
Technische Berichte Nr. 67

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Cache Conscious
Column Organization
in In-Memory Column
Stores
David Schwalb, Jens Krüger, Hasso Plattner

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 67

David Schwalb | Jens Krüger | Hasso Plattner

Cache Conscious Column Organization in
In-Memory Column Stores

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.de/ abrufbar.

Universitätsverlag Potsdam 2013
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2013/6389/
URN urn:nbn:de:kobv:517-opus-63890
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63890

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-228-5

mailto:verlag@uni-potsdam.de

Contents

List of Figures . iii

List of Tables . iv

List of Algorithms . iv

Abstract . v

1 Introduