes are
caused by the naturally higher amounts of DLP, leading to a
coarsened granularity of the work units and thus diminishing
the impact of the threading overhead. The results show that
regarding only speedup and not real execution time, for these
benchmarks, SMPSs performs on average two times better
than Pthreads. For SMPSs, the runtime must be initialized
before and shut down after any calls to it are made. This is
excluded from the timing, while for Pthreads, thread creation
is mostly tightly coupled with the actual execution and is
therefore generally included. This is one of the reasons for
the higher speedups of SMPSs.

The highest speedups are achieved for benchmarks which

include ray tracing. This is expected since c-ray has a high
computation-to-communication ratio. The performance of the
Pthreads version of the c-ray kernel for large inputs saturates,
however. In this case, performance increases by only 8% when
going from 32 to 64 threads, compared to an average 70% for
the other test cases (Figures 7(a), 8(a), 8(b)). This is fully
reproducable and will be investigated further.

The lowest speedups are achieved by benchmarks which
include the rotate kernel (and do not also include ray tracing).
The reason for this supposedly is the cc-NUMA evaluation
platform. Because there is only a small amount of computation
in the rotate kernel, increasing the thread count does not
improve performance but instead leads to memory contention,
causing a high amount of (coherence) traffic. This is especially
the case for the transition from 32 to 64 threads where four
additional processor sockets are used for 64 threads, resulting
in a lower speedup than for 32 threads.

A deeper analysis of these observations and further
machine-specific optimizations are future work.

IV. RELATED WORK

Benchmark suites have been developed previously, includ-
ing several proprietary, domain-specific products [9], [10].
They are, however, mainly non-compliant with the portability
concept our work chooses to follow.

Figure 8. Baseline performance for OmpSs/SMPSs

4. Related Work

Benchmark suites have been developed previously, in-
cluding several proprietary, domain-specific products
[2, 16]. They are, however, mainly non-compliant with
the portability concept our work chooses to follow.
PARSEC [3, 4] is a recent benchmark suite consisting
of 12 programs. The target platforms of PARSEC orig-
inally are chip multiprocessors, however, the programs
included in the suite are not inherently limited to this
usage scenario. The stated goal of PARSEC is to dis-
cover new trends in the research and development of
parallel machines, algorithms and applications. Fea-
tured for all benchmarks are variants for Pthreads,
OpenMP and Intel Thread Building Blocks. However,
PARSECs set goal is also to provide a fix framework
for benchmark execution, input data size control and
installation. This complicates the processes of extend-
ing the suite quickly or extracting an application out of
it for further, isolated use.
Apart from benchmark suites, previous work also in-
cludes attempts particularly targeted at the evaluation
of parallel programming models.
Podobas et al. [11] performed an evaluation of three

taskbased parallel programming models, OpenMP,
Cilk++ and Wool. They focus on leveraging the per-
formance characteristics of these parallel program-
ming models, studying in detail the cost of creating,
spawning and joining tasks as well as overall perfor-
mance. The results are limited to only three program-
ming models, only kernel-type programs and only
performance characteristics. Moreover, the work ex-
cludes the extension to new programming models and
therefore is, in contrast to our work, not portable.
Ravela [14] presents an evaluation of Intel TBB,
Pthreads, OpenMP and Cilk++, containing results for
both achieved performance and the time required to
develop the respective versions of the benchmarks. All
used benchmarks are, however, taken from the domain
of high performance computing, resulting in limited
relevance for different application domains.

5. Conclusions and Future Work

In this paper, we presented a benchmark suite to eval-
uate the programmability and performance of emerg-
ing parallel programming models. To achieve this,
we focused on a structured, portability-focused, fixed-

5

parallelism approach. We analyzed the intended us-
age of the suite, thereby compiling a set of require-
ments which must be met by a benchmark suite aimed
at evaluating parallel programming models. We pre-
sented and described an early collection of such bench-
marks, covering a wide range of application domains,
and used them in case study, comparing an established
with an emerging programming model.
The preliminary experimental results obtained in this
process have shown a wide range of characteristics
for the chosen benchmark set, especially giving in-
sights about the behavioral properties of those bench-
marks and producing valuable information on the scal-
ing and speedup characteristics of the two analyzed
programming models. This study must also be ex-
tended to additional types of parallel machines, for ex-
ample heterogeneous architectures or large chip mul-
tiprocessors. Such an investigation could also include
a detailed analysis of the statistical features of each
benchmark, resulting in concrete measures for proper-
ties such as bandwidth usage, arithmetic complexity or
memory size requirements.
Naturally, our benchmark suite will be subject to ex-
tension. As mentioned in Section IV, porting suit-
able, existing opensource benchmarks from other col-
lections to this suite is ongoing work. Furthermore,
we seek to extend the suite with additional, industry-
relevant applications in order to gain key insights on
how modern programming models fare when used in
large, real-world applications. Benchmarks currently
being considered are POV-Ray [1] or a game engine.
Aside from adding more benchmarks to the suite, an-
other goal is to evaluate more programming models to
gather more experiences in using the suite. Evaluat-
ing a larger number of programming models is natu-
rally an advantage because it will provide more ref-
erences to compare to when evaluating new program-
ming models.

Acknowledgment

This research has been supported in part by the Eu-
ropean Communitys Seventh Framework Programme
[FP7/2007 − 2013] under the ENCORE Project
(www.encore-project.eu), grant agreement no 248647
[13], and the Future SOC Lab of Hasso-Plattner-
Institute Potsdam [12].

References

[1] Persistence of vision ray tracer.
http://www.povray.org/, 2011.

[2] M. Berry. Public international benchmarks for parallel
computers: Parkbench committee: Report-1. Techni-
cal report, Scientific Program, 1994.

[3] C. Bienia. Benchmarking Modern Multiprocessors.
PhD thesis, Princeton University, 2011.

[4] C. Bienia and K. Li. PARSEC 2.0: A New Bench-
mark Suite for Chip-Multiprocessors. In Proceedings
of the 5th Annual Workshop on Modeling, Benchmark-
ing and Simulation, 2009.

[5] C. C. Chi and B. Juurlink. A QHD-Capable Parallel
H.264 Decoder. In Proceedings of the 25th Interna-
tional Conference on Supercomputing, 2011.

[6] FFmpeg group. http://www.ffmpeg.org/ffmpeg.html,
2011.

[7] IEEE Opengroup. Portable Operating System Inter-
face. 2004.

[8] J. B. MacQueen. Some methods for classification
and analysis of multivariate observations. In Proceed-
ings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, 1967.

[9] R. Narayanan, B. Özisikyilmaz, J. Zambreno,
G. Memik, and A. Choudhar. Minebench: A bench-
mark suite for data mining workloads. In Proceedings
of the International Symposium on Workload Charac-
terization (IISWC), 2006.

[10] J. Perez, R. Badia, and J. Labarta. A Dependency-
Aware Task-Based Programming Environment for
Multi-Core Architectures. In IEEE International Con-
ference on Cluster Computing, 2008.

[11] A. Podobas, M. Brorsson, and K.-F. Faxén. A compar-
ison of some recent task-based parallel programming
models. In Third Workshop on Programmability Issues
for Multi-Core Computers, 2010.

[12] H.-P.-I. Potsdam. Future soc lab. http://www.hpi.uni-
potsdam.de/forschung/future soc lab.htm, 2011.

[13] E. Project. Enabling technologies for a future many-
core., 2011.

[14] S. C. Ravela. Comparison of shared memory
based parallel programming models. Master’s thesis,
Biekinge Institute of Technology, 2010.

[15] R. Rivest. The MD5 Message-Digest Algorithm.
1992.

[16] Standard Performance Evaluation Corporation. SPEC
Benchmark Suite. http://www.spec.org/index.html,
2011.

[17] J. Tsiombikas. http://www.futuretech.blinkenlights.nl/c-
ray.html, 2010.

6

Towards Multi-Core and In-Memory for IDS Alert Correlation:
Approaches and Capabilities

Sebastian Roschke
Hasso-Plattner-Institute

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam

sebastian.roschke@hpi.uni-potsdam.de

Feng Cheng
Hasso-Plattner-Institute

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam

feng.cheng@hpi.uni-potsdam.de

Christoph Meinel
Hasso-Plattner-Institute

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam

meinel@hpi.uni-potsdam.de

Abstract

Intrusion Detection Systems (IDS) have been widely
deployed in practice for detecting malicious behavior
on network communication and hosts. The problem
of false-positive alerts is usually addressed by corre-
lation and clustering of alerts. As real-time analysis
is crucial for security operators, this process needs to
be finished as fast as possible, which is a challeng-
ing task as the amount of alerts produced in large
scale deployments of distributed IDS is significantly
high. We identify the data storage and processing al-
gorithms to be the most important factors influenc-
ing the performance of clustering and correlation. We
implement memory-optimized algorithms and column-
oriented or In-memory databases for correlation and
clustering in an extensible IDS correlation platform,
which leads to significant improvements of the perfor-
mance. The platform supports multi-core frameworks,
such as OpenCL and MapReduce. The efficiency of
the proposed platform is tested by practical experi-
ments with several alert storage approaches and dif-
ferent simple algorithms.

1 Alert Correlation and its Performance

The alert correlation framework usually consists of
several components [4]: Normalization, Aggregation
(Clustering), Correlation, False Alert Reduction, At-
tack Strategy Analysis, and Prioritization. Over the
last years, alert correlation research focused on new
methods and technologies for these components. ID-
MEF [5] and CVE [6] are important efforts in the
field of Normalization. Approaches of aggregation are
mostly based on similarity of alerts or generalization

hierarchies. The correlation algorithms [4] can be clas-
sified as: Scenario-based correlation, Rule-based cor-
relation, Statistical correlation, and Temporal correla-
tion. Most of the efforts do not consider the aspect of
performance, which is needed in case of huge amounts
of alerts, as well as the scenarios requiring real-time.
The efficiency of the correlation depends on the qual-
ity and performance of the algorithm as well as the
storage and organization of original alerts. The quality
is a measure of the correctness of the algorithm and
depicts how many of the recognized correlations are
correct, i.e., how many of the correlations found rep-
resent existing relations between alerts. Furthermore,
it depicts how many of the existing relations between
alerts are found by the algorithm. The performance of
the correlation describes the amount of time needed to
correlate a number of alerts. Due to the complexity
of large scale networks, the amount of alerts increases
significantly. Therefore, the performance of correla-
tion algorithms is a major aspect of the efficiency of
correlation.
The work described in [27] considers the performance
of alert correlation by using a memory-based index for
hyper alerts. A hyper alert is a cluster of alerts with
the same properties, e.g., the same source address or
target address. The approach using index tables is in-
troduced in [11]. To perform correlation in real-time,
the approach filters and clusters alerts to hyper alerts,
which reduces the number of processed alerts signifi-
cantly. However, this technique may lead to inaccurate
results of the correlation, as multiple alerts are gener-
alized to a single hyper alert. The approach reaches a
correlation rate on the order of 100, 000 alerts per sec-
ond based on the massive reduction of alerts by clus-
tering in hyper alerts. In [2] the data storage and the
processing algorithms have been identified to be the

7

most important factors influencing the performance of
clustering and correlation. The platform introduced
in [2] considers different storage mechanisms and can
handle up to 100, 000, 000 for specific algorithms that
make heavy use of the caching mechanisms of the plat-
form. For storage, a column-based database, an In-
Memory alert storage, and memory-based index tables
lead to significant improvements of the performance.
Although this work considers data and task distribu-
tion in general, the platform is not mature enough
to distribute one correlation algorithm over multiple
computing cores. Furthermore, using a hybrid mem-
ory architecture and GPU based computing is not con-
sidered.
We believe that research in the area of IDS and net-
work security as application for multi-core and In-
memory based platforms can provide new paradigms
for conducting security. Correlation and clustering is
currently only done in a limited way using filtered data
sets. Using the multi-core and In-memory platforms,
it might be possible to do correlation and clustering on
an unfiltered data set. Thus, it might not be necessary
to fine tune (e.g., exclude certain detection rules) the
IDS sensors anymore, as the correlation and clustering
can do meaningful reasoning on all alerts in a short
time. Furthermore, we expect correlation and cluster-
ing services offered in the Cloud. A flexible and exten-
sible correlation platform can provide the foundation
work for a new paradigm in security.

2. Results and Achievements

During the last few month, we have been able to
achieve multiple results by using the system in the Fu-
ture SOC infrastructure. The existing IDS correlation
platform was extended for multi-core processing. We
conducted preliminary practical experiments using the
existing platform with known algorithms. Apart from
the practical achievements, we have been able to pub-
lish papers on the correlation platform [2] and started
research on a complex correlation algorithm using at-
tack graph data and environmental information for IDS
correlation [1]. Some results are summarized in the
following subsections.
We deployed the prototype of the correlation platform
a FutureSOC VM (1 CPU, 4 GB Ram) and developed
multiple features to improve performance and usabil-
ity. Furthermore, we conducted some tests and exper-
iments using the NVIDIA FluiDyna System. The fol-
lowing feature set has been realized:

• Snort alert generator that generates IDS alerts us-
ing a network description

• Dynamic module loading by uploading a module
through the frontend

• Usability and performance improvements for the
GUI

• Integration of environmental data into the plat-
form that can be used for correlation (network
and system descriptions, attack graph data)

• Development of the information pool concept
that enables access to correlation results and envi-
ronmental information for all correlation modules

• Multi-core support for OpenCL and MapReduce

• Visualization of correlation results

2.1 Parallel Processing in IDS Corre-
lation

Parallel processing is useful in all steps of the corre-
lation. In most of the steps, the possibility to paral-
lelize the computing depends on the algorithm used to
perform this step. The preferred technology for im-
plementing the steps of the correlation highly depends
on the chosen algorithm. While algorithms that can be
expressed in the MapReduce model can use a data par-
allel or task-parallel approach and are easier to imple-
ment, the OpenCL implemented algorithms are data-
parallel and support GPU processing which might be
more efficient for specific tasks. A correlation plat-
form needs to support multiple ways for multi-core
processing to be useful for most of the algorithms in
the correlation framework.
The normalization is data-parallel, as each event can
be processed independently. Let A be the set of IDS
alerts in IDMEF format. Let C be the set of events in
CEE [7] format. The function n : A → C is a mapping
from A to C and needs only one parameter as input.

n(ai) = ci|ai ∈ A ∧ ci ∈ C (1)

Let C ⊂ C be the set of events that is supposed to
be aggregated. Let Υk(x, y) be an expression with
x ∈ C, y ∈ C that represents the aggregation condi-
tion. The relation RC is defined as:

RC = {(x, y) ∈ C2 : Υk(x, y)} (2)

R∗
C defines an equivalence relation on the transitive

closure of RC . The alert aggregation combines alerts
that are similar and being created together in a short
time, i.e., the difference of the timestamps is below
a certain threshold. It defines a set of equivalence
classes C/R∗

C
over the equivalence relation R∗

C . As
the aggregation needs to be expressed as an relation
between two events, the processing needs to be on
specific sets of events. Thus, parallelizing the pro-
cess needs additional efforts and might not be possi-
ble for each ωk(x, y). For instance, if the aggregation
condition is true for events with the same message, a
classical data-parallel approach could be used. If the
aggregation condition is true for events with the same
message and with a small difference in timestamps, a
data-parallel based approach might not be easy to im-
plement. A fragmentation of the original data set in

8

chunks with events that happened in the same time in-
terval might be a better solution. A task-parallel ap-
proach might be used for aggregating events based on
different conditions.
The correlation of events is basically a creation of rela-
tions between events and thus is similar to the aggrega-
tion in terms of parallelization. For instance, a statisti-
cal correlation requires counting of similar events and
thus might be handled with a data-parallel approach
and merging of the counted results. Correlation algo-
rithms are mostly based on specific machine learning
algorithms where each computation result depends on
input data and on former computation results, a data-
parallel approach might not be feasible or easy to im-
plement. The same holds for False Alert Reduction,
Attack Strategy Analysis, as well as Prioritization.
As the different steps of the correlation process might
be parallelized in different ways, a correlation plat-
form is required to support parallelization approaches
natively. Furthermore, programming paradigms, such
as MapReduce, can simplify the implementation of the
algorithm. Hardware independent implementations of
multi-core support, such as OpenCL, provides a high
flexibility in deploying the system in different environ-
ments.

2.2 A Correlation Platform for Paral-
lel Processing

It is expected that the proposed IDS correlation plat-
form can support both, batch mode and stream mode,
as described in [9]. The batch mode is useful for foren-
sic analysis and operates on a fixed set of alerts. The
stream mode is useful for realtime analysis for secu-
rity operations and monitoring of the current state of
the network. Obviously, the multi-core functionality
helps for the batch mode, as the fixed data set can
be parted in chunks and processed in a data-parallel
way. Furthermore, the multi-core support can be use-
ful for the stream mode when task-parallel process-
ing is possible. Different independent correlation al-
gorithms can be executed simultaneously on the same
set of incoming alerts. The platform should provide an
easy-to-use interface for programming and uploading
modules. Moreover, it should be capable of connect-
ing different kinds of sensors as well as other manage-
ment systems by using a unified format for alerts and
messages, i.e., IDMEF [5] or CEE[7].
As shown in Figure 1, the platform runs correlation
modules as plugins, which improves the extensibil-
ity and flexibility of the platform. Each correlation
module has the possibility to make use of OpenCL by
defining own kernels that are loaded with the module.
As soon as the module makes use of OpenCL kernels,
it is automatically handled by the OpenCL implemen-
tation, either NVIDIA CUDA or ATI Stream. As the
ATI Stream API supports both, graphical processing
units (GPU) as well as central processing units (CPU),

it is used as the default processing API for OpenCL
kernels. Each correlation module runs autonomously
as a thread on the Java Virtual Machine (JVM), which
is capable of distributing tasks to existing CPUs. The
system uses an internal event storage to process events
in batch mode. Additionally, the EventStreamReader
receives events from IDS sensors and log gatherers at
runtime and enables processing in stream mode. The
Mutli-Core Interface is responsible for compiling as
well as triggering the execution of the OpenCL ker-
nels for each correlation module.
The event storage is an in-memory database that holds
all existing events in memory. The number of possi-
ble events in the memory depends on the size of the
random access memory (RAM) on the hardware the
correlation platform is running on. As RAM is get-
ting cheaper and there are systems with up to 2TB of
RAM, this approach is now possible. On the running
prototype, a basic alert needs about 152 Bytes of allo-
cated memory. The hardware bases of our prototype is
a Hewlett Packard DL980 G7 with 2 TB of main mem-
ory, i.e., 2, 199, 023, 255, 552 Bytes. In the ideal situa-
tion where we are able to use the full amount of mem-
ory for alerts, it is possible to store 1.44672583 ∗ 1010

alerts.

3 AG-based Correlation Algorithm using
HMM

A more complex correlation algorithm uses attack
graphs to correlate alerts. Attack Graphs have been
proposed as a formal way to simplify the modeling of
complex attacking scenarios. Based on the intercon-
nection of single attack steps, they describe multi-step
attacks. Attack Graphs not only describe one possi-
ble attack, but many potential ways for an attacker to
reach a goal. In an attack graph, each node represents
a single attack step in a sequence of steps. Each step
may require a number of previous attack steps before
it can be executed, denoted by incoming edges, and
on the other hand may lead to several possible next
steps, denoted by outgoing edges. With the help of at-
tack graphs most of possible ways for an attacker to
reach a goal can be computed. This takes the burden
from security experts to evaluate hundreds and thou-
sands of possible options. Thus, a program can iden-
tify weak spots much faster than a human. At the same
time, representing attack graphs visually allows secu-
rity personal a faster understanding of the problematic
pieces of a network [24, 25].
In this paper, we adopted the AG based correlation al-
gorithm as described in [3]. The algorithm consists
of three simple steps: 1) the preparation, 2) the map-
ping, and 3) the building of an alert dependency graph.
In the preparation phase, all necessary information is
loaded, i.e., the system and network information is
gathered, the database with alert classifications is im-
ported, and the attack graph for the network is loaded.

9

Figure 1. Mutli-Core Platform Architecture

We use a similar mapping function as it is described
in [26], i.e., alerts are mapped to match with specific
nodes in the attack graph. An alert matches if the alert
type matches, e.g., when the alert refers to an exist-
ing vulnerability in the network, and the source and
target address of the alert fit to the node in the attack
graph. To build an alert dependency graph, we are us-
ing a Breadth First Search (BFS) on the attack graph
and create a dependency between alert ai and aj , if
t(ai) ≤ t(aj) and aj is mapped to a node that can be
reached from the node that ai is mapped to (t(a) re-
turns the creation time of the alert a). Each path in the
alert dependencies graph identifies a subset of alerts
that might be part of an attack scenario. The alert de-
pendency graph can be used for further analysis, e.g.,
ranking of attack scenarios or manual evaluations of
attack scenarios.
To identify the most probable path in the attack graph
based on the observed events, a Hidden Markov Model
(HMM) is used and the Viterbi path is calculated. By
defining an attack graph with its notes as Markov chain
of events, the mapping function defines a set of possi-
ble observations. The log events are a set of actual
observations that can be the input for the Viterbi algo-
rithm that is supposed to find the most probable set of
nodes in the HMM that lead to the observations made.

4. Future Work

Within the next few months, we want to prepare the
correlation platform for further research and experi-
ments. We would like to work towards our vision with
the following steps:

• Conduct performance experiments on the im-
proved platform

• Improve multi-core support

• Implement more algorithms with multi-core sup-
port

• Research on correlation algorithms that are using
environment information and attack graphs

• Research on visualization techniques for correla-
tion results

References

[1] S. Roschke, F. Cheng, Ch. Meinel: Using Vul-
nerability Information and Attack Graphs for In-
trusion Detection In: Proceedings of 6th Interna-
tional Conference on Information Assurance and
Security (IAS’10), IEEE Press, Atlanta, United
States, pp. 104-109 (August 2010).

[2] Roschke, S., Cheng, F., Meinel, Ch.: An Alert
Correlation Platform for Memory-Supported
Techniques. In: Concurrency and Computation,
Wiley Blackwell, 2011 (to appear).

[3] Roschke, S., Cheng, F., Meinel, Ch.: A New Cor-
relation Algorithm based on Attack Graph. In:
Proceedings of the 4th Conference on Compu-
tational Intelligence in Security for Information
Systems (CISIS’11), Springer LNCS 6694, Tor-
remolinos, Spain, pp. 58-67 (2011).

[4] R. Sadoddin, A. Ghorbani: Alert Correlation
Survey: Framework and Techniques, In: Pro-
ceedings of the International Conference on Pri-
vacy, Security and Trust (PST’06), ACM Press,
Markham, Ontario, Canada, pp. 1-10 (2006).

10

[5] Debar, H., Curry, D., Feinstein, B.: The Intru-
sion Detection Message Exchange Format, Inter-
net Draft, Technical Report, IETF Intrusion De-
tection Exchange Format Working Group (July
2004).

[6] Mitre Corporation: Common vulnerabil-
ities and exposures (CVE), WEBSITE:
http://cve.mitre.org/ (accessed Apr 2011).

[7] Mitre Corporation: Common Event Expres-
sion (CEE), WEBSITE: http://cee.mitre.org/ (ac-
cessed Apr 2011).

[8] H. Plattner: A Common Database Approach for
OLTP and OLAP Using an In-Memory Column
Database, In: Proceedings of the ACM SIG-
MOD International Conference on Management
of Data (SIGMOD’09), ACM Press, Providence,
Rhode Island, USA, pp. 1-2 (2009).

[9] S. Roschke, F. Cheng, Ch. Meinel: An Extensi-
ble and Virtualization-Compatible IDS Manage-
ment Architecture, In: Proceedings of 5th Inter-
national Conference on Information Assurance
and Security (IAS’09), IEEE Press, vol. 2, Xi’an,
China, pp. 130-134 (August 2009).

[10] Tedesco, G. and Aickelin, U.: Real-Time Alert
Correlation with Type Graphs, In: Proceedings
of the 4th international Conference on Informa-
tion Systems Security (ISS’09), Springer LNCS
5352, Hyderabad, India, pp. 173-187 (2008).

[11] Ning, P. and Xu, D.: Adapting Query Optimiza-
tion Techniques for Efficient Intrusion Alert Cor-
relation, Technical Report, North Carolina State
University at Raleigh, 2002.

[12] Northcutt, S., Novak, J.: Network Intrusion De-
tection: An Analyst’s Handbook, New Riders
Publishing, Thousand Oaks, CA, USA (2002).

[13] Breshears, C.: The Art of Concurrency, O’Reilly
Media, Sebastopol, CA, USA (2009).

[14] Khronos Group OpenCL, WEBSITE:
http://www.khronos.org/opencl/ (accessed
Apr 2011).

[15] Java OpenCL Library (JavaCL), WEB-
SITE: http://code.google.com/javacl/ (accessed
Apr 2011).

[16] NVIDIA CUDA,
http://www.nvidia.com/object/cuda home new.html
(accessed Apr 2011).

[17] ATI Stream Technology, WEBSITE:
http://www.amd.com/us/products/technologies/stream-
technology/Pages/stream-technology.aspx
(accessed Apr 2011).

[18] Dean, J., Ghemawat, S.: MapReduce: Simplified
Data Processing on Large Clusters, In: Com-
munications of the ACM, ACM Press, 51(1), pp.
107-113 (January 2008).

[19] Yoo, R.M., Romano, A., Kozyrakis, Ch.:
Phoenix Rebirth: Scalable MapReduce on a
Large-Scale Shared-Memory System, In: Pro-
ceedings of the IEEE International Sympo-
sium on Workload Characterization (IISWC’09),
IEEE Press, Austin, TX, pp. 198-207 (September
2009).

[20] Mao, Y., Morris, R., Kaashoek, F.: Optimizing
MapReduce for Multicore Architectures, Tech-
nical Report MIT-CSAIL-TR-2010-020, MIT,
2010.

[21] Apache Hadoop Project, WEBSITE:
http://hadoop.apache.org/ (accessed Apr 2011).

[22] Arnes, A., Valeur, F., Vigna, G., Kemmerer, R.:
Using Hidden Markov Models to Evaluate the
Risks of Intrusions: System Architecture and
Model Validation. In: Proceedings of the Inter-
national Symposium on Recent Advances in In-
trusion Detection (RAID’06), Springer LNCS
4219, Hamburg, Germany, pp. 145-164 (2006).

[23] MacQueen, J.B.: Some Methods for classifica-
tion and Analysis of Multivariate Observations.
In: Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability, Univer-
sity of California Press, pp. 281-297 (1967).

[24] Sheyner, O., Haines, J., Jha, S., Lippmann,
R., Wing, J.M.: Automated Generation and
Analysis of Attack Graphs. Proceedings of the
2002 IEEE Symposium on Security and Privacy
(S&P’2002), IEEE Press, Los Alamitos, CA, pp.
273-284 (2002).

[25] Noel, S., Jajodia, S.: Managing attack graph
complexity through visual hierarchical aggrega-
tion. Proceedings of Workshop on Visualiza-
tion and Data Mining for Computer Security
(VizSEC/DMSEC 2004), ACM Press, New York,
NY, USA, pp. 109-118 (2004).

[26] Wang L, Liu A, Jajodia S. Using attack graphs
for correlation, hypothesizing, and predicting
intrusion alerts. Computer Communications,
29(15), pp. 2917-2933 (April 2006).

[27] Tedesco, G. and Aickelin, U.: Real-Time Alert
Correlation with Type Graphs, In: Proceedings
of the 4th international Conference on Informa-
tion Systems Security (ISS’09), Springer LNCS
5352, Hyderabad, India, pp. 173-187 (2008).

11

Elastic VM for Dynamic Virtualized Resources Provisioning and
Optimization

Christoph Meinel, Wesam Dawoud, and Ibrahim Takouna
Hasso Plattner Institute (HPI)

University of Potsdam
Potsdam, Germany

{christoph.meinel, wesam.dawoud, ibrahim.takouna}@hpi.uni-potsdam.de

Abstract

Rapid growth of E-Business and frequent changes in
websites contents as well as customers interest make
it difficult to predict workload surge. To maintain a
good quality of service (QoS), system administrators
must provision enough resources to cope with work-
load fluctuations considering that resources overpro-
visioning reduces business profits while underprovi-
sioning degrades performance. In this project, we
present elastic system architecture for dynamic re-
sources management and applications optimization in
virtualized environment. In our architecture, we have
implemented three controllers: CPU, Memory, and
Application. These controllers run in parallel to guar-
antee efficient resources allocation and optimize ap-
plication performance of co-hosted Virtual Machines
(VMs) dynamically. We evaluated our architecture
with extensive experiments and several setups; the re-
sults show that considering online optimization of ap-
plication, with dynamic CPU and Memory allocation,
can reduce service level objectives (SLOs) violation
and maintain application performance.

1. Introduction

Later advance in virtualization technology software,
e.g. Xen [1] and VMware [6], enabled cloud com-
puting environment to deliver agile, scalable, elastic,
and low cost infrastructures. However, current im-
plementation of elasticity in “Infrastructure as a Ser-
vice” cloud model considers VM as a scalability unit.
In this project, we developed an automated dynamic
resources provisioning architecture to optimized re-
sources provisioning in consolidated virtualized envi-
ronments (e.g., Cloud computing). Unlike current im-
plementation of elasticity in cloud infrastructure, we
replaced the VM (i.e., coarse-grain scalability unit)
with fine-grain resources units (i.e. CPU%, Mem-
ory in MB). Our Elastic VM is scaled dynamically
in-place to cope with workload fluctuations. Further-

more, the hosted application is also tuned after each
scaling to maintain predetermined (SLOs). As a use
case, we implemented our approach into Xen environ-
ment and used Apache web server as an application.
Our SLO in this project is to keep the response time of
the web requests less than a specified threshold.
The key contributions of this work are as follow: First,
we have studied Apache application performance un-
der different configuration and different CPU and
Memory allocation values. Second, we have devel-
oped a dynamic application optimization controller
for Apache application to maintain the desired perfor-
mance. Third, we built CPU and Memory controllers
based on [2]. Fourth, we built elastic system architec-
ture that join CPU, Memory, and application optimiza-
tion controllers for managing consolidated virtualized
environments. Finally, the elastic system architecture
has been evaluated with extensive experiments on sev-
eral synthetic workload and experimental setups. Our
results show that elastic system architecture can guar-
antee the best performance for application in terms of
throughput and response time.

2. Elastic VM architecture

Elastic VM for Dynamic Virtualized Resources Provisioning and
Optimization

Christoph Meinel, Wesam Dawoud, and Ibrahim Takouna
Hasso Plattner Institute
University of Potsdam

christoph.meinel, wesam.dawoud, and ibrahim.takouna@hpi.uni-potsdam.de

Abstract

Rapid growth of E-Business and frequent changes in
websites contents as well as customers’ interest make
it difficult to predict workload surge. To maintain
a good quality of service (QoS), system administra-
tors must provision enough resources to cope with
workload fluctuations considering that resources over-
provisioning reduces business profits while under-
provisioning degrades performance. In this project,
we present elastic system architecture for dynamic re-
sources management and applications optimization in
virtualized environment. In our architecture, we have
implemented three controllers: CPU, Memory, and
Application. These controllers run in parallel to guar-
antee efficient resources allocation and optimize ap-
plication performance of co-hosted Virtual Machines
(VMs) dynamically. We evaluated our architecture
with extensive experiments and several setups; the re-
sults show that considering online optimization of ap-
plication, with dynamic CPU and Memory allocation,
can reduce service level objectives (SLOs) violation
and maintain application performance.

1 Introduction

Later advance in virtualization technology software,
e.g. Xen [1] and VMware [6], enabled cloud com-
puting environment to deliver agile, scalable, elastic,
and low cost infrastructures. However, current im-
plementation of elasticity in “Infrastructure as a Ser-
vice” cloud model considers VM as a scalability unit.
In this project, we developed an automated dynamic
resources provisioning architecture to optimized re-
sources provisioning in consolidated virtualized envi-
ronments (e.g., Cloud computing). Unlike current im-
plementation of elasticity in cloud infrastructure, we
replaced the VM (i.e., coarse-grain scalability unit)
with fine-grain resources units (i.e. CPU%, Mem-
ory in MB). Our Elastic VM is scaled dynamically
in-place to cope with workload fluctuations. Further-
more, the hosted application is also tuned after each

scaling to maintain predetermined (SLOs). As a use
case, we implemented our approach into Xen environ-
ment and used Apache web server as an application.
Our SLO in this project is to keep the response time of
the web requests less than a specified threshold.
The key contributions of this work are as follow: First,
we have studied Apache application performance un-
der different configuration and different CPU and
Memory allocation values. Second, we have devel-
oped a dynamic application optimization controller
for Apache application to maintain the desired perfor-
mance. Third, we built CPU and Memory controllers
based on [2]. Fourth, we built elastic system architec-
ture that join CPU, Memory, and application optimiza-
tion controllers for managing consolidated virtualized
environments. Finally, the elastic system architecture
has been evaluated with extensive experiments on sev-
eral synthetic workload and experimental setups. Our
results show that elastic system architecture can guar-
antee the best performance for application in terms of
throughput and response time.

2 Elastic VM architecture

VMM

App App
manager

Resources
monitor

CPU
scheduler

QoS controller

CPU
controller

VM1

App

manager

App
manager

Memory
manager

controller

Memory
controller

SLO(s)
VM2

.

.

.

manager

A

VMn

App

Performance
monitor

App
manager

App
controller

Figure 1: Elastic VM architecture

Our architecture has main component “QoS con-
troller” which communicates with many other mod-
ules implemented into the Virtual Machine Manager
(VMM) and VMs levels as the following:

Figure 1. Elastic VM architecture

Our architecture has main component ”QoS con-
troller” which communicates with many other mod-

13

ules implemented into the Virtual Machine Manager
(VMM) and VMs levels as the following:

• Resources monitor module dynamically mea-
sures the resources consumption and updates the
QoS controller with new measurements.

• CPU scheduler is implemented to dynamically
change the CPU allocation of the VMs accord-
ing to determined values by QoS controller, this
module depends on Xen credit scheduler as an ac-
tuator for setting the CPU shares for VMs.

• Memory manger is implemented with the help of
balloon driver in Xen to allows online changing
of VMs Memory.

• Performance monitor also keeps the controller up
to date with performance metrics, i.e. the average
response time and the throughput.

• Application manager (App manager) is imple-
mented into VM level, its job is to get new
MaxClients value from the Application controller
(App controller), to update the Apache configura-
tion file, and then to reload Apache gracefully.

On the left side of figure 1 is the QoS controller; the
controller has (SLOs) as inputs and the proposed CPU
capacity, proposed Memory allocation, and proposed
MaxClients as outputs. In our approach the main SLO
is to keep average response time of Apache web server
into specific value regardless of the workload fluctua-
tions. For this purpose, we implemented three con-
trollers to run in parallel, these controllers are as the
following:
CPU controller: Which is a nested loop controller de-
veloped in [8]. The inner controller (CPU utilization
controller) is an adaptive-gain integral (I) controller
was designed in [7]:

acpu(k+1) = acpu(k)−K1(k)(u
ref
cpu−ucpu(k)), (1)

Where
K1(k) = α.ccpu(k)/r

ref
cpu (2)

The controller is designed to predict the next CPU al-
location acpu(k+1) depending on last CPU allocation
acpu(k) and consumption ccpu(k), where the last CPU
utilization ucpu(k) = ccpu(k) = acpu(k). The param-
eter α is the constant gain that determines the aggres-
siveness of the controller. In our experiments, we set
β=1.5 to allow the controller to aggressively allocate
more CPU when the system is overloaded, and slowly
decrease CPU allocation at low workload. The disad-
vantage of this controller is that, it implies determining
the reference utilization urefcpu manually. However, this
is not practical while as seen in figure 2, the response
time does not only depend on CPU utilization, but also
on the request rate, which changes frequently. So, it is

more realistic to have urefcpu value automatically driven
by the application’s QoS goals rather than being cho-
sen manually for each application. For this goal, an-
other outer loop controller (RT controller) is designed
[8] to adjust the urefcpu value dynamically. The outer
loop controller can be interpreted as the following:

urefcpu(i+1) = urefcpu(i)+β(RT
ref
cpu−RTcpu(i))/RT ref

cpu

(3)

• Resources monitor module dynamically mea-
sures the resources consumption and updates the
QoS controller with new measurements.

• CPU scheduler is implemented to dynamically
change the CPU allocation of the VMs accord-
ing to determined values by QoS controller, this
module depends on Xen credit scheduler as an ac-
tuator for setting the CPU shares for VMs.

• Memory manger is implemented with the help of
balloon driver in Xen to allows online changing
of VMs Memory.

• Performance monitor also keeps the controller up
to date with performance metrics, i.e. the average
response time and the throughput.

• Application manager (App manager) is imple-
mented into VM level, its job is to get new
MaxClients value from the Application controller
(App controller), to update the Apache configu-
ration file, and then to reload Apache gracefully.

On the left side of figure 1 is the QoS controller; the
controller has (SLOs) as inputs and the proposed CPU
capacity, proposed Memory allocation, and proposed
MaxClients as outputs. In our approach the main SLO
is to keep average response time of Apache web server
into specific value regardless of the workload fluctua-
tions. For this purpose, we implemented three con-
trollers to run in parallel, these controllers are as the
following:
CPU controller: Which is a nested loop controller de-
veloped in [8]. The inner controller (CPU utilization
controller) is an adaptive-gain integral (I) controller
was designed in [7]:

acpu(k+1) = acpu(k)−K1(k)(u
ref
cpu−ucpu(k)), (1)

Where
K1(k) = α.ccpu(k)/r

ref
cpu (2)

The controller is designed to predict the next CPU al-
location acpu(k+1) depending on last CPU allocation
acpu(k) and consumption ccpu(k), where the last CPU
utilization ucpu(k) = ccpu(k)/acpu(k). The parame-
ter α is the constant gain that determines the aggres-
siveness of the controller. In our experiments, we set
β=1.5 to allow the controller to aggressively allocate
more CPU when the system is overloaded, and slowly
decrease CPU allocation at low workload. The disad-
vantage of this controller is that, it implies determining
the reference utilization urefcpu manually. However, this
is not practical while as seen in figure 2, the response
time does not only depend on CPU utilization, but also
on the request rate, which changes frequently. So, it is
more realistic to have urefcpu value automatically driven
by the application’s QoS goals rather than being cho-
sen manually for each application. For this goal, an-
other outer loop controller (RT controller) is designed

20

30

40

50
500 reqs/sec

1000 reqs/sec

1500 reqs/sec

2000 reqs/sec

po
ns

e
Ti

m
e

(m
se

c)

0

10

20

30

40

50

5 15 25 35 45 55 65 75 85 95

500 reqs/sec

1000 reqs/sec

1500 reqs/sec

2000 reqs/sec

CPU utilization
R

es
po

ns
e

Ti
m

e
(m

se
c)

Figure 2: Mean response time vs. CPU utilization un-
der different request rates

[8] to adjust the urefcpu value dynamically. The outer
loop controller can be interpreted as the following:

urefcpu(i+1) = urefcpu(i)+β(RT
ref
cpu−RTcpu(i))/RT

ref
cpu

(3)
Where urefcpu(i + 1) is the desired CPU utilization,
RTcpu(i) is the measured response time, and RT ref

cpu

is the desired response time determined by SLO. The
outer controller (RT controller) ensures that the value
fed to the CPU controller is always within an accept-
able CPU utilization interval [Umin, Umax].
In our experiments, we set β=1.5. The CPU alloca-
tion is limited to the interval [10, 80], and the CPU
utilization is also limited to the interval [10, 80]. The
desired response time (RT) in all our experiments is 20
milliseconds.
Memory controller: In our experiments we noticed
that increasing the number of Apache processes can
increase the throughput. However, at some level, the
performance is degraded drastically when the Apache
processes consumed the whole available Memory. At
that point, system starts swapping Memory contents
into the hard-disk. This behavior adds more workload
to the CPU, which is already overloaded by the big
number of the processes. To keep the system away
from bottlenecks, we implemented the Memory con-
troller, designed in [2], to keep the CPU controller runs
in an operating region away from the CPU contention:

amem(i+ 1) = amem(i) +K2(i)(u
ref
mem − umem(i))

(4)
Where

K2(i) = λ.umem(i)/urefmem (5)

The controller aggressively allocates more Memory
when the previously allocated Memory is close to sat-
uration (i.e. more than 90%), and slowly decreases
Memory allocation in the low workload region. Along
our experiments, we set urefmem=90%, λ=1, and the lim-
its of the controller are [64, 512], where the 64 is the
minimum allowed Memory allocated size, and the 512
is the maximum allowed allocated Memory size.
Application controller: after extensive experiments
and monitoring of Apache behavior, we found that
there was a specific value of MaxClients that gives

Figure 2. Mean response time vs. CPU
utilization under

Where urefcpu(i + 1) is the desired CPU utilization,
RTcpu(i) is the measured response time, and RT ref

cpu

is the desired response time determined by SLO. The
outer controller (RT controller) ensures that the value
fed to the CPU controller is always within an accept-
able CPU utilization interval [Umin;Umax].
In our experiments, we set β=1.5. The CPU allocation
is limited to the interval [10, 80], and the CPU utiliza-
tion is also limited to the interval [10, 80]. The desired
response time (RT) in all our experiments is 20 mil-
liseconds.
Memory controller: In our experiments we noticed
that increasing the number of Apache processes can
increase the throughput. However, at some level, the
performance is degraded drastically when the Apache
processes consumed the whole available Memory. At
that point, system starts swapping Memory contents
into the hard-disk. This behavior adds more workload
to the CPU, which is already overloaded by the big
number of the processes. To keep the system away
from bottlenecks, we implemented the Memory con-
troller, designed in[2], to keep the CPU controller runs
in an operating region away from the CPU contention:

amem(i+ 1) = amem(i) +K2(i)(u
ref
mem − umem(i))

(4)
Where

K2(i) = λumem(i)/urefmem (5)

The controller aggressively allocates more Memory
when the previously allocated Memory is close to sat-
uration (i.e. more than 90%), and slowly decreases

14

Memory allocation in the low workload region. Along
our experiments, we set urefmem=90%, λ=1, and the lim-
its of the controller are [64, 512], where the 64 is the
minimum allowed Memory allocated size, and the 512
is the maximum allowed allocated Memory size.
Application controller: after extensive experiments
and monitoring of Apache behavior, we found that
there was a specific value of MaxClients that gives
the best throughput and the minimum response time
as seen in figure 3.the best throughput and the minimum response time

as seen in figure 3.

0

100

200

300

400

500

5 10 25 50 75 100 125 150 175 200

MEM = 128MB
MEM = 256 MB
MEM = 512MB

MaxClients

Th
ro

ug
hp

ut
(r

eq
/s

ec
)

Figure 3: Throughput vs. MaxClients under different
hardware settings

Finding the optimum value of MaxClients was ex-
amined by former research e.g. [3]. Unfortunately,
these optimization methods are not applicable to our
case for many reasons: First, we have a dynamic re-
sources. So, it will be difficult to dynamically de-
termine the new optimum MaxClients value for each
new resources allocation. Second, we don’t have the
chance to run an active optimization using our gener-
ated traffic, because this could influence the real ser-
vice performance. Third, the optimum value is af-
fected by traffic type and CPU utilization.
On the light of the mentioned problems, we designed
our heuristic Apache controller to find the best Max-
Clients value passively (i.e., depending on the real traf-
fic). The Apache controller monitors four measured
values to determine the best MaxClients: response
time, throughput, CPU utilization, and number of run-
ning Apache processes. The controller saves the best
record of these values. The best record is calculated by
finding the record that satisfies the QoS response time
metric and gives the highest throughput with less CPU
utilization. With each new measurement of monitored
values, Apache compares the current record with the
best record, if it is better; the current record will be
saved as the best record. While it is running, if the
Apache noticed a violation of QoS metrics (response
time in our case) it tries to predict the problem by the
following rules:
Rule1: Apache processes starving problem: Apache
processes starving problem occurs when Apache
server runs big number of processes. As a result, CPU
spends most of the time switching between these pro-
cesses while giving small slot of the time to each pro-
cess. Such behavior causes requests to spend longer
time in application queue, which end up with high re-
sponse time and many timed-out requests. To elim-
inate this problem, the Apache controller reloads the
Apache server with the last best record.
Rule2: Resources competition problem: The competi-
tion on resources is predicted by Apache controller as
the following: response time increases, number of run-
ning apache processes reaches MaxClients value, and
at the same time CPU utilization decreases (i.e. less
than 90%).

As seen above, with both rules, the proposed Apache
controller will not only look for the optimum Max-
Clients value, but also will eliminate performance bot-
tlenecks by keeping history of the last best running
configurations.

3 Experimental Setup in Future SOC
Lab

Our experiment conducted on a testbed of two physical
machines (Client and Server). Server machine (Future
SOC Lab machine) is Fujitsu PRIMERGY RX300 S5
server with 4-cores, it is equipped with 12GB physical
memory. Server runs Xen 3.3 with kernel 2.6.26-2-
xen-686 as hypervisor. On the hypervisor are hosted
VMs with Linux Ubuntu 2.6.24-19. These VMs run
Apache 2.0 as a web server in prefork mode. For
workload generation, httperf tool [4] is installed on
client machine. In the following experiments we deal
with three VMs setup: First, Static VM, which is a
virtual machine initialized with 512MB of RAM and
limited to 50% of the CPU capacity. Second, Elastic
VM with CPU/Memory controllers, it is a VM con-
trolled with the CPU and Memory controllers seen in
equations 1 to 5, the CPU limits of this machine is 80%
of CPU capacity, and the Memory is 512MB of RAM.
Third, Elastic VM with Apache, it has the same setup
of first VM except that it is equipped with our Apache
controller in addition to CPU and Memory controllers.
In all our experiments, SLO is to keep response time
threshold (RT threshold) less than 20 milliseconds.

3.1 Static VM vs. Elastic VM re-
sponse to step traffic

In this experiment, we would like to study our Elas-
tic VM ability to cope with traffic change to maintain
the specified SLO. As a basis for our experiments; we
used dynamic web pages requests, in each request, the
web server executes a public key encryption operation
to consume a certain amount of CPU time. The step
traffic initiated with the help of autobensh tool [5], it
started with 20 sessions, each session contains 10 con-
nections. The number of sessions increases by 10 with
each load step. The total number of connections for
each step is 5000, and the timeout for the request is
5 seconds. Throughput result from the generated web
traffic is seen in figure 4(b).
Each step of the graphs in figure 4(b) represents the
throughput of a specific traffic rate. For instance, along
the period 0 to 780 seconds; both VMs respond to re-
quests successfully without any lost or time-out. On
the other hand, after 780 seconds, the Static VM’s
CPU is saturated, which caused requests to wait longer
in the TCP accept queue, and consequently increased
response time. The long queuing results in a continues
period of SLO violation as seen in figure 4(c).

Figure 3. Throughput vs. MaxClients un-
der different hardware settings

Finding the optimum value of MaxClients was ex-
amined by former research e.g. [3]. Unfortunately,
these optimization methods are not applicable to our
case for many reasons: First, we have a dynamic re-
sources. So, it will be difficult to dynamically deter-
mine the new optimum MaxClients value for each new
resources allocation. Second, we dont have the chance
to run an active optimization using our generated traf-
fic, because this could influence the real service perfor-
mance. Third, the optimum value is affected by traffic
type and CPU utilization.
On the light of the mentioned problems, we designed
our heuristic Apache controller to find the best Max-
Clients value passively (i.e., depending on the real traf-
fic). The Apache controller monitors four measured
values to determine the best MaxClients: response
time, throughput, CPU utilization, and number of run-
ning Apache processes. The controller saves the best
record of these values. The best record is calculated by
finding the record that satisfies the QoS response time
metric and gives the highest throughput with less CPU
utilization. With each new measurement of monitored
values, Apache compares the current record with the
best record, if it is better; the current record will be
saved as the best record. While it is running, if the
Apache noticed a violation of QoS metrics (response
time in our case) it tries to predict the problem by the
following rules:
Rule1: Apache processes starving problem: Apache
processes starving problem occurs when Apache
server runs big number of processes. As a result, CPU
spends most of the time switching between these pro-

cesses while giving small slot of the time to each pro-
cess. Such behavior causes requests to spend longer
time in application queue, which end up with high re-
sponse time and many timed-out requests. To elim-
inate this problem, the Apache controller reloads the
Apache server with the last best record.
Rule2: Resources competition problem: The competi-
tion on resources is predicted by Apache controller as
the following: response time increases, number of run-
ning apache processes reaches MaxClients value, and
at the same time CPU utilization decreases (i.e. less
than 90%).
As seen above, with both rules, the proposed Apache
controller will not only look for the optimum Max-
Clients value, but also will eliminate performance bot-
tlenecks by keeping history of the last best running
configurations.

3. Experimental Setup in Future SOC Lab

Our experiment conducted on a testbed of two physical
machines (Client and Server). Server machine (Future
SOC Lab machine) is Fujitsu PRIMERGY RX300 S5
server with 4-cores, it is equipped with 12GB physical
memory. Server runs Xen 3.3 with kernel 2.6.26-2-
xen-686 as hypervisor. On the hypervisor are hosted
VMs with Linux Ubuntu 2.6.24-19. These VMs run
Apache 2.0 as a web server in prefork mode. For work-
load generation, httperf tool [4] is installed on client
machine. In the following experiments we deal with
three VMs setup: First, Static VM, which is a vir-
tual machine initialized with 512MB of RAM and lim-
ited to 50% of the CPU capacity. Second, Elastic VM
with CPU/Memory controllers, it is a VM controlled
with the CPU and Memory controllers seen in equa-
tions 1 to 5, the CPU limits of this machine is 80of
CPU capacity, and the Memory is 512MB of RAM.
Third, Elastic VM with Apache, it has the same setup
of first VM except that it is equipped with our Apache
controller in addition to CPU and Memory controllers.
In all our experiments, SLO is to keep response time
threshold (RT threshold) less than 20 milliseconds.

3.1. Static VM vs. Elastic VM response
to step traffic

In this experiment, we would like to study our Elas-
tic VM ability to cope with traffic change to maintain
the specified SLO. As a basis for our experiments; we
used dynamic web pages requests, in each request, the
web server executes a public key encryption operation
to consume a certain amount of CPU time. The step
traffic initiated with the help of autobensh tool [4], it
started with 20 sessions, each session contains 10 con-
nections. The number of sessions increases by 10 with
each load step. The total number of connections for
each step is 5000, and the timeout for the request is
5 seconds. Throughput result from the generated web

15

traffic is seen in figure 4(b).
Each step of the graphs in figure 4(b) represents the
throughput of a specific traffic rate. For instance, along
the period 0 to 780 seconds; both VMs respond to re-
quests successfully without any lost or time-out. On
the other hand, after 780 seconds, the Static VMs CPU
is saturated, which caused requests to wait longer in
the TCP accept queue, and consequently increased re-
sponse time. The long queuing results in a continues
period of SLO violation as seen in figure 4(c).

20

30

40

50

60

70

80

90

C
PU

(a
llo

c/
co

ns
) %

Static_VM_cpu_alloc
Static_VM_cpu_cons
Elastic_VM_cpu_alloc
Elastic_VM_cpu_cons

0

10

20

30

40

50

60

70

80

90

0 180 360 540 720 900

C
PU

(a
llo

c/
co

ns
) %

Time interval (sec)

Static_VM_cpu_alloc
Static_VM_cpu_cons
Elastic_VM_cpu_alloc
Elastic_VM_cpu_cons

(a) CPU consumption

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Static VM
Elastic VM

0

200

400

600

800

1000

1200

0 180 360 540 720 900

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Time interval (sec)

Static VM
Elastic VM

(b) Throughput

50

100

150

200

250

R
es

po
ns

e
tim

e
(m

se
c)

Static VM
Elastic VM

0

50

100

150

200

250

0 180 360 540 720 900

R
es

po
ns

e
tim

e
(m

se
c)

Time interval (sec)

Static VM
Elastic VM

(c) Response time

Figure 4: Static VM vs. Elastic VM response to step
traffic

Table 1: The timeout started after the Static VM re-
ceived 900 req/sec.

Requests rate(req/sec) Static VM (timeout %)
900 7.232
1000 15.328
1100 18.258
1200 27.772

The percentage of timed-out requests with the corre-
sponding traffic rate is illustrated in table 1. The table
started at 900 req/sec because there was no significant
timed-out traffic before this rate. If compared to the
Elastic VM for the same high traffic rate (i.e. 800 to
1200 req/sec), figures 4(a) to 4(c) show how the Elastic
VM was able to borrow more resources dynamically,
serve more requests, maintain a low response time, and
prevent SLO violation.

3.2 Two Elastic VMs compete on re-
sources

In the previous experiment, we studied the ideal case
where the host was able to satisfy the Elastic VM’s
need for more resources to cope with the increase of

incoming requests. In this experiment, we study the
competition on the CPU between two Elastic VMs. To
raise this competition, we pinned the virtual CPUs of
two Elastic VMs into same physical core. To clarify
the benefits of Apache controller usage, the step-traffic
has been run two times simultaneously to both Elastic
VMs, one time without Apache controller and another
time with Apache controller.

The first part of the experiment is illustrated in fig-
ures 5(a) to 5(c). Figure 5(b) shows that Elastic VMs
were not able to cope with the traffic rate higher than
800 req/sec while the host committed only 50% of the
CPU power for each VM starting from second #660,
as seen in figure 5(a). The reason behind this fair shar-
ing is Xen credit scheduler. During this experiment,
we setup the scheduler with the same share for run-
ning VMs. According to competition on CPU, many
requests are queued for a long time causing high re-
sponse time and continues violation of SLO, as seen in
figure 5(c). Moreover, many other requests are timed-
out before being served as seen in second and third
columns of table 2. From the above experiments, we
can conclude that Elastic VM can improve the perfor-
mance if the host has more resource to redistribute,
but in case of competition on resources, under the fair
scheduling, Elastic VM (without) Apache controller
merely behaves as a Static VM.

The previous experiment is repeated on two Elastic
VMs (with) Apache controller. Figure 6(a) shows
that in spite of the limited CPU capacity (50%) avail-
able to each VM, starting from second #660, apache
controller does two improvements: First, the mo-
ment of the Apache reload is a good chance for the
other Apache server to have more processing power
and serve more requests. Second, after the reload,
the Apache servers are tuned with a new MaxClients
value, if this value achieved better performance, the
Apache controller will keep it, otherwise it will con-
tinue looking for more optimum value. Third and
fourth columns of table 2 show the improvemrent in
terms of reductions of timed-out traffic and SLO vio-
lation.

Table 2: Two Elastic VMs (without) Apache controller
vs. two Elastic VMs (with) Apache controller re-
sponding to step traffic

VM1 VM2 VM1 VM2
(req/sec) Timeout(without) Timeout(with)

800 4.0% 0% 0% 0.2%
900 13.3% 23.8% 8.8% 8.2%

1000 20.5% 23.2% 16.52% 17.0%
1100 25.0% 35.0% 21.0% 22.0%
1200 31.0% 37.0% 26.2% 27.8%

Violation(without) Violation(with)
23.9% 26.4% 14.7% 16.8%

Figure 4. Static VM vs. Elastic VM re-
sponse to step traffic

The percentage of timed-out requests with the corre-
sponding traffic rate is illustrated in table 1. The table
started at 900 req/sec because there was no significant
timed-out traffic before this rate. If compared to the
Elastic VM for the same high traffic rate (i.e. 800 to
1200 req/sec), figures 4(a) to 4(c) show how the Elastic

Requests rate(req/sec) Static VM (timeout %)
900 7.232

1000 15.328
1100 18.258
1200 27.772

Table 1. The timeout started after the
Static VM received 900 req/sec.

VM was able to borrow more resources dynamically,
serve more requests, maintain a low response time, and
prevent SLO violation.

3.2. Two Elastic VMs compete on
resources

In the previous experiment, we studied the ideal case
where the host was able to satisfy the Elastic VMs
need for more resources to cope with the increase of
incoming requests. In this experiment, we study the
competition on the CPU between two Elastic VMs. To
raise this competition, we pinned the virtual CPUs of
two Elastic VMs into same physical core. To clarify
the benefits of Apache controller usage, the step-traffic
has been run two times simultaneously to both Elastic
VMs, one time without Apache controller and another
time with Apache controller.
The first part of the experiment is illustrated in fig-
ures 5(a) to 5(c). Figure 5(b) shows that Elastic VMs
were not able to cope with the traffic rate higher than
800 req/sec while the host committed only 50% of the
CPU power for each VM starting from second #660,
as seen in figure 5(a). The reason behind this fair shar-
ing is Xen credit scheduler. During this experiment,
we setup the scheduler with the same share for run-
ning VMs. According to competition on CPU, many
requests are queued for a long time causing high re-
sponse time and continues violation of SLO, as seen in
figure 5(c). Moreover, many other requests are timed-
out before being served as seen in second and third
columns of table 2. From the above experiments, we
can conclude that Elastic VM can improve the perfor-
mance if the host has more resource to redistribute,
but in case of competition on resources, under the fair
scheduling, Elastic VM (without) Apache controller
merely behaves as a Static VM.
The previous experiment is repeated on two Elastic
VMs (with) Apache controller. Figure 6(a) shows
that in spite of the limited CPU capacity (50%) avail-
able to each VM, starting from second #660, apache
controller does two improvements: First, the mo-
ment of the Apache reload is a good chance for the
other Apache server to have more processing power
and serve more requests. Second, after the reload,
the Apache servers are tuned with a new MaxClients
value, if this value achieved better performance, the
Apache controller will keep it, otherwise it will con-

16

tinue looking for more optimum value. Third and
fourth columns of table 2 show the improvemrent in
terms of reductions of timed-out traffic and SLO vio-
lation.

20

40

60

80

100

P
U

 c
on

su
m

pt
io

n
%

VM1
VM2

0

20

40

60

80

100

0 180 360 540 720

C
P

U
 c

on
su

m
pt

io
n

%

Time interval (sec)

VM1
VM2

(a) CPU consumption

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

VM1
VM2

0

200

400

600

800

1000

1200

0 180 360 540 720

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Time interval (sec)

VM1
VM2

(b) Throughput

100

200

300

es
po

ns
e

tim
e

(m
se

c)

VM1
VM2

0

100

200

300

0 180 360 540 720

R
es

po
ns

e
tim

e
(m

se
c)

Time interval (sec)

VM1
VM2

(c) Response time

Figure 5: Two Elastic VMs (without) Apache con-
troller responding to step traffic

4 Conclusions & Future work

In this part of the project, we have presented an im-
plementation for elastic system architecture for opti-
mizing resources consumption in consolidated envi-
ronments. Our system includes three controllers CPU,
Memory, and Application run in parallel to preserve
SLO. We have evaluated our system in a real Xen
based virtualized environment; the experiments show
that using Application controller maintains the perfor-
mance and mitigates SLO violation and requests time-
out.

Our immediate future work will include analyzing
more applications such as database and their optimiza-
tion feasibility in such dynamic resources allocation
environment. The analysis will consider analytical
models such as queuing analysis. We will also extend
our work to be integrated with other resource manage-
ment schemes like “running multiple instances” and
“VM migration”. Therefore, we will expand our ex-
perimental setup to more than one host in Future SOC
Lab.

20

40

60

80

100

CP
U

co
ns

um
pt

io
n

%

VM1
VM2

0

20

40

60

80

100

0 180 360 540 720

CP
U

co
ns

um
pt

io
n

%

Time interval (sec)

VM1
VM2

(a) CPU consumption

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

VM1
VM2

0

200

400

600

800

1000

1200

0 180 360 540 720

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Time interval (sec)

VM1
VM2

(b) Throughput

100

200

300

R
es

po
ns

e
tim

e
(m

se
c)

VM1
VM2

0

100

200

300

0 180 360 540 720

R
es

po
ns

e
tim

e
(m

se
c)

Time interval (sec)

VM1
VM2

(c) Response time

Figure 6: Two Elastic VMs (with) Apache controller
responding to step web traffic

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization, volume 37. ACM Press,
New York, New York, USA, Oct. 2003.

[2] J. Heo, X. Zhu, P. Padala, and Z. Wang. Memory
Overbooking and Dynamic Control of Xen Virtual Ma-
chines in Consolidated Environments. In Proceedings of
IFIPIEEE Symposium on Integrated Management IM09
miniconference, pages 630–637. IEEE, 2009.

[3] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L. Hellerstein,
and S. Parekh. Online Response Time Optimization of
Apache Web Server, 2003.

[4] D. Mosberger and T. Jin. httperf - A Tool for Measur-
ing Web Server Performance. In In First Workshop on
Internet Server Performance, pages 59–67, 1998.

[5] J. T J Midgley. Autobench, 2008.
[6] VMWare. VMWare, 2010.
[7] Z. Wang, X. Zhu, S. Singhal, and H. Packard. Uti-

lization and slo-based control for dynamic sizing of re-
source partitions, 2005.

[8] X. Zhu, Z. Wang, and S. Singhal. Utility-Driven Work-
load Management using Nested Control Design, pages
6033–6038. American Control Conference, 2006.

Figure 5. Two Elastic VMs (without)
Apache controller responding to step
traffic

4. Conclusions & Future work

In this part of the project, we have presented an im-
plementation for elastic system architecture for opti-
mizing resources consumption in consolidated envi-
ronments. Our system includes three controllers CPU,
Memory, and Application run in parallel to preserve
SLO. We have evaluated our system in a real Xen
based virtualized environment; the experiments show

20

40

60

80

100

P
U

 c
on

su
m

pt
io

n
%

VM1
VM2

0

20

40

60

80

100

0 180 360 540 720

C
P

U
 c

on
su

m
pt

io
n

%

Time interval (sec)

VM1
VM2

(a) CPU consumption

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

VM1
VM2

0

200

400

600

800

1000

1200

0 180 360 540 720

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Time interval (sec)

VM1
VM2

(b) Throughput

100

200

300

es
po

ns
e

tim
e

(m
se

c)

VM1
VM2

0

100

200

300

0 180 360 540 720

R
es

po
ns

e
tim

e
(m

se
c)

Time interval (sec)

VM1
VM2

(c) Response time

Figure 5: Two Elastic VMs (without) Apache con-
troller responding to step traffic

4 Conclusions & Future work

In this part of the project, we have presented an im-
plementation for elastic system architecture for opti-
mizing resources consumption in consolidated envi-
ronments. Our system includes three controllers CPU,
Memory, and Application run in parallel to preserve
SLO. We have evaluated our system in a real Xen
based virtualized environment; the experiments show
that using Application controller maintains the perfor-
mance and mitigates SLO violation and requests time-
out.

Our immediate future work will include analyzing
more applications such as database and their optimiza-
tion feasibility in such dynamic resources allocation
environment. The analysis will consider analytical
models such as queuing analysis. We will also extend
our work to be integrated with other resource manage-
ment schemes like “running multiple instances” and
“VM migration”. Therefore, we will expand our ex-
perimental setup to more than one host in Future SOC
Lab.

20

40

60

80

100

CP
U

co
ns

um
pt

io
n

%

VM1
VM2

0

20

40

60

80

100

0 180 360 540 720

CP
U

co
ns

um
pt

io
n

%

Time interval (sec)

VM1
VM2

(a) CPU consumption

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

VM1
VM2

0

200

400

600

800

1000

1200

0 180 360 540 720

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Time interval (sec)

VM1
VM2

(b) Throughput

100

200

300

R
es

po
ns

e
tim

e
(m

se
c)

VM1
VM2

0

100

200

300

0 180 360 540 720

R
es

po
ns

e
tim

e
(m

se
c)

Time interval (sec)

VM1
VM2

(c) Response time

Figure 6: Two Elastic VMs (with) Apache controller
responding to step web traffic

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization, volume 37. ACM Press,
New York, New York, USA, Oct. 2003.

[2] J. Heo, X. Zhu, P. Padala, and Z. Wang. Memory
Overbooking and Dynamic Control of Xen Virtual Ma-
chines in Consolidated Environments. In Proceedings of
IFIPIEEE Symposium on Integrated Management IM09
miniconference, pages 630–637. IEEE, 2009.

[3] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L. Hellerstein,
and S. Parekh. Online Response Time Optimization of
Apache Web Server, 2003.

[4] D. Mosberger and T. Jin. httperf - A Tool for Measur-
ing Web Server Performance. In In First Workshop on
Internet Server Performance, pages 59–67, 1998.

[5] J. T J Midgley. Autobench, 2008.
[6] VMWare. VMWare, 2010.
[7] Z. Wang, X. Zhu, S. Singhal, and H. Packard. Uti-

lization and slo-based control for dynamic sizing of re-
source partitions, 2005.

[8] X. Zhu, Z. Wang, and S. Singhal. Utility-Driven Work-
load Management using Nested Control Design, pages
6033–6038. American Control Conference, 2006.

Figure 6. Two Elastic VMs (with) Apache
controller responding to step web traffic

VM1 VM2 VM1 VM2
(req/sec) Timeout(without) Timeout(with)

800 4.0% 0% 0% 0.2%
900 13.3% 23.8% 8.8% 8.2%
1000 20.5% 23.2% 16.52% 17.0%
1100 25.0% 35.0% 21.0% 22.0%
1200 31.0% 37.0% 26.2% 27.8%

Violation(without) Violation(with)
23.9% 26.4% 14.7% 16.8%

Table 2. Two Elastic VMs (without)
Apache controller vs. two Elastic VMs
(with) Apache controller responding to
step traffic

that using Application controller maintains the perfor-
mance and mitigates SLO violation and requests time-

17

out. Our immediate future work will include analyzing
more applications such as database and their optimiza-
tion feasibility in such dynamic resources allocation
environment. The analysis will consider analytical
models such as queuing analysis. We will also extend
our work to be integrated with other resource manage-
ment schemes like “running multiple instances” and
“VM migration”. Therefore, we will expand our ex-
perimental setup to more than one host in Future SOC
Lab.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In SOSP ’03 Proceedings
of the nineteenth ACM symposium on Operating systems
principles, pages 164–177, New York, NY, Oct. 2003.
ACM Press.

[2] J. Heo, X. Zhu, P. Padala, and Z. Wang. Memory
Overbooking and Dynamic Control of Xen Virtual Ma-
chines in Consolidated Environments. In Proceedings of
IFIPIEEE Symposium on Integrated Management IM09
miniconference, pages 630–637. IEEE, 2009.

[3] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L. Hellerstein,
and S. Parekh. Online Response Time Optimization of
Apache Web Server. 2003.

[4] J. T. J. Midgley. Autobench, 2008.
[5] D. Mosberger and T. Jin. httperf - A Tool for Measur-

ing Web Server Performance. In In First Workshop on
Internet Server Performance, pages 59–67, 1998.

[6] VMWare. Vmware. http://www.vmware.com, 2010.
[7] Z. Wang, X. Zhu, S. Singhal, and H. Packard. Uti-

lization and slo-based control for dynamic sizing of re-
source partitions. 2005.

[8] X. Zhu, Z. Wang, and S. Singhal. Utility-Driven Work-
load Management using Nested Control Design. Amer-
ican Control Conference, pages 6033–6038, 2006.

18

VMs Core-allocation scheduling Policy for Energy and Performance
Management

Christoph Meinel, Ibrahim Takouna, and Wesam Dawoud
Hasso Plattner Institute (HPI)

University of Potsdam
Potsdam, Germany

{christoph.meinel, ibrahim.takouna, wesam.dawoud}@hpi.uni-potsdam.de

Abstract

In this phase of the project, we investigate the sensi-
tivity of a VM performance running scientific multi-
threading applications to changes in clock frequency
and VM performance dependency on Domain-0 for
IO-intensive applications. Then, using sensitivity
analysis to schedule VM to suitable core with suitable
frequency settings. Currently, our work is built on a
static heterogenous system, next we are going to in-
vestigate building a dynamic heterogenous system to
realize power consumption proportional to a service
requirements. However, our test environment showed
that we can gain power savings up to 17%.

1. Project Idea

Merging between multi-core processors and virtual-
ization technologies has prompted us to investigate
the possibility of achieving power saving for such
combination for scientific multithreading applications.
In this project, we investigated the advantages of
virtualizing heterogeneous multicore systems where
they could provide better performance per watt
compared to homogeneous processors [1, 10, 7]. A
single processor will contain hundreds of cores that
vary in some micro-architecture features such as clock
frequency, cache size, power consumption, and others
[3], but these cores exploit the same instruction-set
architecture. A single chip might have several com-
plex cores and many simple cores. The simple cores
are characterized as low-speed clock frequency, cache
size, and low power consumption while fast cores
are equipped with high-performance features such
as high-speed clock frequency, cache size, and high
power consumption. Consequently, their potential
to achieve different levels of performance that meet
applications heterogeneity has prompted researchers
in the operating systems domain to implement hetero-
geneous aware schedulers [9, 8, 2].

With heterogeneity of applications characteristics, a
Hypervisors scheduler is efficient if it assigns a vir-
tual CPU (vCPU) to run on the appropriate cores based
on the application characteristics in terms of CPU-
intensive, Memoryintensive, or IO-intensive. Fur-
ther, it should have knowledge of the physical proces-
sors architecture and their characteristics such as cores
clock frequency. By this knowledge, VMs with CPU-
intensive applications should be assigned to complex
fast cores to be executed faster. Generally, scientific
applications are CPU-intensive, multithreaded, and
fewer CPU stalls due to infrequent memory accesses
or I/O operations. On the other hand, I/O-intensive
could be assigned to simple slow cores without los-
ing significant performance and achieving the power
savings. However, Hypervisors scheduling-policy is
based on the round-robin algorithm to ensure fairness
among VMs. Emerging heterogeneous system and vir-
tualization bring more power savings and better re-
sources utilization. This combination needs a new
scheduler, which schedules each VM to an appropri-
ate core based on its characteristics.
We used NAS Parallel Benchmarks [5] as CPU-
intensive application and netperf benchmark [6] as
I/O-intensive application. We denoted performance
sensitivity to CPU clock frequency as performance-
frequency sensitivity and performance dependency
on Domain-0 as performance- Domain-0 dependency.
Our scheduling-policy based on these two categories:
performance-frequency sensitivity and performance-
Domain-0 dependency to assign a vCPU to the appro-
priate core. Consequently, the results showed good
performance improvements for VMs with CPUinten-
sive applications and for VMs with IO-intensive ap-
plications as well. Finally, our heterogeneous experi-
mental environment achieves promising power savings
reach to 17% which theoretically could reach to 45%
. The power savings are gained from this architecture,
which runs on two cores with high frequency and other
two cores with low frequency.

19

2. Used Future SOC Lab Resources

The evaluation tests were performed on Fujitsu
PRIMERGY RX300 S5 server. It has a processor of
Intel(R) Xeon(R) CPU E5540 with 4-cores and the fre-
quency range is 2.53GHz to 1.59GHz. the server is
equipped with 12GB physical memory. Additionally,
We used ServerView Remote Management to monitor
power consumption for CPU.

3. Findinds: VMs Sensitivity Analysis

In this section, we analyzed sensitivity of VMs perfor-
mance to changes in CPU clock frequency for VMs
that run CPU-intensive and IO-intensive applications.
Then, we illustrated dependency of VMs on Domian-0
for VMs with IO-intensive applications.

3.1. VMs with NBP Sensitivity Analy-
sis

To analyze VMs performance-frequency sensitivity,
we used NBP-SER and NPB-OMP benchmarks as
CPUintensive programs. In this experiment, we
pinned vCPUs of Domain-0 to cores (0,1) and vCPUs
of VMs were pinned to the another two cores (2,3)
to avoid Domain-0s influence on the VMs; in other
words, to prevent Domain-0 from being queued with
the VMs in the same queue. First, the experiment
was run while the cores (2,3) were set to run with
high frequency FF =2.53GHz as fast cores. Then,
it was run again after changing frequency settings of
the cores (2,3) to low frequency FS=1.59GHz as slow
cores. Finally, we used the price elasticity of demand
economics formula to determine programs completion
time and throughput sensitivity of clock frequency. We
considered T the completion time and Th the through-
put as the demand, and F clock frequency as the price.
ET,F is the completion time sensitivity of clock fre-
quency, and ETh,F is throughput sensitivity of clock
frequency.

ET,F =
TF − TS

FF − FS
∗ FF + FS

TF + TS
(1)

ETh,F =
ThF − ThS

FF − FS
∗ FF + FS

ThF + ThS
(2)

Due to the inverse relationship between CPU fre-
quency and completion time, ET,F values are nega-
tive, so completion time increases as CPU frequency
decreases and vice versa. On the other hand, ETh,F

values are positive because of the direct relationship
between CPU frequency and throughput. Program
speedup depends on program characteristics, so it does
not have a liner relationship with CPU frequency.
However, CPU-intensive programs might have a semi-
liner relation with frequency because of either infre-
quent memory accesses or I/O operations. Figure

1 shows NPB-OMP and NPB-SER benchmarks per-
formancefrequency sensitivity (i.e., completion time
and throughput). NPB benchmark each program has
different memory access behavior and various inter-
process communication patterns. These characteris-
tics determine sensitivity of a program to frequency
changes. For example, the completion time of EPOMP
and EP-SER programs had the same sensitivity and
they gained the highest sensitivity. The similarity be-
tween these two programs is that EP-OMP a mul-
tithreaded program but has negligible inter-process
communication and EP-SER is a single thread pro-
gram without inter-process communication. Further,
EP-OMP is seldom memory access compared with
CG-OMP and LU-OMP. Generally, NPB-SER pro-
grams sensitivity to frequency changes was higher
than NBP-OMP due to the sequential execution of
instructions in NPB-SER and inter-process commu-
nication patterns or IO operations in some of NBP-
OMP programs such as CG and BT respectively. On
the other hand, NBPOMP programs with intensive
inter-process communication were less sensitive to fre-
quency such as CG-OMP and LUOMP. FT, a mixed
type program, almost had the same sensitivity in NPB-
SER and NPB-OMP. Unlike LU-OMP, BT-OMP in-
cludes a number of I/O operations that do not need
synchronization among its threads.

3.2. VMs with I/O Sensitivity Analysis

We analyzed sensitivity of VMs performance with
I/Ointensive to CPU frequency. Then, as I/O
operations depend on Domain-0, we tested VMs
performance-Domain-0 dependency.
1) CPU Frequency Sensitivity: In this experiment, we
ran netperf with TCP-STREAM and UDP-STRAEM
options to test I/O performance-frequency sensitivity
using formula (2). The setting of this experiment was
the same setting when we tested VM with NBP sen-
sitivity. As shown in figure 2-(a), TCP test is more
sensitive to core frequency than UDP due to the nature
of TCP-packet; UDP does neither message fragmen-
tation nor reassembly. Further, the aggregate costs of
non-data touching overheads consume majority of the
total software processing time. The nondata touch-
ing overheads come from as network buffer manipu-
lation, protocol-specific processing, operating system
functions, data structure manipulations (other than net-
work buffers), and error checking[16]. To validate our
test, we used SCP application TCP-based to transfer a
500MB file between two VMs and we found the same
results obtained using netperf-TCP.
2) VMs with I/O Domain-0 Dependency: In this exper-
iment, we ran netperf benchmark with TCP-STREAM
and UDP-STRAEM options to test I/O performance-
Domain- 0 dependency. For this end, we reversed the
scenario of VM performance-frequency sensitivity, so
the cores (2,3) settings were not changed and were

20

A. VMs with NBP Sensitivity Analysis

To analyze VMs performance-frequency sensitivity, we
used NBP-SER and NPB-OMP benchmarks as CPU-
intensive programs. In this experiment, we pinned vCPUs
of Domain-0 to cores (0,1) and vCPUs of VMs were pinned
to the another two cores (2,3) to avoid Domain-0’s influence
on the VMs; in other words, to prevent Domain-0 from
being queued with the VMs in the same queue. First, the
experiment was run while the cores (2,3) were set to run with
high frequency FF =2.53GHz as fast cores. Then, it was run
again after changing frequency settings of the cores (2,3) to
low frequency FS=1.59GHz as slow cores. Finally, we used
the price elasticity of demand economics formula to deter-
mine program’s completion time and throughput sensitivity
of clock frequency. We considered T the completion time
and Th the throughput as the demand, and F clock frequency
as the price. ET,F is the completion time sensitivity of clock
frequency, and ETh,F is throughput sensitivity of clock
frequency.

ET,F =
TF − TS

FF − FS
∗ FF + FS

TF + TS
(1)

ETh,F =
ThF − ThS

FF − FS
∗ FF + FS

ThF + ThS
(2)

Due to the inverse relationship between CPU frequency
and completion time, ET,F values are negative, so com-
pletion time increases as CPU frequency decreases and
vice versa. On the other hand, ETh,F values are positive
because of the direct relationship between CPU frequency
and throughput. Program speedup depends on program char-
acteristics, so it does not have a liner relationship with
CPU frequency. However, CPU-intensive programs might
have a semi-liner relation with frequency because of either
infrequent memory accesses or I/O operations. Figure 1
shows NPB-OMP and NPB-SER benchmarks performance-
frequency sensitivity (i.e., completion time and throughput).
NPB benchmark each program has different memory access
behavior and various inter-process communication patterns.
These characteristics determine sensitivity of a program to
frequency changes. For example, the completion time of EP-
OMP and EP-SER programs had the same sensitivity and
they gained the highest sensitivity. The similarity between
these two programs is that EP-OMP a multithreaded pro-
gram but has negligible inter-process communication and
EP-SER is a single thread program without inter-process
communication. Further, EP-OMP is seldom memory ac-
cess compared with CG-OMP and LU-OMP. Generally,
NPB-SER programs sensitivity to frequency changes was
higher than NBP-OMP due to the sequential execution of
instructions in NPB-SER and inter-process communication
patterns or IO operations in some of NBP-OMP programs
such as CG and BT respectively. On the other hand, NBP-
OMP programs with intensive inter-process communication

(a) (b)

Figure 1. Performance-frequency sensitivity for NPB-OMP and NPB-SER
versions run on a VM with two vCPUs. (a)sensitivity of completion time
to frequency, and (b)sensitivity of throughput to frequency.

were less sensitive to frequency such as CG-OMP and LU-
OMP. FT, a mixed type program, almost had the same
sensitivity in NPB-SER and NPB-OMP. Unlike LU-OMP,
BT-OMP includes a number of I/O operations that do not
need synchronization among its threads.

B. VMs with I/O Sensitivity Analysis

We analyzed sensitivity of VMs performance with I/O-
intensive to CPU frequency. Then, as I/O operations depend
on Domain-0, we tested VMs performance-Domain-0 de-
pendency.

1) CPU Frequency Sensitivity: In this experiment, we
ran netperf with TCP-STREAM and UDP-STRAEM options
to test I/O performance-frequency sensitivity using formula
2. The setting of this experiment was the same setting
when we tested VM with NBP sensitivity. As shown in
figure 2-(a), TCP test is more sensitive to core frequency
than UDP due to the nature of TCP-packet; UDP does
neither message fragmentation nor reassembly. Further, the
aggregate costs of non-data touching overheads consume
majority of the total software processing time. The non-
data touching overheads come from as network buffer ma-
nipulation, protocol-specific processing, operating system
functions, data structure manipulations (other than network
buffers), and error checking[16]. To validate our test, we
used SCP application TCP-based to transfer a 500MB file
between two VMs and we found the same results obtained
using netperf-TCP.

2) VMs with I/O Domain-0 Dependency: In this experi-
ment, we ran netperf benchmark with TCP-STREAM and
UDP-STRAEM options to test I/O performance-Domain-
0 dependency. For this end, we reversed the scenario of
VM performance-frequency sensitivity, so the cores (2,3)
settings were not changed and were set to high frequency
FF =2.53GHz where VMs were pinned in cores (2,3). On
the other hand, The cores (0,1) were set to high frequency
FF =2.53 GHz where Domain-0 was pinned. Then, we ran it
again while the frequency of cores (0,1) is low FS=1.59GHz.
Finally, we computed the performance-Domain-0 depen-
dency using formula (2). The result of this experiment is
shown in figure 2-(b). It illustrates that both netperf-TCP and
netperf-UDP depend on Domain-0 for commutation between

Figure 1. Performance-frequency sensitivity for NPB-OMP and NPB-SER versions run on
a VM with two vCPUs. (a)sensitivity of completion time to frequency, and (b)sensitivity of
throughput to frequency.

set to high frequency FF =2.53GHz where VMs were
pinned in cores (2,3). On the other hand, The cores
(0,1) were set to high frequency FF =2.53 GHz where
Domain-0 was pinned. Then, we ran it again while the
frequency of cores (0,1) is low FS=1.59GHz. Finally,
we computed the performance-Domain-0 dependency
using formula (2). The result of this experiment is
shown in figure 2(b). It illustrates that both netperf-
TCP and netperf-UDP depend on Domain-0 for com-
mutation between to VMs, but netperf-TCP depends
on Domain-0 more than netperf-UDP.
The conclusion is that applications based on TCP pro-
tocol are frequency sensitive and they are Domain-0
dependant as depicted in figure 2(a) and figure 2(b) re-
spectively.

4. Performance Evaluations

In this section, we evaluated our improved scheduling-
policy with the following rules:

• The weight of VM is proportional to the number
of vCPUs.

• CPU-intensive vCPU should not being queued
with I/O-intensive vCPU. Further CPU-intensive
vCPU should be placed in the fast pCPUs queue
and I/Ointensive vCPU in the slow pCPUs queue.

• A virtual machine with CPU-intensive applica-
tion and a single vCPU should be placed in fast
pCPUs queue to accelerate the sequential execu-
tion.

• The time-slice for the fast pCPUs queue is 30ms
and time-slice for slow cores is 10ms as show in
figure 3. We chose the value 10ms for the short
slice as one tick to avoid high context switching
and to keep consistent credit accounting.

(a) (b)

Figure 2. Performance-frequency sensitivity and Domain-0 dependency
for NPB-OMP and NPB-SER versions run on a VM with two vCPUs. (a)
performance-frequency sensitivity, and (b) performance-Domain-0 depen-
dency.

to VMs, but netperf-TCP depends on Domain-0 more than
netperf-UDP.

The conclusion is that applications based on TCP protocol
are frequency sensitive and they are Domain-0 dependant as
depicted in figure 2-(a) and figure 2-(b) respectively.

IV. PERFORMANCE EVALUATIONS

In this section, we evaluated our improved scheduling-
policy with the following rules:

• The weight of VM is proportional to the number of
vCPUs.

• CPU-intensive vCPU should not being queued with
I/O-intensive vCPU. Further CPU-intensive vCPU
should be placed in the fast pCPU’s queue and I/O-
intensive vCPU in the slow pCPU’s queue.

• A virtual machine with CPU-intensive application and
a single vCPU should be placed in fast pCPU’s queue
to accelerate the sequential execution.

• The time-slice for the fast pCPU’s queue is 30ms and
time-slice for slow cores is 10ms as show in figure 3.
We chose the value 10ms for the short slice as one tick
to avoid high context switching and to keep consistent
credit accounting.

• The settings of cores in the experiments are the fast
cores (0,1) with FF =2.53GHz and the slow cores (2,3)
with FS=1.59GHz.

(a) (b)

Figure 3. Scheduling time-slice modifications.(a) time-slice = 30ms for
fast cores, and (b) time-slice = 10ms for slow cores. The accounting period
of vCPU is 30ms for both fast and slow cores.

3) I/O and CPU-intensive Isolation: In this experiment,
we created three VMs one with two vCPUs and the other
two each has one vCPUs. We ran netperf on the two
VMs with one vCPU for testing TCP and UDP bandwidth
channels between them. The VM with two vCPUs used
to run NPB-SER, then NBP-OMP. We ran the three VMs

with our new scheduling-policy. First, we used EP and CG
programs in NPB-SER with netperf, then EP and CG of
NPB-OMP were used. We pinned the VMs with I/O to
the slow cores (2,3) and the VM with CPU-intensive was
pinned to the fast cores (0,1). Performance improvement
for both I/O and CPU-intensive VMs compared to the
default scheduler is illustrated in figure 4. Figure 4-(c) shows
that the performance gain of CG.C is better than EP.C.
Indeed, EP.C has negligible inter-process communication
compared to CG.C which has also memory accesses. On
the other hand, netperf-TCP throughput when co-hosted with
VM that ran NBP-SER is better than when co-hosted with
VM that ran NBP-OMP. As seen in figure 3-(b), netperf
depends on Domain-0 and NPB-SER is a single thread test
that gave Domain-0 chance to be scheduled in fast cores
and improve I/O operations for netperf-TCP. The aggregate
average gain is depicted in figure 4-(c). Obviously, isolating
CPU-intensive vCPUs from IO-intensive vCPUs was the
main reason for performance improvement. Using isolation
eliminated the sources of delay that effect on CPU-intensive
vCPUs performance.

(a) (b) (c)

Figure 4. I/O and CPU-intensive Isolation Performance improvements;
netperf-TCP run on a VM with one vCPU,and NPB-OMP run on a
VM with two vCPUs. (a) Throughput gain for NPB-OMP and netperf-
TCP benchmark, (b) throughput gain for NPB-OMP and netperf-TCP
benchmark, and (c) the average improvement of the overall system.

A. VMs with sensitive Inter-process Comm.

In this experiment, we tested the performance gain for
inter-process communication intensive such as CG and
LU of NPB-OMP version. The performance of NPB-OMP
benchmark in VM is near to the performance in physical
server as long as the vCPUs are less than pCPUs, and LU-
OMP is the most sensitive program to communication delay
[10]. For testing inter-process communication intensive pro-
gram performance improvement, we created one VM with
one vCPU and another VM with four vCPU. Nevertheless,
we had five vCPUs in addition to four vCPUs for Domain-0.
The performance gain is illustrated in figure 5 where figure
5-(a) shows Throughput gain and completion time speedup
for NPB-OMP while figure 5-(b)illustrates Throughput gain
and completion time speedup for NPB-SER. Figure 5-(c)
shows the average aggregated performance gain for NPB
programs with two versions. Nevertheless, LU-OMP gained
about 70% performance improvement. This improvement

Figure 2. Performance-frequency sen-
sitivity and Domain-0 dependency
for NPB-OMP and NPB-SER versions
run on a VM with two vCPUs. (a)
performance-frequency sensitivity, and
(b) performance-Domain-0 dependency.

• The settings of cores in the experiments are the
fast cores (0,1) with FF =2.53GHz and the slow
cores (2,3) with FS=1.59GHz.

3) I/O and CPU-intensive Isolation: In this exper-
iment, we created three VMs one with two vCPUs
and the other two each has one vCPUs. We ran net-
perf on the two VMs with one vCPU for testing TCP
and UDP bandwidth channels between them. The VM
with two vCPUs used to run NPB-SER, then NBP-
OMP. We ran the three VMs with our new scheduling-
policy. First, we used EP and CG programs in NPB-
SER with netperf, then EP and CG of NPB-OMP were
used. We pinned the VMs with I/O to the slow cores
(2,3) and the VM with CPU-intensive was pinned to
the fast cores (0,1). Performance improvement for

21

both I/O and CPU-intensive VMs compared to the de-
fault scheduler is illustrated in figure 4. Figure 4(c)
shows that the performance gain of CG.C is better than
EP.C. Indeed, EP.C has negligible inter-process com-
munication compared to CG.C which has also memory
accesses. On the other hand, netperf-TCP throughput
when co-hosted with VM that ran NBP-SER is better
than when co-hosted with VM that ran NBP-OMP. As
seen in figure 3(b), netperf depends on Domain-0 and
NPB-SER is a single thread test that gave Domain-
0 chance to be scheduled in fast cores and improve
I/O operations for netperf-TCP. The aggregate average
gain is depicted in figure 4(c). Obviously, isolating
CPU-intensive vCPUs from IO-intensive vCPUs was
the main reason for performance improvement. Using
isolation eliminated the sources of delay that effect on
CPU-intensive vCPUs performance.

4.1. VMs with sensitive Inter-process
Comm.

In this experiment, we tested the performance gain
for inter-process communication intensive such as CG
and LU of NPB-OMP version. The performance of
NPB-OMP benchmark in VM is near to the perfor-
mance in physical server as long as the vCPUs are
less than pCPUs, and LUOMP is the most sensitive
program to communication delay [12]. For testing
inter-process communication intensive program per-
formance improvement, we created one VM with one
vCPU and another VM with four vCPU. Neverthe-
less, we had five vCPUs in addition to four vCPUs for
Domain-0. The performance gain is illustrated in fig-
ure 5 where figure 5(a) shows Throughput gain and
completion time speedup for NPB-OMP while figure
5(b)illustrates Throughput gain and completion time
speedup for NPB-SER. Figure 5(c) shows the aver-
age aggregated performance gain for NPB programs
with two versions. Nevertheless, LU-OMP gained
about 70% performance improvement. This improve-
ment due to changing the time-slice of the slow pC-
PUs to 10ms which increases scheduling frequency.
Increasing scheduling frequency gave chance for inter-
process communication and synchronization. Further,
decreasing time-slice decreases holding time when
vCPU status busy blocking holds pCPU [4]. A lot of
busy blocking wastes pCPU cycles and degrades the
overall system performance.

5. Next Steps

The next steps of our project will be as follows:

• Analyzing energy characteristics of scientific
mutlithreading applications executed on VM with
multi- Virtual-CPU to provide a dynamic mecha-
nism for saving energy while satisfying perfor-
mance requirements. As we studied the NPB

benchmarks performance sensitivity of changing
in CPU frequency, Our method is to determine
number of virtual-CPUs for a virtual machine and
cores frequency settings in order to minimize en-
ergy consumption.

• We would like to use SOC LAB resource that has
64-cores which enable many configuring com-
binations of Frequency, Voltage, and number of
cores where the used machine only has 4 cores.
Using 64-cores machine also could be useful to
apply our idea of cores clustering based on CPU
clock frequency and other features.

References

[1] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, and
P. Husbands. The Landscape of Parallel Computing
Research: A View From Berkeley. Technical Report
UCB/EECS-2006-183, UC Berkeley, 2006.

[2] M. Becchi and P. Crowley. Dynamic Thread Assign-
ment on Heterogeneous Multiprocessor Architectures.
In Proceedings of the Conference on Computing Fron-
tiers, 2006.

[3] S. Borkar. Thousand Core Chips-A Technology Per-
spective. In Proceedings of the DAC, 2007.

[4] H. Chen, H. Jin, K. Hu, and J. Huang. Dynamic
Switching-Frequency Scaling: Scheduling pinned Do-
mains in Xen VMM. In Proceedings of 39th Interna-
tional Conference on Parallel Processing, pages 287–
296, 2010.

[5] R. V. der Wijngaart. NAS Parallel Benchmarks v. 2.4.
Technical Report NAS-02-007, NAS, Oct. 2002.

[6] R. Jones. NetPerf: a Network performance bench-
mark. http://www.netperf.org, 2011.

[7] R. Kumar, K. I. Farkas, and N. J. et al. Single-ISA
Heterogeneous Multi-Core Architectures: The Poten-
tial for Processor Power Reduction. In Proceedings of
MICRO 36, 2003.

[8] R. Kumar, D. M. Tullsen, and P. R. et al. Single-
ISA Heterogeneous Multi-Core Architectures for Mul-
tithreaded Workload Performance. In Proceedings of
ISCA, 2004.

[9] R. Kumar, D. M. Tullsen, P. Ranganathan, N. Jouppi,
and K. Farkas. Single-ISA Heterogeneous Multi-
core Architectures for Multithreaded Workload Per-
formance. In Proceedings of the 31st Annual Inter-
national Symposium on Computer Architecture, 2004.

[10] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and
E. Ayguade. Performance, Power Efficiency and Scal-
ability of Asymmetric Cluster Chip Multiprocessors.
IEEE Computer Architecture Letters, 5(1):4, 2006.

[11] D. Shelepov and A. Fedorova. Scheduling on Het-
erogeneous Multicore Processors Using Architectural
Signatures. In Proceedings of the Workshop on the In-
teraction between Operating Systems and Computer
Architecture, in conjunction with the 35th Interna-
tional Symposium on Computer Architecture, Beijing,
China, June 2008. WIOSCA ’08.

[12] C. Xu, Y. Bai, and C. Luo. Performance Evaluation
of Parallel Programming in Virtual Machine Environ-
ment. In Proceedings of Sixth IFIP International Con-
ference on Network and Parallel Computing, pages
140–147, 2009.

22

(a) (b)

Figure 2. Performance-frequency sensitivity and Domain-0 dependency
for NPB-OMP and NPB-SER versions run on a VM with two vCPUs. (a)
performance-frequency sensitivity, and (b) performance-Domain-0 depen-
dency.

to VMs, but netperf-TCP depends on Domain-0 more than
netperf-UDP.

The conclusion is that applications based on TCP protocol
are frequency sensitive and they are Domain-0 dependant as
depicted in figure 2-(a) and figure 2-(b) respectively.

IV. PERFORMANCE EVALUATIONS

In this section, we evaluated our improved scheduling-
policy with the following rules:

• The weight of VM is proportional to the number of
vCPUs.

• CPU-intensive vCPU should not being queued with
I/O-intensive vCPU. Further CPU-intensive vCPU
should be placed in the fast pCPU’s queue and I/O-
intensive vCPU in the slow pCPU’s queue.

• A virtual machine with CPU-intensive application and
a single vCPU should be placed in fast pCPU’s queue
to accelerate the sequential execution.

• The time-slice for the fast pCPU’s queue is 30ms and
time-slice for slow cores is 10ms as show in figure 3.
We chose the value 10ms for the short slice as one tick
to avoid high context switching and to keep consistent
credit accounting.

• The settings of cores in the experiments are the fast
cores (0,1) with FF =2.53GHz and the slow cores (2,3)
with FS=1.59GHz.

(a) (b)

Figure 3. Scheduling time-slice modifications.(a) time-slice = 30ms for
fast cores, and (b) time-slice = 10ms for slow cores. The accounting period
of vCPU is 30ms for both fast and slow cores.

3) I/O and CPU-intensive Isolation: In this experiment,
we created three VMs one with two vCPUs and the other
two each has one vCPUs. We ran netperf on the two
VMs with one vCPU for testing TCP and UDP bandwidth
channels between them. The VM with two vCPUs used
to run NPB-SER, then NBP-OMP. We ran the three VMs

with our new scheduling-policy. First, we used EP and CG
programs in NPB-SER with netperf, then EP and CG of
NPB-OMP were used. We pinned the VMs with I/O to
the slow cores (2,3) and the VM with CPU-intensive was
pinned to the fast cores (0,1). Performance improvement
for both I/O and CPU-intensive VMs compared to the
default scheduler is illustrated in figure 4. Figure 4-(c) shows
that the performance gain of CG.C is better than EP.C.
Indeed, EP.C has negligible inter-process communication
compared to CG.C which has also memory accesses. On
the other hand, netperf-TCP throughput when co-hosted with
VM that ran NBP-SER is better than when co-hosted with
VM that ran NBP-OMP. As seen in figure 3-(b), netperf
depends on Domain-0 and NPB-SER is a single thread test
that gave Domain-0 chance to be scheduled in fast cores
and improve I/O operations for netperf-TCP. The aggregate
average gain is depicted in figure 4-(c). Obviously, isolating
CPU-intensive vCPUs from IO-intensive vCPUs was the
main reason for performance improvement. Using isolation
eliminated the sources of delay that effect on CPU-intensive
vCPUs performance.

(a) (b) (c)

Figure 4. I/O and CPU-intensive Isolation Performance improvements;
netperf-TCP run on a VM with one vCPU,and NPB-OMP run on a
VM with two vCPUs. (a) Throughput gain for NPB-OMP and netperf-
TCP benchmark, (b) throughput gain for NPB-OMP and netperf-TCP
benchmark, and (c) the average improvement of the overall system.

A. VMs with sensitive Inter-process Comm.

In this experiment, we tested the performance gain for
inter-process communication intensive such as CG and
LU of NPB-OMP version. The performance of NPB-OMP
benchmark in VM is near to the performance in physical
server as long as the vCPUs are less than pCPUs, and LU-
OMP is the most sensitive program to communication delay
[10]. For testing inter-process communication intensive pro-
gram performance improvement, we created one VM with
one vCPU and another VM with four vCPU. Nevertheless,
we had five vCPUs in addition to four vCPUs for Domain-0.
The performance gain is illustrated in figure 5 where figure
5-(a) shows Throughput gain and completion time speedup
for NPB-OMP while figure 5-(b)illustrates Throughput gain
and completion time speedup for NPB-SER. Figure 5-(c)
shows the average aggregated performance gain for NPB
programs with two versions. Nevertheless, LU-OMP gained
about 70% performance improvement. This improvement

Figure 3. Scheduling time-slice modifications.(a) time-slice = 30ms for fast cores, and (b)
time-slice = 10ms for slow cores. The accounting period of vCPU is 30ms for both fast and
slow cores.

(a) (b)

Figure 2. Performance-frequency sensitivity and Domain-0 dependency
for NPB-OMP and NPB-SER versions run on a VM with two vCPUs. (a)
performance-frequency sensitivity, and (b) performance-Domain-0 depen-
dency.

to VMs, but netperf-TCP depends on Domain-0 more than
netperf-UDP.

The conclusion is that applications based on TCP protocol
are frequency sensitive and they are Domain-0 dependant as
depicted in figure 2-(a) and figure 2-(b) respectively.

IV. PERFORMANCE EVALUATIONS

In this section, we evaluated our improved scheduling-
policy with the following rules:

• The weight of VM is proportional to the number of
vCPUs.

• CPU-intensive vCPU should not being queued with
I/O-intensive vCPU. Further CPU-intensive vCPU
should be placed in the fast pCPU’s queue and I/O-
intensive vCPU in the slow pCPU’s queue.

• A virtual machine with CPU-intensive application and
a single vCPU should be placed in fast pCPU’s queue
to accelerate the sequential execution.

• The time-slice for the fast pCPU’s queue is 30ms and
time-slice for slow cores is 10ms as show in figure 3.
We chose the value 10ms for the short slice as one tick
to avoid high context switching and to keep consistent
credit accounting.

• The settings of cores in the experiments are the fast
cores (0,1) with FF =2.53GHz and the slow cores (2,3)
with FS=1.59GHz.

(a) (b)

Figure 3. Scheduling time-slice modifications.(a) time-slice = 30ms for
fast cores, and (b) time-slice = 10ms for slow cores. The accounting period
of vCPU is 30ms for both fast and slow cores.

3) I/O and CPU-intensive Isolation: In this experiment,
we created three VMs one with two vCPUs and the other
two each has one vCPUs. We ran netperf on the two
VMs with one vCPU for testing TCP and UDP bandwidth
channels between them. The VM with two vCPUs used
to run NPB-SER, then NBP-OMP. We ran the three VMs

with our new scheduling-policy. First, we used EP and CG
programs in NPB-SER with netperf, then EP and CG of
NPB-OMP were used. We pinned the VMs with I/O to
the slow cores (2,3) and the VM with CPU-intensive was
pinned to the fast cores (0,1). Performance improvement
for both I/O and CPU-intensive VMs compared to the
default scheduler is illustrated in figure 4. Figure 4-(c) shows
that the performance gain of CG.C is better than EP.C.
Indeed, EP.C has negligible inter-process communication
compared to CG.C which has also memory accesses. On
the other hand, netperf-TCP throughput when co-hosted with
VM that ran NBP-SER is better than when co-hosted with
VM that ran NBP-OMP. As seen in figure 3-(b), netperf
depends on Domain-0 and NPB-SER is a single thread test
that gave Domain-0 chance to be scheduled in fast cores
and improve I/O operations for netperf-TCP. The aggregate
average gain is depicted in figure 4-(c). Obviously, isolating
CPU-intensive vCPUs from IO-intensive vCPUs was the
main reason for performance improvement. Using isolation
eliminated the sources of delay that effect on CPU-intensive
vCPUs performance.

(a) (b) (c)

Figure 4. I/O and CPU-intensive Isolation Performance improvements;
netperf-TCP run on a VM with one vCPU,and NPB-OMP run on a
VM with two vCPUs. (a) Throughput gain for NPB-OMP and netperf-
TCP benchmark, (b) throughput gain for NPB-OMP and netperf-TCP
benchmark, and (c) the average improvement of the overall system.

A. VMs with sensitive Inter-process Comm.

In this experiment, we tested the performance gain for
inter-process communication intensive such as CG and
LU of NPB-OMP version. The performance of NPB-OMP
benchmark in VM is near to the performance in physical
server as long as the vCPUs are less than pCPUs, and LU-
OMP is the most sensitive program to communication delay
[10]. For testing inter-process communication intensive pro-
gram performance improvement, we created one VM with
one vCPU and another VM with four vCPU. Nevertheless,
we had five vCPUs in addition to four vCPUs for Domain-0.
The performance gain is illustrated in figure 5 where figure
5-(a) shows Throughput gain and completion time speedup
for NPB-OMP while figure 5-(b)illustrates Throughput gain
and completion time speedup for NPB-SER. Figure 5-(c)
shows the average aggregated performance gain for NPB
programs with two versions. Nevertheless, LU-OMP gained
about 70% performance improvement. This improvement

Figure 4. I/O and CPU-intensive Isolation Performance improvements; netperf-TCP run on
a VM with one vCPU,and NPB-OMP run on a VM with two vCPUs. (a) Throughput gain for
NPB-OMP and netperf- TCP benchmark, (b) throughput gain for NPB-OMP and netperf-TCP
benchmark, and (c) the average improvement of the overall system.

due to changing the time-slice of the slow pCPUs’ to 10ms
which increases scheduling frequency. Increasing scheduling
frequency gave chance for inter-process communication and
synchronization. Further, decreasing time-slice decreases
holding time when vCPU status ”busy blocking” holds
pCPU [11]. A lot of ”busy blocking” wastes pCPU cycles
and degrades the overall system performance.

(a) (b) (c)

Figure 5. CPU-intensive with inter-process communication intensive
performance improvements;NPB-OMP run on a VM with four vCPUs
and NPB-SER run on a VM with one vCPU. (a) Throughput gain and
completion time speedup for NPB-OMP,(b) throughput gain and completion
time for NPB-SER, and (c) the average improvement of the overall system.

V. NEXT STEPS

The next steps of our project will be as follows:
• Analyzing energy characteristics of scientific mut-

lithreading applications executed on VM with multi-
Virtual-CPU to provide a dynamic mechanism for sav-
ing energy while satisfying performance requirements.
As we studied the NPB benchmarks performance sen-
sitivity of changing in CPU frequency, Our method is
to determine number of virtual-CPUs for a virtual ma-
chine and cores frequency settings in order to minimize
energy consumption.

• We would like to use SOC LAB resource that has
64-cores which enable many configuring combinations
of Frequency, Voltage, and number of cores where
the used machine only has 4 cores. Using 64-cores
machine also could be useful to apply our idea of cores
clustering based on CPU clock frequency and other
features.

REFERENCES

[1] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, and P.
Husbands, ”The Landscape of Parallel Computing Research:
A View From Berkeley,” UC Berkeley Technical Report
UCB/EECS-2006-183, 2006.

[2] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E.
Ayguade, ”Performance, Power Efficiency and Scalability of
Asymmetric Cluster Chip Multiprocessors,” IEEE Computer
Architecture Letters 5(1):4, 2006.

[3] R. Kumar, K. I. Farkas, and N. Jouppi et al, ”Single-ISA
Heterogeneous Multi-Core Architectures: The Potential for
Processor Power Reduction,” In Proc. of MICRO 36, 2003.

[4] S. Borkar, ”Thousand Core Chips-A Technology Perspective,”
in Proc. of the DAC, 2007.

[5] R. Kumar, Dean M. Tullsen, P. Ranganathan, N. Jouppi,
and K. Farkas, ”Single-ISA Heterogeneous Multicore Archi-
tectures for Multithreaded Workload Performance,” in Proc.
of the 31st Annual International Symposium on Computer
Architecture, 2004.

[6] R. Kumar, D. M. Tullsen, and P. Ranganathan et al, ”Single-
ISA Heterogeneous Multi-Core Architectures for Multi-
threaded Workload Performance,” in Proc. of ISCA, 2004.

[7] M. Becchi and P. Crowley, ”Dynamic Thread Assignment on
Heterogeneous Multiprocessor Architectures,” in Proc. of the
Conference on Computing Frontiers, 2006.

[8] R. V. der Wijngaart, ”NAS Parallel Benchmarks v. 2.4”, NAS
Technical Report NAS-02-007, October 2002.

[9] R Jones, ”NetPerf:a Network performance benchmark,”
http://www.netperf.org.

[10] C. Xu, Y. Bai, and C. Luo, ”Performance Evaluation of
Parallel Programming in Virtual Machine Environment,” In
Proc. of Sixth IFIP International Conference on Network and
Parallel Computing, pp. 140-147, 2009.

[11] H. Chen, H. Jin, K. Hu, and J. Huang, ”Dynamic Switching-
Frequency Scaling: Scheduling pinned Domains in Xen
VMM,” in Proc. of 39th International Conference on Parallel
Processing,pp. 287-296, 2010

[12] D. Shelepov and A. Fedorova, ”Scheduling on Heteroge-
neous Multicore Processors Using Architectural Signatures,”
in Proc. of the Workshop on the Interaction between Operat-
ing Systems and Computer Architecture, in conjunction with
the 35th International Symposium on Computer Architecture
(Beijing, China, June 21-25, 2008). WIOSCA ’08.

Figure 5. CPU-intensive with inter-process communication intensive performance
improvements;NPB-OMP run on a VM with four vCPUs and NPB-SER run on a VM with one
vCPU. (a) Throughput gain and completion time speedup for NPB-OMP,(b) throughput gain
and completion time for NPB-SER, and (c) the average improvement of the overall system.

23

Towards Scalable and Self-Optimizing Software for Multi-Core and
Cloud Computing II∗*

Sebastian Wätzoldt, Stephan Hildebrandt, Holger Giese and Axel Uhl
System Analysis and Modeling at Hasso Plattner Institute for IT Systems Engineering

Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
{sebastian.waetzoldt|stephan.hildebrand|holger.giese}@hpi.uni-potsdam.de

Abstract

Developing software that really exploits the poten-
tial of multi-core and cloud computing is inherently
more difficult than traditional software development
as the essentially required development of parallel be-
havior is much more difficult than for sequential be-
havior. However, multi-core and cloud computing is
more about scalability of service-oriented architec-
tures than only performance as in case of parallel
computing. Instead of a given fixed hardware con-
figuration, the possibility to exchange the underling
hardware or provider to handle even higher loads is
key. We propose to approach these new challenges by
a model-driven approach where the higher-level ab-
straction of the software description enables to derive
several optimized platform-specific solutions for dif-
ferent as well as changing hardware settings. In order
to ensure that the system operates always with a good
solution, the software should be able to adapt itself
such that in the spirit of autonomic computing the soft-
ware takes care of the permanent self-optimization of
its execution strategies to ensure scalability. To eval-
uate different initial static options for our related cur-
rently developed self-adaptive model-driven approach,
we employed the HPI Future SOC lab as a test bed.

1. Introduction

Today, Moores law still holds concerning the increase
in number of gates we can integrate on a chip and
it will probably still hold for a few generations of
chips before we hit the atom size as limiting factor.
However, the related speedup for sequential process-
ing we could also observe in the last decades has al-
ready come to a halt. The increase in number of gates
is today used for multi-core computing [2], which in-
tegrates multiple cores on one CPU rather than to

∗Special thanks to the students Moritz Burkhardt, Ralf Di-
estelkämper, Michael Kusber and Richard Meis̈ner of the bache-
lor project “Model-Driven Software Development for Multicore and
Cloud Systems” for the contribution and results of this project.

speed up the sequential processing of a single pro-
gram. In addition, virtualization and massive paral-
lelization of computational tasks using cloud comput-
ing [1] has become popular. Here server farms run-
ning many standard PCs rather than dedicated high-
performance computers with special hardware are em-
ployed to achieve required computations in a cost effi-
cient manner.
On the one hand, both trends promise to speed up the
computing by doing it in parallel. On the other hand,
developing software that really exploits the potential
of multi-core and cloud computing is inherently much
more difficult than traditional software development
due to the need to do parallel processing. At first, to-
days development languages have been optimized for
sequential processing on single-core systems. In addi-
tion, decades of research in the field of parallel com-
puting have shown that generic, easy to program, and
platform independent solutions usually result in severe
performance penalties.
But the raised challenge is not the same as parallel
computing. We see two characteristics that distinguish
developing software for multi-core and cloud comput-
ing from parallel computing: (1) the former is more
about scalability of service-oriented architectures than
only performance as from a business perceptive the op-
tion to add resources to serve more customers and not
optimal performance is what counts. (2) In the parallel
computing view the goal is to optimize the software for
a given fixed hardware configuration and a given task,
while in the considered case the possibility to handle
unpredictable loads and the option for the provider to
exchange the underling hardware is key.
We propose to approach these new challenges by a
model-driven approach supporting a domain-specific
language (DSL) characterized as follows: (a) The
higher-level abstraction of the software description en-
ables deriving several optimized platform-specific so-
lutions for different as well as changing hardware set-
tings. (b) In order to ensure that the system always
operates with a good solution, the software should be
able to adapt itself such that in the spirit of autonomic
computing the software takes care of the permanent

25

self-optimization of its execution strategies to ensure
scalability.
To achieve this goal, we require in the long run (i)
a high-level modeling approach for the software and
its deployment, (ii) a suitable runtime environment
to support the monitoring as well as adaptation, and
(iii) alternative execution strategies as well as selec-
tion strategies for them.
After some first more general experiments with a
given higher-level modeling language in the initial
6 months project (cf. [4]), we now cooperate with
SAP and address the three questions from an in-
dustrial perspective supported also by a joint bache-
lor project “Model-Driven Software Development for
Multicore and Cloud Systems”. Together with the
bachelor project, the focus of providing a domain spe-
cific language, which enables an easy usage for busi-
ness queries and exploits the underlying parallel hard-
ware infrastructure as good as possible is key.
At first, we want to the support explicit parallelism
given explicitly in the specification by the user of the
DSL. In addition, we also exploit implicit parallelism
when the specified behavior is executed on large data
sets or an optimization analysis finds potential parallel
execution queries. Here, highly abstract specification
of the data queries and data manipulation in the DSL
only implicitly permit to parallelize their execution.
To achieve this goal, a high-level modeling approach
for the software and its deployment, a suitable runtime
environment to support the monitoring as well as adap-
tation, and alternative execution strategies as well as
selection strategies for them have to be developed. To
evaluate different static options in a first initial step
for our related currently developed self-adaptive mod-
eldriven approach, we employed the HPI Future SOC
lab as a test bed in a series of tests that only started
recently.
To report on the project, we first point out the ideas us-
ing parallelism in a domain specific language in Sec-
tion 2. A conclusion and an outlook on planned addi-
tional work close the report.

2. Parallel Concepts

With respect to our industry partner, the domain of our
specific language is about typical business queries. We
identify four perspectives for the DSL development.
In the following, we briefly discuss some of the ideas
which influence the DSL development.

2.1. Explicit Parallelism

At first, we want to deal with explicit parallelism. So,
we take the actor concept from Scala programming
language (cf. [3]). Actors are independent units which
receive signals asynchronously and perform some
piece of work in parallel according to the received
message. The following pseudo code Listing 1 depicts

the usage of actors within the DSL.

1 actor optimizer :
2 calculateOptimization() :
3 {
4 //heavy operation
5 }
6
7 actor monitor :
8 update() :
9 {

10 //update all data
11 }
12
13 //now use the defined actors
14 optimizer.calculateOptimization()
15 monitor.update()
16 //do some other operation

Listing 1. DSL Actor Example

In Line 1 and 7 a new actor is defined. If the optimizer
receives an asynchronous calculationOptimization
signal, it performs an according operation. After
definition, the user can trigger these operations like
it is shown in the lines 14 and 15. Each actor queues
the signals to avoid the loss of messages and perform
them according to an internal scheduling strategy.
Figure 1 shows one possible execution scenario for
the example in Listing 1 (ll. 14-16).

scalability.
To achieve this goal, we require in the long run (i)

a high-level modeling approach for the software and
its deployment, (ii) a suitable runtime environment
to support the monitoring as well as adaptation, and
(iii) alternative execution strategies as well as selec-
tion strategies for them.

After some first more general experiments with a
given higher-level modeling language in the initial
6 months project (cf. [4]), we now cooperate with
SAP and address the three questions from an in-
dustrial perspective supported also by a joint bache-
lor project ”Model-Driven Software Development for
Multicore and Cloud Systems”. Together with the
bachelor project, the focus of providing a domain spe-
cific language, which enables an easy usage for busi-
ness queries and exploits the underlying parallel hard-
ware infrastructure as good as possible is key.

At first, we want to the support explicit parallelism
given explicitly in the specification by the user of the
DSL. In addition, we also exploit implicit parallelism
when the specified behavior is executed on large data
sets or an optimization analysis finds potential parallel
execution queries. Here, highly abstract specification
of the data queries and data manipulation in the DSL
only implicitly permit to parallelize their execution.

To achieve this goal, a high-level modeling approach
for the software and its deployment, a suitable runtime
environment to support the monitoring as well as adap-
tation, and alternative execution strategies as well as
selection strategies for them have to be developed. To
evaluate different static options in a first initial step for
our related currently developed self-adaptive model-
driven approach, we employed the HPI Future SOC
lab as a test bed in a series of tests that only started
recently.

To report on the project, we first point out the ideas
using parallelism in a domain specific language in Sec-
tion 2. A conclusion and an outlook on planned addi-
tional work close the report.

2. Parallel Concepts
With respect to our industry partner, the domain of our
specific language is about typical business queries. We
identify four perspectives for the DSL development.
In the following, we briefly discuss some of the ideas
which influence the DSL development.

2.1 Explicit Parallelism

At first, we want to deal with explicit parallelism.
So, we take the actor concept from Scala program-
ming language (cf. [3]). Actors are independent
units which receive signals asynchronously and per-
form some piece of work in parallel according to the
received message. The following pseudo code Listing
1 depicts the usage of actors within the DSL.

1 actor optimizer :
2 calculateOptimization() :
3 {
4 //heavy operation
5 }
6

7 actor monitor :
8 update() :
9 {

10 //update all data
11 }
12

13 //now use the defined actors
14 optimizer.calculateOptimization()
15 monitor.update()
16 //do some other operation

Listing 1. DSL Actor Example

In Line 1 and 7 a new actor is defined. If the opti-
mizer receives an asynchronous calculationOptimiza-
tion signal, it performs an according operation. After
definition, the user can trigger these operations like it
is shown in the lines 14 and 15. Each actor queues the
signals to avoid the loss of messages and perform them
according to an internal scheduling strategy. Figure 1
shows one possible execution scenario for the example
in Listing 1 (ll. 14 - 16).

optimizier

monitor

c
a
lc

u
la

te
..
.

u
p
d
a

te

other operation ...

time

ta
s

k

Figure 1. Actor Execution Scenario

After receiving the signal, the actor runs in paral-
lel and stops if all messages are performed. So, the
normal execution (other operation) is able to proceed
immediately.

In addtion to the actors, we investigate a parallel
block construct. Similar to a fork in programming lan-
guages, all requests and queries in the parallel block
are processed in parallel. Listing 2 shows an exam-
ple for a parallel block. After the key word parallel in
Line 1, three statements are marked as concurrent for
execution (ll. 3-5).

1 parallel :
2 {
3 a = function1()
4 b = function2()
5 c = a + b
6 }

Listing 2. DSL Parallel Block Example

Figure 2 depicts one possible execution plan for this
example. The execution environment is able to detect
dependencies. Therefore, the statement c = a + b in
Line 5 is processed after the other two statements. Ad-
ditionally, a warning or a hint could be given to the
user of the DSL to remove that statement from the par-
allel block.

Figure 1. Actor Execution Scenario

After receiving the signal, the actor runs in parallel and
stops if all messages are performed. So, the normal
execution (other operation) is able to proceed imme-
diately.
In addtion to the actors, we investigate a parallel block
construct. Similar to a fork in programming lan-
guages, all requests and queries in the parallel block
are processed in parallel. Listing 2 shows an exam-
ple for a parallel block. After the key word parallel in
Line 1, three statements are marked as concurrent for
execution (ll. 3-5).

1 parallel :
2 {
3 a = function1()
4 b = function2()
5 c = a + b
6 }

Listing 2. DSL Parallel Block Example

Figure 2 depicts one possible execution plan for this
example. The execution environment is able to detect

26

dependencies. Therefore, the statement c = a + b
in Line 5 is processed after the other two statements.
Additionally, a warning or a hint could be given to the
user of the DSL to remove that statement from the
parallel block.

a = function1()

b = function2()

c
 =

 a
 +

 b

time

ta
s

k

Figure 2. Parallel Block Execution

Defining explicit parallelism within the DSL should
be easier for the user because of the appropriate level
of abstraction. Additionally, the specialized constructs
according to the domain should minimize modeling er-
rors. These two assumptions must be verified in fur-
ther research. However, defining explicit parallelism
could only be a first step to reach the goal of scalabil-
ity in the software and might be still hard for the user.
If the user did not consider potential dependencies be-
tween queries, the execution environment can handle
and avoid race conditions between data. In the worst
case, the data dependencies lead to a serial execution.

2.2 Implicit Parallelism

To avoid challenging explicit parallelism modeling
and to reach the goal of a scalable software, the ex-
ecution environment should be able to optimize data
queries and therefore using implicit parallelism with-
out any user interaction. This optimization depends on
the modeled use cases and is the second perspective of
using (data) parallelism with our DSL approach.

One example for using implicit parallelism is shown
in Listing 3. For some scenarios, the runtime engine
is able to parallelize code blocks. In this example a
for each loop could be executed in parallel. Here,
no explicit user interaction is needed. The degree of
parallelization depends on the available hardware in-
frastructure and other key performance indicators (de-
scription is following later).

1 table = //operation which returns a big table
2

3 for element in table
4 {
5 check(element);
6 }

Listing 3. DSL Implicit Parallelism

In the example, the check operation in Line 5 is side
effect free and can be done in parallel. If enough
resources are available or according to a specialized
strategy the task execution could look like it is de-
picted in Figure 3.

At this point, offering only a few DSL constructs
with a clear semantics can help the execution environ-
ment to exploit the full parallelization potential.

check(element_1)

check(element_n)

time

ta
s

k

check(element_...)

Figure 3. Using Implicit Parallelism

2.3 Heuristics and Adaptation

Additionally, the adaptation of the software behavior
takes an important role and is the third perspective in
our research. Here, we investigate two directions. The
first one deals with static analysis and heuristics which
leads to optimized execution strategies. These strate-
gies can be computed offline and can differ for varying
use case scenarios. Furthermore, this offline analysis
enables the usage of implicit parallelism and detects
data dependencies.

The second dimension is about self-adaptation at
runtime. An analyzer component within the execution
environment defines and monitors key performance in-
dicators (KPIs). A changing workload, network con-
nection speed or different resource limitations (like
main memory or available CPU) lead to a changing
software behavior. At this time we identify and inves-
tigate different KPIs for hardware resources as well as
data and query constellations, which indicate a good
parallelization potential.

2.4 Hardware Infrastructure

The fourth research perspective in our DSL consid-
ers the lowest layer, which is a variable hardware in-
frastructure and a different software landscape. For
example, we run different use case scenarios on vary-
ing machines, from a standard PC with two physical
cores up to a Future SOC machine with 48 cores. Due
to the fact that our domain deals with typical busi-
ness queries, we work with two different data bases
for the query processing. The main question from this
fourth research perspective is: How we can find a good
mapping from the high level DSL specification to the
current hardware infrastructure and the available data
base type. Additionally, we offer different micro op-
timizations for a given execution environment which
can be used in the adaptation process (static or dy-
namic). At this point, we must decide how the archi-
tecture of our execution model should look like (for
example splitting up the execution in an application
server at the front side and a main memory data base
in the back end).

For flexibility reasons, we decide to interpret the
DSL. This allows us to switch between different ar-

Figure 2. Parallel Block Execution

Defining explicit parallelism within the DSL should
be easier for the user because of the appropriate level
of abstraction. Additionally, the specialized constructs
according to the domain should minimize modeling er-
rors. These two assumptions must be verified in fur-
ther research. However, defining explicit parallelism
could only be a first step to reach the goal of scalabil-
ity in the software and might be still hard for the user.
If the user did not consider potential dependencies be-
tween queries, the execution environment can handle
and avoid race conditions between data. In the worst
case, the data dependencies lead to a serial execution.

2.2. Implicit Parallelism

To avoid challenging explicit parallelism modeling
and to reach the goal of a scalable software, the ex-
ecution environment should be able to optimize data
queries and therefore using implicit parallelism with-
out any user interaction. This optimization depends on
the modeled use cases and is the second perspective of
using (data) parallelism with our DSL approach.
One example for using implicit parallelism is shown
in Listing 3. For some scenarios, the runtime engine
is able to parallelize code blocks. In this example a
for each loop could be executed in parallel. Here,
no explicit user interaction is needed. The degree of
parallelization depends on the available hardware in-
frastructure and other key performance indicators (de-
scription is following later).

1 table = //operation which returns a big table
2
3 for element in table
4 {
5 check(element);
6 }

Listing 3. DSL Implicit Parallelism

In the example, the check operation in Line 5 is side
effect free and can be done in parallel. If enough
resources are available or according to a specialized
strategy the task execution could look like it is
depicted in Figure 3.

At this point, offering only a few DSL constructs with
a clear semantics can help the execution environment
to exploit the full parallelization potential.

a = function1()

b = function2()

c
 =

 a
 +

 b

time

ta
s

k

Figure 2. Parallel Block Execution

Defining explicit parallelism within the DSL should
be easier for the user because of the appropriate level
of abstraction. Additionally, the specialized constructs
according to the domain should minimize modeling er-
rors. These two assumptions must be verified in fur-
ther research. However, defining explicit parallelism
could only be a first step to reach the goal of scalabil-
ity in the software and might be still hard for the user.
If the user did not consider potential dependencies be-
tween queries, the execution environment can handle
and avoid race conditions between data. In the worst
case, the data dependencies lead to a serial execution.

2.2 Implicit Parallelism

To avoid challenging explicit parallelism modeling
and to reach the goal of a scalable software, the ex-
ecution environment should be able to optimize data
queries and therefore using implicit parallelism with-
out any user interaction. This optimization depends on
the modeled use cases and is the second perspective of
using (data) parallelism with our DSL approach.

One example for using implicit parallelism is shown
in Listing 3. For some scenarios, the runtime engine
is able to parallelize code blocks. In this example a
for each loop could be executed in parallel. Here,
no explicit user interaction is needed. The degree of
parallelization depends on the available hardware in-
frastructure and other key performance indicators (de-
scription is following later).

1 table = //operation which returns a big table
2

3 for element in table
4 {
5 check(element);
6 }

Listing 3. DSL Implicit Parallelism

In the example, the check operation in Line 5 is side
effect free and can be done in parallel. If enough
resources are available or according to a specialized
strategy the task execution could look like it is de-
picted in Figure 3.

At this point, offering only a few DSL constructs
with a clear semantics can help the execution environ-
ment to exploit the full parallelization potential.

check(element_1)

check(element_n)

time

ta
s

k

check(element_...)

Figure 3. Using Implicit Parallelism

2.3 Heuristics and Adaptation

Additionally, the adaptation of the software behavior
takes an important role and is the third perspective in
our research. Here, we investigate two directions. The
first one deals with static analysis and heuristics which
leads to optimized execution strategies. These strate-
gies can be computed offline and can differ for varying
use case scenarios. Furthermore, this offline analysis
enables the usage of implicit parallelism and detects
data dependencies.

The second dimension is about self-adaptation at
runtime. An analyzer component within the execution
environment defines and monitors key performance in-
dicators (KPIs). A changing workload, network con-
nection speed or different resource limitations (like
main memory or available CPU) lead to a changing
software behavior. At this time we identify and inves-
tigate different KPIs for hardware resources as well as
data and query constellations, which indicate a good
parallelization potential.

2.4 Hardware Infrastructure

The fourth research perspective in our DSL consid-
ers the lowest layer, which is a variable hardware in-
frastructure and a different software landscape. For
example, we run different use case scenarios on vary-
ing machines, from a standard PC with two physical
cores up to a Future SOC machine with 48 cores. Due
to the fact that our domain deals with typical busi-
ness queries, we work with two different data bases
for the query processing. The main question from this
fourth research perspective is: How we can find a good
mapping from the high level DSL specification to the
current hardware infrastructure and the available data
base type. Additionally, we offer different micro op-
timizations for a given execution environment which
can be used in the adaptation process (static or dy-
namic). At this point, we must decide how the archi-
tecture of our execution model should look like (for
example splitting up the execution in an application
server at the front side and a main memory data base
in the back end).

For flexibility reasons, we decide to interpret the
DSL. This allows us to switch between different ar-

Figure 3. Using Implicit Parallelism

2.3. Heuristics and Adaptation

Additionally, the adaptation of the software behavior
takes an important role and is the third perspective in
our research. Here, we investigate two directions. The
first one deals with static analysis and heuristics which
leads to optimized execution strategies. These strate-
gies can be computed offline and can differ for varying
use case scenarios. Furthermore, this offline analysis
enables the usage of implicit parallelism and detects
data dependencies.
The second dimension is about self-adaptation at run-
time. An analyzer component within the execution en-
vironment defines and monitors key performance indi-
cators (KPIs). A changing workload, network connec-
tion speed or different resource limitations (like main
memory or available CPU) lead to a changing soft-
ware behavior. At this time we identify and investi-
gate different KPIs for hardware resources as well as
data and query constellations, which indicate a good
parallelization potential.

2.4. Hardware Infrastructure

The fourth research perspective in our DSL considers
the lowest layer, which is a variable hardware infras-
tructure and a different software landscape. For ex-
ample, we run different use case scenarios on vary-
ing machines, from a standard PC with two physical
cores up to a Future SOC machine with 48 cores. Due
to the fact that our domain deals with typical busi-
ness queries, we work with two different data bases
for the query processing. The main question from this
fourth research perspective is: How we can find a good
mapping from the high level DSL specification to the
current hardware infrastructure and the available data
base type. Additionally, we offer different micro op-
timizations for a given execution environment which
can be used in the adaptation process (static or dy-
namic). At this point, we must decide how the archi-
tecture of our execution model should look like (for

27

example splitting up the execution in an application
server at the front side and a main memory data base
in the back end).
For flexibility reasons, we decide to interpret the DSL.
This allows us to switch between different architecture
to investigate various use case scenarios and there par-
allel potential.

3. Conclusions and Future Work

We only recently started with the evaluation of the out-
lined parallelization strategies. Currently, we can only
show that there is high potential for major performance
improvements by means of parallelizing the execution
of domain specific constructs. At this time, we are
measuring different combinations of the proposed op-
timizations and use case scenarios. So, further statis-
tical evaluation results are not yet available. However,
there are also cases where the overhead of paralleliza-
tion in fact can result in a decrease of the performance.
Thus, we need to further investigate the characteris-
tics for those cases where the parallel execution re-
ally outperforms the sequential execution. If we could
characterize and detect these cases via heuristics, this
would enable hybrid execution strategies for special-
ized DSL queries that only employ the parallel ex-
ecution when major performance improvements are
highly likely. In addition, the decision could be done
context-dependent depending on the fact whether it is
economically useful to speed up the execution of the
queries at hand or not (e.g., if a certain response time
is desirable and the current processing time indicates
that it may be missed, more parallelization to achieve

a speedup would make sense).
In the last month of the project it is planned to more
thoroughly study the parallelization strategies for dif-
ferent data and therefore establish a foundation to
identify the characteristics that may guide the heuris-
tics. Additionally, we then plan to also address the
run-time systems and in particular self-adaptation in
more depth.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. Above the Clouds:
A Berkeley View of Cloud Computing. Technical Re-
port UCB/EECS-2009-28, EECS Department, Univer-
sity of California, Berkeley, Feb. 2009.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The
landscape of parallel computing research: A view from
Berkeley. Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley,
Dec. 2006.

[3] P. Haller and M. Odersky. Actors that unify threads and
events. In Proceedings of the 9th international confer-
ence on Coordination models and languages, COOR-
DINATION07, page 171190, Berlin, Heidelberg, 2007.
Springer-Verlag.

[4] S. Wätzoldt, S. Hildebrandt, A. Seibel, G. Gabrysiak,
and H. Giese. Towards Scalable and Self-Optimizing
Software for Multi-Core and Cloud Computing. Tech-
nical Report 42, Proceedings of the Fall 2010 Future
SOC Lab Day, Universitätsverlag Potsdam, 2011.

28

Buildbot Project Progress Report

Martin v. Löwis, Bernhard Rabe, Peter Tröger, Alexander Schmidt

Hasso Plattner Institut, University of Potsdam

P.O.Box 90 04 60, D-14440 Potsdam, Germany

{martin.vonloewis, bernhard.rabe, peter.troeger, alexander schmidt}@hpi.uni-potsdam.de

Abstract

In this phase of the project, we have been focusing on

achieving the objective of building all PyPI packages

for a given Debian/Ubuntu release, performing each

build in a separate virtual machine. We focused on

the management aspect for virtual machines, deter-

mining how the FutureSOC infrastructure can be

used appropriately for the given task.

1. Introduction

Our work for an automated build system is intended

for the Python Package Index
1
 (PyPI, formerly

known as the Cheeseshop) a central repository for

software libraries and applications. Currently, it hosts

ca. 14,000 packages, maintained by ca. 5,000 regis-

tered developers. While the packages are written

primarily in Python, other languages (in particular

C/C++ and JavaScript) are also used. One of the au-

thors of this paper is currently in charge of maintain-

ing the PyPI repository server application.

In the Python ecosystem, the installation procedure

for a package is typically written in Python itself. The

installation steps range from copying files around on

disk, over generating files on-the-fly during installa-

tion, to invoking the C compiler to build machine

code for the target system. Part of the installation

procedure is also to make sure that all dependencies

of the package are satisfied, i.e. that appropriate ver-

sions of prerequisite packages are installed. The list

of specific dependencies required by a package may

itself be computed only at installation time, e.g. when

a dependency is conditional on the kind of operating

system or the specific version of the Python inter-

preter.

Linux distributions solve the installation issues with a

slightly different approach: instead of installing

source code, users install pre-compiled binary pack-

ages. In these binary packages, most build steps have

already been performed, resulting in a package that is

specific for the Linux distribution. As a consequence,

1

it becomes possible to declare dependencies in a

strictly static manner. For example, the Debian fami-

ly of operating systems uses the .deb file format [1]

for packaging. Debian users often prefer to install

“native” Debian packages, instead of having to run

custom installation procedures. Specific packages

need to be built for every Debian release, as well as

for every distribution derived from Debian, such as

the various Ubuntu releases.

The objective of the intended build system is to pro-

vide all PyPI packages as Debian packages, enabling

users to use standard installation procedures. As a

consequence, the project needs to build the whole set

of PyPI packages for every new Debian and Ubuntu

release. In addition, each package needs to be built

for all target systems whenever a new release of the

package is made. The build infrastructure should be

fully automated, so that Debian packages become

available quickly after a new release. This may result

in packages that have a lower quality than the manu-

ally-maintained Debian packages. For example, the

manually-created package might provide the docu-

mentation for the package as a separate binary pack-

age, whereas the automatically created one fails to

package the documentation at all, as the standard

installation procedure does not cope with documenta-

tion building. In exchange, users will have to wait

(often for many months) for a new release of the

Debian package.

1.1 Issues with automated PyPI installa-
tions

In order to run a fully-automated installation proce-

dure, a number of issues need to be considered. First,

the Python packages often do not contain enough

information to build a “correct” Debian package. The

stdeb package copes for this lack of information, by

extracting as much meta-data as feasible from the

Python package, and filling the rest with dummy da-

ta.

Second, the build procedure may run untrusted code.

PyPI is open for anybody to submit code; the manual

review process to establish trust that the Debian

29

maintainers perform would not be used when creat-

ing packages automatically. Therefore, a malicious

user may introduce malware in the build process.

Even if not assuming malicious users, installation

procedures often leave the system in a modified state

that cannot be easily reverted: files may be placed in

central library folders, and libraries be overwritten;

services may be started; user accounts created; etc.

Third, packages may fail to properly declare their

dependencies. This should result in failing tests, but

will so only if the build machine doesn’t have the

dependencies installed. In order to detect this issue,

each build should start with a minimum set of in-

stalled packages.

To resolve the second and third issue, a clean file

system image is needed for every new build, on a

machine that does not have sensitive data on it, and

the system performing the build needs to be decou-

pled from the network in a way to prevent malicious

code to perform an attack on the local network. The

only data surviving each build should be the log files

of the build, and, if the build was successful, the re-

sulting binary package.

With the need for a file system reset comes the fourth

issue of build times. Many of the build procedures

complete within a few seconds, as shown in Figure 1.

The time to reset the file system to a clean state

should not be significantly larger than the actual

build times.

More specifically, the packages released on a single

day should become available in binary form on the

same day (or else the build process will never catch

up), and the complete rebuild necessary for a new

operating system release should complete well before

the next release of the operating system.

Figure 1: Build and Download Time Histogram

2. Virtualization As Solution

To implement this project, we have decided to use

virtual machines as an approach. Virtual machines

have been demonstrated to provide the necessary

isolation for the execution of untrusted or malicious

code [2].

With respect to the issues discussed above, we have

considered a number of design alternatives that we

would like to present.

The main challenge of the project is to start each

build process from a clean, minimal system. Each

declared pre-requisite package ought to be installed

during the build process, followed by a download of

the package to be built, followed by the actual build

steps, followed by an upload of the build results.

In order to reset the file system, we identified three

possible strategies:

 As Linux supports overlay mounts, a large-

enough ram-disk can be laid over the boot

disk. All installation and build steps will

write to the ram disk, which is discarded af-

ter the build. This does not use special hy-

pervisor functionality, but may run into se-

mantic limitations of overlay mounts.

 Hard disk images of the guest system are of-

ten represented as files in the host system.

Before booting the virtual machine, a copy

of the hard disk could be made, and be re-

stored after the build is complete. This is

likely an expensive operation.

 Some hypervisor implementations support

disk snapshot mechanisms, storing modifi-

30

cations to the base disk image in a separate

file. Rolling back the disk state is as simple

as deleting the delta information. The cost of

this approach is in the overhead of virtually

merging the base image with the delta modi-

fications, which is necessary for each read

access.

As a specific detail of our project, consider that we

are using host systems with very large amounts of

physical memory. Therefore, it becomes feasible to

store all virtual hard disk information of the guest

systems in physical RAM of the host machine. As we

would also want to run multiple build processes in

parallel, it would be best if the base image could be

shared in a read-only manner in RAM across all

guest systems. The modifications then can still go

into RAM as well, subject to the limitation of the

physical RAM. Our current hardware has 48 logical

processors in system of 256 GiB of RAM, allowing

for, e.g. 40 virtual machines running with 5 GiB of

RAM each.

Another issue is the communication with the guest

system: as systems start in a clean state, they will

have no indication what the build process is that they

need to run. We have identified two approaches:

 Upon start-up, each node contacts a service

at a well-known IP address, to download

configuration information, prerequisite

packages, the source package, and to upload

results to. As the network of the guest sys-

tem needs to be isolated from the internet,

setting up the necessary infrastructure may

be challenging.

 Some hypervisors support mounting parts of

the host file system into the guest system,

often using special paravirtualized file sys-

tem drivers. It would be possible to provide

the guest system with a read-only volume

containing all the files it may need (e.g.

providing a complete mirror of the respec-

tive Debian release for use in

), as well as a sepa-

rate volume where output files are stored

(initially empty).

The guest system gets pre-configured (in its clean

state) to perform a build script during start-up which

actually triggers the build process. When the build

process is complete, the build output gets uploaded,

and the machine shuts down. As a further optimiza-

tion, we are considering to have the clean image al-

ready represented a booted machine state (provided

sufficient support in the hypervisor).

We are currently using Oracle VirtualBox
2
 as the

hypervisor technology, as it supports delta storage for

disk snapshots, as well as memory snapshots, and is

2

scriptable using a command line interface and a Py-

thon API.

3. Results

In order to evaluate the chosen approach, we have

performed initial measurements of the execution time

for the build step of setting up a virtual machine,

booting it, performing an empty build action, and

then shutting down and deleting it. Using the

rx600s5-256g machine, with Oracle VirtualBox

4.0.8r71778, a complete cycle takes about 17s to

complete. In this scenario, we have been using a min-

imal installation of Ubuntu Lucid in 32-bit mode,

installed on an immutable disk (i.e. all changes are

made to storage that is discarded at the end of the

run).

In order to further reduce the execution time, we have

placed the entire machine state into a RAM disk. In

this setup, the time was reduced to about 15s, which

is a smaller reduction than we expected. As a side

note, development was done on an Apple MacBook

laptop computer, where the build step took only

about 11s. As an explanation for the relatively larger

runtime on the FutureSOC system, consider that this

system has 1.87 GHz processors, whereas the laptop

has 2.53 GHz CPUs.

4. Outlook

The next phase of the project will integrate the pieces

achieved so far, that is attempt to perform full builds

of all packages on PyPI, preferably for all current

Ubuntu and Debian releases. Assuming that no limi-

tations arise from this approach, we would then like

to test this infrastructure for a longer period of time.

References
[1] I. Jackson and C. Schwarz: Debian Policy Manual

v3.9.2.0, 4 2011.

[2] G. Somani and S. Chaudhary: Application Perfor-

mance Isolation in Virtualization, In 2009 IEEE Inter-

national Conference on Cloud Computing, pages 41–

48, Washington, DC, USA, 2009. IEEE Computer So-

ciety.

31

Downtime Analysis for Pro-Active Virtual Machine Migration Report for
the HPI Future SOC Lab

Felix Salfner
Humboldt-Universität zu Berlin

Unter den Linden 6
10099 Berlin, Germany

Peter Tröger, Matthias Richly, Andreas Polze
Hasso Plattner Institut

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

Abstract

Live migration of virtual machines is a technique to
move virtual machines from one physical host to an-
other during runtime. The HPI Future SOC Lab
project “Towards an Architectural Pattern for Pro-
Active Virtual Machine Migration” investigates live
migration as a mean to handle imminent faults even
before they resulted in a failure. However, this ap-
proach can only be used successfully if live migration
meets certain requirements regarding the duration of
the migration process. In this report, we present ex-
perimental results investigating the factors determin-
ing duration of live migration.

1. Introduction

Achieving system dependability by employing repli-
cation in space and time is a traditional approach in
distributed and cluster- based systems. Middleware
implementations such as CORBA, .NET or DCOM
have implemented various protocols to cope with tran-
sient and permanent faults above operating system
level through redundant resources. High-performance
computing (HPC) environments and large computing
clusters were extended by similar redundancy con-
cepts in the past, with special consideration of their
tight integration and high number of components.
Example analyses of large-scale HPC systems have
shown a mean time between failures (MTBF) in the
order of 6.5 to 40 hours, depending on installation ma-
turity. Google for example experiences a MTBF in
the order of one hour, although hidden from the users
through fault-tolerant middleware and file systems.
With the advent of multi-core and many-core CPUs in
commodity clusters such as blade centers, problems
and challenges that once were of interest only to a
small community of researchers and HPC users will
now seriously impact the computing environment of
tomorrows average server environments.
One commonly agreed problem resulting from smaller
structural sizes, extreme memory increase (as in the

Future SOC Lab with 2TB machines) and dynamic fre-
quency / voltage scaling in the CPU is the overall de-
pendability of hardware components. Industry reacted
on this upcoming challenge which is already well-
known in the Exascale computing community with
a set of new fault monitoring and fault tolerance solu-
tions.
One interesting layer of reactive fault tolerance are dis-
tributed virtualization-based failover clusters (see Fig-
ure 1). This machine-level approach adds to an exist-
ing set of solutions on hardware, firmware, operating
system, middleware, and application level.

1

Abstract – Live migration of virtual machines is a
technique to move virtual machines from one phys-
ical host to another during runtime. The HPI Fu-
tureSOC Lab project “Towards an Architectural
Pattern for Pro-Active Virtual Machine Migra-
tion” investigates live migration as a mean to
handle imminent faults even before they resulted in
a failure. However, this approach can only be used
successfully if live migration meets certain re-
quirements regarding the duration of the migra-
tion process. In this report, we present experi-
mental results investigating the factors determin-
ing duration of live migration.

Introduction	

Achieving system dependability by employing
replication in space and time is a traditional ap-
proach in distributed and cluster- based systems.
Middleware implementations such as CORBA,
.NET or DCOM have implemented various proto-
cols to cope with transient and permanent faults
above operating system level through redundant
resources. High-performance computing (HPC)
environments and large computing clusters were
extended by similar redundancy concepts in the
past, with special consideration of their tight inte-
gration and high number of components. Example
analyses of large-scale HPC systems have shown a
mean time between failures (MTBF) in the order
of 6.5 to 40 hours, depending on installation ma-
turity. Google for example experiences a MTBF in
the order of one hour, although hidden from the
users through fault-tolerant middleware and file
systems.

With the advent of multi-core and many-core
CPUs in commodity clusters such as blade centers,
problems and challenges that once were of interest
only to a small community of researchers and HPC
users will now seriously impact the computing
environment of tomorrow’s average server en-
vironments.

One commonly agreed problem resulting from
smaller structural sizes, extreme memory increase
(as in the FutureSOC lab with 2TB machines) and
dynamic frequency / voltage scaling in the CPU is
the overall dependability of hardware components.
Industry reacted on this upcoming challenge –
which is already well-known in the Exascale com-
puting community – with a set of new fault moni-
toring and fault tolerance solutions.

One interesting layer of reactive fault tolerance are
distributed virtualization-based failover clusters
(see Figure 1). This machine-level approach adds
to an existing set of solutions on hardware, firm-
ware, operating system, middleware, and applica-
tion level.

Figure 1: Reactive Live Migration of Virtual Machines

Approach	

Live migration is a technique to move running
virtual machines from one physical host to another
without disrupting running applications or the vir-
tualized operating system. So far, live migration is
primarily used for load balancing, server consoli-
dation, for planned maintenance and for recovery
from a failure that has occurred either in the physi-
cal host or the hypervisor. However, reacting to
failures that have already occurred leaves only a
relatively small time window for recovery activi-
ties in the face of a system failure. Current ap-
proaches are also solely based on performance
counter threshold analysis at one level of the sys-

Downtime Analysis for Pro-Active Virtual Machine Migration
Report for the HPI FutureSOC Lab

Felix Salfner

Humboldt-Universität zu Berlin
Unter den Linden 6

10099 Berlin, Germany

Peter Tröger, Matthias Richly, Andreas Polze

Hasso Plattner Institut
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

Figure 1. Reactive Live Migration of Vir-
tual Machines

2. Approach

Live migration is a technique to move running virtual
machines from one physical host to another without
disrupting running applications or the virtualized op-
erating system. So far, live migration is primarily used
for load balancing, server consolidation, for planned
maintenance and for recovery from a failure that has
occurred either in the physical host or the hypervi-
sor. However, reacting to failures that have already
occurred leaves only a relatively small time window
for recovery activities in the face of a system failure.
Current approaches are also solely based on perfor-
mance counter threshold analysis at one level of the

33

system stack (usually the VMM), and a subsequent re-
action. Our Future SOC Lab project investigates an
approach where live migration is used in a proactive
way to increase system dependability. Proactive in
this context means to act on the first symptoms be-
fore a problem has actually evolved into a severe prob-
lem (a failure). More specifically, we seek to pre-
ventively move running virtual machines away from
failure-prone hosts based on an underlying failure pre-
diction. More specifically, the pro-active solution for
the migration decision is intended to rely upon a sys-
tem health indicator, which is based on short-term on-
line prediction of upcoming failures. Such anticipation
requires the continuous monitoring and investigation
of a systems state, in order to detect anomalies that
indicate an upcoming failure. One key concept is the
integration of status assessments from all system lev-
els, in order to foster a maximum amount of system
state information and domain knowledge.

2

tem stack (usually the VMM), and a subsequent
reaction. Our FutureSOC lab project investigates
an approach where live migration is used in a pro-
active way to increase system dependability. Pro-
active in this context means to act on the first
symptoms before a problem has actually evolved
into a severe problem (a failure). More specifical-
ly, we seek to preventively move running virtual
machines away from failure-prone hosts based on
an underlying failure prediction. More specifically,
the pro-active solution for the migration decision is
intended to rely upon a system health indicator,
which is based on short-term online prediction of
upcoming failures. Such anticipation requires the
continuous monitoring and investigation of a sys-
tem’s state, in order to detect anomalies that indi-
cate an upcoming failure. One key concept is the
integration of status assessments from all system
levels, in order to foster a maximum amount of
system state information and domain knowledge.

Figure 2: Pro-Active Virtual Machine Migration through
Failure Prediction

Until today, such an approach would have had a
serious performance impact due to the monitoring
and prediction computation overhead. However,
the identified problem domain – complex and
powerful parallel hardware in every server – be-
comes part of the solution here. In our proposed
architecture, spare computational resources are
utilized for all prediction activities. This allows
combining existing approaches for system moni-
toring and failure prediction, given by our own
earlier research results, into a new architecture for
anticipatory virtual machine migration.

Our concept relies on the fact that a standard com-
puter system can be divided into different layers of
hardware and software, each with its own set of
performance-related monitoring parameters. For

each layer, we suggest the identification of rele-
vant performance and / or health indicators that
can be used in an online failure prediction facility.
In contrast to threshold-based reactive patterns,
this variable selection can be realized in a semi-
automated training phase. Most prediction ap-
proaches demand this training phase in which a
functional system is profiled for the ‘normal’ pat-
tern of monitored events. The prediction approach
then utilizes this data for online pattern matching.

As the technique of live migration is already avail-
able in today’s virtualization products, in this re-
port we focus on properties of live migration rather
than its technical implementation. More specifical-
ly we investigated the factors that impact both the
total duration of live migration as well as the
downtime involved when switching from the
source virtual machine to the destination. As we
will show the relationships are non-trivial and can
affect migration times significantly.

It should also be noted that our investigations fo-
cus on bare-metal virtualization only, since today’s
most capable live migration implementations are
based on this model.

Experiment	
 Setup	

The goal of our experiments is to determine both
total migration time as well as the downtime in-
volved when migrating a virtual machine from one
physical host to another under various load condi-
tions. Load in this context refers to the software
running in the virtual machine. Load in this con-
text comprises CPU utilization, memory allocation
as well as read and write access to the memory. In
order to be able to control various aspects of load
independently, we used a load generator running in
the virtual machine (see Figure 3).

Figure 3: Experiment setup

VMM	
 1	

Server	
 1	

VMM	
 2	

Server	
 2	

VM	
 /	
 guest	
 OS	

Load	

generator	

VM	
 /	
 guest	
 OS	

Load	

generator	

Net-­‐
work	

Figure 2. Pro-Active Virtual Machine Mi-
gration through Failure Prediction

Until today, such an approach would have had a se-
rious performance impact due to the monitoring and
prediction computation overhead. However, the iden-
tified problem domain complex and powerful parallel
hardware in every server becomes part of the solu-
tion here. In our proposed architecture, spare compu-
tational resources are utilized for all prediction activ-
ities. This allows combining existing approaches for
system monitoring and failure prediction, given by our
own earlier research results, into a new architecture for
anticipatory virtual machine migration.
Our concept relies on the fact that a standard computer
system can be divided into different layers of hardware
and software, each with its own set of performance-
related monitoring parameters. For each layer, we sug-
gest the identification of relevant performance and /
or health indicators that can be used in an online fail-
ure prediction facility. In contrast to threshold-based
reactive patterns, this variable selection can be real-
ized in a semiautomated training phase. Most predic-
tion approaches demand this training phase in which a

functional system is profiled for the normal pattern of
monitored events. The prediction approach then uti-
lizes this data for online pattern matching.
As the technique of live migration is already available
in todays virtualization products, in this report we fo-
cus on properties of live migration rather than its tech-
nical implementation. More specifically we investi-
gated the factors that impact both the total duration of
live migration as well as the downtime involved when
switching from the source virtual machine to the des-
tination. As we will show the relationships are non-
trivial and can affect migration times significantly.
It should also be noted that our investigations focus on
bare-metal virtualization only, since todays most capa-
ble live migration implementations are based on this
model.

3. Experiment Setup

The goal of our experiments is to determine both to-
tal migration time as well as the downtime involved
when migrating a virtual machine from one physical
host to another under various load conditions. Load in
this context refers to the software running in the vir-
tual machine. Load in this context comprises CPU uti-
lization, memory allocation as well as read and write
access to the memory. In order to be able to control
various aspects of load independently, we used a load
generator running in the virtual machine (see Figure
3).

2

tem stack (usually the VMM), and a subsequent
reaction. Our FutureSOC lab project investigates
an approach where live migration is used in a pro-
active way to increase system dependability. Pro-
active in this context means to act on the first
symptoms before a problem has actually evolved
into a severe problem (a failure). More specifical-
ly, we seek to preventively move running virtual
machines away from failure-prone hosts based on
an underlying failure prediction. More specifically,
the pro-active solution for the migration decision is
intended to rely upon a system health indicator,
which is based on short-term online prediction of
upcoming failures. Such anticipation requires the
continuous monitoring and investigation of a sys-
tem’s state, in order to detect anomalies that indi-
cate an upcoming failure. One key concept is the
integration of status assessments from all system
levels, in order to foster a maximum amount of
system state information and domain knowledge.

Figure 2: Pro-Active Virtual Machine Migration through
Failure Prediction

Until today, such an approach would have had a
serious performance impact due to the monitoring
and prediction computation overhead. However,
the identified problem domain – complex and
powerful parallel hardware in every server – be-
comes part of the solution here. In our proposed
architecture, spare computational resources are
utilized for all prediction activities. This allows
combining existing approaches for system moni-
toring and failure prediction, given by our own
earlier research results, into a new architecture for
anticipatory virtual machine migration.

Our concept relies on the fact that a standard com-
puter system can be divided into different layers of
hardware and software, each with its own set of
performance-related monitoring parameters. For

each layer, we suggest the identification of rele-
vant performance and / or health indicators that
can be used in an online failure prediction facility.
In contrast to threshold-based reactive patterns,
this variable selection can be realized in a semi-
automated training phase. Most prediction ap-
proaches demand this training phase in which a
functional system is profiled for the ‘normal’ pat-
tern of monitored events. The prediction approach
then utilizes this data for online pattern matching.

As the technique of live migration is already avail-
able in today’s virtualization products, in this re-
port we focus on properties of live migration rather
than its technical implementation. More specifical-
ly we investigated the factors that impact both the
total duration of live migration as well as the
downtime involved when switching from the
source virtual machine to the destination. As we
will show the relationships are non-trivial and can
affect migration times significantly.

It should also be noted that our investigations fo-
cus on bare-metal virtualization only, since today’s
most capable live migration implementations are
based on this model.

Experiment	
 Setup	

The goal of our experiments is to determine both
total migration time as well as the downtime in-
volved when migrating a virtual machine from one
physical host to another under various load condi-
tions. Load in this context refers to the software
running in the virtual machine. Load in this con-
text comprises CPU utilization, memory allocation
as well as read and write access to the memory. In
order to be able to control various aspects of load
independently, we used a load generator running in
the virtual machine (see Figure 3).

Figure 3: Experiment setup

VMM	
 1	

Server	
 1	

VMM	
 2	

Server	
 2	

VM	
 /	
 guest	
 OS	

Load	

generator	

VM	
 /	
 guest	
 OS	

Load	

generator	

Net-­‐
work	

Figure 3. Experiment setup

More precisely, using the load generator we controled
the following parameters:

• CPU utilization

• The amount of memory allocated (working set)

• The pattern how memory pages were written

• The frequency at which memory pages were writ-
ten

In addition to the parameters controlled by the load
generator we varied the hypervisor, i.e., we performed
experiments with XenServer with a CentOS as guest
operating system, with VMware with Linux as guest

34

3

More precisely, using the load generator we con-
troled the following parameters:

§ CPU utilization
§ The amount of memory allocated (working set)
§ The pattern how memory pages were written
§ The frequency at which memory pages were

written

In addition to the parameters controlled by the load
generator we varied the hypervisor, i.e., we per-
formed experiments with XenServer with a Cen-
tOS as guest operating system, with VMware with
Linux as guest operating system and with Prox-
moxVE with Linux as guest operating system.
Each combination was investigated with four sizes
of virtual memory configured: 2GB,4GB, 6GB,
and 8GB.

Parameter Description
Hypervisor Hypervisor product and guestOS

used
VMSIZE Amount of main memory statically

configured for the VM
LOAD CPU utilization of the virtualized

operating system in percent
WSET Working set, the sum of utilized

memory
PERIOD The period for one memory modifi-

cation cycle in microseconds
BPC Blocks per cycle. Number of modi-

fied blocks per cycle
FILL Filling degree. The average per-

centage of a block being actively
modified

Table 1: Parameters used in experiments

Investigating all combinations of parameters
(called factors) listed in Table 1 at all their levels
would result in a prohibitively large number of
experiments. However, from the experiments
shown in the previous report we were able to con-
clude that the factors LOAD and FILL can be
omitted from further analysis.

A second reduction in the number of factors can be
achieved by leveraging on the fact that BPC
(blocks per cycle) and PERIOD (duration of one
cycle) can be combined into one factor

!"#$ = !"#
!"#$%&

which denotes the number of blocks that is modi-
fied per millisecond.

We have hence reduced the number of factors to
the following three parameters: VMSIZE, WSET,
and RATE.

We performed experiments according to a full
factorial design, meaning that all possible combi-
nations of parameter levels have been measured in
the experiment. More specifically, for Xen we
investigated a total number of 528 combinations
(treatments), each with 20 measurements resulting
in an overall number of 10560 migrations. In each
experiment we measured migration time and
downtime as response variables. In case of the
VMware hypervisor, we performed experiments
for 352 combinations resulting in 7040 migrations

Figure 4: Mean downtime for Xen plotted over RATE and WSET Figure 4. Mean downtime for Xen plotted over RATE and WSET

operating system and with ProxmoxVE with Linux as
guest operating system. Each combination was inves-
tigated with four sizes of virtual memory configured:
2GB,4GB, 6GB, and 8GB.

Parameter Description

Hypervisor Hypervisor product and guestOS
used

VMSIZE Amount of main memory statically
configured for the VM

LOAD CPU utilization of the virtualized
operating system in percent

WSET Working set, the sum of utilized
memory

PERIOD The period for one memory modifi-
cation cycle in microseconds

BPC Blocks per cycle. Number of modi-
fied blocks per cycle

FILL
Filling degree. The average per-
centage of a block being actively
modified

Table 1. Parameters used in experiments

Investigating all combinations of parameters (called
factors) listed in Table 1 at all their levels would result
in a prohibitively large number of experiments. How-
ever, from the experiments shown in the previous re-
port we were able to conclude that the factors LOAD
and FILL can be omitted from further analysis.
A second reduction in the number of factors can be
achieved by leveraging on the fact that BPC (blocks
per cycle) and PERIOD (duration of one cycle) can be
combined into one factor

RATE =
BPC

PERIOD

which denotes the number of blocks that is modified
per millisecond.
We have hence reduced the number of factors to the
following three parameters: VMSIZE, WSET, and
RATE.
We performed experiments according to a full facto-
rial design, meaning that all possible combinations of
parameter levels have been measured in the experi-
ment. More specifically, for Xen we investigated a
total number of 528 combinations (treatments), each
with 20 measurements resulting in an overall number
of 10560 migrations. In each experiment we measured
migration time and downtime as response variables. In
case of the VMware hypervisor, we performed exper-
iments for 352 combinations resulting in 7040 migra-
tions and for ProxmoxVE for 384 combinations result-
ing in 7680 migrations.
In the following we will discuss results for each virtu-
alization framework separately.

3.1. Analysis of XenServer

As we have three factors (plus downtime/ migration
time response variables) we cannot present the entire
results in one plot. Since VMSIZE has significantly
less levels, we decided to plot the mean response,
i.e. mean migration time or downtime, over WSET
and RATE for a fixed value of VMSIZE. Comparing
Figure 4 to Figure 5, we can see that downtime shows
a very different behavior in comparison to migration
time, although the first is part of the latter.
Downtime (Figure 4) in general increases with in-
creasing WSET and increasing RATE. This is not
surprising as an increased usage of memory (more
pages written at an increasing rate) requires more
memory to be transferred in the stop-andcopy phase.
We can also conclude from the figure that WSET

35

4

and for ProxmoxVE for 384 combinations result-
ing in 7680 migrations.

In the following we will discuss results for each
virtualization framework separately.

Analysis	
 of	
 XenServer	

As we have three factors (plus down-
time/migration time response variables) we cannot
present the entire results in one plot. Since
VMSIZE has significantly less levels, we decided
to plot the mean response, i.e. mean migration time
or downtime, over WSET and RATE for a fixed
value of VMSIZE. Comparing Figure 4 to Figure
5, we can see that downtime shows a very different
behavior in comparison to migration time, alt-
hough the first is part of the latter.

Downtime (Figure 4) in general increases with
increasing WSET and increasing RATE. This is
not surprising as an increased usage of memory
(more pages written at an increasing rate) requires
more memory to be transferred in the stop-and-
copy phase. We can also conclude from the figure
that WSET seems to have a linear effect on down-
time, regardless of the values of VMSIZE and
RATE.

One peculiarity in Figure 4 is the abrupt change at
a RATE level around 30,000!!. In order to analyze
this further, we conducted additional experiments
that investigated a sub-range of values for RATE
at greater level of detail. Results showed that the
change is not as abrupt as might have been con-
cluded from Figure 4.

Turning to total migration time (Figure 5) we also
observe a sudden change at the same level of
RATE as we have observed for downtime. Again,

an additional analysis showed that the change is
smooth although rather steep. However, in general
the mean migration time is more irregular. It came
as a little surprise to us that for RATE levels
"above the jump" total migration time decreases
with increasing RATE. In order to check that this
behavior really occurs we have carried out separate
experiments specifically targeted to this question
with the same consistent result. Although we can-
not give a precise explanation, yet, we presume
that it is caused by the rate-adaptive algorithm
employed by the hypervisor. This supports our
assumption that a load model is essential in order
to assess duration of live VM migration.

The effect of VMSIZE can be observed by com-
paring the two subfigures (a) and (b) in Figure 5. It
can be seen that VMSIZE has a non-trivial effect
on migration time: since the shapes look very dif-
ferent at different levels of VMSIZE, the effect
does not appear to be linear, except for the case
where RATE equals zero.

There is no effect of WSET if RATE is zero,
which is consistent with the single variable exper-
iments described in the previous report.

The plots in Figure 4 and Figure 5 show migration
times averaged over all 20 measurements. In order
to assess the variability in the data, we report the
ratio of maximum to minimum values as well as
standard deviations for the data in Table 2. Specif-
ically, two ratios and two standard deviations are
reported: the ratio of the maximum treatment mean
to the minimum treatment mean and the ratio of
the maximum to the minimum values across all
measurements. Regarding standard deviations we
have reported the largest standard deviation com-
puted within each treatment (parameter combina-

Figure 5: Mean migration time plotted for Xen plotted over RATE and WSET
Figure 5. Mean migration time plotted for Xen plotted over RATE and WSET

seems to have a linear effect on downtime, regardless
of the values of VMSIZE and RATE.
One peculiarity in Figure 4 is the abrupt change at
a RATE level around 30, 000 1

s . In order to analyze
this further, we conducted additional experiments that
investigated a sub-range of values for RATE at greater
level of detail. Results showed that the change is not
as abrupt as might have been concluded from Figure
4.
Turning to total migration time (Figure 5) we also
observe a sudden change at the same level of RATE as
we have observed for downtime. Again, an additional
analysis showed that the change is smooth although
rather steep. However, in general the mean migration
time is more irregular. It came as a little surprise
to us that for RATE levels “above the jump” total
migration time decreases with increasing RATE. In
order to check that this behavior really occurs we
have carried out separate experiments specifically
targeted to this question with the same consistent
result. Although we cannot give a precise explanation,
yet, we presume that it is caused by the rate-adaptive
algorithm employed by the hypervisor. This supports
our assumption that a load model is essential in order
to assess duration of live VM migration.
The effect of VMSIZE can be observed by comparing
the two subfigures (a) and (b) in Figure 5. It can
be seen that VMSIZE has a non-trivial effect on
migration time: since the shapes look very different at
different levels of VMSIZE, the effect does not appear
to be linear, except for the case where RATE equals
zero.
There is no effect of WSET if RATE is zero, which
is consistent with the single variable experiments
described in the previous report.
The plots in Figure 4 and Figure 5 show migration
times averaged over all 20 measurements. In order to
assess the variability in the data, we report the ratio
of maximum to minimum values as well as standard

deviations for the data in Table 2. Specifically, two
ratios and two standard deviations are reported: the
ratio of the maximum treatment mean to the minimum
treatment mean and the ratio of the maximum to the
minimum values across all measurements. Regarding
standard deviations we have reported the largest
standard deviation computed within each treatment
(parameter combination) as well as the standard
deviation for the overall data set. In addition, the
table reports the mean time averaged across all
measurements.

The table quantifies what has also been observable
from the plots: Both migration time as well as
downtime vary tremendously depending on VMSIZE
and the memory load.

3.2. Analysis of VMware

Due to space limitations we report results for VMWare
only for VMSIZE equal to 4GB (see Figure 6). This is
no severe limitation as the behavior is very similar for
other values of VMSIZE.
As can easily be observed the behavior differs signifi-
cantly from the one of Xen, which emphasizes that the
choice of the hypervisor product can have significant
impact on availability. The main reason for the differ-
ent behavior seems to be the different rate-adaptive al-
gorithms employed in the two virtualization products.
Variability of the data for VMware is also listed in Ta-
ble 2. Regarding the max to min ratio of downtime
computed from treatment means we have observed a
ratio of 16.27. This shows that due to different mem-
ory load the maximum mean downtime can be 16.27
times as large as the minimum mean downtime. If
we do not consider mean downtimes but the maximum
and minimum value observed across all experiments,
the factor even goes up to 23.83!

36

5

tion) as well as the standard deviation for the over-
all data set. In addition, the table reports the mean
time averaged across all measurements.

The table quantifies what has also been observable
from the plots: Both migration time as well as
downtime vary tremendously depending on
VMSIZE and the memory load.

Analysis	
 of	
 VMware	

Due to space limitations we report results for
VMWare only for VMSIZE equal to 4GB (see
Figure 6). This is no severe limitation as the be-
havior is very similar for other values of VMSIZE.

As can easily be observed the behavior differs
significantly from the one of Xen, which empha-
sizes that the choice of the hypervisor product can
have significant impact on availability. The main
reason for the different behavior seems to be the
different rate-adaptive algorithms employed in the
two virtualization products.

Variability of the data for VMware is also listed in
Table 2. Regarding the max to min ratio of down-
time computed from treatment means we have
observed a ratio of 16.27. This shows that due to
different memory load the maximum mean down-
time can be 16.27 times as large as the minimum
mean downtime. If we do not consider mean
downtimes but the maximum and minimum value
observed across all experiments, the factor even
goes up to 23.83!

Analysis	
 of	
 ProxmoxVE	

Similar to VMware we only report results for
VMSIZE equal to 4GB (see Fehler! Ver-
weisquelle konnte nicht gefunden werden.).
Again the behavior is significantly different from
the Xen and VMware. The most prominent differ-
ence is that for RATE greater than 20,000!! total
migration time is independent of both RATE and
WSET. However, migration time is strongly de-
pendent on VMSIZE as it grows with increasing
VMSIZE. More precisely, the plateau is at about
100s for VMSIZE=2GB, about 220s for
VMSIZE=6GB and about 300s for
VMSIZE=8GB. Downtime does not show such
dependence on VMSIZE. This behavior could be
explained that ProxmoxVE copies the entire virtu-
al machine regardless of the size of the working set
(WSET).

Results on data variability are reported in Table 2.
As can be seen from the table, overall migration
performance is significantly worse than for the
other two virtualization products. This holds both
for absolute values (column “Mean time”) as well
as for the variability in the data. Regarding the
max to min ratio of downtime computed from
treatment means we have observed a ratio of
74.07, indicating that due to memory load the
maximum mean downtime can be 74.07 times as
large as the minimum mean downtime. Consider-
ing all values (without mean operator) the value
goes up to 98.00, which is almost two orders of
magnitude! The conclusion from this observation
is that if service downtime is critical for meeting

a) Migration time b) Downtime

Figure 6: Mean times for VMware plotted over RATE and WSET for VMSIZE=4096
Figure 6. Mean times for VMware plotted over RATE and WSET for VMSIZE=4096

6

reliability goals, a realistic assessment of reliability
can only be achieved if the maximum downtime
for the application-specific memory load is used.

Standard deviations are also significantly higher
for ProxmoxVE in comparison to the other two
hypervisors. An analysis has shown that this is due
to measurements in the region of abrupt change,
where, for example, migration time can vary from
37s up to 292s for the same memory load (see
Figure 8). It can also be observed from the plots
that the abrupt change is much steeper than it was
the case for the other hypervisors. In fact, in this
area the data is not normally distributed and
providing a standard deviation does not make
sense, here.

Conclusions	
 and	
 Next	
 Steps	

Two trends can be observed in large scale compu-
ting: an increasing number of cores and amount of
memory, which leads to increased failure rates.
gives rise to additional and frequently unused
computing power. A second trend is the wide-
spread use of virtualization technology. It is the
goal of this project to use virtualization to better
cope with increasing failure rates. In contrast to
existing approaches we want to use pro-active live
migration of virtual machines to move virtual ma-
chines away from failure-prone hosts even before a
failure occurs. In order to have the ability to do so,
upcoming failures have to be anticipated. We pro-
pose a failure prediction approach that operates on
various levels of the system architecture. However
even the most accurate failure prediction is useless
if the action to be taken upon predicting an upcom-

Hypervisor / Guest Time Mean time [s] Max:Min Ratio Standard deviation
 Mean Overall Treatment Max [s] Overall [s]

XenServer / CentOS Migration 89.73 9.01 9.10 6.32 39.08
 Downtime 7.69 3.17 3.46 0.62 2.94

VMware / Linux Migration 30.93 2.24 2.96 7.72 7.51
 Downtime 3.10 16.27 23.83 0.50 1.80

ProxmoxVE / Linux Migration 156.69 36.42 42.73 93.80 94.65
 Downtime 7.25 74.07 98.00 4.41 5.31

a)	
 Migration	
 time	
 b)	
 Downtime	

Table 2: Data variability

Figure 7: Mean migration and downtime for ProxmoxVE for VMSIZE=4GB Figure 7. Mean migration and downtime for ProxmoxVE for VMSIZE=4GB

37

3.3. Analysis of ProxmoxVE

Similar to VMware we only report results for VMSIZE
equal to 4GB (see Figure 7).
Again the behavior is significantly different from the
Xen and VMware. The most prominent difference
is that for RATE greater than 20, 000 1

s total migra-
tion time is independent of both RATE and WSET.
However, migration time is strongly dependent on
VMSIZE as it grows with increasing VMSIZE.
More precisely, the plateau is at about 100s for
VMSIZE=2GB, about 220s for VMSIZE=6GB and
about 300s for VMSIZE=8GB. Downtime does not
show such dependence on VMSIZE. This behavior
could be explained that ProxmoxVE copies the entire
virtual machine regardless of the size of the working
set (WSET). Results on data variability are reported
in Table 2. As can be seen from the table, overall
migration performance is significantly worse than for
the other two virtualization products. This holds both
for absolute values (column Mean time) as well as for
the variability in the data. Regarding the max to min
ratio of downtime computed from treatment means
we have observed a ratio of 74.07, indicating that due
to memory load the maximum mean downtime can be
74.07 times as large as the minimum mean downtime.
Considering all values (without mean operator) the
value goes up to 98.00, which is almost two orders
of magnitude! The conclusion from this observation
is that if service downtime is critical for meeting
reliability goals, a realistic assessment of reliability
can only be achieved if the maximum downtime for
the application-specific memory load is used.

Standard deviations are also significantly higher
for ProxmoxVE in comparison to the other two
hypervisors. An analysis has shown that this is due to
measurements in the region of abrupt change, where,
for example, migration time can vary from 37s up
to 292s for the same memory load (see Figure 8). It
can also be observed from the plots that the abrupt
change is much steeper than it was the case for the
other hypervisors. In fact, in this area the data is
not normally distributed and providing a standard
deviation does not make sense, here.

4. Conclusions and Next Steps

Two trends can be observed in large scale computing:
an increasing number of cores and amount of memory,
which leads to increased failure rates. gives rise to
additional and frequently unused computing power. A
second trend is the widespread use of virtualization
technology. It is the goal of this project to use virtu-
alization to better cope with increasing failure rates.
In contrast to existing approaches we want to use
pro-active live migration of virtual machines to move

7

ing failure takes longer to execute in comparison
to the time left until failure occurrence. Since we
plan to use live migration as such an action we
need to know how long it can take to migrate a
virtual machine to a fault-free host. The experi-
ments described in this report have identified and
investigated decisive factors determining the dura-
tion and downtime involved when a virtual ma-
chine is migrated.

 Our measurements are based on three representa-
tive virtualization products, namely VMware ESX
4.0.0, Citrix XenServer 5.6 and ProxmoxVE1.7
(KVM version 2.6.32-4-pve). Our analysis shows
that performance of live migration varies heavily.
Based on these measurements, we are able to sup-
port the hypothesis that memory access patterns of
the guest system are the determining factor for live
migration performance.

Although the use of artificial load generators was
helpful to identify the factors determining the du-
ration of live migration, it remains yet to show to
what extent our results apply to industry-relevant
workloads. Next steps will hence include to map
workloads obtained from benchmark applications
such as the ones from the SPEC suite to our meas-
urements results. A second field of research will
focus on failure prediction algorithms on data ob-
tained from the hypervisor level.

Publications	

(1) Polze, A., Tröger, P., and Salfner, F., “Timely

Virtual Machine Migration for Pro-Active
Fault Tolerance,” 2nd International Workshop
on Object/component/service-oriented Real-
time Networked Ultra-dependable Systems
(WORNUS), at 14th International Symposium
on Object/Component/Service-oriented Real-
time Distributed Computing (ISORC), 2011.

(2) Tröger, P., Polze, A., and Salfner, F., “On the
Applicability of Virtual Machine Migration
for Proactive Failover,” SDPS International
Conference, Special Track on Virtualization.
(to appear)

(3) Salfner, F., Tröger, P., and Polze, A., “Down-
time Analysis of Virtual Machine Live Migra-
tion,” The Fourth International Conference
on Dependability (DEPEND). (to appear)

Teaching	
 Activities	

Project seminar “Zuverlässigkeit und Virtualisie-
rung”, Hasso-Plattner-Institut, summer term 2011

5 10 15 20

50
10

0
15

0
20

0
25

0
30

0

sample number

m
ig

ra
tio

n
tim

e
[s

]

Figure 8: Migration times for ProxmoxVE for
VMSIZE = 8GB, WSET = 400MB, RATE=15000/s Figure 8. Migration times for ProxmoxVE

for VMSIZE = 8GB, WSET = 400MB,
RATE=15000/s

virtual machines away from failure-prone hosts even
before a failure occurs. In order to have the ability to
do so, upcoming failures have to be anticipated. We
propose a failure prediction approach that operates on
various levels of the system architecture. However
even the most accurate failure prediction is useless if
the action to be taken upon predicting an upcoming
failure takes longer to execute in comparison to the
time left until failure occurrence. Since we plan to
use live migration as such an action we need to know
how long it can take to migrate a virtual machine to
a fault-free host. The experiments described in this
report have identified and investigated decisive factors
determining the duration and downtime involved
when a virtual machine is migrated.
Our measurements are based on three representative
virtualization products, namely VMware ESX 4.0.0,
Citrix XenServer 5.6 and ProxmoxVE1.7 (KVM
version 2.6.32-4-pve). Our analysis shows that
performance of live migration varies heavily. Based
on these measurements, we are able to support the
hypothesis that memory access patterns of the guest
system are the determining factor for live migration
performance.
Although the use of artificial load generators was
helpful to identify the factors determining the duration
of live migration, it remains yet to show to what extent
our results apply to industry-relevant workloads. Next
steps will hence include to map workloads obtained
from benchmark applications such as the ones from
the SPEC suite to our measurements results. A second
field of research will focus on failure prediction
algorithms on data obtained from the hypervisor level.

38

Hypervisor / Guest Time Mean time [s] Max:Min Ratio Standard deviation
Mean Overall Treatment Max [s] Overall [s]

XenServer / CentOS Migration 89.73 9.01 9.10 6.32 39.08
Downtime 7.69 3.17 3.46 0.62 2.94

VMware / Linux Migration 30.93 2.24 2.96 7.72 7.51
Downtime 3.10 16.27 23.83 0.50 1.80

ProxmoxVE / Linux Migration 156.69 36.42 42.73 93.80 94.65
Downtime 7.25 74.07 98.00 4.41 5.31

Table 2. Data variability

References

[1] A. Polze, P. Tröger, and F. Salfner. Timely Virtual Ma-
chine Migration for Pro-Active Fault Tolerance. In 2nd
International Workshop on Object/component/service-
oriented Realtime Networked Ultra-dependable Sys-
tems (WORNUS), at 14th International Symposium
on Object/Component/Service-oriented Realtime Dis-
tributed Computing (ISORC), 2011.

[2] F. Salfner, P. Tröger, and A. Polze. Downtime Anal-
ysis of Virtual Machine Live Migration. In The Fourth
International Conference on Dependability (DEPEND),
to appear.

[3] P. Tröger, A. Polze, and F. Salfner. On the Applicability
of Virtual Machine Migration for Proactive Failover. In
SDPS International Conference, Special Track on Vir-
tualization., to appear.

5. Teaching Activities

Project seminar “Zuverls̈sigkeit und Virtualisierung”,
Hasso-Plattner-Institut, summer term 2011

39

Forward Business Recommendations – Realtime Management Support
based on In-Memory Technology

Prof. Dr. Rainer Thome
Dipl.-Kff. Patricia Kraft

Chair in Business administration
and business computing
Joseph-Stangl Platz 2

97070 Wuerzburg
{thome|pkraft}@wiinf.uni-wuerzburg.de

Dr. Andreas Hufgard
Dipl.-Kff. Stefanie Krüger

IBIS Labs
Mergentheimer Str. 76a

97072 Wuerzburg
Hufgard@ibis-thome.de

skrueger@wiinf.uni-wuerzburg.de

Abstract

Rule based Business Matrix Processing is an inno-
vative approach to combine Consultative Information
Technology with In-Memory Data processing. A holis-
tic and real time Process Cockpit, a Recommendation
Model + Engine and a Code of Good Practice with
Business Rules have to be linked together to reach the
target. As a result a substantiated decision making is
possible requiring less effort and the productivity of
employees can be increased dramatically [1].

Proving this idea with In-Memory Technology a pro-
totype in Forward Business Recommendation is born.
Given the complete information included in differ-
ent business areas, and the cockpit issuing a practi-
cal statement managers can come to much better de-
cisions.
Forward Business Recommendations (FBR) cockpit
calls for relevant actual data and is checking rules.
Based on these rules a technical structure can be es-
tablished. Explaining the idea of checked processes
the concept of Forward Business Recommendations
begins to show. Finally the prototype offers various
possibilities to support the process of reaching a deci-
sion.

1. Rules and technical structure

To use the cockpit for Forward Business Recommen-
dations properly it is necessary to understand how data
sources are combined. The prototype is based on the
data source of SAP Business ByDesign (ByD) FP 2.6
using In-Memory Technology.
Valuable data is exported via Excel Add-in to create a
widespread but very specific data source. On one hand
information about opportunities, liquidity, orders, em-
ployees, pricing and available stock are accumulated.
On the other hand the data is highly specified to keep
the quantity of data exchange as small as possible.

To make sure information mirrors the processes em-
ployed, operational data has to be kept up to date. The
prototype extracts only information recorded in SAP
ByD.
On one hand, there is the linking of information from
each employees part of the process to other sections
in the chain, on the other hand, there is the overview
and analytical solving of decision-making issues and
organizational difficulties at managerial level. Man-
agement tasks have to provide resources, identify and
dissolve bottlenecks and set priorities. These kinds
of issues are best solved by comparing and combin-
ing various scraps of information rather than through
fixed, pre-formulated procedures. For this reason, the
manager requires a very specific type of rule - one
that is capable of filtering relevant fragments of data
and compiling them so decision-making can be recom-
mended or made a high priority (e.g. like score-cards).
The action to be taken may not be clear, but the con-
stellation and the need for information is [1].
To place management decisions on a solid informa-
tional foundation only valid data is used. For example
opportunities have to achieve a probability higher than
80 % to be factored into the calculation. To ensure
proper results timing is summarized in weeks. Trying
to plan future activities like stock receipt, receipt of
a payment or ordering on a daily basis is as effective
as reading tea leaves. Instead of prophesying we are
forecasting future activities by using valid data.

2. Checked processes

Every process step has to be available to facilitate
strategic planning information. Captured in this in-
formation overload, decisions are made without taking
account of their influence on other divisions. Receiv-
ing orders of great value is a success for sales depart-
ment. Low liquidity in order to high purchase orders
is a catastrophe in financial department. Time delay in
delivery upsets customers.

41

Forward Business Recommendations – Realtime Management Support

based on In-Memory Technology

Prof. Dr. Rainer Thome

Dipl.-Kff. Patricia Kraft

Chair in Business administration

and business computing

Joseph-Stangl Platz 2

97070 Wuerzburg

thome@wiinf.uni-wuerzburg.de

pkraft@wiinf.uni-wuerzburg.de

Dr. Andreas Hufgard

Dipl.-Kff. Stefanie Krüger

IBIS Labs

Mergentheimer Str. 76a

97072 Wuerzburg

Hufgard@ibis-thome.de

skrueger@wiinf.uni-wuerzburg.de

Abstract

Rule based Business Matrix Processing is an innova-

tive approach to combine Consultative Information

Technology with In-Memory Data processing. A

holistic and real time Process Cockpit, a Recommen-

dation Model + Engine and a Code of Good Practice

with Business Rules have to be linked together to

reach the target. As a result a substantiated decision

making is possible requiring less effort and the

productivity of employees can be increased dramati-
cally [1].

Proving this idea with In-Memory Technology a

prototype in Forward Business Recommendation is

born. Given the complete information included in

different business areas, and the cockpit issuing a

practical statement managers can come to much bet-

ter decisions.

Forward Business Recommendations (FBR) cockpit

calls for relevant actual data and is checking rules.

Based on these rules a technical structure can be

established. Explaining the idea of checked process-

es the concept of Forward Business Recommenda-

tions begins to show. Finally the prototype offers

various possibilities to support the process of reach-

ing a decision.

1 Rules and technical structure

To use the cockpit for Forward Business Recommen-

dations properly it is necessary to understand how

data sources are combined. The prototype is based

on the data source of SAP Business ByDesign (ByD)

FP 2.6 using In-Memory Technology.

Valuable data is exported via Excel Add-in to create

a widespread but very specific data source. On one

hand information about opportunities, liquidity, or-

ders, employees, pricing and available stock are ac-

cumulated. On the other hand the data is highly spec-

ified to keep the quantity of data exchange as small

as possible.

To make sure information mirrors the processes em-

ployed, operational data has to be kept up to date.

The prototype extracts only information recorded in

SAP ByD.

On one hand, there is the linking of information from

each employee’s part of the process to other sections

in the chain, on the other hand, there is the overview
and analytical solving of decision-making issues and

organizational difficulties at managerial level. Man-

agement tasks have to provide resources, identify and

dissolve bottlenecks and set priorities. These kinds of

issues are best solved by comparing and combining

various scraps of information rather than through

fixed, pre-formulated procedures. For this reason, the

manager requires a very specific type of rule – one

that is capable of filtering relevant fragments of data

and compiling them so decision-making can be rec-

Sales

• Opportunity

Warehouse

• Available
Stocks

• Reserved
Stocks

Purchase

• Delivery
period

• Replenish-
ment time

• Order Size

Financial

• Material costs

• Profit margin

• Liquidity

Figure 1: End to End process with implications on

management decision

Figure 1. End to End process with implications on management decision

ommended or made a high priority (e.g. like score-

cards). The action to be taken may not be clear, but

the constellation and the need for information is [1].

To place management decisions on a solid informa-

tional foundation only valid data is used. For exam-

ple opportunities have to achieve a probability higher

than 80 % to be factored into the calculation. To
ensure proper results timing is summarized in weeks.

Trying to plan future activities like stock receipt,

receipt of a payment or ordering on a daily basis is as

effective as reading tea leaves. Instead of prophesy-

ing we are forecasting future activities by using valid

data.

2 Checked processes

Every process step has to be available to facilitate

strategic planning information. Captured in this in-

formation overload, decisions are made without tak-

ing account of their influence on other divisions.

Receiving orders of great value is a success for sales

department. Low liquidity in order to high purchase
orders is a catastrophe in financial department. Time

delay in delivery upsets customers.

To decrease problems occurring because of the lack

of information, the FBR cockpit uncovers imponder-

abilities as long as they can be avoided. In this way it

is possible to forecast relevant results caused by the

current tide of events.

2.1 Sales

Information gathered in sales department contains

consolidated knowledge about customers, market

pattern and expectation value of opportunities. How-
ever it is difficult to measure the effects before a

customer order is placed.

In SAP ByD opportunities are recorded to extend

preliminary lead time. FBR prototype is based upon

opportunities with a probability higher than 80 %. As

shown in Figure 2 the top ten opportunities are part

of the cockpit summary. Opportunities of small value

have no bearing on this general view because they
rarely provoke extraordinary business situations.

2.2 Warehouse

The stocks available for production are a sensitive

bottleneck. A supply shortfall interferes production
process or even delays sales orders. Even if products

are stored reserved stock and safety stock have to be

observed.

FBR cockpit allows to oversee the stock level cover-

age of a specific week in case of realizing the oppor-

tunity.

2.3 Purchasing

It is also advantageous that ordering costs for all

products that are out of stock are forecasted with

their material costs recorded in ByD. That implies
supplier contracts and trade discounts.

In addition the purchasing period can be stretched in

case of long replenishment time. To reduce purchas-

ing costs greater product bundles are possible in

anticipation of potential demand.

2.4 Financials

High expenses on preliminary products and raw ma-

terials endanger the liquidity of midsized companies.

It is absolutely essential for concerned enterprises to

oversee situations that cause financial difficulties.

The FBR cockpit provides an opportunity to predict
the financial effects of future orders. As a result it is

possible to check whether ordering costs scratch a

Figure 2: Forward Business Recommendations

Cockpit

Figure 2. Forward Business Recommendations Cockpit

42

To decrease problems occurring because of the lack
of information, the FBR cockpit uncovers imponder-
abilities as long as they can be avoided. In this way
it is possible to forecast relevant results caused by the
current tide of events.

2.1. Sales

Information gathered in sales department contains
consolidated knowledge about customers, market pat-
tern and expectation value of opportunities. However
it is difficult to measure the effects before a customer
order is placed.
In SAP ByD opportunities are recorded to extend pre-
liminary lead time. FBR prototype is based upon op-
portunities with a probability higher than 80 %. As
shown in Figure 2 the top ten opportunities are part
of the cockpit summary. Opportunities of small value
have no bearing on this general view because they
rarely provoke extraordinary business situations.

2.2. Warehouse

The stocks available for production are a sensitive bot-
tleneck. A supply shortfall interferes production pro-
cess or even delays sales orders. Even if products are
stored reserved stock and safety stock have to be ob-
served.
FBR cockpit allows to oversee the stock level coverage
of a specific week in case of realizing the opportunity.

2.3. Purchasing

It is also advantageous that ordering costs for all prod-
ucts that are out of stock are forecasted with their ma-
terial costs recorded in ByD. That implies supplier
contracts and trade discounts.
In addition the purchasing period can be stretched in
case of long replenishment time. To reduce purchas-
ing costs greater product bundles are possible in antic-
ipation of potential demand.

2.4. Financials

High expenses on preliminary products and raw ma-
terials endanger the liquidity of midsized companies.
It is absolutely essential for concerned enterprises to
oversee situations that cause financial difficulties. The
FBR cockpit provides an opportunity to predict the fi-
nancial effects of future orders. As a result it is pos-
sible to check whether ordering costs scratch a credit
limit or whether they are impossible to be combined
with other orders at the same time.

2.5. Further Constraints

An effective management ratio is the amount of work-
load per employee. If some employees are perma-

nently overwhelmed with work, they are less effec-
tive. Monitoring the total number of opportunities per
employee (Figure 3) can support balancing activities.
For example green flagged employees can support red
flagged co-workers in some cases.
FBR prototype offers a very supportive bundle of in-
formation within its basic version. Of course there are
further constraints to be considered and occupied. For
example production parameters were excluded in our
first version to reduce complexity. Furthermore prod-
ucts that have not yet been procured or are infrequently
purchased are not included.

3. Various possibilities

From a business viewpoint, a sales order may be in-
fluenced by several things. Earning a positive profit
margin may be a priority. And theres always the ques-
tion of whether there are foreseeable problems with the
customer or with order processing - whether a prod-
uct will be available when the customer wants it or
whether a quotation for a specific quantity will be able
to be filled, or whether the quantity fluctuates. The
Recommendation Engine advises the employee, when
in doubt, to offer more or less of a product or propose
a different delivery date. It even suggests additional
products the customer may want, based on customer
data. It can also perform real-time priority changes for
the customer; it can determine liquidity and cash flow,
depending on the size of an order or on previous busi-
ness contacts. If a customer is willing to accept longer
delivery times, more flexi-ble and cost effective alter-
natives can be added to the logistics chain [1].
FBR prototype accumulates information from differ-
ent parts of the enterprise and recommends a specific
proceeding that improves the situation of the compa-
ny. For example if sales orders for an interesting op-
portunity scratch the credit limit it informs the man-
ager to apply for a short-term credit. That simpli-fies
project process and prevents a delay in delivery to cus-
tomer. Additionally it wont interfere with the good re-
lations to the suppliers. Another example for a recom-
mendation placed by FBR is products in stock, stim-
ulation per discount possible. If all products included
in the opportunity are in stock, a fast selling process
reduces capital commitment.

4. Next steps

Version two of Forward Business Recommendations
cockpit will be built within ByD. Using the possibili-
ties of integrated software development an Add-On is
able to use far more system information than export-
ed data could. Although real-time actualization of ex-
ported data offers great possibilities integration is ex-
pected to be an even better choice. Next generation
Recommendations can be employee specific instead of
manager specific.

43

credit limit or whether they are impossible to be
combined with other orders at the same time.

2.5 Further Constraints

An effective management ratio is the amount of

workload per employee. If some employees are per-
manently overwhelmed with work, they are less

effective. Monitoring the total number of opportuni-

ties per employee (Figure 3) can support balancing

activities. For example green flagged employees can

support red flagged co-workers in some cases.

FBR prototype offers a very supportive bundle of

information within its basic version. Of course there
are further constraints to be considered and occupied.

For example production parameters were excluded in

our first version to reduce complexity. Furthermore

products that have not yet been procured or are infre-

quently purchased are not included.

3 Various possibilities

From a business viewpoint, a sales order may be

influenced by several things. Earning a positive profit

margin may be a priority. And there’s always the

question of whether there are foreseeable problems

with the customer or with order processing – whether

a product will be available when the customer wants

it or whether a quotation for a specific quantity will
be able to be filled, or whether the quantity fluctu-

ates. The Recommendation Engine advises the em-

ployee, when in doubt, to offer more or less of a

product or propose a different delivery date. It even

suggests additional products the customer may want,

based on customer data. It can also perform real-time

priority changes for the customer; it can determine

liquidity and cash flow, depending on the size of an

order or on previous business contacts. If a customer

is willing to accept longer delivery times, more flexi-

ble and cost effective alternatives can be added to the
logistics chain [1].

FBR prototype accumulates information from differ-

ent parts of the enterprise and recommends a specific

proceeding that improves the situation of the compa-

ny. For example if sales orders for an interesting

opportunity scratch the credit limit it informs the

manager to apply for a short-term credit. That simpli-
fies project process and prevents a delay in delivery

to customer. Additionally it won’t interfere with the

good relations to the suppliers. Another example for

a recommendation placed by FBR is “products in

stock, stimulation per discount possible”. If all prod-

ucts included in the opportunity are in stock, a fast

selling process reduces capital commitment.

4 Next steps

Version two of Forward Business Recommendations

cockpit will be built within ByD. Using the possibili-

ties of integrated software development an Add-On is

able to use far more system information than export-

ed data could. Although real-time actualization of
exported data offers great possibilities integration is

expected to be an even better choice. Next generation

Recommendations can be employee specific instead

of manager specific.

Another improvement beyond embedding further

business logic into ByD will be the realization of a

real-time engine.

References

[1] Thome R, Hufgard A, Krüger S (2011) Rule based

Business Matrix processing (RBM) Business – Busi-
ness Rules for real-time Process Management based
on In-Memory Technology. In: Meinel C Proceed-
ings of the Fall 2010 Future SOC Lab Day. Techni-
sche Berichte Nr. 42 des Hasso-Plattner-Instituts für
Softwaresystemtechnik der Universität Potsdam. Uni-
versitätsverlag, Potsdam, S 59-62.

Figure 3: Workload per employee based on open

opportunities Figure 3. Workload per employee based on open opportunities

Another improvement beyond embedding further busi-
ness logic into ByD will be the realization of a real-
time engine.

References

[1] R. Thome, A. Hufgard, and S. Krüger. Rule based
Business Matrix processing (RBM) Business - Busi-

ness Rules for real-time Process Management based on
In-Memory Technology. In Proceedings of the Fall
2010 Future SOC Lab Day, number 42 in Technische
Berichte des Hasso-Plattner-Instituts für Softwaresys-
temtechnik der Universität Potsdam. Universitätsverlag
Potsdam, 2011.

44

Accurate Mutlicore Processor Power Models for Power-Aware Resource
Management

Christoph Meinel, Ibrahim Takouna, and Wesam Dawoud
Hasso Plattner Institute (HPI)

University of Potsdam
Potsdam, Germany

{christoph.meinel, ibrahim.takouna, wesam.dawoud}@hpi.uni-potsdam.de

Abstract

Power management is one of the biggest challenges in
current datacenters. As processors consume the dom-
inant amount of power in computer systems, power
management of multicore processors is extremely sig-
nificant. Efficient power models that accurately pre-
dict the power consumption of a processor are re-
quired to develop efficient power management tech-
niques. However, this challenge rises with using vir-
tualization and increasing number of cores in the pro-
cessors.
In this project phase, we analyze power consumption
of a multicore processor; we develop three statisti-
cal CPU-Power models based on number of active
cores and average running frequency using a multiple
liner regression. Our models were built upon a virtu-
alized server. The models are validated statistically
and experimentally. Statistically, our models cover
97% of system variations. Furthermore, we test our
models with different workloads and different bench-
marks. The results show that our models achieve bet-
ter performance compared to the recently proposed
model for power management in virtualized environ-
ments. Our models provide highly accurate predic-
tions for un-sampled combinations of frequency and
cores; 95% of the predicted values have less than 7%
error. Thus, we can integrate these models into power
management mechanisms for a dynamic configuration
of a virtual machine in terms of number of its virtual-
CPUs and the frequency of physical cores to achieve
both performance and power constrains.

1. Introduction and Project Idea

Datacenters power consumption has become a signif-
icant concern with the rapid emergence of cloud ser-
vices such as Amazon EC2. For example, Hamilton[8]
has reported that Amazons datacenters are facing a
highly increased power demand where the servers con-
sume 59% of the total power supply. Furthermore,

the U.S. Environmental Protection Agency (EPA) re-
ported that the energy consumption of the datacenters
located on U.S. consumed 61 billion kilowatthours in
2006 which costs $4.5 billion [14]. Thus, there have
been many proposed approaches for datacenters power
management [10, 12].
Current datacenters consist of a number of servers
leveraging multicore processors. The number of cores
in a single processor could be doubled every 18
months to maintain Moores law. The processor is the
component that consumes the most dynamic power
of a computer system [2, 14]. Nevertheless, an ideal
sever consumes over 50% of its peak power [4] which
means that a server with low utilization is very power-
inefficient. Hence, virtualization technology has been
rapidly employed in datacenters to increase servers uti-
lization by enabling applications consolidation onto a
fewer number of physical servers and turning off un-
used servers to save power.
There are several proposed approaches for power man-
agement. Mostly, these approaches consider the CPU
frequency and CPU utilization to build power models.
For instance, Urgaonkar et al. [13] and Gandhi et al.
[7] have adopted non-liner quadric models of power
consumption for power management in virtualized en-
vironments. The relationship between power con-
sumption of multicore processor and frequency can-
not be covered with one fitting curve, as we will see in
Section 2. For instance, the curve of power consump-
tion of 1 core slightly increases with cores frequency
compared to 4 cores and 8 cores. Moreover, Fan et
al. [6] have included CPU utilization in their proposed
power model. However, using utilization to build a
power model for a multicore processor could be not
accurate, because the power consumed by a multicore
processor with one active core with 100% utilization
is more than the power consumed by two active cores
each of them 50% utilized for the same workload. We
found this result by conducting an experiment using
a virtual machine (VM) with a mutlithreaded applica-
tion. This VM ran with 1 virtual CPU and had 100%
utilization and only ran on one physical core. In this

45

scenario, the power consumed by the physical CPU
was 26 watts. On the other hand, when the same VM
ran with 2 virtual CPU and the VM had the same to-
tal CPU utilization 100%. In this scenario, the phys-
ical CPU just consumed 17 watts, and each core was
50% utilized. Importantly, both of the configuration
gave the same performance. Indeed, the latter could
be better due to exploiting the multithreading. Thus,
we conclude that only using CPU frequency and CPU
utilization only as inputs for power modeling could be
inefficient in particular for power estimation of mut-
licore processors.
Evolving virtualized environments enables consoli-
dation of multithreaded web and High Performance
Computing (HPC) applications; these applications
could efficiently utilize multicore processors. How-
ever, to implement power-aware resource management
techniques for such environments accurate power esti-
mation models are required. Hence, the purpose of this
work is to build CPU-Power consumption models that
accurately estimate the power consumption of virtual-
ized servers with multicore processor. These models
could be employed into power-aware resource man-
agement to achieve better power savings. Our work
is distinct from others as follows. This project phase
presents CPU-Power consumption models taking into
account number of the actual active cores N and aver-
age running clock frequency F at each sample. It an-
alyzes and evaluates the performance of our proposed
models statistically and experimentally. The statisti-
cal analysis using the regression R2 indicates that our
models could cover more than 97% of system varia-
tions. Experimentally, our proposed models achieve
better performance compared to the model adopted by
[13, 7]. We evaluate models using three different ap-
plications with different characteristics (i.e., CPUin-
tensive, Memory-intensive, and IO-intensive). The re-
sults show that 95% of the predicted values have less
than 7% error. Furthermore, the maximum prediction
error is less than 4% error for Memory-intensive and
IO-intensive applications. As future work, we will use
these models to build a dynamic optimizer that opti-
mizes number of cores and their frequency settings and
dynamically configures a VM to cope with workload
and meet power consumption constrains.

2. Used Lab Resources and Experimental
Setup

The evaluation experiments were performed on Fujitsu
PRIMERGY RX300 S5 server that has a CPU-Power
measurement capability. It has a processor of Intel(R)
Xeon(R) CPU E5540 with 4-cores. The frequency
range is 2.53GHz to 1.59GHz. Each core enables 2-
logical cores. The server is equipped with 12GB phys-
ical memory. The experiments were run on a virtual-
ized server using Xen-4.1 hypervisor.
To build our models, we used a CPU-intensive bench-

servers with multicore processor. These models could be
employed into power-aware resource management to achieve
better power savings. Our work is distinct from others as
follows. This project phase presents CPU-Power consumption
models taking into account number of the actual active cores
N and average running clock frequency F at each sample.
It analyzes and evaluates the performance of our proposed
models statistically and experimentally. The statistical analysis
using the regression R2 indicates that our models could cover
more than 97% of system variations. Experimentally, our
proposed models achieve better performance compared to the
model adopted by [7][8]. We evaluate models using three
different applications with different characteristics (i.e., CPU-
intensive, Memory-intensive, and IO-intensive). The results
show that 95% of the predicted values have less than 7%
error. Furthermore, the maximum prediction error is less than
4% error for Memory-intensive and IO-intensive applications.
As future work, we will use these models to build a dynamic
optimizer that optimizes number of cores and their frequency
settings and dynamically configures a VM to cope with
workload and meet power consumption constrains.

II. USED LAB RESOURCES AND EXPERIMENTAL SETUP

The evaluation experiments were performed on Fujitsu
PRIMERGY RX300 S5 server that has a CPU-Power mea-
surement capability. It has a processor of Intel(R) Xeon(R)
CPU E5540 with 4-cores. The frequency range is 2.53GHz
to 1.59GHz. Each core enables 2-logical cores. The server is
equipped with 12GB physical memory. The experiments were
run on a virtualized server using Xen-4.1 hypervisor.

To build our models, we used a CPU-intensive benchmark
EP Embarrassing Parallel which is one of NAS Parallel Bench-
marks (NPB) [11]. It generates pairs of Gaussian random
deviates according to a specific scheme. EP is a multithreaded
benchmark which runs number of threads corresponding to
number of virtual CPU of a virtual machine. To evaluate
our models, we used two other benchmarks of NPB namely
CG and BT. BT benchmark is IO-intensive. It is a simulated
CFD application that uses an implicit algorithm to solve
3-dimensional (3-D) compressible Navier-Stokes equations.
CG benchmark is Memory-intensive which uses a Conjugate
Gradient method to compute an approximation to the smallest
eigen value of a large matrix. However, more details about the
characteristics of NPB benchmarks is found in [12].

Finally, we used xenpm tool [13] to measure average
running frequency and number of active cores. We used the
CPU-Power measurement capability of our server to measure
the power consumption of the CPU. In our experiments,
the percentile average was considered to get accurate power
readings. Fig. 1 summarizes the system overview and the
procedures of CPU-Power models development. Fig. 1 shows
the output of xenpm tool; it illustrates the change of average
frequency, performance states (P0-P8), and sleeping states
(C0-C3). Furthermore, the output demonstrates the percentage
of time for each core and for each state.

III. FINDINGS

Several works have used linear models to represent the
power consumption of a system or just a processor. These
models are based on CPU utilization or other concerned
resources such as memory. As current processors have mul-
ticores which could operate at different frequency levels at
runtime using DVFS, in this section we discuss the relationship
between the CPU-Power consumption and CPU-frequency
from one side, and the CPU-Power consumption and number
of active cores from the other side.

Virtualized

Server

(Xen)

Multiple

Linear

Regression

Measured CPU-Power

Number of active cores

Average Frequency

Generated

CPU-Power

Model

VM-1

VM-2

V
M

-3

Predict CPU-Power

for non-measured

Configurations

Start sampling, waiting for CTRL-C or SIGINT or SIGALARM signal ...

^CElapsed time (ms): 6956

CPU0: Residency(ms) Avg Res(ms)

C0 319 (4.59%) 0.35

C1 18 (0.27%) 0.44

C2 6619 (95.14%) 7.71

P0 206 (71.48%)

P1 0 (0.00%)

P2 0 (0.00%)

P3 0 (0.00%)

P4 0 (0.00%)

P5 0 (0.00%)

P6 0 (0.00%)

P7 0 (0.00%)

P8 82 (28.52%)

Avg freq 2477440 KHz

CPU1: Residency(ms) Avg Res(ms)

C0 36 (0.53%) 0.11

C1 63 (0.92%) 1.18

C2 6856 (98.56%) 23.32

P0 0 (0.00%)

P1 0 (0.00%)

P2 0 (0.00%)

P3 0 (0.00%)

P4 0 (0.00%)

P5 0 (0.00%)

P6 0 (0.00%)

P7 0 (0.00%)

P8 32 (100.00%)

Avg freq 1921280 KHz

Fig. 1: Overview of the system and CPU-Power models
development.

A. CPU-Power and frequency relationship

CPU-Power consumption is composed of dynamic and static
power. The dynamic power is the important factor for reducing
power consumption using DVFS technique. The dynamic con-
sumed power by a CPU with a capacitance C, frequency F, and
supplied voltage V is computed by equation 1. However, Kim
et al. [14] have considered power proportional to the cubic of
frequency because the frequency is usually in proportion to
the supplied voltage.

P = C.F.V 2
dd (1)

P(F) = Pmin + θ(F − Fmin)
2 (2)

To obtain the relationship between CPU-Power consumption
and frequency, we ran EP-NPB CPU-intensive benchmark on
a virtual machine at different CPU frequencies. We measured
the power consumption only for the CPU. Thus, we obtained
the curves in Fig. 2. Then, by applying the multiple linear
regression, we found that the best relationship could be fit in
polynomial linear with regression R2 = 0.99. we could gener-
alize it as a quadric model in equation 2 which resembles the
proposed model by [7][8] to estimate the power consumption

Figure 1. Overview of the system and
CPU-Power models

mark EP Embarrassing Parallel which is one of NAS
Parallel Benchmarks (NPB) [5]. It generates pairs
of Gaussian random deviates according to a specific
scheme. EP is a multithreaded benchmark which runs
number of threads corresponding to number of vir-
tual CPU of a virtual machine. To evaluate our mod-
els, we used two other benchmarks of NPB namely
CG and BT. BT benchmark is IO-intensive. It is a
simulated CFD application that uses an implicit al-
gorithm to solve 3-dimensional (3-D) compressible
Navier-Stokes equations. CG benchmark is Memory-
intensive which uses a Conjugate Gradient method to
compute an approximation to the smallest eigen value
of a large matrix. However, more details about the
characteristics of NPB benchmarks is found in [11].
Finally, we used xenpm tool [1] to measure average
running frequency and number of active cores. We
used the CPU-Power measurement capability of our
server to measure the power consumption of the CPU.
In our experiments, the percentile average was consid-
ered to get accurate power readings. Fig. 1 summa-
rizes the system overview and the procedures of CPU-
Power models development. Fig. 1 shows the out-
put of xenpm tool; it illustrates the change of average
frequency, performance states (P0-P8), and sleeping
states (C0-C3). Furthermore, the output demonstrates
the percentage of time for each core and for each state.

3. Findings

Several works have used linear models to represent
the power consumption of a system or just a proces-
sor. These models are based on CPU utilization or
other concerned resources such as memory. As cur-
rent processors have multicores which could operate
at different frequency levels at runtime using DVFS,
in this section we discuss the relationship between the
CPU-Power consumption and CPU-frequency from
one side, and the CPU-Power consumption and num-

46

ber of active cores from the other side.

3.1. CPU-Power and frequency rela-
tionship

CPU-Power consumption is composed of dynamic and
static power. The dynamic power is the important fac-
tor for reducing power consumption using DVFS tech-
nique. The dynamic consumed power by a CPU with
a capacitance C, frequency F, and supplied voltage V
is computed by equation 1. However, Kim et al. [9]
have considered power proportional to the cubic of fre-
quency because the frequency is usually in proportion
to the supplied voltage.

P = C.F.V 2
dd (1)

P(F) = Pmin + θ(F − Fmin)2 (2)

y = 0.6607x2 - 0.5393x + 36.7
R² = 0.9987

y = 0.1607x2 + 0.0464x + 18.9
R² = 0.9796

0

10

20

30

40

50

60

70

1.6 1.72 1.86 1.99 2.2 2.4

C
P

U
-P

o
w

e
r

(W
a

tt
)

Frequency (GHz)

8 cores 4 cores 1 core Poly. (8 cores) Poly. (1 core)

Fig. 2: CPU-Power consumption relationship with frequency.

y = 2.4167x + 18.5
R² = 0.9662

y = 4.7857x + 21.214
R² = 0.9548

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

C
P

U
-P

o
w

e
r

(W
a
tt
)

Number of Active Cores

Freq 1.6 Freq 1.99 Freq 2.4 Linear (Freq 1.6) Linear (Freq 2.4)

Fig. 3: CPU-Power consumption relationship with number of
active cores.

of a server. Although Fig. 2 shows perfect fitting for each
curve of a number of cores, the total system variations cannot
be covered with considering only frequency.

Hence, we need different values of θ and Pmin at each
number of active cores. For example, to estimate CPU-Power
at frequency 1.72 GHz when 8 active cores using equation
2 the best values for θ and Pmin are 37 watts and 37
Watt/GHz2 respectively. The estimated power is 37.6 watts
which is approximately equal to the measured value 38 watts.
Nevertheless, The values of θ and Pmin should be adapted
again to predicted the power when just 4 cores are active.
Accordingly, we study the relationship between the power
consumption and number of active cores in next section.

B. CPU-Power and number of active cores relationship

To estimate the power consumption of multicore processors,
we found that it is important to study the relationship between
CPU-Power and number of active cores. To this end, we
obtained the curves in Fig. 3. The curves have a linear
trendline. The relationship is well approximated by a linear
model with regression R20.95, which means that the power
consumption and number of active cores have a strong linear
association and can be represented by Equation 3. N is number
of active cores, and Pmin is the power consumed by one core
running at frequency F. αF is the slope of the power-to-active
cores curve at frequency F. Importantly, each curve has two

different slopes. The first one is when the number of active
cores is less than 4 cores and the other one is when the number
of active cores is more than 4 cores. Moreover, the first slope is
greater than the second one. The main reason of this case was
that we had a processor with 4 physical cores. Each physical
core has two logic cores, and the power consumed by a logical
core is less than the power consumed by a physical core.

P(N) = Pmin + α.N (3)

C. CPU-Power estimation models

From previous sections, we found a strong relationship
between CPU-Power consumption and both frequency and
number of active cores. In this section, we refer to the model
adopted by [7][8] as Model-0. Model-0 which is represented
by equation 4 does not include number of active cores. Our
first model is denoted by Model-1. Model-1 presented in
equation 5 is a multiple linear regression with the inter-
cept constant C. Equation 6 represents Model-2. Model-2’s
intercept constant C is zero. Finally, we removed the first
degree term of frequency of Model-2; we obtained Model-
3 represented by equation 7. However, we will study the
predication accuracy of these models showing the worst and
the best cases for each model.

P(F,N) = θ2.F
2 + θ1.F + C (4)

P(F,N) = θ2.F
2 + θ1.F + α.N + C (5)

P(F,N) = θ2.F
2 + θ1.F + α.N (6)

P(F,N) = θ2.F
2 + α.N (7)

D. Statistical analysis

This section discusses some statistical analysis of our CPU-
Power estimation models focusing on Model-1 to show its
efficiency to predict the power consumption of a processor.
We used plots to check models linearity and normality as-
sumptions [9].

First, we tested the models linearity using a plot of residuals
versus predicted values. Fig.4-(a) represents residuals plot of
Model-0. This plot shows a certain pattern indicating that the
model makes systematic errors whenever the number of cores
changes from 1 to 8. In Fig.4-(a), if we consider the first left
vertical residuals points which represent residuals of frequency
1.6GHz, we find that the residuals values increase negatively
when few of cores are active (e.g., the residual value is -11
when one core is active). On the other hand, the residuals
values increase positively when the number of active cores
is more than 4 cores. The reason was the over-estimation
of CPU-Power with enabled logical cores. Moreover, the
predicted power is limited by frequency. Thus, it gives a
short range [29, 43]. Consequently, it will give serious errors
when it will be used for predicting un-sampled data points.
Furthermore, the residual rang [-15, 15] of Model-0 is wider

Figure 2. CPU-Power consumption rela-
tionship with frequency.

To obtain the relationship between CPU-Power con-
sumption and frequency, we ran EP-NPB CPU-
intensive benchmark on a virtual machine at different
CPU frequencies. We measured the power consump-
tion only for the CPU. Thus, we obtained the curves
in fig. 2. Then, by applying the multiple linear regres-
sion, we found that the best relationship could be fit
in polynomial linear with regression R2 = 0.99. we
could generalize it as a quadric model in equation 2
which resembles the proposed model by [13, 7] to es-
timate the power consumption of a server. Although
fig. 2 shows perfect fitting for each curve of a number
of cores, the total system variations cannot be covered
with considering only frequency.
Hence, we need different values of θ and Pmin at
each number of active cores. For example, to esti-
mate CPU-Power at frequency 1.72 GHz when 8 ac-
tive cores using equation 2 the best values for θ and
Pmin are 37 watts and 37 Watt/GHz2 respectively.
The estimated power is 37.6 watts which is approxi-
mately equal to the measured value 38 watts. Never-
theless, The values of θ and Pmin should be adapted

y = 0.6607x2 - 0.5393x + 36.7
R² = 0.9987

y = 0.1607x2 + 0.0464x + 18.9
R² = 0.9796

0

10

20

30

40

50

60

70

1.6 1.72 1.86 1.99 2.2 2.4

C
P

U
-P

o
w

e
r

(W
a
tt
)

Frequency (GHz)

8 cores 4 cores 1 core Poly. (8 cores) Poly. (1 core)

Fig. 2: CPU-Power consumption relationship with frequency.

y = 2.4167x + 18.5
R² = 0.9662

y = 4.7857x + 21.214
R² = 0.9548

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

C
P

U
-P

o
w

e
r

(W
a

tt
)

Number of Active Cores

Freq 1.6 Freq 1.99 Freq 2.4 Linear (Freq 1.6) Linear (Freq 2.4)

Fig. 3: CPU-Power consumption relationship with number of
active cores.

of a server. Although Fig. 2 shows perfect fitting for each
curve of a number of cores, the total system variations cannot
be covered with considering only frequency.

Hence, we need different values of θ and Pmin at each
number of active cores. For example, to estimate CPU-Power
at frequency 1.72 GHz when 8 active cores using equation
2 the best values for θ and Pmin are 37 watts and 37
Watt/GHz2 respectively. The estimated power is 37.6 watts
which is approximately equal to the measured value 38 watts.
Nevertheless, The values of θ and Pmin should be adapted
again to predicted the power when just 4 cores are active.
Accordingly, we study the relationship between the power
consumption and number of active cores in next section.

B. CPU-Power and number of active cores relationship

To estimate the power consumption of multicore processors,
we found that it is important to study the relationship between
CPU-Power and number of active cores. To this end, we
obtained the curves in Fig. 3. The curves have a linear
trendline. The relationship is well approximated by a linear
model with regression R20.95, which means that the power
consumption and number of active cores have a strong linear
association and can be represented by Equation 3. N is number
of active cores, and Pmin is the power consumed by one core
running at frequency F. αF is the slope of the power-to-active
cores curve at frequency F. Importantly, each curve has two

different slopes. The first one is when the number of active
cores is less than 4 cores and the other one is when the number
of active cores is more than 4 cores. Moreover, the first slope is
greater than the second one. The main reason of this case was
that we had a processor with 4 physical cores. Each physical
core has two logic cores, and the power consumed by a logical
core is less than the power consumed by a physical core.

P(N) = Pmin + α.N (3)

C. CPU-Power estimation models

From previous sections, we found a strong relationship
between CPU-Power consumption and both frequency and
number of active cores. In this section, we refer to the model
adopted by [7][8] as Model-0. Model-0 which is represented
by equation 4 does not include number of active cores. Our
first model is denoted by Model-1. Model-1 presented in
equation 5 is a multiple linear regression with the inter-
cept constant C. Equation 6 represents Model-2. Model-2’s
intercept constant C is zero. Finally, we removed the first
degree term of frequency of Model-2; we obtained Model-
3 represented by equation 7. However, we will study the
predication accuracy of these models showing the worst and
the best cases for each model.

P(F,N) = θ2.F
2 + θ1.F + C (4)

P(F,N) = θ2.F
2 + θ1.F + α.N + C (5)

P(F,N) = θ2.F
2 + θ1.F + α.N (6)

P(F,N) = θ2.F
2 + α.N (7)

D. Statistical analysis

This section discusses some statistical analysis of our CPU-
Power estimation models focusing on Model-1 to show its
efficiency to predict the power consumption of a processor.
We used plots to check models linearity and normality as-
sumptions [9].

First, we tested the models linearity using a plot of residuals
versus predicted values. Fig.4-(a) represents residuals plot of
Model-0. This plot shows a certain pattern indicating that the
model makes systematic errors whenever the number of cores
changes from 1 to 8. In Fig.4-(a), if we consider the first left
vertical residuals points which represent residuals of frequency
1.6GHz, we find that the residuals values increase negatively
when few of cores are active (e.g., the residual value is -11
when one core is active). On the other hand, the residuals
values increase positively when the number of active cores
is more than 4 cores. The reason was the over-estimation
of CPU-Power with enabled logical cores. Moreover, the
predicted power is limited by frequency. Thus, it gives a
short range [29, 43]. Consequently, it will give serious errors
when it will be used for predicting un-sampled data points.
Furthermore, the residual rang [-15, 15] of Model-0 is wider

Figure 3. CPU-Power consumption rela-
tionship with number of

again to predicted the power when just 4 cores are ac-
tive. Accordingly, we study the relationship between
the power consumption and number of active cores in
next section.

3.2. CPU-Power and number of active
cores relationship

To estimate the power consumption of multicore pro-
cessors, we found that it is important to study the re-
lationship between CPU-Power and number of active
cores. To this end, we obtained the curves in fig. 3.
The curves have a linear trendline. The relationship is
well approximated by a linear model with regression
R20.95, which means that the power consumption and
number of active cores have a strong linear association
and can be represented by equation 3. N is number
of active cores, and Pmin is the power consumed by
one core running at frequency F. αF is the slope of
the power-to-active cores curve at frequency F. Impor-
tantly, each curve has two different slopes. The first
one is when the number of active cores is less than 4
cores and the other one is when the number of active
cores is more than 4 cores. Moreover, the first slope is
greater than the second one. The main reason of this
case was that we had a processor with 4 physical cores.
Each physical core has two logic cores, and the power
consumed by a logical core is less than the power con-
sumed by a physical core.

P(N) = Pmin + α.N (3)

3.3. CPU-Power estimation models

From previous sections, we found a strong relation-
ship between CPU-Power consumption and both fre-
quency and number of active cores. In this section,
we refer to the model adopted by [13, 7] as Model-0.
Model-0 which is represented by equation 4 does not
include number of active cores. Our first model is de-
noted by Model-1. Model-1 presented in equation 5 is

47

a multiple linear regression with the intercept constant
C. Equation 6 represents Model-2. Model-2s intercept
constant C is zero. Finally, we removed the first degree
term of frequency of Model-2; we obtained Model- 3
represented by equation 7. However, we will study
the predication accuracy of these models showing the
worst and the best cases for each model.

P(F,N) = θ2.F
2 + θ1.F + C (4)

P(F,N) = θ2.F
2 + θ1.F + α.N + C (5)

P(F,N) = θ2.F
2 + θ1.F + α.N (6)

P(F,N) = θ2.F
2 + α.N (7)

3.4. Statistical analysis

This section discusses some statistical analysis of our
CPU-Power estimation models focusing on Model-1
to show its efficiency to predict the power consump-
tion of a processor. We used plots to check models
linearity and normality assumptions [3].
First, we tested the models linearity using a plot of
residuals versus predicted values. Fig. 4-(a) represents
residuals plot of Model-0. This plot shows a certain
pattern indicating that the model makes systematic er-
rors whenever the number of cores changes from 1 to
8. In fig. 4-(a), if we consider the first left vertical
residuals points which represent residuals of frequency
1.6GHz, we find that the residuals values increase neg-
atively when few of cores are active (e.g., the residual
value is -11 when one core is active). On the other
hand, the residuals values increase positively when the
number of active cores is more than 4 cores. The rea-
son was the over-estimation of CPU-Power with en-
abled logical cores. Moreover, the predicted power is
limited by frequency. Thus, it gives a short range [29,
43]. Consequently, it will give serious errors when
it will be used for predicting un-sampled data points.
Furthermore, the residual rang [-15, 15] of Model-0 is
wider than the residual rang [-3, 3] of Model-1. Fig.
4-(b) is residuals of Model-1. The points are sym-
metrically distributed around a horizontal line. This
proves that our model satisfies the linearity assumption
of the liner regression [3]. From this test, we conclude
that our models could predict beyond the range of the
sample data without significant errors. The predicted
power is not limited by frequency and its range [17,
55] is wider than Model-0.
Second, we tested the models against normality us-
ing a normal probability plot of the residuals. Fig.
4 and 5 show similar plots of predicted and sample
percentile points. These points are very close to the
diagonal line which means that these models had nor-
mal distributed errors. Table 1 summarizes the deter-
mined values of CPU-Power models coefficients and
statistics. This table shows the ranges of each coef-
ficient of each model. Model-2 shows a small range
for its coefficients. For instance, θ2-range (i.e., [2.1,

TABLE I: The determined values of CPU-Power models coefficients and statistics.

Model θ2-range θ2 θ1-range θ1 α-range α C-range C Std. Err. R2

0. Equ.4 -29.98 - 42.6 6.31 -152.8 - 138.25 -7.27 0 0 -118.86 - 168.24 24.68 7.95 0.291
1. Equ.5 -0.14 - 12.77 6.31 -33.17 - 18.63 -7.27 3.12 - 3.48 3.3 -15.77 - 35.36 9.79 1.41 0.978
2. Equ.6 3.08 - 4.63 3.8 0.88 - 4.37 2.63 3.13 - 3.49 3.31 0 0 1.40 0.998
3. Equ.7 4.78 - 5.20 4.99 0 0 3.26 - 3.60 3.43 0 0 1.53 0.998

than the residual rang [-3, 3] of Model-1. Fig.4-(b) is residuals
of Model-1. The points are symmetrically distributed around
a horizontal line. This proves that our model satisfies the
linearity assumption of the liner regression [9]. From this test,
we conclude that our models could predict beyond the range
of the sample data without significant errors. The predicted
power is not limited by frequency and its range [17, 55] is
wider than Model-0.

Second, we tested the models against normality using a
normal probability plot of the residuals. Fig. 4 and 5 show
similar plots of predicted and sample percentile points. These
points are very close to the diagonal line which means that
these models had normal distributed errors.

Table I summarizes the determined values of CPU-Power
models coefficients and statistics. This table shows the ranges
of each coefficient of each model. Model-2 shows a small
range for its coefficients. For instance, θ2-range (i.e., [2.1,
5.10]) compared to Model-0’s θ2-range (i.e.,[-33.54, 42.9])
is very small. However, Model-2 and Model-3 are regressions
with zero constant. Furthermore, the regression statistics in Ta-
ble I show that the regression R2 of our models is higher than
R2 of the Model-0. For instance, Model-2 and Model-3 have
regression R2 0.99 which means that these two models could
explain 99% of the power variations. The power variations
were determined by variations in the independent variables
(i.e., frequency and active cores). In contrast, Model-0, which
only considers frequency, has regression R2 0.259. Model-0
explained only 25% of power variations using frequency.

-15

-10

-5

0

5

10

15

27 29 31 33 35 37 39 41 43 45

R
e

s
id

u
a
ls

Predicted Power (Watt)

(a) Model-0 (b) Model-1

Fig. 4: Predicted power and residual plot.

E. Performance evaluation
As we discussed models performance statistically, in this

section we show and compare the performance of the models
experimentally. To achieve this, we conducted three experi-
ments using three different benchmarks of NPB benchmark
namely EP, CG, and BT. These benchmarks represent CPU-
Intensive, Memory-Intensive, and IO-Intensive applications
respectively.

(a) Model-0

61.5

0
20
40
60

0 5 10p
o

w
e

rc
o

re
 8

#n cores

#n cores Line Fit Plot

powercore 8

Predicted
powercore 8

R² = 0.9809

0

10

20

30

40

50

60

0 20 40 60 80 100 120

C
P

U
-P

o
w

e
r(

w
a
tt

)

Sample Percentile

(b) Model-1

Fig. 5: Normal probability plot.

1) CPU-intensive applications: To evaluate our models
against CPU-Intensive applications, we used EP benchmark to
generate a workload which was changed with time. As shown
in Fig. 6, we started with a low workload which increased with
time until it reached its maximum approximately at time 205
sec. Then, it started to decrease after time 250 sec. During the
experiment, we measured the CPU-Power consumption every
5 seconds. Then, we computed the estimated power using the
four different models. Obviously, the curve shows that Model-
0 has a big difference between its estimation and the measured
power when low-workload and few of cores are actives (i.e.,
1-3 active cores). However, it shows a good performance in
high-workload when all the cores are active. This case is
similar to estimation power consumption of a processor as
a unit regardless of active cores number.

As our models include the number of active cores and the
average frequency, they accurately estimated the power in both
areas of workload (i.e., low-workload and high-workload).
Furthermore, although Model-2 and Model-3 statistically (i.e.,
regression R2) are better than Model-1, the experiment demon-
strated that Model-1 with constant C achieved better perfor-
mance than the other models. Finally, slight percentage of
error could be observed in our models due to the fact that
we considered each logical core as physical core, but as we
mentioned before in section II-B the power consumed by a
logical core is less than the power consumed by a physical
core.

Now, we discuss the prediction accuracy by computing the
percentage of error using the following formula.

PoE = |(Estimiated−Measured)/Measured| ∗ 100%

Furthermore, we obtained the Empirical Cumulative Distri-
bution Function of Percentage of Error CDF(PoE). The plot
of CDF(PoE) for each model is depicted in fig.7. The x-axis
represents the Percentage of Error (PoE), and y-axis shows

Figure 5. Normal probability plot.

5.10]) compared to Model-0’s θ2-range (i.e.,[-33.54,
42.9]) is very small. However, Model-2 and Model-3
are regressions with zero constant. Furthermore, the
regression statistics in Table I show that the regression
R2 of our models is higher than R2 of the Model-0.
For instance, Model-2 and Model-3 have regression
R20.99 which means that these two models could ex-
plain 99% of the power variations. The power varia-
tions were determined by variations in the independent
variables (i.e., frequency and active cores). In contrast,
Model-0, which only considers frequency, has regres-
sion R20.259. Model-0 explained only 25% of power
variations using frequency.

3.5. Performance evaluation

As we discussed models performance statistically, in
this section we show and compare the performance of
the models experimentally. To achieve this, we con-
ducted three experiments using three different bench-
marks of NPB benchmark namely EP, CG, and BT.
These benchmarks represent CPU-Intensive, Memory-
Intensive, and IO-Intensive applications respectively.
1) CPU-intensive applications: To evaluate our mod-
els against CPU-Intensive applications, we used EP
benchmark to generate a workload which was changed
with time. As shown in fig. 6, we started with a low
workload which increased with time until it reached
its maximum approximately at time 205 sec. Then,
it started to decrease after time 250 sec. During the
experiment, we measured the CPU-Power consump-
tion every 5 seconds. Then, we computed the esti-
mated power using the four different models. Obvi-
ously, the curve shows that Model-0 has a big differ-
ence between its estimation and the measured power
when low-workload and few of cores are actives (i.e.,
1-3 active cores). However, it shows a good perfor-
mance in high-workload when all the cores are active.
This case is similar to estimation power consumption
of a processor as a unit regardless of active cores num-
ber.
As our models include the number of active cores and
the average frequency, they accurately estimated the
power in both areas of workload (i.e., low-workload
and high-workload). Furthermore, although Model-2
and Model-3 statistically (i.e., regression R2) are bet-
ter than Model-1, the experiment demonstrated that

48

Model θ2-range θ2 θ1-range θ1 α-range α C-range C Std. Err. R2

0. Equ.4 -29.98 - 42.6 6.31 -152.8 - 138.25 -7.27 0 0 -118.86 - 168.24 24.68 7.95 0.291
1. Equ.5 -0.14 - 12.77 6.31 -33.17 - 18.63 -7.27 3.12 - 3.48 3.3 -15.77 - 35.36 9.79 1.41 0.978
2. Equ.6 3.08 - 4.63 3.8 0.88 - 4.37 2.63 3.13 - 3.49 3.31 0 0 1.40 0.998
3. Equ.7 4.78 - 5.20 4.99 0 0 3.26 - 3.60 3.43 0 0 1.53 0.998

Table 1. The determined values of CPU-Power models coefficients and statistics.

TABLE I: The determined values of CPU-Power models coefficients and statistics.

Model θ2-range θ2 θ1-range θ1 α-range α C-range C Std. Err. R2

0. Equ.4 -29.98 - 42.6 6.31 -152.8 - 138.25 -7.27 0 0 -118.86 - 168.24 24.68 7.95 0.291
1. Equ.5 -0.14 - 12.77 6.31 -33.17 - 18.63 -7.27 3.12 - 3.48 3.3 -15.77 - 35.36 9.79 1.41 0.978
2. Equ.6 3.08 - 4.63 3.8 0.88 - 4.37 2.63 3.13 - 3.49 3.31 0 0 1.40 0.998
3. Equ.7 4.78 - 5.20 4.99 0 0 3.26 - 3.60 3.43 0 0 1.53 0.998

than the residual rang [-3, 3] of Model-1. Fig.4-(b) is residuals
of Model-1. The points are symmetrically distributed around
a horizontal line. This proves that our model satisfies the
linearity assumption of the liner regression [9]. From this test,
we conclude that our models could predict beyond the range
of the sample data without significant errors. The predicted
power is not limited by frequency and its range [17, 55] is
wider than Model-0.

Second, we tested the models against normality using a
normal probability plot of the residuals. Fig. 4 and 5 show
similar plots of predicted and sample percentile points. These
points are very close to the diagonal line which means that
these models had normal distributed errors.

Table I summarizes the determined values of CPU-Power
models coefficients and statistics. This table shows the ranges
of each coefficient of each model. Model-2 shows a small
range for its coefficients. For instance, θ2-range (i.e., [2.1,
5.10]) compared to Model-0’s θ2-range (i.e.,[-33.54, 42.9])
is very small. However, Model-2 and Model-3 are regressions
with zero constant. Furthermore, the regression statistics in Ta-
ble I show that the regression R2 of our models is higher than
R2 of the Model-0. For instance, Model-2 and Model-3 have
regression R2 0.99 which means that these two models could
explain 99% of the power variations. The power variations
were determined by variations in the independent variables
(i.e., frequency and active cores). In contrast, Model-0, which
only considers frequency, has regression R2 0.259. Model-0
explained only 25% of power variations using frequency.

-15

-10

-5

0

5

10

15

27 29 31 33 35 37 39 41 43 45

R
e
s
id

u
a
ls

Predicted Power (Watt)

(a) Model-0 (b) Model-1

Fig. 4: Predicted power and residual plot.

E. Performance evaluation
As we discussed models performance statistically, in this

section we show and compare the performance of the models
experimentally. To achieve this, we conducted three experi-
ments using three different benchmarks of NPB benchmark
namely EP, CG, and BT. These benchmarks represent CPU-
Intensive, Memory-Intensive, and IO-Intensive applications
respectively.

(a) Model-0

61.5

0
20
40
60

0 5 10p
o

w
e

rc
o

re
 8

#n cores

#n cores Line Fit Plot

powercore 8

Predicted
powercore 8

R² = 0.9809

0

10

20

30

40

50

60

0 20 40 60 80 100 120

C
P

U
-P

o
w

e
r(

w
a
tt

)

Sample Percentile

(b) Model-1

Fig. 5: Normal probability plot.

1) CPU-intensive applications: To evaluate our models
against CPU-Intensive applications, we used EP benchmark to
generate a workload which was changed with time. As shown
in Fig. 6, we started with a low workload which increased with
time until it reached its maximum approximately at time 205
sec. Then, it started to decrease after time 250 sec. During the
experiment, we measured the CPU-Power consumption every
5 seconds. Then, we computed the estimated power using the
four different models. Obviously, the curve shows that Model-
0 has a big difference between its estimation and the measured
power when low-workload and few of cores are actives (i.e.,
1-3 active cores). However, it shows a good performance in
high-workload when all the cores are active. This case is
similar to estimation power consumption of a processor as
a unit regardless of active cores number.

As our models include the number of active cores and the
average frequency, they accurately estimated the power in both
areas of workload (i.e., low-workload and high-workload).
Furthermore, although Model-2 and Model-3 statistically (i.e.,
regression R2) are better than Model-1, the experiment demon-
strated that Model-1 with constant C achieved better perfor-
mance than the other models. Finally, slight percentage of
error could be observed in our models due to the fact that
we considered each logical core as physical core, but as we
mentioned before in section II-B the power consumed by a
logical core is less than the power consumed by a physical
core.

Now, we discuss the prediction accuracy by computing the
percentage of error using the following formula.

PoE = |(Estimiated−Measured)/Measured| ∗ 100%

Furthermore, we obtained the Empirical Cumulative Distri-
bution Function of Percentage of Error CDF(PoE). The plot
of CDF(PoE) for each model is depicted in fig.7. The x-axis
represents the Percentage of Error (PoE), and y-axis shows

Figure 4. Predicted power and residual plot.

Model-1 with constant C achieved better performance
than the other models. Finally, slight percentage of er-
ror could be observed in our models due to the fact
that we considered each logical core as physical core,
but as we mentioned before in section 3.2 the power
consumed by a logical core is less than the power con-
sumed by a physical core.
Now, we discuss the prediction accuracy by computing
the percentage of error using the following formula.
PoE = |(Estimated − Measured)/Measured| ∗
100%
Furthermore, we obtained the Empirical Cumula-
tive Distribution Function of Percentage of Error
CDF(PoE). The plot of CDF(PoE) for each model is
depicted in fig. 7. The x-axis represents the Percent-
age of Error (PoE), and y-axis shows the percentage of
data points (i.e., predicted power values) that achieve
error less than each value of x. For instance, 90%
of the predicted values using Model-0 have less than
40%, and this error could increase to 50%. On the
other hand, our models show that 90% of values were
predicted with less than 9% error. Although R2 value
of Model-1 is less than R2 value of both Model-2 and
Model-3, Model-1 showed the best results where 95%
of the predicted values had error less than 7% error.
Generally, the prediction accuracy of Model-1 empiri-
cally outperforms the prediction accuracy of Model-2
and Model-3.
Significantly, our proposed models achieve high pre-
diction accuracy due to considering both number of
active cores and the average running frequency. Ad-
ditionally, the accurate readings of CPU-Power that
was realized using CPU-Power measurement capabil-
ity of our server assisted us to build these accurate
models. To test our models ability to predict those
un-sampled combinations of frequency and number
of cores, we conducted some experiments with differ-

ent un-sampled combinations frequency 2.53GHz and
number of cores. Table 2 presents the results of these
experiments. The results proved that our models are
capable to predict with high accuracy even un-sampled
combinations of frequency and number of cores.
2) Memory-intensive applications: In this section,
we evaluated performance of the models for applica-
tions that are considered memory-intensive using CG
benchmark. Fig. 8 shows the estimated power ver-
sus the measured power. The diagonal line represents
the perfect predication line which illustrates the devi-
ation of the estimated values from the measured val-
ues. In other words, the predicted value is equal or
close to the measured value if it is one of the perfect
predication line points or close to this line. From fig.
8, the data points that represent our models are either
on or close to perfect predication line. Furthermore,
we computed the maximum prediction error of each
Model. We found that Model-1 and Model-2 had less
maximum prediction error compared to the other two
models. However, with less than 6% maximum predic-
tion error for Model-1 and Model-2, these two models
are still accurate. The maximum prediction error of
Model-0 was 14.4%.

Cores Measured Model-0 Model-1 Model-2 Model-3
3 42 47.09 42.27 41.23 42.06
4 45 47.09 45.57 44.53 45.46
8 58 47.09 58.77 57.73 59.06

Table 2. The predicted CPU-Power for un-
sampled combination

3) IO-intensive applications: As we presented the
performance of our models for CPU-intensive and
Memory-intensive applications in the previous sec-
tions, this section presents performance of the mod-

49

0

50

100

150

200

250

300

350

400

450

500

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340

C
P

U
-P

o
w

e
r

(W
a

tt
)

Time (sec.)

Model-0 Model-1 Model-2 Model-3 Measured Power Workload

W
o
rk

lo
a
d
 (

M
F

lo
p
s
/s

e
c
)

F=1.6-1.82GHz
N= 1-3 cores

F=2.4GHz
N= 3-5 cores

F=1.6-1.7GHz
N= 4-7 cores

F=1.7-1.82GHz
N= 1-3 cores

Fig. 6: Trace of measured consumed CPU-Power and predicted CPU-Power for the four models.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

0.9

0.95

1

Percentage of Error (PoE) -Model-0

C
D

F
(P

o
E

)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

0.9
0.95

1

Percentage of Error (PoE) - Model-1

C
D

F
(P

o
E

)

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.95

1

Percentage of Error (PoE)- Model-2

C
D

F
(P

o
E

)

0 1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

0.9
0.95

1

Percentage of Error (PoE) - Model-3

C
D

F
(P

o
E

)

Fig. 7: Prediction accuracy of the CPU-Power models.

the percentage of data points (i.e., predicted power values)
that achieve error less than each value of x. For instance,
90% of the predicted values using Model-0 have less than
40%, and this error could increase to 50%. On the other hand,
our models show that 90% of values were predicted with less
than 9% error. Although R2 value of Model-1 is less than
R2 value of both Model-2 and Model-3, Model-1 showed the
best results where 95% of the predicted values had error less
than 7% error. Generally, the prediction accuracy of Model-1
empirically outperforms the prediction accuracy of Model-2
and Model-3.

Significantly, our proposed models achieve high prediction
accuracy due to considering both number of active cores
and the average running frequency. Additionally, the accurate
readings of CPU-Power that was realized using CPU-Power
measurement capability of our server assisted us to build these
accurate models. To test our models’ ability to predict those
un-sampled combinations of frequency and number of cores,
we conducted some experiments with different un-sampled
combinations frequency 2.53GHz and number of cores. Table
II presents the results of these experiments. The results proved
that our models are capable to predict with high accuracy even

un-sampled combinations of frequency and number of cores.
2) Memory-intensive applications: In this section, we eval-

uated performance of the models for applications that are
considered memory-intensive using CG benchmark. Fig. 8
shows the estimated power versus the measured power. The
diagonal line represents the perfect predication line which
illustrates the deviation of the estimated values from the
measured values. In other words, the predicted value is equal
or close to the measured value if it is one of the perfect
predication line points or close to this line. From Fig. 8,
the data points that represent our models are either on or
close to perfect predication line. Furthermore, we computed
the maximum prediction error of each Model. We found that
Model-1 and Model-2 had less maximum prediction error

TABLE II: The predicted CPU-Power for un-sampled combi-
nation of frequency 2.53GHz and number of cores.

Cores Measured Model-0 Model-1 Model-2 Model-3
3 42 47.09 42.27 41.23 42.06
4 45 47.09 45.57 44.53 45.46
8 58 47.09 58.77 57.73 59.06

Figure 6. Trace of measured consumed CPU-Power and predicted CPU-Power for the four
models.

els for IO-intensive applications. We repeated the ex-
periments procedure of the previous section using BT
benchmark. Fig. 9 also shows the estimated power
versus the measured power. We can see that the pre-
dicted values of Model-1 are on perfect predication
line or very close to it. In contrast, Model-0 and
Model-3 show big deviation of the perfect line. More-
over, we found that Model-1 and Model- 2 had less
maximum prediction error compared to the other two
models. Model-1 and Model-2 achieved less than 5%
maximum prediction error. Finally, the maximum pre-
diction error of Model-0 became worse with 22.07%
error.

3.6. Conclusions and next steps

In this project phase, we developed models to estimate
the power consumption of multicore processors. Our
work is distinguished from previous works in combin-
ing number of active cores with P-state of multicore
processor. We develop our prediction models using
an Intel(R) Xeon(R) CPU E5540 processor. Addition-
ally, our models are based on a virtualized server that
could host multiple heterogeneous applications. We
validated our proposed models using statistical anal-
ysis and experimental approach using varied work-
loads. The results of the experiment showed that our
model achieved high accuracy of CPU-Power estima-
tion. Thus, our next steps are as follows:

• Evaluating our proposed using different types of
applications and systems that consist of cores
more than 4 cores.

• Applying our proposed models to dynamic
power-aware configuration for a virtual machine
in terms of number of cores and frequency. This
enables new adaptive power management solu-
tion for virtualized servers. Furthermore, they

could be used to realize fine-grained power pro-
visioning proportional to workloads.

• Developing a mechanism to estimate the con-
sumed power by each virtual machine.

References

[1] Xen wiki. http://wiki.xensource.com/xenwiki/xenpm,
Accessed 30-6-2011.

[2] Y. Ben-Itzhak, I. Cidon, and A. Kolodny. Performance
and power aware cmp thread allocation modeling. In
HiPEAC, pages 232–246, 2010.

[3] S. Chatterjee and A. S. Hadi. Regression analysis by
example. John Wiley and Sons, 2006.

[4] S. Dawson-Haggerty, A. Krioukov, and D. E. Culler.
Power optimization - a reality check. Technical Report
UCB/EECS-2009-140, EECS Department, University
of California, Berkeley, Oct. 2009.

[5] R. V. der Wijngaart. Nas parallel benchmarks v. 2.4.
Technical Report NAS-02-007, NAS, 2002.

[6] X. Fan, W.-D. Weber, and L. Barroso. Power provi-
sioning for a warehouse-sized computer. In 34th an-
nual international symposium on Computer architec-
ture, pages 13–23, San Diego, California, USA, 2007.
ACM.

[7] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy.
Optimal power allocation in server farms. In SIGMET-
RICS, June 2009.

[8] J. Hamilton. Cooperative expendable micro-slice
servers (cems): Low cost, low power servers for
internet-scale services. In Innovative Data Systems
Research CIDR09, Jan. 2009.

[9] K. H. Kim, A. Beloglazov, and R. Buyya. Power-
aware provisioning of virtual machines for real-time
Cloud services. Concurrency and Computation: Prac-
tice and Experience. John Wiley and Sons, 2011.

[10] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang,
and X. Zhu. No power struggles: coordinated multi-
level power management for the data center. In ASP-
LOS, Mar. 2008.

50

05
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

CPU-Power (Watt)

T
im

e
 (

s
e
c
.)

M
o
d
e
l-
0

M
o
d
e
l-
1

M
o
d
e
l-
2

M
o
d
e
l-
3

M
e
a
s
u
re

d
 P

o
w

e
r

W
o
rk

lo
a
d

Workload (MFlops/sec)

F
=

1
.6

-1
.8

2
G

H
z

N
=

 1
-3

c
o

re
s

F
=

2
.4

G
H

z
N

=
 3

-5
c
o
re

s

F
=

1
.6

-1
.7

G
H

z
N

=
 4

-7
c
o
re

s
F

=
1
.7

-1
.8

2
G

H
z

N
=

 1
-3

c
o
re

s

Fi
g.

6:
Tr

ac
e

of
m

ea
su

re
d

co
ns

um
ed

C
PU

-P
ow

er
an

d
pr

ed
ic

te
d

C
PU

-P
ow

er
fo

r
th

e
fo

ur
m

od
el

s.

0
10

20
30

40
50

60
0

0.
2

0.
4

0.
6

0.
8

0.
9

0.
951

P
er

ce
nt

ag
e

of
 E

rr
or

 (P
oE

) -
M

o
d

e
l-
0

CDF(PoE)

0
1

2
3

4
5

6
7

8
0

0.
2

0.
4

0.
6

0.
8

0.
9

0.
951

Pe
rc

en
ta

ge
 o

f E
rro

r (
Po

E)
 -

 M
od

el
-1

CDF(PoE)

0
1

2
3

4
5

6
7

8
9

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
951

Pe
rc

en
ta

ge
 o

f E
rro

r (
Po

E)
- M

od
el

-2

CDF(PoE)

0
1

2
3

4
5

6
7

8
9

10
11

0

0.
2

0.
4

0.
6

0.
8

0.
9

0.
951

Pe
rc

en
ta

ge
 o

f E
rro

r (
Po

E)
 -

M
od

el
-3

CDF(PoE)

Fi
g.

7:
Pr

ed
ic

tio
n

ac
cu

ra
cy

of
th

e
C

PU
-P

ow
er

m
od

el
s.

th
e

pe
rc

en
ta

ge
of

da
ta

po
in

ts
(i

.e
.,

pr
ed

ic
te

d
po

w
er

va
lu

es
)

th
at

ac
hi

ev
e

er
ro

r
le

ss
th

an
ea

ch
va

lu
e

of
x.

Fo
r

in
st

an
ce

,
90

%
of

th
e

pr
ed

ic
te

d
va

lu
es

us
in

g
M

od
el

-0
ha

ve
le

ss
th

an
40

%
,a

nd
th

is
er

ro
r

co
ul

d
in

cr
ea

se
to

50
%

.O
n

th
e

ot
he

r
ha

nd
,

ou
r

m
od

el
s

sh
ow

th
at

90
%

of
va

lu
es

w
er

e
pr

ed
ic

te
d

w
ith

le
ss

th
an

9%
er

ro
r.

A
lth

ou
gh

R
2

va
lu

e
of

M
od

el
-1

is
le

ss
th

an
R

2
va

lu
e

of
bo

th
M

od
el

-2
an

d
M

od
el

-3
,M

od
el

-1
sh

ow
ed

th
e

be
st

re
su

lts
w

he
re

95
%

of
th

e
pr

ed
ic

te
d

va
lu

es
ha

d
er

ro
r

le
ss

th
an

7%
er

ro
r.

G
en

er
al

ly
,t

he
pr

ed
ic

tio
n

ac
cu

ra
cy

of
M

od
el

-1
em

pi
ri

ca
lly

ou
tp

er
fo

rm
s

th
e

pr
ed

ic
tio

n
ac

cu
ra

cy
of

M
od

el
-2

an
d

M
od

el
-3

.
Si

gn
ifi

ca
nt

ly
,

ou
r

pr
op

os
ed

m
od

el
s

ac
hi

ev
e

hi
gh

pr
ed

ic
tio

n
ac

cu
ra

cy
du

e
to

co
ns

id
er

in
g

bo
th

nu
m

be
r

of
ac

tiv
e

co
re

s
an

d
th

e
av

er
ag

e
ru

nn
in

g
fr

eq
ue

nc
y.

A
dd

iti
on

al
ly

,t
he

ac
cu

ra
te

re
ad

in
gs

of
C

PU
-P

ow
er

th
at

w
as

re
al

iz
ed

us
in

g
C

PU
-P

ow
er

m
ea

su
re

m
en

tc
ap

ab
ili

ty
of

ou
r

se
rv

er
as

si
st

ed
us

to
bu

ild
th

es
e

ac
cu

ra
te

m
od

el
s.

To
te

st
ou

r
m

od
el

s’
ab

ili
ty

to
pr

ed
ic

t
th

os
e

un
-s

am
pl

ed
co

m
bi

na
tio

ns
of

fr
eq

ue
nc

y
an

d
nu

m
be

r
of

co
re

s,
w

e
co

nd
uc

te
d

so
m

e
ex

pe
ri

m
en

ts
w

ith
di

ff
er

en
t

un
-s

am
pl

ed
co

m
bi

na
tio

ns
fr

eq
ue

nc
y

2.
53

G
H

z
an

d
nu

m
be

r
of

co
re

s.
Ta

bl
e

II
pr

es
en

ts
th

e
re

su
lts

of
th

es
e

ex
pe

ri
m

en
ts

.T
he

re
su

lts
pr

ov
ed

th
at

ou
r

m
od

el
s

ar
e

ca
pa

bl
e

to
pr

ed
ic

tw
ith

hi
gh

ac
cu

ra
cy

ev
en

un
-s

am
pl

ed
co

m
bi

na
tio

ns
of

fr
eq

ue
nc

y
an

d
nu

m
be

r
of

co
re

s.
2)

M
em

or
y-

in
te

ns
iv

e
ap

pl
ic

at
io

ns
:

In
th

is
se

ct
io

n,
w

e
ev

al
-

ua
te

d
pe

rf
or

m
an

ce
of

th
e

m
od

el
s

fo
r

ap
pl

ic
at

io
ns

th
at

ar
e

co
ns

id
er

ed
m

em
or

y-
in

te
ns

iv
e

us
in

g
C

G
be

nc
hm

ar
k.

Fi
g.

8
sh

ow
s

th
e

es
tim

at
ed

po
w

er
ve

rs
us

th
e

m
ea

su
re

d
po

w
er

.
T

he
di

ag
on

al
lin

e
re

pr
es

en
ts

th
e

pe
rf

ec
t

pr
ed

ic
at

io
n

lin
e

w
hi

ch
ill

us
tr

at
es

th
e

de
vi

at
io

n
of

th
e

es
tim

at
ed

va
lu

es
fr

om
th

e
m

ea
su

re
d

va
lu

es
.I

n
ot

he
r

w
or

ds
,t

he
pr

ed
ic

te
d

va
lu

e
is

eq
ua

l
or

cl
os

e
to

th
e

m
ea

su
re

d
va

lu
e

if
it

is
on

e
of

th
e

pe
rf

ec
t

pr
ed

ic
at

io
n

lin
e

po
in

ts
or

cl
os

e
to

th
is

lin
e.

Fr
om

Fi
g.

8,
th

e
da

ta
po

in
ts

th
at

re
pr

es
en

t
ou

r
m

od
el

s
ar

e
ei

th
er

on
or

cl
os

e
to

pe
rf

ec
t

pr
ed

ic
at

io
n

lin
e.

Fu
rt

he
rm

or
e,

w
e

co
m

pu
te

d
th

e
m

ax
im

um
pr

ed
ic

tio
n

er
ro

r
of

ea
ch

M
od

el
.

W
e

fo
un

d
th

at
M

od
el

-1
an

d
M

od
el

-2
ha

d
le

ss
m

ax
im

um
pr

ed
ic

tio
n

er
ro

r

TA
B

L
E

II
:

T
he

pr
ed

ic
te

d
C

PU
-P

ow
er

fo
r

un
-s

am
pl

ed
co

m
bi

-
na

tio
n

of
fr

eq
ue

nc
y

2.
53

G
H

z
an

d
nu

m
be

r
of

co
re

s.

C
or

es
M

ea
su

re
d

M
od

el
-0

M
od

el
-1

M
od

el
-2

M
od

el
-3

3
42

47
.0

9
42

.2
7

41
.2

3
42

.0
6

4
45

47
.0

9
45

.5
7

44
.5

3
45

.4
6

8
58

47
.0

9
58

.7
7

57
.7

3
59

.0
6

Figure 7. Prediction accuracy of the
CPU-Power models.

compared to the other two models. However, with less than
6% maximum prediction error for Model-1 and Model-2, these
two models are still accurate. The maximum prediction error
of Model-0 was 14.4%.

20

25

30

35

40

45

50

55

20 25 30 35 40 45 50 55

P
re

d
ic

te
d
 P

o
w

e
r

(W
a
tt
)

Measured Power (Watt)

Model-0 Model-1 Model-2 Model-3 Perfect Prediction Line

Max Error of Model-0: 5.6 , 14.4% error
Max Error of Model-1: 1.7, 5.9 % error
Max Error of Model-2: 1.04, 5.07 % error
Max Error of Model-3: 3.76, 12.12 % error

Fig. 8: CPU-Power models fit for CG-Memory-Intensive:
measured vs. estimated.

3) IO-intensive applications: As we presented the perfor-
mance of our models for CPU-intensive and Memory-intensive
applications in the previous sections, this section presents
performance of the models for IO-intensive applications. We
repeated the experiments procedure of the previous section
using BT benchmark. Fig. 9 also shows the estimated power
versus the measured power. We can see that the predicted
values of Model-1 are on perfect predication line or very close
to it. In contrast, Model-0 and Model-3 show big deviation of
the perfect line. Moreover, we found that Model-1 and Model-
2 had less maximum prediction error compared to the other
two models. Model-1 and Model-2 achieved less than 5%
maximum prediction error. Finally, the maximum prediction
error of Model-0 became worse with 22.07% error.

20

25

30

35

40

45

50

55

20 25 30 35 40 45 50 55

P
re

d
ic

te
d
 P

o
w

e
r

(W
a
tt
)

Measured Power (Watt)

Model-0 Model-1 Model-2 Model-3 Perfect Prediction Line

Max Error of Model-0: 11.03, 22.07% error
Max Error of Model-1: 1.14, 4.23 % error
Max Error of Model-2: 1.12, 3.63 % error
Max Error of Model-3: 3.16, 11.70 % error

Fig. 9: CPU-Power models fit for BT-IO-Intensive: measured
vs. estimated.

IV. CONCLUSIONS AND NEXT STEPS

In this project phase, we developed models to estimate
the power consumption of multicore processors. Our work is

distinguished from previous works in combining number of
active cores with P-state of multicore processor. We develop
our prediction models using an Intel(R) Xeon(R) CPU E5540
processor. Additionally, our models are based on a virtualized
server that could host multiple heterogeneous applications. We
validated our proposed models using statistical analysis and
experimental approach using varied workloads. The results of
the experiment showed that our model achieved high accuracy
of CPU-Power estimation.

Thus, our next steps are as follows:
• Evaluating our proposed using different types of appli-

cations and systems that consist of cores more than 4
cores.

• Applying our proposed models to dynamic power-aware
configuration for a virtual machine in terms of number
of cores and frequency. This enables new adaptive power
management solution for virtualized servers. Further-
more, they could be used to realize fine-grained power
provisioning proportional to workloads.

• Developing a mechanism to estimate the consumed power
by each virtual machine.

REFERENCES

[1] J. Hamilton. Cooperative expendable micro-slice servers (CEMS): low
cost, low power servers for internet-scale services. In conference on
Innovative Data Systems Research CIDR’09, January 2009.

[2] U.S. Environmental Protection Agency. Epa report on server and data
center energy efficiency. ENERGY STAR Program, 2007.

[3] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. No
power struggles: coordinated multi-level power management for the data
center. In Proceedings of ASPLOS, March 2008.

[4] R. Urgaonkar, U.C. Kozat, K. Igarashi, and M.J. Neely. Dynamic
resource allocation and power management in virtualized data centers.
2010 IEEE Network Operations and Management Symposium (NOMS),
IEEE, 2010, pp. 479-486.

[5] Y. Ben-Itzhak, I. Cidon, and A. Kolodny. Performance and power aware
cmp thread allocation modeling. In HiPEAC, 2010, pp. 232-46.

[6] S. Dawson-Haggerty, A. Krioukov, and D. E. Culler. Power optimiza-
tion - a reality check. Technical Report UCB/EECS-2009-140, EECS
Department, University of California, Berkeley, Oct 2009.

[7] R. Urgaonkar, U.C. Kozat, K. Igarashi, and M.J. Neely. Dynamic
resource allocation and power management in virtualized data centers.
2010 IEEE Network Operations and Management Symposium (NOMS),
IEEE, 2010, pp. 479-486.

[8] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal power
allocation in server farms. In Proceedings of SIGMETRICS, June 2009.

[9] S. Chatterjee and A. S. Hadi, Regression analysis by example. John
Wiley and Sons, 2006.

[10] X. Fan, W.-D. Weber, and L.A. Barroso. Power provisioning for a
warehouse-sized computer. In Proceedings of the 34th annual inter-
national symposium on Computer architecture, San Diego, California,
USA: ACM, 2007, pp. 13-23.

[11] R. V. der Wijngaart, NAS Parallel Benchmarks v. 2.4.NAS Technical
Report NAS-02-007, October 2002.

[12] J. Subhlok, S. Venkataramaiah, and A. Singh. Characterizing NAS
Benchmark Performance on Shared Heterogeneous Networks. Interna-
tional Parallel and Distributed Processing Symposium: IPDPS 2002
Workshops, vol. 2, 2002, pp. 0086.

[13] http://wiki.xensource.com/xenwiki/xenpm. Accessed 30-6-2011.
[14] K. H. Kim, A. Beloglazov, and R. Buyya. Power-aware provisioning

of virtual machines for real-time Cloud services. Concurrency and
Computation: Practice and Experience. John Wiley and Sons, 2011.

Figure 8. CPU-Power models fit for CG-
Memory-Intensive:

compared to the other two models. However, with less than
6% maximum prediction error for Model-1 and Model-2, these
two models are still accurate. The maximum prediction error
of Model-0 was 14.4%.

20

25

30

35

40

45

50

55

20 25 30 35 40 45 50 55

P
re

d
ic

te
d
 P

o
w

e
r

(W
a
tt
)

Measured Power (Watt)

Model-0 Model-1 Model-2 Model-3 Perfect Prediction Line

Max Error of Model-0: 5.6 , 14.4% error
Max Error of Model-1: 1.7, 5.9 % error
Max Error of Model-2: 1.04, 5.07 % error
Max Error of Model-3: 3.76, 12.12 % error

Fig. 8: CPU-Power models fit for CG-Memory-Intensive:
measured vs. estimated.

3) IO-intensive applications: As we presented the perfor-
mance of our models for CPU-intensive and Memory-intensive
applications in the previous sections, this section presents
performance of the models for IO-intensive applications. We
repeated the experiments procedure of the previous section
using BT benchmark. Fig. 9 also shows the estimated power
versus the measured power. We can see that the predicted
values of Model-1 are on perfect predication line or very close
to it. In contrast, Model-0 and Model-3 show big deviation of
the perfect line. Moreover, we found that Model-1 and Model-
2 had less maximum prediction error compared to the other
two models. Model-1 and Model-2 achieved less than 5%
maximum prediction error. Finally, the maximum prediction
error of Model-0 became worse with 22.07% error.

20

25

30

35

40

45

50

55

20 25 30 35 40 45 50 55

P
re

d
ic

te
d
 P

o
w

e
r

(W
a
tt
)

Measured Power (Watt)

Model-0 Model-1 Model-2 Model-3 Perfect Prediction Line

Max Error of Model-0: 11.03, 22.07% error
Max Error of Model-1: 1.14, 4.23 % error
Max Error of Model-2: 1.12, 3.63 % error
Max Error of Model-3: 3.16, 11.70 % error

Fig. 9: CPU-Power models fit for BT-IO-Intensive: measured
vs. estimated.

IV. CONCLUSIONS AND NEXT STEPS

In this project phase, we developed models to estimate
the power consumption of multicore processors. Our work is

distinguished from previous works in combining number of
active cores with P-state of multicore processor. We develop
our prediction models using an Intel(R) Xeon(R) CPU E5540
processor. Additionally, our models are based on a virtualized
server that could host multiple heterogeneous applications. We
validated our proposed models using statistical analysis and
experimental approach using varied workloads. The results of
the experiment showed that our model achieved high accuracy
of CPU-Power estimation.

Thus, our next steps are as follows:
• Evaluating our proposed using different types of appli-

cations and systems that consist of cores more than 4
cores.

• Applying our proposed models to dynamic power-aware
configuration for a virtual machine in terms of number
of cores and frequency. This enables new adaptive power
management solution for virtualized servers. Further-
more, they could be used to realize fine-grained power
provisioning proportional to workloads.

• Developing a mechanism to estimate the consumed power
by each virtual machine.

REFERENCES

[1] J. Hamilton. Cooperative expendable micro-slice servers (CEMS): low
cost, low power servers for internet-scale services. In conference on
Innovative Data Systems Research CIDR’09, January 2009.

[2] U.S. Environmental Protection Agency. Epa report on server and data
center energy efficiency. ENERGY STAR Program, 2007.

[3] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. No
power struggles: coordinated multi-level power management for the data
center. In Proceedings of ASPLOS, March 2008.

[4] R. Urgaonkar, U.C. Kozat, K. Igarashi, and M.J. Neely. Dynamic
resource allocation and power management in virtualized data centers.
2010 IEEE Network Operations and Management Symposium (NOMS),
IEEE, 2010, pp. 479-486.

[5] Y. Ben-Itzhak, I. Cidon, and A. Kolodny. Performance and power aware
cmp thread allocation modeling. In HiPEAC, 2010, pp. 232-46.

[6] S. Dawson-Haggerty, A. Krioukov, and D. E. Culler. Power optimiza-
tion - a reality check. Technical Report UCB/EECS-2009-140, EECS
Department, University of California, Berkeley, Oct 2009.

[7] R. Urgaonkar, U.C. Kozat, K. Igarashi, and M.J. Neely. Dynamic
resource allocation and power management in virtualized data centers.
2010 IEEE Network Operations and Management Symposium (NOMS),
IEEE, 2010, pp. 479-486.

[8] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal power
allocation in server farms. In Proceedings of SIGMETRICS, June 2009.

[9] S. Chatterjee and A. S. Hadi, Regression analysis by example. John
Wiley and Sons, 2006.

[10] X. Fan, W.-D. Weber, and L.A. Barroso. Power provisioning for a
warehouse-sized computer. In Proceedings of the 34th annual inter-
national symposium on Computer architecture, San Diego, California,
USA: ACM, 2007, pp. 13-23.

[11] R. V. der Wijngaart, NAS Parallel Benchmarks v. 2.4.NAS Technical
Report NAS-02-007, October 2002.

[12] J. Subhlok, S. Venkataramaiah, and A. Singh. Characterizing NAS
Benchmark Performance on Shared Heterogeneous Networks. Interna-
tional Parallel and Distributed Processing Symposium: IPDPS 2002
Workshops, vol. 2, 2002, pp. 0086.

[13] http://wiki.xensource.com/xenwiki/xenpm. Accessed 30-6-2011.
[14] K. H. Kim, A. Beloglazov, and R. Buyya. Power-aware provisioning

of virtual machines for real-time Cloud services. Concurrency and
Computation: Practice and Experience. John Wiley and Sons, 2011.

Figure 9. CPU-Power models fit for BT-
IO-Intensive: measured

[11] J. Subhlok, S. Venkataramaiah, and A. Singh. Charac-
terizing nas benchmark performance on shared hetero-
geneous networks. In International Parallel and Dis-
tributed Processing Symposium: IPDPS 2002 Work-
shops, volume 2, page 0086, 2002.

[12] R. Urgaonkar, U. Kozat, K. Igarashi, and M. Neely.
Dynamic resource allocation and power management
in virtualized data centers. IEEE Network Operations
and Management Symposium (NOMS), pages 479–
486, 2010.

[13] R. Urgaonkar, U. Kozat, K. Igarashi, and M. Neely.
Dynamic resource allocation and power management
in virtualized data centers. 2010 IEEE Network Oper-
ations and Management Symposium (NOMS), IEEE,
pages 479–486, 2010.

[14] U.S. Environmental Protection Agency. Epa report on
server and data center energy efficiency. ENERGY
STAR Program, 2007.

51

Towards Multi-Core and In-Memory for IDS Alert Correlation:
Approaches and Capabilities

Sebastian Roschke, Peter Ernicke, Martin Kreichgauer, Michael Frister, Florian Thomas,
Feng Cheng, Christoph Meinel

Hasso-Plattner-Institute
Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam
{sebastian.roschke, feng.cheng, meinel}@hpi.uni-potsdam.de

{peter.ernicke, martin.kreichgauer, michael.frister, florian.thomas}@student.hpi.uni-potsdam.de

Abstract

Intrusion Detection Systems (IDS) have been widely
deployed in practice for detecting malicious behavior
on network communication and hosts. The problem
of false-positive alerts is usually addressed by corre-
lation and clustering of alerts. As real-time analysis
is crucial for security operators, this process needs to
be finished as fast as possible, which is a challenging
task as the amount of alerts produced in large scale
deployments of distributed IDS is significantly high.
We identify the data storage and processing algorithms
to be the most important factors influencing the per-
formance of clustering and correlation. The Security
Analytics Lab (SAL) is developed to make use of multi-
core and in-memory processing. Using the SAL, a mul-
titude of algorithms is implemented, such as Attack-
Graph based correlation using HMMs, QROCK cate-
gorical clustering, and rule-based correlation using a
knowledge base. The SAL is using the Common Event
Expression (CEE) and supports generic flat log data.

1 Alert Correlation and its Performance

The alert correlation framework usually consists of
several components [4]: Normalization, Aggregation
(Clustering), Correlation, False Alert Reduction, At-
tack Strategy Analysis, and Prioritization. Over the
last years, alert correlation research focused on new
methods and technologies for these components. ID-
MEF [5] and CVE [17] are important efforts in the
field of Normalization. Approaches of aggregation are
mostly based on similarity of alerts or generalization
hierarchies. The correlation algorithms [4] can be clas-
sified as: Scenario-based correlation, Rule-based cor-
relation, Statistical correlation, and Temporal correla-
tion. Most of the efforts do not consider the aspect of
performance, which is needed in case of huge amounts

of alerts, as well as the scenarios requiring real-time.
The efficiency of the correlation depends on the qual-
ity and performance of the algorithm as well as the
storage and organization of original alerts. The quality
is a measure of the correctness of the algorithm and
depicts how many of the recognized correlations are
correct, i.e., how many of the correlations found rep-
resent existing relations between alerts. Furthermore,
it depicts how many of the existing relations between
alerts are found by the algorithm. The performance of
the correlation describes the amount of time needed to
correlate a number of alerts. Due to the complexity
of large scale networks, the amount of alerts increases
significantly. Therefore, the performance of correla-
tion algorithms is a major aspect of the efficiency of
correlation.
The work described in [14] considers the performance
of alert correlation by using a memory-based index for
hyper alerts. A hyper alert is a cluster of alerts with
the same properties, e.g., the same source address or
target address. The approach using index tables is in-
troduced in [11]. To perform correlation in real-time,
the approach filters and clusters alerts to hyper alerts,
which reduces the number of processed alerts signifi-
cantly. However, this technique may lead to inaccurate
results of the correlation, as multiple alerts are gener-
alized to a single hyper alert. The approach reaches a
correlation rate on the order of 100, 000 alerts per sec-
ond based on the massive reduction of alerts by clus-
tering in hyper alerts. In [2] the data storage and the
processing algorithms have been identified to be the
most important factors influencing the performance of
clustering and correlation. The platform introduced
in [2] considers different storage mechanisms and can
handle up to 100, 000, 000 for specific algorithms that
make heavy use of the caching mechanisms of the plat-
form. For storage, a column-based database, an In-
Memory alert storage, and memory-based index tables
lead to significant improvements of the performance.
Although this work considers data and task distribu-

53

tion in general, the platform is not mature enough
to distribute one correlation algorithm over multiple
computing cores. Furthermore, using a hybrid mem-
ory architecture and GPU based computing is not con-
sidered.
We believe that research in the area of IDS and net-
work security as application for multi-core and In-
memory based platforms can provide new paradigms
for conducting security. Correlation and clustering is
currently only done in a limited way using filtered data
sets. Using the multi-core and In-memory platforms,
it might be possible to do correlation and clustering on
an unfiltered data set. Thus, it might not be necessary
to fine tune (e.g., exclude certain detection rules) the
IDS sensors anymore, as the correlation and clustering
can do meaningful reasoning on all alerts in a short
time. Furthermore, we expect correlation and cluster-
ing services offered in the Cloud. A flexible and exten-
sible correlation platform can provide the foundation
work for a new paradigm in security.

2. Results and Achievements

During the last few month, we have been able to
achieve multiple results by using the system in the Fu-
ture SOC infrastructure. The Security Analytics Lab
(SAL) was used by master students to implement and
test various algorithms: a rule-based correlation, an
Attack Graph based algorithm that uses HMMs, and
the ROCK/QROCK clustering algorithm. The plat-
form could be extended to support generic flat log files
for correlation using the Common Event Expression
(CEE) standard [7].
Apart from the practical achievements, we have been
able to publish papers on the correlation platform [2]
and started research on a complex correlation algo-
rithm using attack graph data and environmental in-
formation for IDS correlation [1]. The Attack Graph
based algorithm is described in [3]. Additional results
are summarized in the following subsections.
We deployed the prototype of the correlation platform
a FutureSOC VM (1 CPU, 4 GB Ram) and developed
multiple features to improve performance and usabil-
ity. Furthermore, we conducted some tests and exper-
iments using the NVIDIA FluiDyna System as well as
the Fujitsu RX600 S5 1. The following feature set has
been realized:

• Attack graph based correlation algorithm using
HMMs

• Rule-based correlation using a knowledge base of
predicates

• QROCK/ROCK clustering for IDS alerts

• Common Event Expression (CEE) support for
processing of flat log files

• Snort alert generator that generates IDS alerts us-
ing a network description

• Dynamic module loading by uploading a module
through the frontend

• Usability and performance improvements for the
GUI

• Integration of environmental data into the plat-
form that can be used for correlation (network
and system descriptions, attack graph data)

• Development of the information pool concept
that enables access to correlation results and envi-
ronmental information for all correlation modules

• Multi-core support for OpenCL and MapReduce

• Visualization of correlation results

2.1 Normalization using CEE

The data format used in the platform should be stan-
dardized to improve flexibility and applicability, i.e.,
many different SIEM systems, sensors, and log gath-
erers need to be attached to the platform. The Intru-
sion Detection Message Exchange Format (IDMEF)
[5] was the first approach for implementing the plat-
form, but it yields drawbacks in terms of expressive-
ness of log events. Thus, the Common Event Expres-
sion (CEE) [7] was chosen for the current release of
the platform.
To benefit from the new approaching standard and for
being able to connect log gatherers to the platform, a
preliminary implementation of CEE is developed and
used in the platform. A fixed set of field identifiers
is used that is extracted from the current set of white
papers and suggestions on the mailing list. The imple-
mentation is generic to enable new field identifiers to
be integrated easily. The implementation is done using
Google Protobuf [18]. Protobuf provides a simple and
efficient method to serialize structured data. The data
types are defined using an abstract language and so
called message definitions for each entity of the data
format. The message descriptions are translated in a
set of Java classes that can be used within the corre-
lation platform. Each message is stored in a simple
key-value manner, i.e., each possible field has an iden-
tifier (key) and a corresponding value. Apart from the
predefined key set in the dictionary of the standard, a
user can define individual keys.
As the standard is under development, a fixed set of
field identifiers is chosen based on the mailing list dis-
cussions and existing requirements. Due to the open
key-value structure of the standard, additional fields
can be added easily.

• messageid - the unique identifier of an event

• prod name - the name of the event producer/ana-
lyzer

54

• event type - the type of the event, either IDS or
log

• creation time - the time of the creation of the
event

• classification text - the message of the event

• reference - existing references to a certain event

• source name - the name of the source responsible
for the action described by the event

• source address - the address (IP) of the source re-
sponsible for the action described by the event

• source port - the source port of the connection re-
sponsible for the action described by the event

• target name - the name of the target of the action
described by the event

• target address - the address (IP) of the target of
the action described by the event

• target user - the target user of the action described
by the event

• target userid - the id of the target user of the ac-
tion described by the event

• target port - the target port of the connection re-
sponsible for the action described by the event

• target process - the name of the target process of
the action described by the event

• target processid - the id of the target process of
the action described by the event

• target service - the name of the target service of
the action described by the event

A mapping from IDMEF alerts to CEE events is pos-
sible without information loss. Most of the fields in
the IDMEF message can directly be mapped to CEE,
such as IDMEF’s analyzer name to CEE’s prod name.
As CEE offers the possibility to add additional fields,
any IDMEF field with no counterpart in CEE can sim-
ply be added as key-value pair. Special attention is
needed for fields in IDMEF that support a list of val-
ues, such as target. IDMEF supports alerts that are
describing an attack on multiple targets at once, e.g., a
flooding attack on a subnet of hosts. These cases can
be handled in two different ways. The alert covering
multiple targets can be split up in multiple CEE events,
each describing a single target. Alternatively, the CEE
event can be extended by fields using a naming con-
vention, such as target address 1, target address 2,
target address 3, and so on. In this way, events can
even cover lists of values. The mapping from CEE to
IDMEF is possible, but might lead to information loss,
if certain fields in CEE have no counterpart in IDMEF.

2.2 Categorical Clustering with
QROCK

In contrast to the k-means algorithm, the ROCK clus-
tering algorithm enables the clustering of categorical
data [15]. It is based on the concept of Neighbors and
Links. Neighbors are defined by a similarity function
sim(x, y) and a threshold ρ. If the result of the sim-
ilarity function is greater than the threshold, both are
defined as neighbors.

sim(x, y) ≥ ρ (1)

with

0 ≤ sim(x, y) ≤ 1 (2)

The similarity function for events is defined based on
the Jaccard Coefficient [15]. Let x, y ∈ (E) be a tuple
x = (ts, s, d, sp, dp, ref) with ts as the timestamp, s
as the source address, d as the destination address, sp
as the source port, dp as the destination port, and ref
as the reference. | x | defines the arity of the tuple,
i.e., in our example | x |= 6. The distance d(x, y)
between two events x, y ∈ (E) is the number of values
in the tuple that are equal. Based on the distance, the
similarity is defined as:

sim(x, y) =
d(x, y)

| x |
(3)

Furthermore, the Link link(x, y) is the number of
common neighbors of the events x and y. This leads to
the observation that if the number of common neigh-
bors is high, there is also a high probability that both
belong to the same cluster. The clustering algorithm
works based on a goodness function g(Ci, Cj) that is
defined in [15]:

g(Ci, Cj) =
link[Ci, Cj]

(ni + nj)1+2f(ρ) − ni1+2f(ρ) − nj1+2f(ρ)

(4)
with

link[Ci, Cj] =
∑

pq∈Ci,pr∈Cj

link(pq, pr). (5)

The ROCK clustering algorithm for IDS correla-
tion is implemented similar to [15]. After the ini-
tial link/neighbor computation, two heaps are created
(global heap and local heap) and created clusters are
merged according to the goodness values. After each
merge, the links are calculated again for the elements
of the new cluster. This will be repeated until there are
only k clusters left.
The QROCK clustering provides a method to improve
efficiency of the ROCK algorithm [16]. The QROCK
clustering algorithm can be applied to IDS correlation
and is implemented on the platform. Both algorithms
are parallelized by distributing the workload of the link
computation, i.e, the first step of the algorithm.

55

3 Rule-based Correlation

The algorithm proposed in [19] is implemented on
the platform. It works based on pre-defined prereq-
uisites and consequences (pre- and post-conditions).
The approach uses a definition of so called hyper alerts
T = (fact, pre−condition, post−condition). Ning
et. al. provide a database of rules for the know set of
snort alerts 1 that can be used for implementing the
proposed algorithm. The parallel version of the algo-
rithm is implemented as shown in Listing 1. The inner
loop of the algorithm is executed by workers and thus
parallelized.

a t t a c k s t e p c o r r e l a t i o n (e v e n t s ,
knowledge b a se) {

h y p e r a l e r t t y p e s =
r e a d h y p e r a l e r t t y p e s () ;

h y p e r a l e r t s =
c r e a t e H y p e r A l e r t s (e v e n t s ,

h y p e r a l e r t t y p e s) ;

f o r (ha 1 i n h y p e r a l e r t s) {
f o r (ha 2 i n h y p e r a l e r t s) {

i f (ha 2 . p r e r e q u i s i t e
. s u b s e t O f (ha 1 . consequence)

&& ha 1 . t ime < ha 2 . t ime) {
r e s u l t G r a p h

. addConnec t i on (ha 1 ,
ha 2) ;

}
}

}
r e t u r n r e s u l t G r a p h ;

}

Listing 1. Simple Attack Step Correlation
Algorithm

4 AG-based Correlation Algorithm using
HMM

To create an HMM, a special form of an attack graph
is used, which is designed for conversion to an HMM.
The attack graphs nodes are either a host or if one or
more vulnerabilities are known, a combination of host
and vulnerability. The hosts and their vulnerabilities in
the network structure as well as the information which
networks and hosts are connected is known (can be
collected by scanning). The host and vulnerability in-
formation is used to match alerts to a specific node in
the attack graph.
The first two steps of the algorithm create two dic-
tionaries: the networkMap contains lists of hosts in
each network and the networkConnectionMap main-
tains for each network a list of connected networks.
Two networks are defined as connected if there is one
host connected to both networks. The idea is that an
attacker can exploit a host and use it to forward packets

1http://discovery.csc.ncsu.edu/software/correlator/ver1.0/index.html

into another network. Starting from one specified net-
work, the algorithm walks through the network struc-
ture until all networks were visited. While walking
through the networks, it creates a directed graph con-
taining nodes as vertices and edges as possible con-
nections between them. The direction of these edges
is defined by the order in which the algorithm walks
through the network. For example, when starting at
network A, it creates edges originating from hosts in
this network to hosts in the connected network B. The
algorithm creates groups for hosts in the same network
that are used as single node.
After walking the networks, the algorithm adds the
transitive closure to the graph. The closure allows de-
tecting attacks on a host if a previous attack on the way
to this host was not detected by the NIDS. Additionally
the algorithm adds reflexivity to the graph to manage
multiple alerts in a row for one node.
The Hidden Markov Model is build using the attack
graph created before. Each node in the graph is trans-
formed to a state in the model. All edges, which are
directed, are added to the model. Possible observa-
tions are created from known vulnerabilities, from a
category of alerts which is assumed to result from at-
tacks and are no false positives and from a category
for all other alerts, which may or may not be relevant.
The transition probabilities are calculated by counting
the number of outgoing edges from one node and are
assigned to the edges as the reciprocal of the count,
so each transition from one node has the same proba-
bility. Observations for known vulnerabilities are cre-
ated as a combination of host and vulnerability, such
as attack graph nodes. Vulnerabilities are identified by
their CVE identifier [17]. Alerts from NIDS also may
have CVE Identifiers attached, thus, these can later be
used for matching an alert to a specific observation.
Observations for attacks in general and for all other
alerts are each created per host. For a each state, each
unrelated observation is assigned with a low priority.
This is necessary since the attack graph allows only
going forward in the network structure. Any alert trig-
gering an observation with a probability of 0 would
disturb the algorithm for finding the most probable
path.

5. Future Work

Within the next few months, to prepare the correlation
platform for further research and experiments as well
as conduct more experiments on different algorithms.
We would like to work towards our vision with the fol-
lowing steps:

• Test the platform with a dataset of 1 TB

• Implement more algorithms with multi-core sup-
port

• Implement database switching mechanism

56

• Research on correlation algorithms that are using
environment information and attack graphs

• Research on statistical correlation algorithms

• Research on visualization techniques for correla-
tion results

References

[1] S. Roschke, F. Cheng, Ch. Meinel: Using Vul-
nerability Information and Attack Graphs for In-
trusion Detection In: Proceedings of 6th Interna-
tional Conference on Information Assurance and
Security (IAS’10), IEEE Press, Atlanta, United
States, pp. 104-109 (August 2010).

[2] Roschke, S., Cheng, F., Meinel, Ch.: An Alert
Correlation Platform for Memory-Supported
Techniques. In: Concurrency and Computation,
Wiley Blackwell, 2011 (to appear).

[3] Roschke, S., Cheng, F., Meinel, Ch.: A New Cor-
relation Algorithm based on Attack Graph. In:
Proceedings of the 4th Conference on Compu-
tational Intelligence in Security for Information
Systems (CISIS’11), Springer LNCS 6694, Tor-
remolinos, Spain, pp. 58-67 (2011).

[4] R. Sadoddin, A. Ghorbani: Alert Correlation
Survey: Framework and Techniques, In: Pro-
ceedings of the International Conference on Pri-
vacy, Security and Trust (PST’06), ACM Press,
Markham, Ontario, Canada, pp. 1-10 (2006).

[5] Debar, H., Curry, D., Feinstein, B.: The Intru-
sion Detection Message Exchange Format, Inter-
net Draft, Technical Report, IETF Intrusion De-
tection Exchange Format Working Group (July
2004).

[6] Mitre Corporation: Common vulnerabil-
ities and exposures (CVE), WEBSITE:
http://cve.mitre.org/ (accessed Apr 2011).

[7] Mitre Corporation: Common Event Expres-
sion (CEE), WEBSITE: http://cee.mitre.org/ (ac-
cessed Apr 2011).

[8] H. Plattner: A Common Database Approach for
OLTP and OLAP Using an In-Memory Column
Database, In: Proceedings of the ACM SIG-
MOD International Conference on Management
of Data (SIGMOD’09), ACM Press, Providence,
Rhode Island, USA, pp. 1-2 (2009).

[9] S. Roschke, F. Cheng, Ch. Meinel: An Extensi-
ble and Virtualization-Compatible IDS Manage-
ment Architecture, In: Proceedings of 5th Inter-
national Conference on Information Assurance
and Security (IAS’09), IEEE Press, vol. 2, Xi’an,
China, pp. 130-134 (August 2009).

[10] Tedesco, G. and Aickelin, U.: Real-Time Alert
Correlation with Type Graphs, In: Proceedings
of the 4th international Conference on Informa-
tion Systems Security (ISS’09), Springer LNCS
5352, Hyderabad, India, pp. 173-187 (2008).

[11] Ning, P. and Xu, D.: Adapting Query Optimiza-
tion Techniques for Efficient Intrusion Alert Cor-
relation, Technical Report, North Carolina State
University at Raleigh, 2002.

[12] Northcutt, S., Novak, J.: Network Intrusion De-
tection: An Analyst’s Handbook, New Riders
Publishing, Thousand Oaks, CA, USA (2002).

[13] Arnes, A., Valeur, F., Vigna, G., Kemmerer, R.:
Using Hidden Markov Models to Evaluate the
Risks of Intrusions: System Architecture and
Model Validation. In: Proceedings of the Inter-
national Symposium on Recent Advances in In-
trusion Detection (RAID’06), Springer LNCS
4219, Hamburg, Germany, pp. 145-164 (2006).

[14] Tedesco, G. and Aickelin, U.: Real-Time Alert
Correlation with Type Graphs, In: Proceedings
of the 4th international Conference on Informa-
tion Systems Security (ISS’09), Springer LNCS
5352, Hyderabad, India, pp. 173-187 (2008).

[15] Guha, S., Rastogi, R., Kyuseok, S.: ROCK:
A Robust Clustering Algorithm for Categori-
cal Attributes, In: Proceedings of the 15th
International Conference on Data Engineering
(ICDE’99), IEEE Press, Washington, DC, USA,
pp. 512-537 (1999).

[16] Dutta, M., Kakoti Mahanta, A., Pujari, A. K.:
QROCK: A quick version of the ROCK algo-
rithm for clustering of categorical data. In: Pat-
tern Recognition Letters, Elsevier, vol. 26(15),
pp. 2364-2373 (2005).

[17] Mitre Corporation: Common vulnerabil-
ities and exposures (CVE), WEBSITE:
http://cve.mitre.org/ (accessed May 2011).

[18] Google Protobuf, WEBSITE:
http://code.google.com/p/protobuf/ (accessed
May 2011).

[19] Ning, P., Cui, Y., Reeves, D.: Constructing at-
tack scenarios through correlation of intrusion
alerts, In: Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security
(CCS’02), ACM, New York, NY, USA, pp. 245-
254 (2002).

57

Duplicate Detection on GPUs

Benedikt Forchhammer1, Thorsten Papenbrock1, Thomas Stening1, Sven Viehmeier1,
Uwe Draisbach2, Felix Naumann2

Hasso Plattner Institute, Potsdam, Germany
1firstname.lastname@student.hpi.uni-potsdam.de 2firstname.lastname@hpi.uni-potsdam.de

Abstract

Duplicate detection is an integral part of data cleans-
ing. In this project we developed a complete sys-
tem to detect duplicates in very large datasets, using
the capabilities of modern graphics processing units
(GPUs). Our solution covers several algorithms for
the tasks of pair selection, similarity-comparison of
attribute values, aggregation of pairs, and cluster-
ing. We describe how each algorithm can be de-
signed to run memory efficient and parallel on the
GPU. Thereby, we exploit the increasing capabilities
of modern graphics cards with their many cores. Our
similarity-comparisons are based on strings with vari-
able lengths. This is a difficult task for GPUs, because
they cannot handle variable sized data structures and
lose synchronism, but in return the duplicate detec-
tion process achieves higher precision values. Exper-
iments demonstrate that our solution outperforms an
equivalent CPU-based implementation on large, real-
world datasets. For example, the GPU of a standard
computer can compute a dataset with 1.8 million en-
tries using our algorithm 10 times faster than the re-
spective CPU. Furthermore, with an increasing size of
the dataset the GPU becomes progressively faster than
the CPU.

1. Introduction

Duplicate detection is the task of identifying multi-
ple representations of the same real-world entities [1].
This is typically done by applying similarity functions
to pairs of entries in datasets. Some algorithm care-
fully selects promising pairs of records. If the val-
ues of two records are sufficiently similar, according
to some threshold, they are assumed to be duplicates.
Due to the high number of comparisons and the ever
increasing size of many databases, duplicate detection
is a problem that is hard to solve efficiently. How-
ever, in most approaches the comparisons of record
pairs are independent from one another – the problem
is embarrassingly parallelizable. In this project a se-
lection of duplicate detection algorithms and similar-
ity measures are described and adapted in the context

of general-purpose computation on Graphics Process-
ing Units (GPUs).
Currently, there are only few frameworks available for
GPGPU development. For our prototype, we decided
to use the OpenCL 1.0 framework, as it allows devel-
opment for both ATI and NVIDIA graphics cards. The
framework allows the execution of so-called kernels,
which are written in a variant of basic C. OpenCL ker-
nels can be executed on different devices; usually the
device is a graphics card, but other devices, in partic-
ular the CPU, are also possible if respective hardware
drivers are available. Devices execute kernels as work
items. A work item is a set of instructions that are ex-
ecuted on speciffic data by one thread.
When developing applications for GPUs, memory
management is a key factor that needs much attention.
The main reason for this necessity is the fact that GPUs
have four different types of memory with different ca-
pacities and different access speeds. An additional dif-
ficulty lies in the fact that it is not possible to allocate
memory dynamically on the GPU. Figure 1 presents
a complete duplicate detection workflow, which com-
bines common duplicate detection algorithms with the
computation capacities of modern graphics cards. The
work ow consists of the following steps:

• Parsing: This step converts the input data, e. g.,
given as a CSV file, into an internal format. Each
attribute is thereby represented as a character ar-
ray where all values are concatenated. Since we
work on values with different lengths, an addi-
tional array containing the starting indices of the
single attribute values is needed. This format is
essential because GPU-kernels can only handle
basic datatypes and arrays whose sizes are known
beforehand.

• Pair Selection: This step selects record pairs
for comparison. We adapt the Cartesian prod-
uct and the Sorted Neighborhood algorithms to
run on the GPU. To generate a sorting key for
the Sorted Neighborhood algorithm, we present
a simple key-generation function and an adapted
Soundex algorithm; both running on the GPU.

59

Device Scheduling

Pair selection
Cartesian Product, Sorted Neighborhood

Comparison
Jaro‐Winkler, Levenshtein

Input data Parsing

Aggregation
Thresholds & Weights

Clustering
Transitive Closure

Duplicates

Attribute values

Duplicate pairs
(per attribute)

Duplicate pairs
(aggregated)

Pairs

GPU

GPU

GPU

Figure 1. The overall workflow of the dupli-
cate detection process

simple key-generation function and an adapted
Soundex algorithm; both running on the GPU.

• Comparison: The previously selected record
pairs are compared to decide whether the records
are similar. Thereby, we process each attribute
value individually and return a normalized sim-
ilarity value for each pair of attribute values.
We show two edit-based techniques on the GPU:
Levenshtein and Jaro-Winkler.

• Aggregation: The attribute similarities are ag-
gregated to a record pair similarity, which is used
to decide whether the two records are duplicates
or not. We calculate a weighted average and
check similarity values before and after the ag-
gregation against predefined thresholds.

• Clustering: The result of a pairwise duplicate
detection process may not contain all transitively
related record pairs. Thus, we calculate the tran-
sitive closure to obtain a complete list of dupli-
cate clusters.

2 Evaluation

We performed our evaluation on four different graph-
ics cards, two made by Nvidia and two by ATI. As
ATI’s OpenCL drivers also allow the execution of
OpenCL kernels on CPUs, we additionally evaluated
our implementation on two Intel CPUs (see Tab. 1
for specifics of all six devices; Configuration G2 repre-
sents the hardware provided by the FutureSOC Lab).

We use a subset of 1.9 million music CDs extracted
from FreeDB1 for our evaluation. This dataset con-
tains attributes such as artist, title, genre, year of
publication, and multiple tracks. The similarity of
two records is calculated based on the values of four
attributes that contain strings of variable length (see
example records in Tab. 2).

Table 2. CD Example Data
Artist Title Track01 Track02

Shane B. Psalms Unto You Waiting Room

Metallica Metallica Enter Sandman S.B.T.

Dido No Angel Here With Me Hunter

To evaluate the duplicate detection workflow, we first
analyze the execution times of its components. To
this end, we execute all tests on the NVidia GeForce
GTX 570 (G1), because our experiments showed that
this device performs best.

0,001

0,01

0,1

1

10

100

1000

10000
Ti

m
e

 (
se

c)

Number of input values

Comparison

Sorting (for Agg.)

Aggregation

Clustering

Workflow

Figure 2. Execution times of the different
components and the complete workflow

Figure 2 shows the overall execution times of the
different components of our workflow for various in-
put sizes. We used Jaro-Winkler for comparison and
Sorted Neighborhood for pair selection. The diagram
shows that with an increasing amount of data, the
execution time of the transitive closure step becomes
the dominant part of the workflow.
We executed the same configuration on six different
devices (see Tab. 1) to analyze the feasibility of us-
ing GPUs instead of traditional CPUs for duplicate
detection.
Figure 3 shows that the best results are indeed
achieved on GPUs. The fastest GPU G1 (see Tab. 1)
takes 35 minutes (2,095 seconds) to process 1.792 mil-
lion entries; this is about 10 times faster than the
fastest CPU C2, which takes 335 minutes (20,128 sec-
onds).
The first part of our workflow, i. e., the comparisons
of multiple attributes, can be distributed over multi-
ple graphics cards. In our experiments, the compar-

1http://freedb.org

Figure 1. The overall workflow of the du-
plicate detection process

• Comparison: The previously selected record
pairs are compared to decide whether the records
are similar. Thereby, we process each attribute
value individually and return a normalized simi-
larity value for each pair of attribute values. We
show two edit-based techniques on the GPU: Lev-
enshtein and Jaro-Winkler.

• Aggregation: The attribute similarities are ag-
gregated to a record pair similarity, which is used
to decide whether the two records are duplicates
or not. We calculate a weighted average and
check similarity values before and after the ag-
gregation against predefined thresholds.

• Clustering: The result of a pairwise duplicate
detection process may not contain all transitively
related record pairs. Thus, we calculate the tran-
sitive closure to obtain a complete list of dupli-
cate clusters.

2. Evaluation

We performed our evaluation on four different graph-
ics cards, two made by Nvidia and two by ATI. As
ATI’s OpenCL drivers also allow the execution of
OpenCL kernels on CPUs, we additionally evaluated
our implementation on two Intel CPUs (see Tab. 1
for speciffics of all six devices; Configuration G2
represents the hardware provided by the FutureSOC
Lab).
We use a subset of 1.9 million music CDs extracted
from FreeDB2 for our evaluation. This dataset

1http://www.alternate.de (August 2011)
2http://freedb.org

Device Scheduling

Pair selection
Cartesian Product, Sorted Neighborhood

Comparison
Jaro‐Winkler, Levenshtein

Input data Parsing

Aggregation
Thresholds & Weights

Clustering
Transitive Closure

Duplicates

Attribute values

Duplicate pairs
(per attribute)

Duplicate pairs
(aggregated)

Pairs

GPU

GPU

GPU

Figure 1. The overall workflow of the dupli-
cate detection process

simple key-generation function and an adapted
Soundex algorithm; both running on the GPU.

• Comparison: The previously selected record
pairs are compared to decide whether the records
are similar. Thereby, we process each attribute
value individually and return a normalized sim-
ilarity value for each pair of attribute values.
We show two edit-based techniques on the GPU:
Levenshtein and Jaro-Winkler.

• Aggregation: The attribute similarities are ag-
gregated to a record pair similarity, which is used
to decide whether the two records are duplicates
or not. We calculate a weighted average and
check similarity values before and after the ag-
gregation against predefined thresholds.

• Clustering: The result of a pairwise duplicate
detection process may not contain all transitively
related record pairs. Thus, we calculate the tran-
sitive closure to obtain a complete list of dupli-
cate clusters.

2 Evaluation

We performed our evaluation on four different graph-
ics cards, two made by Nvidia and two by ATI. As
ATI’s OpenCL drivers also allow the execution of
OpenCL kernels on CPUs, we additionally evaluated
our implementation on two Intel CPUs (see Tab. 1
for specifics of all six devices; Configuration G2 repre-
sents the hardware provided by the FutureSOC Lab).

We use a subset of 1.9 million music CDs extracted
from FreeDB1 for our evaluation. This dataset con-
tains attributes such as artist, title, genre, year of
publication, and multiple tracks. The similarity of
two records is calculated based on the values of four
attributes that contain strings of variable length (see
example records in Tab. 2).

Table 2. CD Example Data
Artist Title Track01 Track02

Shane B. Psalms Unto You Waiting Room

Metallica Metallica Enter Sandman S.B.T.

Dido No Angel Here With Me Hunter

To evaluate the duplicate detection workflow, we first
analyze the execution times of its components. To
this end, we execute all tests on the NVidia GeForce
GTX 570 (G1), because our experiments showed that
this device performs best.

0,001

0,01

0,1

1

10

100

1000

10000

Ti
m

e
 (

se
c)

Number of input values

Comparison

Sorting (for Agg.)

Aggregation

Clustering

Workflow

Figure 2. Execution times of the different
components and the complete workflow

Figure 2 shows the overall execution times of the
different components of our workflow for various in-
put sizes. We used Jaro-Winkler for comparison and
Sorted Neighborhood for pair selection. The diagram
shows that with an increasing amount of data, the
execution time of the transitive closure step becomes
the dominant part of the workflow.
We executed the same configuration on six different
devices (see Tab. 1) to analyze the feasibility of us-
ing GPUs instead of traditional CPUs for duplicate
detection.
Figure 3 shows that the best results are indeed
achieved on GPUs. The fastest GPU G1 (see Tab. 1)
takes 35 minutes (2,095 seconds) to process 1.792 mil-
lion entries; this is about 10 times faster than the
fastest CPU C2, which takes 335 minutes (20,128 sec-
onds).
The first part of our workflow, i. e., the comparisons
of multiple attributes, can be distributed over multi-
ple graphics cards. In our experiments, the compar-

1http://freedb.org

Figure 2. Execution times of the different
components and the complete workflow

contains attributes such as artist, title, genre, year of
publication, and multiple tracks. The similarity of
two records is calculated based on the values of four
attributes that contain strings of variable length (see
example records in Tab. 2).

Artist Title Track01 Track02
Shane B. Psalms Unto You Waiting Room
Metallica Metallica Enter Sandman S.B.T.

Dido No Angel Here With Me Hunter

Table 2. CD Example Data

To evaluate the duplicate detection workflow, we first
analyze the execution times of its components. To this
end, we execute all tests on the NVidia GeForce GTX
570 (G1), because our experiments showed that this
device performs best.
Figure 2 shows the overall execution times of the dif-
ferent components of our work ow for various in-
put sizes. We used Jaro-Winkler for comparison and
Sorted Neighborhood for pair selection. The diagram
shows that with an increasing amount of data, the ex-
ecution time of the transitive closure step becomes the
dominant part of the workflow.
We executed the same configuration on six different
devices (see Tab. 1) to analyze the feasibility of using
GPUs instead of traditional CPUs for duplicate detec-
tion.

Figure 3 shows that the best results are indeed
achieved on GPUs. The fastest GPU G1 (see Tab. 1)
takes 35 minutes (2,095 seconds) to process 1.792
million entries; this is about 10 times faster than the
fastest CPU C2, which takes 335 minutes (20,128
seconds).
The first part of our workflow, i. e., the comparisons
of multiple attributes, can be distributed over multiple
graphics cards. In our experiments, the comparisons
of four attributes on four graphics cards need only
30% of the time that they need on one graphics card.
In theory, the comparisons on multiple graphics cards
would only need 1

|graphicscards| of the time on one
graphics card. This assumes that all comparisons

60

Id Type Device Name Clock Memory Cores System Price1

G1 GPU Nvidia GeForce GTX 570 732 MHz 1280 MB GDDR5 480 CUDA Win64 279 Euro
G2 GPU Nvidia Tesla C2050 1147 MHz 3071 MB GDDR5 448 CUDA Linux64 2149 Euro
G3 GPU ATI Radeon HD 5700 850 MHz 1024 MB GDDR5 800 SP Win64 91 Euro
G4 GPU ATI Mobility Radeon HD 5650 450 MHz 1024 MB GDDR3 400 SP Win64 unknown
C1 CPU Intel Core i5 750 2.67 GHz 8192 MB DDR3 4 Win64 185 Euro
C2 CPU Intel Core i5 M560 2.67 GHz 8192 MB DDR3 2 Win64 200 Euro

Table 1. Evaluation devices

Table 1. Evaluation devices
Id Type Device Name Clock Memory Cores System Price1

G1 GPU Nvidia GeForce GTX 570 732 MHz 1280 MB GDDR5 480 CUDA Win64 279 Euro
G2 GPU Nvidia Tesla C2050 1147 MHz 3071 MB GDDR5 448 CUDA Linux64 2149 Euro
G3 GPU ATI Radeon HD 5700 850 MHz 1024 MB GDDR5 800 SP Win64 91 Euro
G4 GPU ATI Mobility Radeon HD 5650 450 MHz 1024 MB GDDR3 400 SP Win64 unknown
C1 CPU Intel Core i5 750 2.67 GHz 8192 MB DDR3 4 Win64 185 Euro
C2 CPU Intel Core i5 M560 2.67 GHz 8192 MB DDR3 2 Win64 200 Euro
1 http://www.alternate.de (August 2011)

0.1

1

10

100

1000

10000

100000

Ti
m

e
 (

se
c)

Number of input values

C1

G4

C2

G3

G2

G1

Figure 3. Performance of Sorted Neighbor-
hood with Jaro-Winkler on different devices

isons of four attributes on four graphics cards need
only 30% of the time that they need on one graphics
card. In theory, the comparisons on multiple graphics
cards would only need 1

|graphics cards| of the time on

one graphics card. This assumes that all comparisons
have an equal execution time; in practice, the execu-
tion time in the parallel case depends on the longest
comparison. This leads to an execution time of only
30% compared to the theoretically possible 25%.
Lee et al. have pointed out, that CPUs and GPUs
cannot easily be compared in a fair way, without first
optimizing for both devices [3]. Our measurements
can therefore not be generalized for the overall rela-
tion of runtimes betwen GPUs and GPUs. However,
our results are a good indication that graphics cards
can compete well in the field of duplicate detection.

3 Conclusion

We have presented and evaluated a complete dupli-
cate detection workflow that uses graphics cards to
speed up the execution. The workflow uses either
the Cartesian product or the Sorted Neighborhood
Method for pair selection, and calculates the simi-
larity of a record pair with measures such as Leven-
shtein, Jaro-Winkler, and Soundex.
The major challenge of using graphics cards for dupli-
cate detection is the processing of input values with
different lengths, as this leads to inefficient loops with
different numbers of loop passes and branches in the
GPU-kernels. Another challenge is memory manage-

ment, as dynamic memory allocation is not possible
and each hardware platform needs different optimiza-
tions.
The evaluation of our workflow shows that modern
GPUs can execute the duplicate detection workflow
faster than modern CPUs. Furthermore, the work-
flow and algorithms are scalable and can process large
datasets. Additionally, experiments show that the ac-
cess of global memory on graphics cards is the biggest
bottleneck and has a great impact on the performance
of our algorithms.
Multiple improvements of the duplicate detection
workflow can be evaluated in the future. Memory
access on the GPU can still be improved: Coalesced
access patterns and the use of local memory could
further speed up the execution. More optimizations
concerning concrete hardware platforms are possible
and could be applied for a concrete usage of the work-
flow (see also [2]). At the moment, only the compar-
isons of different attributes are distributed over all
available devices. Thus, other algorithms, especially
the computation of the transitive closure, could be
further optimized to scale out on multiple devices.
The implementation and evaluation of more similar-
ity measures, e. g., token-based approaches, would al-
low the processing of real-world data with different
properties and make the workflow more adaptable.
In summary, we showed that GPUs have a high poten-
tial to speed up duplicate detection tasks, especially if
the GPU is used in combination with modern CPUs.

References

[1] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE),
19(1):1–16, 2007.

[2] F. Feinbube, P. Tröger, and A. Polze. Joint Forces:
From Multithreaded Programming to GPU Comput-
ing. IEEE Software, 28:51–57, 2011.

[3] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim,
A. D. Nguyen, N. Satish, M. Smelyanskiy, S. Chen-
nupaty, P. Hammarlund, R. Singhal, and P. Dubey.
Debunking the 100x GPU vs. CPU myth: an evalu-
ation of throughput computing on CPU and GPU.
In Proceedings of the International Symposium on
Computer Architecture, pages 451–460, Saint-Malo,
France, 2010.

Figure 3. Performance of Sorted Neigh-
borhood with Jaro-Winkler on different
devices

have an equal execution time; in practice, the execu-
tion time in the parallel case depends on the longest
comparison. This leads to an execution time of only
30% compared to the theoretically possible 25%.
Lee et al. have pointed out, that CPUs and GPUs
cannot easily be compared in a fair way, without first
optimizing for both devices [3]. Our measurements
can therefore not be generalized for the overall rela-
tion of runtimes betwen GPUs and GPUs. However,
our results are a good indication that graphics cards
can compete well in the field of duplicate detection.

3. Conclusion

We have presented and evaluated a complete duplicate
detection work ow that uses graphics cards to speed up
the execution. The work ow uses either the Cartesian
product or the Sorted Neighborhood Method for pair
selection, and calculates the similarity of a record pair
with measures such as Levenshtein, Jaro-Winkler, and
Soundex.
The major challenge of using graphics cards for du-
plicate detection is the processing of input values with
different lengths, as this leads to inefficient loops with
different numbers of loop passes and branches in the
GPU-kernels. Another challenge is memory manage-
ment, as dynamic memory allocation is not possible
and each hardware platform needs different optimiza-

tions.
The evaluation of our workflow shows that modern
GPUs can execute the duplicate detection workflow
faster than modern CPUs. Furthermore, the work-
flow and algorithms are scalable and can process large
datasets. Additionally, experiments show that the ac-
cess of global memory on graphics cards is the biggest
bottleneck and has a great impact on the performance
of our algorithms.
Multiple improvements of the duplicate detection
workflow can be evaluated in the future. Memory ac-
cess on the GPU can still be improved: Coalesced ac-
cess patterns and the use of local memory could fur-
ther speed up the execution. More optimizations con-
cerning concrete hardware platforms are possible and
could be applied for a concrete usage of the workflow
(see also [2]). At the moment, only the comparisons
of different attributes are distributed over all available
devices. Thus, other algorithms, especially the com-
putation of the transitive closure, could be further op-
timized to scale out on multiple devices. The imple-
mentation and evaluation of more similarity measures,
e. g., token-based approaches, would allow the pro-
cessing of real-world data with different properties and
make the work ow more adaptable.
In summary, we showed that GPUs have a high poten-
tial to speed up duplicate detection tasks, especially if
the GPU is used in combination with modern CPUs.

References

[1] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans-
actions on Knowledge and Data Engineering (TKDE),
19(1):1–16, 2007.

[2] F. Feinbube, P. Tröger, and A. Polze. Joint Forces: From
Multithreaded Programming to GPU Computing. IEEE
Software, 28:51–57, 2011.

[3] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim,
A. D. Nguyen, N. Satish, M. Smelyanskiy, S. Chennu-
paty, P. Hammarlund, R. Singhal, and P. Dubey. De-
bunking the 100x GPU vs. CPU myth: an evaluation
of throughput computing on CPU and GPU. In Pro-
ceedings of the International Symposium on Computer
Architecture, pages 451–460, Saint-Malo, France, 2010.

61

ECRAM (Elastic Cooperative RAM) HPI Future SOC Lab Project Report

Kim-Thomas Rehmann, Kevin Beineke and Michael Schöttner
Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,

Universitätsstrae 1, 40225 Düsseldorf, Germany
Kim-Thomas.Rehmann@uni-duesseldorf.de

1. Project Idea

The ECRAM (Elastic Cooperative RAM) project,
which started in 2011 at Heinrich-Heine-Universitt
Dsseldorf, aims at providing distributed inmemory
storage for cloud applications. ECRAM is designed to
scale storage capacity depending on the dynamic load.
By storing data in RAM, we reduce data-access la-
tency and support arbitrary, highly concurrent access-
patterns. In contrast to traditional application-level
caches, data is not flushed to disk, but always kept
in memory. Persistence is realized by asynchronous
logging and checkpointing on disk. Objects are acces-
sible through a traditional file interface, such that ap-
plications can benefit from in-memory storage with-
out modifications. An additional API provides sev-
eral concurrency control mechanisms for applications.
These range from explicit push-based or streamor-
iented updates to transactions combined with opti-
mistic synchronization. The consistency unit size is
dynamically configurable for each object.
ECRAMs target application domains include MapRe-
duce programs. MapReduce is a computing model
that simplifies the design and implementation of par-
allel algorithms [2]. By using ECRAM, I/O-bound
MapReduce applications benefit from the low-latency
data access. Furthermore, extended MapReduce ap-
plications that process data iteratively [3] or online
[1] take even more advantage from ECRAM, because
its transactions allow for efficient synchronization of
the dynamic distributed state. While the Phoenix sys-
tem [7, 8] also provides a MapReduce framework for
shared-memory machines, it does not target extended
MapReduce applications and does not use transactions
for dynamic state synchronization. We have described
the ECRAM-based in-memory MapReduce in two pa-
pers, which have been accepted for inclusion in inter-
national conference programs [6, 5]. Furthermore, an-
other paper describes the ECRAM-based in-memory
file-system [4].
Our experiments in the HPI Future SOC Lab investi-
gate ECRAMs performance on a multicore machine
with huge main memory. ECRAM was developed tar-
geting conventional compute clusters, but it can as
well run as a multi-process application on a single

machine over the loopback network interface. If our
experiments indicate that the TCP/IP stack is a per-
formance bottleneck on a single machine, ECRAMs
networking code could be extended to UNIX domain
sockets or other mechanisms for inter-process commu-
nication.

2. Used Future SOC Lab Resources

We are executing our experiments on a Hewlett
Packard ProLiant DL980 G7 Server that is called
DL980-2. The server is equipped with 8 Xeon Ne-
halem X6550 CPUs, each having 8 hyper-threaded
cores. The CPU clock rates are 2 GHz, the L3
caches 18 MB large, and Turbo Boost is enabled. The
DL980-2 has 128 GB of RAM. Given that our exper-
iments run in main memory of the single machine,
they do not use the 2 x 146 GB hard disks, neither
the Emulex 4Gb Fibre Channel network card. The
DL980-2 boots Ubuntu Server 10.10 from a local hard-
disk and mounts the home file-system from a NAS de-
vice.
We compare the measurements on Future SOC Lab
with the results on our local cluster installation called
BSCluster, which consists of 33 computing nodes,
each equipped with 2 AMD Opteron processors (16 x
Opteron 246 @ 2 GHz, 17 x Opteron 244 @ 1.8 GHz)
and 2 GB ccNUMA RAM. Our local cluster boots De-
bian Squeeze with Linux x86-64 kernel 2.6.32 in disk-
less mode via NFS.

3. Findings

After becoming acquainted to the lab resources, we
needed to make small changes to the compilation
process to be able to build ECRAM on the Ubuntu
installation on the DL980-2. We are finally able to
build and run ECRAM applications, the ECRAM
MapReduce framework and different applications.

Figure 1 displays the latency of raytracing a moder-
ately complex scene to a medium and large image us-
ing the MapReduce framework on the DL980-2. Fig-
ure 2 compares the scalability of the raytracer on the

63

Figure 1: Run-time of ECRAM MapReduce raytracer on DL980-2, image
size 4096x2048 pixels (left) and 8192x8192 pixels (right)

Figure 2: Scalability of ECRAM MapReduce raytracer on DL980-2 and
BSCluster, image size 4096x2048 pixels (left) and 8192x8192 pixels (right)

Figure 1 displays the latency of raytracing a moderately complex scene to
a medium and large image using the MapReduce framework on the DL980-2.
Figure 2 compares the scalability of the raytracer on the DL980-2 and on our
cluster.

These initial results show that ECRAM and the ECRAM MapReduce
framework scale well not only on distributed systems, but also on multi-
processor machines. At large, HPI Future SOC Lab is a powerful platform
for developing and evaluating parallel applications.

4 Next Steps
To continue our evaluation of in-memory storage on HPI Future SOC
Lab’s multicore machines, we plan to run other parallel applications on the

3

Figure 1. Run-time of ECRAM MapReduce raytracer on DL980-2, image size 4096x2048 pix-
els (left) and 8192x8192 pixels (right)
Figure 1: Run-time of ECRAM MapReduce raytracer on DL980-2, image
size 4096x2048 pixels (left) and 8192x8192 pixels (right)

Figure 2: Scalability of ECRAM MapReduce raytracer on DL980-2 and
BSCluster, image size 4096x2048 pixels (left) and 8192x8192 pixels (right)

Figure 1 displays the latency of raytracing a moderately complex scene to
a medium and large image using the MapReduce framework on the DL980-2.
Figure 2 compares the scalability of the raytracer on the DL980-2 and on our
cluster.

These initial results show that ECRAM and the ECRAM MapReduce
framework scale well not only on distributed systems, but also on multi-
processor machines. At large, HPI Future SOC Lab is a powerful platform
for developing and evaluating parallel applications.

4 Next Steps
To continue our evaluation of in-memory storage on HPI Future SOC
Lab’s multicore machines, we plan to run other parallel applications on the

3

Figure 2. Scalability of ECRAM MapReduce raytracer on DL980-2 and BSCluster, image size
4096x2048 pixels (left) and 8192x8192 pixels (right)

DL980-2 and on our cluster.
These initial results show that ECRAM and the
ECRAM MapReduce framework scale well not only
on distributed systems, but also on multiprocessor ma-
chines. At large, HPI Future SOC Lab is a powerful
platform for developing and evaluating parallel appli-
cations.

4. Next Steps

To continue our evaluation of in-memory storage on
HPI Future SOC Labs multicore machines, we plan
to run other parallel applications on the DL980-2.
Besides the raytracer, there exist about 5 application
for ECRAMbased MapReduce until now. We are
currently extending ECRAM to provide persistency,
adaptive replication and flexible conflict units. These
features shall be evaluated on the HPI Future SOC
Lab. If time and resources permit, we intend to eval-
uate our distributed in-memory file-system, which is
based on ECRAM and FUSE.

References

[1] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. MapReduce online. In
Proceedings of the 7th USENIX conference on Net-
worked systems design and implementation, NSDI’10,
page 2121, Berkeley, CA, USA, 2010. USENIX Asso-
ciation.

[2] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In OSDI04: Proceedings
of the 6th conference on Symposium on Opearting Sys-
tems Design & Implementation, pages 10–10, Berkeley,
CA, USA, 2004. USENIX Association.

[3] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H.
Bae, J. Qiu, and G. Fox. Twister: a runtime for iterative
MapReduce. In Proceedings of the 19th ACM Inter-
national Symposium on High Performance Distributed
Computing, HPDC’10, page 810818, New York, NY,
USA, 2010. ACM.

[4] K.-T. Rehmann, S. Dere, and M. Schöttner. Adaptive
Metadata Management and Flexible Consistency in a
Distributed In-memory File-System. In Proceedings of
the Twelfth International Conference on Parallel and
Distributed Computing, Applications and Technologies
(PDCAT 2011), pages 201–206, 2011.

64

[5] K.-T. Rehmann and M. Schöttner. An In-Memory
Framework for Extended MapReduce . In Proceedings
of the Seventeenth IEEE International Conference on
Parallel and Distributed Systems 2011 (ICPADS 2011),
pages 17–24, Tainan, Taiwan, Dec. 2011. IEEE Com-
puter Society.

[6] K.-T. Rehmann and M. Schöttner. Applications and
evaluation of in-memory mapreduce. In Third Inter-
national Conference on Cloud Computing Technology
and Science (CloudCom 2011), pages 67–74, Athens,
Greece, 2011. IEEE Computer Society.

[7] J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++:

modular MapReduce for shared-memory systems. In
Proceedings of the second international workshop on
MapReduce and its applications, MapReduce ’11, page
916, New York, NY, USA, 2011. ACM.

[8] R. M. Yoo, A. Romano, and C. Kozyrakis. Phoenix
rebirth: Scalable MapReduce on a large-scale shared-
memory system. In Proceedings of the 2009 IEEE In-
ternational Symposium on Workload Characterization
(IISWC ’09), pages 198–207, Washington, DC, USA,
2009. IEEE Computer Society.

65

Performance Prediction for Main Memory Databases in Data Clouds

Jan Schaffner, Benjamin Eckart∗, Hasso Plattner

Hasso Plattner Institute, University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam, Germany

E-mail: {firstname.lastname}@hpi.uni-potsdam.de

Dean Jacobs

SAP AG

Dietmar-Hopp-Allee 16

69190 Walldorf, Germany

E-mail: dean.jacobs@sap.com

Abstract

In Software-as-a-Service, multiple tenants are typi-

cally consolidated into the same database instance to

reduce costs. For analytics-as-a-service, in-memory

column databases are especially suitable because they

offer very short response times.

In this report, we develop a model for predicting

whether the assignment of a particular tenant to a

server in the cluster will lead to violations of response

time goals. To do, the combined resource utilization

incurred by assigning multiple currently active ten-

ants onto a single server is captured using a regression

model. While this model is fairly simple, we show its

accuracy to be very high (i.e. the prediction error less

than 10%).

A more detailed description of the presented per-

formance model was first published by the authors

in [11].

1. Introduction

Analyses over large data sets that require a high de-

gree of inter-node parallelism (e.g. log file processing

at Facebook [13]) have been a major focus of recent re-

search on cloud computing. Cloud computing is, how-

ever, equally attractive when many relatively small

data sets need to be handled. An important case here is

Enterprise Software-as-a-Service (SaaS), where a ser-

vice provider develops an enterprise application and

operates the system that hosts it for many businesses.

Enterprise SaaS solutions commonly maintain data in

a farm of conventional databases. To reduce total

cost of ownership, multiple businesses are consoli-

dated into each database instance, a technique referred

to as multi-tenancy [1].

In this report, we describe the following result: we

develop a model for characterizing the load on an in-

memory column database containing multiple tenants

with different request rates. Previous cost models for

in-memory databases are focused on characterizing the

∗now with LinQuire, mail@benjamin-eckart.de

costs for individual queries [7, 6], while our model

aims to characterize the database’s ability to handle

an on-going stream of queries within pre-defined re-

sponse time goals. More specifically, our model pre-

dicts how much load a server can sustain before query

response times in the 99th percentile exceed one sec-

ond (which is our SLO).

Our approach to modeling database performance is ex-

perimental. Rather than characterizing all constituents

of the system and their interactions, we extract the

model from observations of a running system. As

we will show, the resulting model is very accurate:

our prediction of the response time in the 99th per-

centile is always within 10% of the actual value. The

reason we are able to build such a robust model us-

ing relatively simple tools is that in-memory column

databases behave very linearly. We will show that re-

sponse times can to a large extent be derived from the

number of bytes the database scans in a given time

interval regardless of the distribution of sizes and re-

quests rates of the tenants. The ability to accurately

predict response times makes it possible to run servers

at a higher utilization level, thereby decreasing costs.

Our study is based on SAP’s in-memory column

database TREX ([9, 10, 4]). To support SaaS, we de-

veloped a clustering infrastructure around TREX that

replicates data for scalability and availability, supports

multi-tenancy, and allows for dynamic cluster sizing.

This work is part of a broader research project to adapt

TREX to support on-demand data warehousing in a

utility computing environment.

Note that there is considerable potential for consoli-

dation through multi-tenancy even for in-memory col-

umn databases. As an example, we looked at one cube

in the data warehouse of a large SAP customer, a For-

tune 500 retail company. This cube contained all the

sales records for three years and the fact table had ap-

proximately 360 million records. Using TREX’s stan-

dard dictionary compression, this cube consumed only

slightly more than 2 GB of memory, which is low

given modern server hardware as present for example

in the HPI Future SOC Lab. Moreover, SaaS often tar-

gets small to mid-sized businesses, which have orders

of magnitude less data.

67

This report is organized as follows: The next section

introduces the TREX clustering infrastructure, called

Rock, that is the basis for our experiments. Section 3

develops our basic model for predicting response times

in the 99th percentile. Section 4 outlines next steps

concludes this report.

2. The Rock Clustering Infrastructure

This section describes the Rock clustering infrastruc-

ture, which was used in the experiments in this report.

It also describes the benchmark that was used for the

experiments as well as all other relevant parts of our

experimental setup.

2.1 The Rock Clustering Framework

The Rock clustering framework runs in front of a col-

lection of TREX servers and provides multi-tenancy,

replication of tenant data, and fault tolerance. Fig-

ure 1 illustrates the Rock architecture. Read requests

are submitted to the cluster by an analytics applica-

tion. Write requests are submitted by batch importers,

which periodically pull incremental updates of the data

from transactional source systems. The Rock frame-

work consists of three types of processes: the cluster

leader, routers, and instance managers. Each instance

manager is paired one-to-one with a TREX server to

which it forwards requests.

OLTP source system Batch importer

RouterCluster leader

Server 1

Instance manager

TREX

Server 2

Instance manager

TREX

Server N

Instance manager

TREX

● ● ●

Application

OLTP source systems Batch importers

Figure 1. The Rock Analytic Cluster Ar-
chitecture

The cluster leader exists only once in the landscape

and assigns tenant data to instance managers. Each

copy of a tenant’s data is assigned to one instance man-

ager and each instance manager is responsible for the

data of multiple tenants. The cluster leader maintains

the placement information in a cluster map, which it

propagates to the routers and instance managers so all

components share a consistent view of the landscape.

The routers accept requests from outside the cluster

and forward them to the appropriate instance man-

agers. If a tenant has multiple replicas, the router bal-

ances the load across them. The load on a server is

taken to be the number of queries being processed at a

given point in time (across all tenants on the server).

We assume there is a single batch importer per ten-

ant and that writes are sequentially numbered1. They

can therefore be sequentially applied at every server

and there are never inconsistencies due to failures, lost

messages or updates arriving multiple times. A router

may forward a write request to any one of the instance

managers for a tenant, which then propagates the write

to the other instance managers for that tenant. Our tar-

get application requires consistent reads across multi-

ple queries when drilling down into a data set, and all

requests within a drill-down are issued for the same

version number. Rock supports this by using multi-

version concurrency control (MVCC) based on snap-

shot isolation [2], which TREX implements natively.

According to [3], multi tenancy can be realized in

the database by adopting a shared-machine, shared-

process, or shared-table approach. The shared-table

approach, where each table has a tenant id col-

umn, can be made efficient if accesses are index-based.

However analytic queries on column databases gener-

ally entail table scans, and scan times are proportional

to the number of rows in the table. Rock therefore

uses the shared-process approach and gives each ten-

ant their own private tables.

2.2 Experimental Setup

The experiments in this report are based on a modi-

fied version of the Star Schema Benchmark (SSB) [8],

which is an adaptation of TPC-H.

To produce data for our experiments, we used the

SSB data generator. The fact tables vary in size from

600,000 to 6,000,000 rows across tenants and the di-

mension tables increase linearly with the size of the

fact tables. Using TREX’s standard dictionary com-

pression, the fully-compressed data sets in our experi-

ments consume between 25 and 204 MB of memory.

While TPC-H has 22 independent data warehousing

queries, SSB has four query flights with three to four

queries each. A query flight models a drill-down, i.e.

all queries compute the same aggregate measure but

use different filter criteria on the dimensions. This

structure models the exploratory interactions of users

with business intelligence applications. We modified

SSB so all queries within a flight are performed against

the same consistent TREX snapshot.

In our benchmark, each tenant has multiple concurrent

users that submit requests to the system. Each user

cycles through the query flights, stepping through the

queries in each flight. After receiving a response, a

user waits for a fixed think time before submitting the

next query. To prevent caravanning, each user is offset

in the cycle by a random amount. For the experiments

1The batch importers need to maintain a consistent numbering

scheme in the face of failure and recovery, which can be accom-

plished using algorithms such as Paxos [5].

68

presented in this report, a random think time drawn

from a negative exponential distribution with a mean

of 5 seconds was used.

The number of users per tenant is taken to be a rela-

tive size factor for that tenant times a system-wide user

scale factor. Our experiments vary this scale factor to

set the overall rate of requests to the system. Following

[12], which studies web applications, we set the user

think time to five seconds. This is perhaps too short

for more complex applications, but the system behaves

linearly in this respect: doubling the think time would

double the maximum number of simultaneous users.

The batch importer for each tenant performs one write

every five minutes. Each write makes a tenant’s fact

table grow by 0.05% of its size at the beginning of

the run. Writes for different tenants occur at different

times, so the overall amount of data in the system grad-

ually increases. The execution times of writes was not

measured because they are submitted by a batch pro-

cess that is not visible to users.

The first ten minutes of each benchmark run were cut

off to ensure that the system is warmed up. The next

ten minutes after the warm-up are called the bench-

mark period. All queries submitted after the bench-

mark period were cut off as well. All experiments

were run on large memory instances on Amazon EC2,

which have 2 virtual compute units (i.e. CPU cores)

with 7.5 GB RAM each. For disk storage, we used

Amazon EBS volumes, which offer highly-available

persistent storage for EC2 instances.

3. An Emprical Model for Response Time

Prediction

Throughout this report, we use the term workload to

refer to the actual amount of work a server receives2.

The capacity of a server is reached when the work-

load becomes so high that response time goals are vi-

olated. We require that 99% of all queries have sub-

second response times. The query with the highest re-

sponse time among 99% of all queries with the lowest

response time is called the 99th percentile value.

We experimentally developed a model to determine

how many tenants with different sizes and different re-

quest rates can be consolidated onto one server without

violating the response time goal. Processing aggre-

gation queries of larger tenants takes longer than pro-

cessing aggregation queries of smaller tenants because

more data needs to be scanned. We describe workload

as a function of request rate and size for each tenant

and show that it is related to the number of records

that are processed in a given time interval.

To examine the maximum possible workload depend-

ing on request rate and tenant size, we conducted sev-

eral tests using the Star Schema Benchmark.

2In particular, the term workload in this report does not refer to

the queries in our benchmark.

3.1 Relation of Request Rate and Ten-
ant Size

In this experiment, a single server was packed with

a group of equally-sized tenants and the total num-

ber of users was distributed equally among all ten-

ants. There were no writes. The benchmark was run

multiple times using different tenant sizes (denoted as

tS) and different request rates (tR). The same fixed

amount of memory was used in all cases so the config-

uration contained more or less tenants depending on

the chosen size. Figure 2 shows the maximum request

rate per tenant that could be achieved without violating

the response time goal.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 20 40 60 80 100 120 140 160 180 200 220
 10

 100

 1000
 10 100 1000

M
ax

im
u
m

 N
o
.
o
f

Q
u
er

ie
s

p
er

 S
ec

o
n
d

b
ef

o
re

 v
io

la
ti

o
n
 o

f
S

L
O

 (
t R

)

lo
g
(t

R
)

Size of Single Tenants in MB (tS)

log(tS)

More Tenants Fewer Tenants

Throughput
Throughput (log)

Figure 2. Maximum Request Rate before
SLO Violation by Tenant Sizes

The maximum request rate decreases slightly expo-

nentially in relation to the size of the individual ten-

ants. Figure 2 shows the same dataset both on normal

and logarithmic scales (note x2 and y2 axes). For the

logarithmic plot, the shape of the curve is linear. The

relation can thus be described as:

log(f(tS)) = m · log(tS) + n (1)

where the y-intercept n = 3.617 and the gradient

m = −0.945 can be estimated using the Least-

Squares Method. This equation can be rewritten as:

tR =
1

t−m

S

10n (2)

Based on this equation, Equation (3) defines the work-

load incurred by a tenant as a function of its request

rate and size.

w(tR, tS) :=
tRt

−m

S

10n
(3)

Our goal is to calculate the workload on a server given

arbitrary values for size and request rate. Therefore,

the function is normalized such that w(tR, tS) = 1

69

denotes the point where the 99th percentile value ex-

ceeds the response time goal of 1000 ms. Decreasing

tR or tS would result in a function value smaller than

1 and, consequently, the server would not violate the

response time goal.

This equation shows that, to a large extent, the work-

load corresponds to the number of bytes that are

scanned in a given time interval regardless of the dis-

tribution of sizes and request rates of the tenants. The

relation is not exactly linear (m is not exactly -1): there

is a slight advantage to processing a larger number of

smaller requests. Our response time goal is violated

when 1% of all queries have a response time of more

than 1 second. The likelihood of a query being slower

than 1 second increases as tenants become larger given

the distributions of response times we observed during

our experiments. The processing overhead for individ-

ual queries is hidden behind this phenomenon.

3.2 Relation of Workload and 99th
Percentile Value

Typically, the tenants on a server will have different

sizes and request rates. Equation 4 defines the total

workload on a server as the sum of the workloads over

the set of all tenants T = {(t1
S
, t1

R
), . . . , (tn

S
, tn

R
)} on

the server.

w(T) :=
∑

t∈T

tRt
−m

S

10n
(4)

To analyze the relation between workload and 99th

percentile value, we tested four server configurations

with a different total data set size ranging from 1.5 to

3.2 GB. In each configuration, the amount of data and

the request rate for each tenant varied. Again, the ex-

periments were conducted on a single server without

writes. The results are shown in Figure 3.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

9
9

th
 P

er
ce

n
ti

le
 V

al
u

e
in

 m
s

Workload

Tenant Data 1.5 GB
Tenant Data 2.0 GB
Tenant Data 2.6 GB
Tenant Data 3.2 GB

Prediction

Figure 3. Capacity of a Single Instance

(Read-only Queries)

The predicted workload in Figure 3 was calculated us-

ing Equation (4). Interestingly, the shape of the graph

is the same even when varying the tenant mix on a

server. Up to a workload of 0.9, the graph is increas-

ing linearly. Afterwards, it is increasing exponentially.

We assume that the 99th percentile starts to increase

exponentially at the point where request rates are so

high that queries start to queue up in the database. The

graph can be described as a function shown in Equa-

tion (5) with the parameters a = 333.982, b = 34.914,

c = 2.537, d = 7, and e = 80.334, which have been

estimated using regression.

f(w) = aw + becw
d

+ e (5)

As can be seen in Figure 3, the predicted 99th per-

centile value is always close to the measured 99th per-

centile value. This shows that the definition of work-

load as shown in Equation (4) is also valid for 99th per-

centile values other than the maximum allowed value

of 1000 ms and for server configurations containing

tenants with different sizes.

3.3 Accuracy of the Model

To determine the accuracy of the model, we split the

measured data into a training set and a test set. The

training data was used to generate the model while the

test data was used only to validate the model. Fig-

ure 4 shows the estimated 99th percentile value using

the training data in relation to the measured 99th per-

centile value using the test data in terms of a Q-Q Plot.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200 1400 1600

M
ea

su
re

d
 9

9
th

 P
er

ce
n

ti
le

 V
al

u
e

in
 m

s

Predicted 99th Percentile Value in ms

Training Data
Test Data

Perfect Prediction

Figure 4. Q-Q Plot for Estimated and

Measured 99th Percentile Value

Especially for low 99th percentile values, there is

hardly any difference between the estimated and the

predicted values. In the non-linear range of the func-

tion which starts at a 99th percentile value of approx-

imately 400 ms (see Figure 3) the estimation is less

precise. Predicting a value in the exponential range of

the function is more difficult, because even small vari-

ations can have a strong impact. However, in the rel-

evant range up to a 99th percentile value of 1000 ms,

the variance is always less than 10%. In comparison

to more sophisticated machine learning algorithms, re-

gression is a rather simple technique but can be calcu-

70

lated quite fast and proved to be capable of reliably

predicting the 99th percentile value in our case.

4. Conclusion

We developed a model for predicting the response

time in the 99th percentile for an in-memory column

database running a scan-intensive query workload. We

showed how to use this model to predict whether a

database instance will be able to meet a response time

goal of 1 second in the 99th percentile given a particu-

lar assignment of tenants to this server. The parameters

of the prediction model are the sizes and request rates

of the tenants placed on a server, which corresponds

to how many bytes an in-memory database instance

needs to scan in a given interval. Our results show that

the same 99th percentile value can be obtained for a set

of tenants containing less data but high request rates

and a setup with more data but lower request rates.

In the next Future SOC Lab period we plan to devise

automatic placement algorithms on top of our model.

The goal is to algorithmically respond to changes in

the load situation of a cluster, which is driven by diur-

nal usage patterns.

References

[1] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rit-

tinger. Multi-tenant databases for software as a ser-

vice: schema-mapping techniques. In Proceedings

of the ACM SIGMOD International Conference on

Management of Data, SIGMOD 2008, Vancouver, BC,

Canada, June 10-12, 2008, pages 1195–1206, 2008.

[2] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J.

O’Neil, and P. E. O’Neil. A Critique of ANSI SQL

Isolation Levels. In Proceedings of the 1995 ACM

SIGMOD International Conference on Management of

Data, San Jose, California, May 22-25, 1995, pages

1–10, 1995.

[3] D. Jacobs and S. Aulbach. Ruminations on Multi-

Tenant Databases. In Datenbanksysteme in Business,

Technologie und Web (BTW 2007), 12. Fachtagung des

GI-Fachbereichs ”Datenbanken und Informationssys-

teme” (DBIS), Proceedings, 7.-9. März 2007, Aachen,

Germany, pages 514–521, 2007.
[4] B. Jaecksch, W. Lehner, and F. Faerber. A plan for

OLAP. In EDBT 2010, 13th International Confer-

ence on Extending Database Technology, Lausanne,

Switzerland, March 22-26, 2010, Proceedings, pages

681–686, 2010.

[5] L. Lamport. The Part-Time Parliament. ACM Trans.

Comput. Syst., 16(2):133–169, 1998.

[6] S. Listgarten and M.-A. Neimat. Modelling Costs for

a MM-DBMS. In RTDB, pages 72–78, 1996.

[7] S. Manegold, P. A. Boncz, and M. L. Kersten. Generic

Database Cost Models for Hierarchical Memory Sys-

tems. In VLDB 2002, Proceedings of 28th Inter-

national Conference on Very Large Data Bases, Au-

gust 20-23, 2002, Hong Kong, China, pages 191–202,

2002.

[8] P. E. O’Neil, E. J. O’Neil, X. Chen, and S. Revilak.

The Star Schema Benchmark and Augmented Fact Ta-

ble Indexing. In Performance Evaluation and Bench-

marking, First TPC Technology Conference, TPCTC

2009, Lyon, France, August 24-28, 2009, Revised Se-

lected Papers, pages 237–252, 2009.

[9] H. Plattner. A common database approach for OLTP

and OLAP using an in-memory column database. In

Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, SIGMOD 2009,

Providence, Rhode Island, USA, June 29 - July 2,

2009, pages 1–2, 2009.

[10] J. Schaffner, A. Bog, J. Krüger, and A. Zeier. A Hybrid

Row-Column OLTP Database Architecture for Opera-

tional Reporting. In Informal Proceedings of the Sec-

ond International Workshop on Business Intelligence

for the Real-Time Enterprise, BIRTE 2008, in conjunc-

tion with VLDB’08, August 24, 2008, Auckland, New

Zealand, 2008.

[11] J. Schaffner, B. Eckart, D. Jacobs, C. Schwarz, H. Plat-

tner, and A. Zeier. Predicting in-memory database per-

formance for automating cluster management tasks.

In Proceedings of the 27th International Conference

on Data Engineering, ICDE 2011, April 11-16, 2011,

Hannover, Germany, pages 1264–1275, 2011.

[12] S. Sivasubramanian, G. Pierre, M. van Steen, and

G. Alonso. Analysis of Caching and Replication

Strategies for Web Applications. IEEE Internet Com-

puting, 11(1):60–66, 2007.

[13] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur,

N. Jain, J. S. Sarma, R. Murthy, and H. Liu. Data ware-

housing and analytics infrastructure at facebook. In

Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, SIGMOD 2010, Indi-

anapolis, Indiana, USA, June 6-10, 2010, pages 1013–

1020, 2010.

71

Downtime Analysis for Pro-Active Virtual Machine Migration

Felix Salfner
SAP Innovation Center Potsdam

August-Bebel-Str. 88
14482 Potsdam, Germany

Peter Tröger, Matthias Richly, Andreas Polze
Hasso Plattner Institut

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

Abstract

Live migration is a technique to move virtual machines
from one physical host to another while they are con-
tinue to run. The HPI Future SOC Lab project “To-
wards an Architectural Pattern for Pro-Active Virtual
Machine Migration” investigates live migration as a
mean to handle imminent faults even before they re-
sult in a failure. However, this approach can only be
used successfully if live migration meets certain re-
quirements regarding the duration of the process. In
this report, we present new experimental results about
the factors determining the duration of live migration.

1. Introduction

Achieving system dependability by employing repli-
cation in space and time is a traditional approach in
distributed and cluster-based systems. Middleware im-
plementations such as CORBA, .NET or DCOM have
implemented various protocols to cope with transient
and permanent faults above operating system level.
Systems for massively parallel processing (MPP) were
extended by similar redundancy concepts in the past,
with special consideration of their tight integration and
high number of components. Example analyses of
large-scale MPP systems have shown a mean time be-
tween failures (MTBF) in the order of 6.5 to 40 hours,
depending on installation maturity. Another example
is the Google data center, which experiences a MTBF
in the order of one hour, although hidden from the
users through fault-tolerant middleware and file sys-
tems.
With the advent of multi-core and many-core CPUs in
commodity systems such as blade centers, problems
and challenges that once were of interest only to a
small community of researchers and high-performance
computing engineers will now seriously impact the
computing environment of tomorrows average server
environments.
One commonly agreed problem resulting from smaller
structural sizes, extreme memory increase (as in the
FutureSOC lab with 2TB machines) and dynamic fre-

quency / voltage scaling in the CPU is the decreas-
ing reliability of hardware components. Industry re-
acted on this upcoming challenge – which is already
well-known in the MPP Exascale computing commu-
nity with a set of new fault monitoring and fault toler-
ance solutions, which replace reactive fault tolerance
schemes with their pro-active counterparts.
One interesting layer of reactive fault tolerance is the
concept of a distributed virtualization-based failover
cluster (see Figure 1). This approach can be utilized
in addition to an existing set of solutions on hardware,
firmware, operating system, middleware, and applica-
tion level.

1

Abstract – Live migration is a technique to move

virtual machines from one physical host to another

while they are continue to run. The HPI Future-

SOC Lab project “Towards an Architectural Pat-

tern for Pro-Active Virtual Machine Migration”

investigates live migration as a mean to handle

imminent faults even before they result in a failure.

However, this approach can only be used success-

fully if live migration meets certain requirements

regarding the duration of the process. In this re-

port, we present new experimental results about

the factors determining the duration of live migra-

tion.

Introduction

Achieving system dependability by employing

replication in space and time is a traditional ap-

proach in distributed and cluster- based systems.

Middleware implementations such as CORBA,

.NET or DCOM have implemented various proto-

cols to cope with transient and permanent faults

above operating system level. Systems for mas-

sively parallel processing (MPP) were extended by

similar redundancy concepts in the past, with spe-

cial consideration of their tight integration and

high number of components. Example analyses of

large-scale MPP systems have shown a mean time

between failures (MTBF) in the order of 6.5 to 40

hours, depending on installation maturity. Another

example is the Google data center, which expe-

riences a MTBF in the order of one hour, although

hidden from the users through fault-tolerant mid-

dleware and file systems.

With the advent of multi-core and many-core

CPUs in commodity systems such as blade centers,

problems and challenges that once were of interest

only to a small community of researchers and

high-performance computing engineers will now

seriously impact the computing environment of

tomorrow‟s average server environments.

One commonly agreed problem resulting from

smaller structural sizes, extreme memory increase

(as in the FutureSOC lab with 2TB machines) and

dynamic frequency / voltage scaling in the CPU is

the decreasing reliability of hardware components.

Industry reacted on this upcoming challenge –

which is already well-known in the MPP Exascale

computing community – with a set of new fault

monitoring and fault tolerance solutions, which

replace reactive fault tolerance schemes with their

pro-active counterparts.

One interesting layer of reactive fault tolerance is

the concept of a distributed virtualization-based

failover cluster (see Figure 1). This approach can

be utilized in addition to an existing set of solu-

tions on hardware, firmware, operating system,

middleware, and application level.

Figure 1: Reactive Live Migration of Virtual Machines

Approach

Live migration is a technique to move running

virtual machines from one physical host to anoth-

er, without disrupting running applications or the

virtualized operating system. So far, live migration

is primarily used for load balancing, server consol-

idation, for planned maintenance and for manual

failure recovery..However, reacting on partial fail-

ures that have already occurred leaves only a rela-

tively small time window for error mitigation ac-

tivities. Current approaches are also solely based

on correctable error counter thresholds at single

Downtime Analysis for Pro-Active Virtual Machine Migration
September 2011

Felix Salfner

SAP Innovation Center Potsdam

August-Bebel-Str. 88

14482 Potsdam, Germany

Peter Tröger, Matthias Richly, Andreas Polze

Hasso Plattner Institut

Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam, Germany

Figure 1. Reactive Live Migration of Vir-
tual Machines

2. Approach

Live migration is a technique to move running virtual
machines from one physical host to another, without
disrupting running applications or the virtualized
operating system. So far, live migration is primarily
used for load balancing, server consolidation, for
planned maintenance and for manual failure recovery..
However, reacting on partial failures that have already
occurred leaves only a relatively small time window
for error mitigation activities. Current approaches
are also solely based on correctable error counter
thresholds at single levels of the system stack (usually
the VMM), and an according subsequent reaction.

73

Our FutureSOC lab project investigates an approach
where live migration is used in a pro-active way to
increase system dependability. Pro-active in this
context means to act on the first symptoms, even
before a problem has actually evolved into a more
severe error state or failure. More specifically, we
seek to preventively move running virtual machines
away from failure-prone hosts.
The pro-active solution for the migration decision is
intended to rely upon a system health indicator, which
is based on short-term online prediction of upcoming
hardware or software failures. Such anticipation
requires the continuous monitoring and investigation
of a systems state, in order to detect anomalies that
indicate an upcoming failure.

2

levels of the system stack (usually the VMM), and

an according subsequent reaction.

Our FutureSOC lab project investigates an ap-

proach where live migration is used in a pro-active

way to increase system dependability. Pro-active

in this context means to act on the first symptoms,

even before a problem has actually evolved into a

more severe error state or failure. More specifical-

ly, we seek to preventively move running virtual

machines away from failure-prone hosts.

The pro-active solution for the migration decision

is intended to rely upon a system health indicator,

which is based on short-term online prediction of

upcoming hardware or software failures. Such

anticipation requires the continuous monitoring

and investigation of a system‟s state, in order to

detect anomalies that indicate an upcoming failure.

Figure 2: Pro-Active Virtual Machine Migration through

Failure Prediction

One key concept is the integration of status as-

sessments from all system levels, in order to utilize

a maximum amount of system state information

and domain knowledge. Until today, such an ap-

proach would have had a serious performance

impact due to the monitoring and prediction com-

putation overhead. However, the identified prob-

lem domain – complex and powerful parallel

hardware in server environments – becomes part of

the solution here. In our proposed architecture,

spare computational resources are utilized for all

prediction activities. This allows combining exist-

ing approaches for system monitoring and failure

prediction into a new architecture for anticipatory

virtual machine migration. The proposed concept

relies on the fact that a standard computer system

can be divided into different layers of hardware

and software, each with its own set of perfor-

mance-related monitoring parameters. For each

layer, it is necessary to identify relevant perfor-

mance and / or health indicators that can be used in

an online failure prediction facility. In contrast to

threshold-based reactive patterns, this variable

selection process can be realized during a semi-

automated training phase. Most prediction ap-

proaches anyway demand this training phase, in

which a functional system is profiled for the „nor-

mal‟ pattern of monitored events. The prediction

approach then puts this data into relation with the

measured current system state at this time.

As the technique of live migration is already avail-

able in today‟s virtualization products, we focus in

our work on properties of live migration rather

than its technical implementation. More specifical-

ly, we investigated the factors that impact both the

total duration of live migration as well as the

downtime involved when switching from the

source virtual machine to the destination. As we

will show again in the following sections, the rela-

tionships are non-trivial and can affect migration

times significantly.

It should also be noted that our investigation focus

is on bare-metal virtualization only, since today‟s

most capable live migration implementations are

based on this model.

In our previous experiments, we have used three

load generators to investigate how long it takes to

perform live migration of a virtual machine. Spe-

cifically, we investigated two time intervals:

 Total migration time - The duration of the en-

tire migration process.

 Blackout time - The length of the time interval

when the virtual machine is not running during

the live migration process.

In the phase of the HPI FutureSOC project sum-

marized by this report, we have focused on a reali-

ty check of the previous results, i.e., we wanted to

see whether the results obtained from using a load

generator also hold for real world applications.

We have chosen two standard benchmark applica-

tions as foundation for this investigation. The rea-

son why we did not use benchmarks in the first

place is their lack of controllability: Our artificial

load generators can be used to explore the entire

parameter space, while application benchmarks are

limited in their possibilities for configuration. By

showing that our previous results match the

benchmark results at significant points, we were

Figure 2. Pro-Active Virtual Machine Mi-
gration through Failure Prediction

One key concept is the integration of status assess-
ments from all system levels, in order to utilize a max-
imum amount of system state information and domain
knowledge. Until today, such an approach would have
had a serious performance impact due to the monitor-
ing and prediction computation overhead. However,
the identified problem domain complex and power-
ful parallel hardware in server environments becomes
part of the solution here. In our proposed architec-
ture, spare computational resources are utilized for all
prediction activities. This allows combining existing
approaches for system monitoring and failure predic-
tion into a new architecture for anticipatory virtual
machine migration. The proposed concept relies on
the fact that a standard computer system can be di-
vided into different layers of hardware and software,
each with its own set of performance-related monitor-
ing parameters. For each layer, it is necessary to iden-
tify relevant performance and / or health indicators that
can be used in an online failure prediction facility. In
contrast to threshold-based reactive patterns, this vari-
able selection process can be realized during a semi-
automated training phase. Most prediction approaches
anyway demand this training phase, in which a func-

tional system is profiled for the “normal” pattern of
monitored events. The prediction approach then puts
this data into relation with the measured current sys-
tem state at this time.
As the technique of live migration is already avail-
able in today’s virtualization products, we focus in our
work on properties of live migration rather than its
technical implementation. More specifically, we in-
vestigated the factors that impact both the total dura-
tion of live migration as well as the downtime involved
when switching from the source virtual machine to the
destination. As we will show again in the following
sections, the relationships are non-trivial and can af-
fect migration times significantly.
It should also be noted that our investigation focus is
on bare-metal virtualization only, since today’s most
capable live migration implementations are based on
this model.
In our previous experiments, we have used three load
generators to investigate how long it takes to perform
live migration of a virtual machine. Specifically, we
investigated two time intervals:

• Total migration time – The duration of the entire
migration process.

• Blackout time – The length of the time interval
when the virtual machine is not running during
the live migration process.

In the phase of the HPI FutureSOC project summa-
rized by this report, we have focused on a reality check
of the previous results, i.e., we wanted to see whether
the results obtained from using a load generator also
hold for real world applications.
We have chosen two standard benchmark applications
as foundation for this investigation. The reason why
we did not use benchmarks in the first place is their
lack of controllability: Our artificial load generators
can be used to explore the entire parameter space,
while application benchmarks are limited in their pos-
sibilities for configuration. By showing that our previ-
ous results match the benchmark results at significant
points, we were able to reason about the validity for
various settings and conditions.

3. Experiment Setup

Benchmarks typically come as combination of a
benchmark server application and a load generator
client. The client attempts to send as many requests
to the server as possible, in order to determine
how many requests the benchmark application can
handle on a given system. In our case however, we
are not interested in the performance result of the
benchmark itself we only want to use the benchmark
for simulating a standardized workload that comes
close to a real-world scenario. Similar to our previous
experiments, we are still interested in total migration

74

time as well as blackout time when performing live
migration of a running virtual machine from one
physical host to another one.
In comparison to our earlier work, running a
benchmark application requires a slightly modified
experiment setup (see Figure 3). While our previous
experiments were relying on a memory load generator
running inside of the migrated virtual machine, the
benchmark load generator now has to run in a separate
machine, in order to trigger the benchmark server
situated in the migrated virtual machine. While the
load generator client sends requests to the benchmark
application, the virtual machine running the applica-
tion is migrated from one host to another host. Total
migration time and blackout time were obtained on
the machine running the benchmark load generator.

3

able to reason about the validity for various set-

tings and conditions.

Experiment Setup

Benchmarks typically come as combination of a

benchmark server application and a load generator

client. The client attempts to send as many re-

quests to the server as possible, in order to deter-

mine how many requests the benchmark applica-

tion can handle on a given system. In our case

however, we are not interested in the performance

result of the benchmark itself – we only want to

use the benchmark for simulating a standardized

workload that comes close to a real-world scena-

rio. Similar to our previous experiments, we are

still interested in total migration time as well as

blackout time when performing live migration of a

running virtual machine from one physical host to

another one.

In comparison to our earlier work, running a

benchmark application requires a slightly modified

experiment setup (see Figure 3). While our pre-

vious experiments were relying on a memory load

generator running inside of the migrated virtual

machine, the benchmark load generator now has to

run in a separate machine, in order to trigger the

benchmark server situated in the migrated virtual

machine. While the load generator client sends

requests to the benchmark application, the virtual

machine running the application is migrated from

one host to another host. Total migration time and

blackout time were obtained on the machine run-

ning the benchmark load generator.

Figure 3: Experiment setup

Experiments and Results

In our previous experiments, we already found out

that both migration time and blackout time are

primarily influenced by three parameters:

 Size of the configured memory for the virtual

machine

 Size of the working set of the virtual machine

 Rate at which memory pages are written (made

“dirty”)

The configured memory size of the virtual ma-

chine as well as the size of the working set can be

easily obtained through standard mechanisms pro-

vided by the operating system. For the third para-

meter, there are no standard means to determine

the rate at which the code running in a virtual ma-

chine (both application as well as guest operating

system) modifies memory pages. Hence, we

needed to develop a method for measuring the

effective dirty page rate in a virtualized environ-

ment, which is described in the following section.

How to Measure the Dirty Page Rate
In our previous experiments, the dirty page rate

was a configurable parameter of the load generator

application being executed in the virtual machine.

This approach no longer holds for a given bench-

mark application, since the dirty page load is an

indirect effect of the benchmark code simulating

real-world application behavior.

Our first approach was to leverage CPU hardware

performance counters (“Performance Monitoring

Units” PMU), which are available in the majority

of modern processors. This solution would be able

to form a hypervisor-agnostic solution. However,

this approach first has the problem that perfor-

mance counters are not passed through the hyper-

visor to the guest operating system, i.e it is not

possible to access such hardware registers from

inside a virtual machine. Nevertheless, since some

virtualization solutions (such as KVM) map virtual

machines onto operating system processes, the

host operating system can inspect CPU perfor-

mance counters for the specific process in this

case, which makes the approach in principle via-

ble.

We carried out multiple-stage experiments with

the PMU idea in combination with the DPG load

generator developed for earlier experiments. We

first sought for candidate performance counters

that increase linearly with increasing dirty page

rate. In a second step, we used a modified version

VMM 1

Server 1

VMM 2

Server 2

VM / guest OS

Benchmark
application

VM / guest OS

Benchmark
application

Benchmark
load generator

Server 3

Network

Figure 3. Experiment setup

4. Experiments and Results

In our previous experiments, we already found out that
both migration time and blackout time are primarily
influenced by three parameters:

• Size of the configured memory for the virtual ma-
chine

• Size of the working set of the virtual machine

• Rate at which memory pages are written (made
“dirty”)

The configured memory size of the virtual machine as
well as the size of the working set can be easily ob-
tained through standard mechanisms provided by the
operating system. For the third parameter, there are
no standard means to determine the rate at which the
code running in a virtual machine (both application
as well as guest operating system) modifies memory

pages. Hence, we needed to develop a method for
measuring the effective dirty page rate in a virtualized
environment, which is described in the following
section.

4.1. How to Measure the Dirty Page
Rate

In our previous experiments, the dirty page rate was a
configurable parameter of the load generator applica-
tion being executed in the virtual machine. This ap-
proach no longer holds for a given benchmark appli-
cation, since the dirty page load is an indirect effect of
the benchmark code simulating real-world application
behavior.
Our first approach was to leverage CPU hardware per-
formance counters (“Performance Monitoring Units”
PMU), which are available in the majority of mod-
ern processors. This solution would be able to form a
hypervisor-agnostic solution. However, this approach
first has the problem that performance counters are
not passed through the hypervisor to the guest oper-
ating system, i.e it is not possible to access such hard-
ware registers from inside a virtual machine. Never-
theless, since some virtualization solutions (such as
KVM) map virtual machines onto operating system
processes, the host operating system can inspect CPU
performance counters for the specific process in this
case, which makes the approach in principle viable.
We carried out multiple-stage experiments with the
PMU idea in combination with the DPG load gener-
ator developed for earlier experiments. We first sought
for candidate performance counters that increase lin-
early with increasing dirty page rate. In a second step,
we used a modified version of the DPG that behaves
identical to the unmodified version, but only reads the
memory locations instead of writing. The idea here is
that a performance counter that is a good measure for
the dirty page rate grows linearly with the unmodified
version of the DPG. At the same time it should remain
constant for the modified version, or should show at
least a significantly lower rate.
We identified about 20 counters with the described
property. Up to here, we ran all tests with a constant
page fill rate, i.e. the load generator always modified
the same fraction of a page. In order to make the result
more generalizable, we shifted our focus on finding
a counter that is agnostic to the page fill rate. The
according experiments resulted in only one counter
that remains constant with different tested page fill
rates: MEM STORE RETIRED:DTLB MISS. This
CPU hardware performance counter reports the num-
ber of retired stores that missed the DTLB.
In a second approach for determining the dirty page
rate, we instrumented the KVM hypervisor to perform
direct measurements of the parameter. The KVM ker-
nel module has a built-in function to get a bit vector of

75

all pages being marked dirty since the last call. Based
on this information, the number of dirty pages can be
easily determined. Our modification took place in the
qemu-kvm userspace application, in order to imple-
ment a function that allow to query for the current dirty
page rate We modified the experiment setup so that the
function was called once every second to determine the
RATE parameter of the migrated virtual machine.
Our comparison of the two dirty page measurement
approaches with the DPG as well as with the SPEC
benchmark showed remarkable advantages of the sec-
ond approach. This has several reasons. First, the
hypervisor-based approach immediately reports the
actual dirty page count, whereas the performance
counter value needs to be translated into the number of
dirty pages. Additional experiments showed that this
mapping is clearly application-dependent, which con-
tradicts our initial hypothesis that the counter reflects
the dirty pages rate directly. Additionally, the hypervi-
sor measurement has a much finer granularity and can
be obtained directly for each virtual machine.

4.2. Investigating the Dirty Page Gen-
erator

To further evaluate the correctness of our measure-
ment approach, we compared the dirty page rate that
has been set as a parameter of the DPG load generator
(DPG RATE) to the dirty page rate measured using
the direct hypervisor measurement approach.
Our experimental results are shown in Figure 4. The
measured dirty page rate matches the configured
DPG RATE within the intended confidence interval,
except for a small constant offset which is reasoned
by memory operations of the remaining processes in
the virtual machine.
A second interesting observation is that for small
sizes of the working set, the measured dirty page rate
stays constant with increasing values for the DPG
dirty page rate. This is reasoned by the design of the
DPG tool., which cycles over the working set memory
pages with a specified access rate. If the working set
size is too small, the implementation cycles the buffer
several times in one round. Since we sample the
dirty page rate with a fixed frequency (one second), it
happens that DPG RATE memory pages get written
several times between two calls of the KVM function.
In this case, the modification of the same page for
several times just leaves the page dirty, so there is no
further increase in the monitored dirty page rate.

4.3. SPECjAppServer 2004 Benchmark

Virtualization and live migration are approaches that
are primarily used in data center and cloud computing
scenarios. In our experiments, we applied benchmarks
that aim at resembling the workload found in such

4

of the DPG that behaves identical to the unmodi-

fied version, but only reads the memory locations

instead of writing. The idea here is that a perfor-

mance counter that is a good measure for the dirty

page rate grows linearly with the unmodified ver-

sion of the DPG. At the same time it should re-

main constant for the modified version, or should

show at least a significantly lower rate.

We identified about 20 counters with the described

property. Up to here, we ran all tests with a con-

stant page fill rate, i.e. the load generator always

modified the same fraction of a page. In order to

make the result more generalizable, we shifted our

focus on finding a counter that is agnostic to the

page fill rate. The according experiments resulted

in only one counter that remains constant with

different tested page fill rates:

MEM_STORE_RETIRED:DTLB_MISS. This

CPU hardware performance counter reports the

number of retired stores that missed the DTLB.

In a second approach for determining the dirty

page rate, we instrumented the KVM hypervisor to

perform direct measurements of the parameter.

The KVM kernel module has a built-in function to

get a bit vector of all pages being marked dirty

since the last call. Based on this information, the

number of dirty pages can be easily determined.

Our modification took place in the qemu-kvm

userspace application, in order to implement a

function that allow to query for the current dirty

page rate We modified the experiment setup so

that the function was called once every second to

determine the RATE parameter of the migrated

virtual machine.

Our comparison of the two dirty page measure-

ment approaches with the DPG as well as with the

SPEC benchmark showed remarkable advantages

of the second approach. This has several reasons.

First, the hypervisor-based approach immediately

reports the actual dirty page count, whereas the

performance counter value needs to be translated

into the number of dirty pages. Additional experi-

ments showed that this mapping is clearly applica-

tion-dependent, which contradicts our initial hypo-

thesis that the counter reflects the dirty pages rate

directly. Additionally, the hypervisor measurement

has a much finer granularity and can be obtained

directly for each virtual machine.

Investigating the Dirty Page Generator
To further evaluate the correctness of our mea-

surement approach, we compared the dirty page

rate that has been set as a parameter of the DPG

load generator (DPG RATE) to the dirty page rate

measured using the direct hypervisor measurement

approach.

Our experimental results are shown in Figure 4.

The measured dirty page rate matches the confi-

gured DPG RATE within the intended confidence

interval, except for a small constant offset which is

reasoned by memory operations of the remaining

processes in the virtual machine.

A second interesting observation is that for small

sizes of the working set, the measured dirty page

rate stays constant with increasing values for the

DPG dirty page rate. This is reasoned by the de-

sign of the DPG tool., which cycles over the work-

ing set memory pages with a specified access rate.

If the working set size is too small, the implemen-

tation cycles the buffer several times in one round.

Since we sample the dirty page rate with a fixed

frequency (one second), it happens that DPG

RATE memory pages get written several times

between two calls of the KVM function. In this

case, the modification of the same page for several

times just leaves the page “dirty”, so there is no

further increase in the monitored dirty page rate.

Figure 4: Comparison of measured dirty page rate (z axis)

with the dirty page rate set as a parameter of the DPG

load generator (x axis) for various sizes of the working set

(y axis)

SPECjAppServer 2004 Benchmark
Virtualization and live migration are approaches

that are primarily used in data center and cloud

computing scenarios. In our experiments, we ap-

Figure 4. Comparison of measured dirty
page rate (z axis) with the dirty page rate
set as a parameter of the DPG load gen-
erator (x axis) for various sizes of the
working set (y axis)

scenarios.
The first benchmark we used was the SPECjApp-
Server 2004 version 1.08 application. It measures
the performance of Java 2 Enterprise Edition (J2EE)
technology-based application servers. The benchmark
simulates a manufacturing process, supply chain
management process, and a order/inventory business
process [1].
In addition to typical parameters specifying the
configuration of the server (number of threads, etc.),
the jAppServer benchmark has one parameter called
txrate to control the load applied to the system. We
varied this parameter for bringing the system under
test into various load conditions, then migrated the
virtual machine in which the application server was
running, and monitored total migration time as well as
blackout time accordingly. The results are shown in
Figure 5.
In the figure, we plotted migration time and blackout
time respectively as a function of working set size and
the measured dirty page rate. Each color in the plot
corresponds to one setting for the txrate parameter.
It might appear surprising that there are multiple stems
in the plot for one setting of txrate. The reason for
this behavior are effects within the application server
and the guest operating system (such as caching) that
let the size of the working set increase over time, even
though the jAppServer workload was constant. A first
analysis shows that both migration time as well as
blackout time measurements resemble the behavior
that could be measured with the DPG load generator.
A more fine-grained analysis, including an analysis of
the relative error for the different methods, is subject

76

5

plied benchmarks that aim at resembling the work-

load found in such scenarios.

The first benchmark we used was the SPECjApp-

Server 2004 version 1.08 application. It measures

the performance of Java 2 Enterprise Edition

(J2EE) technology-based application servers. The

benchmark simulates a manufacturing process,

supply chain management process, and a or-

der/inventory business process [1].

In addition to typical parameters specifying the

configuration of the server (number of threads,

etc.), the jAppServer benchmark has one parameter

called txrate to control the load applied to the

system. We varied this parameter for bringing the

system under test into various load conditions,

then migrated the virtual machine in which the

application server was running, and monitored

total migration time as well as blackout time ac-

cordingly. The results are shown in Figure 5.

In the figure, we plotted migration time and black-

out time respectively as a function of working set

size and the measured dirty page rate. Each color

in the plot corresponds to one setting for the

txrate parameter. It might appear surprising that

there are multiple stems in the plot for one setting

of txrate. The reason for this behavior are ef-

fects within the application server and the guest

operating system (such as caching) that let the size

of the working set increase over time, even though

the jAppServer workload was constant. A first

analysis shows that both migration time as well as

blackout time measurements resemble the behavior

that could be measured with the DPG load genera-

tor. A more fine-grained analysis, including an

analysis of the relative error for the different me-

thods, is subject of future work.

Results for the Mail Benchmark
Another typical scenario in data center environ-

ments is the hosting of mail servers. We used the

Postal SMTP benchmark to generate SMTP re-

quests for the widely used server-side combination

of a UNIX / Linux Postfix SMTP server and a

SpamAssassin spam filter. The postal benchmark

has a variety of parameters controlling the SMTP

load, such as maximum and minimum message

size, the number of messages (emails) per minute

and the number of connections that should be

opened to the SMTP server. We varied three pa-

rameters and investigated their influence on the

average dirty page rate. For each measurement, the

other parameters have been set to a fixed value:

 Number of messages per minute

 Number of threads (connections to the server)

 Message size

The results for the Postal experiment runs are giv-

en in Figure 6 to Figure 8. From the experimental

results, we first conclude that the number of mes-

sages sent per minute is the Postal configuration

parameter with the strongest and most predictable

impact on the measured dirty page rate.

Figure 5: Migration time and blackout time plotted as stems for various settings of the SPECjApp txrate parameter (color

coding). Each stem is located according to the measured average dirty page rate and working set size
Figure 5. Migration time and blackout time plotted as stems for various settings of the SPEC-
jApp txrate parameter (color coding). Each stem is located according to the measured av-
erage dirty page rate and working set size

of future work.

4.4. Results for the Mail Benchmark

Another typical scenario in data center environments is
the hosting of mail servers. We used the Postal SMTP
benchmark to generate SMTP requests for the widely
used server-side combination of a UNIX / Linux Post-
fix SMTP server and a SpamAssassin spam filter. The
postal benchmark has a variety of parameters control-
ling the SMTP load, such as maximum and minimum
message size, the number of messages (emails) per
minute and the number of connections that should be
opened to the SMTP server. We varied three param-
eters and investigated their influence on the average
dirty page rate. For each measurement, the other pa-
rameters have been set to a fixed value:

• Number of messages per minute

• Number of threads (connections to the server)

• Message size

The results for the Postal experiment runs are given in
Figure 6 to Figure 8. From the experimental results,
we first conclude that the number of messages sent per
minute is the Postal configuration parameter with the
strongest and most predictable impact on the measured
dirty page rate.
Based on the initial results, we performed a series of
live migration experiments where the virtual machine
running the SMTP server and the SpamAssassin spam
filter were migrated from one physical host to another,
while measuring the according total migration time
and blackout time under load. Based on the initial
outcome, we have varied the number of messages per

6

Based on the initial results, we performed a series

of live migration experiments where the virtual

machine running the SMTP server and the Spa-

mAssassin spam filter were migrated from one

physical host to another, while measuring the ac-

cording total migration time and blackout time

under load. Based on the initial outcome, we have

varied the number of messages per minute while

using 32 threads and a maximum message size of

10kB.

The results are shown in Figure 9. Similar to the

jAppServer benchmark, the figures for migration

time as well as blackout time match previous re-

sults. A more fine-grained analysis of relative er-

rors is currently under way.

Conclusions and Future Work

In continuation of our work on the duration of live

migration in virtualized data center and cloud

computing environments, we have recently fo-

cused on applying standardized benchmark work-

loads to check the applicability of our previous

results, which were based on an artificial load ge-

nerator. More specifically, we have used the

SPECjAppServer 2004 benchmark and the Postal

SMTP benchmark for this purpose. Results indi-

cate that our previous findings match well with

real-world workloads. Nevertheless, such a state-

ment needs to be supported by further investiga-

tions which are planned for a subsequent phase of

the project.

References

[1] SPECjAppServer2004 Design Document.

http://www.spec.org/jAppServer2004/docs/D

esignDocument.html; accessed 28.09.2011

Figure 6: Measured dirty page rate as a function of the

messages sent to the SMTP server per minute. Other pa-

rameters: Number of threads: 1, max. message size: 10kB

Figure 7: Measured dirty page rate as a function of the

number of threads (connections to the SMTP server).

Other parameters: Max. message size: 10kB, 110 messages

per minute.

Figure 6. Measured dirty page rate as
a function of the messages sent to the
SMTP server per minute. Other parame-
ters: Number of threads: 1, max. mes-
sage size: 10kB

minute while using 32 threads and a maximum mes-
sage size of 10kB.
The results are shown in Figure 9. Similar to the
jAppServer benchmark, the figures for migration time
as well as blackout time match previous results. A
more fine-grained analysis of relative errors is cur-
rently under way.

5. Conclusions and Future Work

In continuation of our work on the duration of live mi-
gration in virtualized data center and cloud computing

77

7

Figure 9: Migration time and blackout time for the mail server benchmark. The plot shows average migration times as a func-

tion of the number of messages sent to the server per minute. Error bars indicate standard deviation.

Figure 8: Measured dirty page rate as a function of maxi-

mum message size. Other parameters: 110 messages per

minute, number of threads: 1

Figure 9. Migration time and blackout time for the mail server benchmark. The plot shows
average migration times as a function of the number of messages sent to the server per
minute. Error bars indicate standard deviation.

6

Based on the initial results, we performed a series

of live migration experiments where the virtual

machine running the SMTP server and the Spa-

mAssassin spam filter were migrated from one

physical host to another, while measuring the ac-

cording total migration time and blackout time

under load. Based on the initial outcome, we have

varied the number of messages per minute while

using 32 threads and a maximum message size of

10kB.

The results are shown in Figure 9. Similar to the

jAppServer benchmark, the figures for migration

time as well as blackout time match previous re-

sults. A more fine-grained analysis of relative er-

rors is currently under way.

Conclusions and Future Work

In continuation of our work on the duration of live

migration in virtualized data center and cloud

computing environments, we have recently fo-

cused on applying standardized benchmark work-

loads to check the applicability of our previous

results, which were based on an artificial load ge-

nerator. More specifically, we have used the

SPECjAppServer 2004 benchmark and the Postal

SMTP benchmark for this purpose. Results indi-

cate that our previous findings match well with

real-world workloads. Nevertheless, such a state-

ment needs to be supported by further investiga-

tions which are planned for a subsequent phase of

the project.

References

[1] SPECjAppServer2004 Design Document.

http://www.spec.org/jAppServer2004/docs/D

esignDocument.html; accessed 28.09.2011

Figure 6: Measured dirty page rate as a function of the

messages sent to the SMTP server per minute. Other pa-

rameters: Number of threads: 1, max. message size: 10kB

Figure 7: Measured dirty page rate as a function of the

number of threads (connections to the SMTP server).

Other parameters: Max. message size: 10kB, 110 messages

per minute.

Figure 7. Measured dirty page rate as a
function of the number of threads (con-
nections to the SMTP server). Other pa-
rameters: Max. message size: 10kB, 110
messages per minute.

environments, we have recently focused on applying
standardized benchmark workloads to check the ap-
plicability of our previous results, which were based
on an artificial load generator. More specifically, we
have used the SPECjAppServer 2004 benchmark and
the Postal SMTP benchmark for this purpose. Results
indicate that our previous findings match well with
real-world workloads. Nevertheless, such a statement
needs to be supported by further investigations which
are planned for a subsequent phase of the project.

7

Figure 9: Migration time and blackout time for the mail server benchmark. The plot shows average migration times as a func-

tion of the number of messages sent to the server per minute. Error bars indicate standard deviation.

Figure 8: Measured dirty page rate as a function of maxi-

mum message size. Other parameters: 110 messages per

minute, number of threads: 1
Figure 8. Measured dirty page rate as
a function of maximum message size.
Other parameters: 110 messages per
minute, number of threads: 1

References

[1] SPECjAppServer2004 Design Document.
http://www.spec.org/jAppServer2004/docs/
DesignDocument.html, Sept. 2011.

78

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

69 978-3-86956-

229-2
Akzeptanz und Nutzerfreundlichkeit der
AusweisApp: Eine qualitative
Untersuchung

Susanne Asheuer, Joy
Belgassem, Wiete Eichorn, Rio
Leipold, Lucas Licht, Christoph
Meinel, Anne Schanz, Maxim
Schnjakin

68 978-3-86956-
225-4

Fünfter Deutscher IPv6 Gipfel 2012 Christoph Meinel, Harald Sack
(Hrsg.)

67 978-3-86956-
228-5

Cache Conscious Column Organization in
In-Memory Column Stores

David Schalb, Jens Krüger,
Hasso Plattner

66 978-3-86956-
227-8

Model-Driven Engineering of Adaptation
Engines for Self-Adaptive Software

Thomas Vogel, Holger Giese

65 978-3-86956-
226-1

Scalable Compatibility for Embedded
Real-Time components via Language
Progressive Timed Automata

Stefan Neumann, Holger Giese

64 978-3-86956-
217-9

Cyber-Physical Systems with Dynamic
Structure: Towards Modeling and
Verification of Inductive Invariants

Basil Becker, Holger Giese

63 978-3-86956-
204-9

Theories and Intricacies of
Information Security Problems

Anne V. D. M. Kayem,
Christoph Meinel (Eds.)

62 978-3-86956-
212-4

Covering or Complete?
Discovering Conditional Inclusion
Dependencies

Jana Bauckmann, Ziawasch
Abedjan, Ulf Leser, Heiko Müller,
Felix Naumann

61 978-3-86956-
194-3

Vierter Deutscher IPv6 Gipfel 2011 Christoph Meinel, Harald Sack
(Hrsg.)

60 978-3-86956-
201-8

Understanding Cryptic Schemata in Large
Extract-Transform-Load Systems

Alexander Albrecht,
Felix Naumann

59 978-3-86956-
193-6

The JCop Language Specification

Malte Appeltauer,
Robert Hirschfeld

58 978-3-86956-
192-9

MDE Settings in SAP: A Descriptive Field
Study

Regina Hebig, Holger Giese

57 978-3-86956-
191-2

Industrial Case Study on the Integration of
SysML and AUTOSAR with Triple Graph
Grammars

Holger Giese, Stephan
Hildebrandt, Stefan Neumann,
Sebastian Wätzoldt

56 978-3-86956-
171-4

Quantitative Modeling and Analysis of
Service-Oriented Real-Time Systems
using Interval Probabilistic Timed
Automata

Christian Krause, Holger Giese

55 978-3-86956-
169-1

Proceedings of the 4th Many-core
Applications Research Community
(MARC) Symposium

Peter Tröger,
Andreas Polze (Eds.)

54 978-3-86956-
158-5

An Abstraction for Version Control
Systems

Matthias Kleine,
Robert Hirschfeld, Gilad Bracha

53 978-3-86956-
160-8

Web-based Development in the Lively
Kernel

Jens Lincke, Robert Hirschfeld
(Eds.)

ISBN 978-3-86956-230-8
ISSN 1613-5652

	Title
	Imprint

	Contents
	Spring 2011
	A Benchmark Suite for Evaluating Parallel Programming Models
	Abstract
	1. Introduction
	2. Suite Design
	2.1. General Requirements
	2.2. Benchmark Suite

	3. Case Study: Pthreads vs. OmpSs
	3.1 Evaluated Programming Models
	3.2. Experimental Setup
	3.3. Preliminary Scaling Results

	4. Related Work
	5. Conclusions and Future Work
	References

	Towards Multi-Core and In-Memory for IDS Alert Correlation: Approaches and Capabilities
	Abstract
	1 Alert Correlation and its Performance
	2. Results and Achievements
	2.1 Parallel Processing in IDS Correlation
	2.2 A Correlation Platform for Parallel Processing

	3 AG-based Correlation Algorithm using HMM
	4. Future Work
	References

	Elastic VM for Dynamic Virtualized Resources Provisioning and Optimization
	Abstract
	1. Introduction
	2. Elastic VM architecture
	3. Experimental Setup in Future SOC Lab
	3.1. Static VM vs. Elastic VM response to step traffic
	3.2. Two Elastic VMs compete on resources

	4. Conclusions & Future work
	References

	VMs Core-allocation scheduling Policy for Energy and Performance Management
	Abstract
	1. Project Idea
	2. Used Future SOC Lab Resources
	3. Findinds: VMs Sensitivity Analysis
	3.1. VMs with NBP Sensitivity Analysis
	3.2. VMs with I/O Sensitivity Analysis

	4. Performance Evaluations
	4.1. VMs with sensitive Inter-process Comm.

	5. Next Steps
	References

	Towards Scalable and Self-Optimizing Software for Multi-Core and Cloud Computing II
	Abstract
	1. Introduction
	2. Parallel Concepts
	2.1. Explicit Parallelism
	2.2. Implicit Parallelism
	2.3. Heuristics and Adaptation
	2.4. Hardware Infrastructure

	3. Conclusions and Future Work
	References

	Buildbot Project Progress Report
	Abstract
	1. Introduction
	1.1 Issues with automated PyPI installations

	2. Virtualization As Solution
	3. Results
	4. Outlook
	References

	Downtime Analysis for Pro-Active Virtual Machine Migration Report for the HPI Future SOC Lab
	Abstract
	1. Introduction
	2. Approach
	3. Experiment Setup
	3.1. Analysis of XenServer
	3.2. Analysis of VMware
	3.3. Analysis of ProxmoxVE

	4. Conclusions and Next Steps
	5. Teaching Activities
	References

	Forward Business Recommendations – Realtime Management Support based on In-Memory Technology
	Abstract
	1. Rules and technical structure
	2. Checked processes
	2.1. Sales
	2.2. Warehouse
	2.3. Purchasing
	2.4. Financials
	2.5. Further Constraints

	3. Various possibilities
	4. Next steps
	References

	Fall 2011
	Accurate Mutlicore Processor Power Models for Power-Aware Resource Management
	Abstract
	1. Introduction and Project Idea
	2. Used Lab Resources and Experimental Setup
	3. Findings
	3.1. CPU-Power and frequency relationship
	3.2. CPU-Power and number of active cores relationship
	3.3. CPU-Power estimation models
	3.4. Statistical analysis
	3.5. Performance evaluation
	3.6. Conclusions and next steps

	References

	Towards Multi-Core and In-Memory for IDS Alert Correlation: Approaches and Capabilities
	Abstract
	1 Alert Correlation and its Performance
	2. Results and Achievements
	2.1 Normalization using CEE
	2.2 Categorical Clustering with QROCK

	3 Rule-based Correlation
	4 AG-based Correlation Algorithm using HMM
	5. Future Work
	References

	Duplicate Detection on GPUs
	Abstract
	1. Introduction
	2. Evaluation
	3. Conclusion
	References

	ECRAM (Elastic Cooperative RAM) HPI Future SOC Lab Project Report
	1. Project Idea
	2. Used Future SOC Lab Resources
	3. Findings
	4. Next Steps
	References

	Performance Prediction for Main Memory Databases in Data Clouds
	Abstract
	1. Introduction
	2. The Rock Clustering Infrastructure
	2.1 The Rock Clustering Framework
	2.2 Experimental Setup

	3. An Emprical Model for Response Time Prediction
	3.1 Relation of Request Rate and Tenant Size
	3.2 Relation of Workload and 99th Percentile Value
	3.3 Accuracy of the Model

	4. Conclusion
	References

	Downtime Analysis for Pro-Active Virtual Machine Migration
	Abstract
	1. Introduction
	2. Approach
	3. Experiment Setup
	4. Experiments and Results
	4.1. How to Measure the Dirty Page Rate
	4.2. Investigating the Dirty Page Generator
	4.3. SPECjAppServer 2004 Benchmark
	4.4. Results for the Mail Benchmark

	5. Conclusions and Future Work
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

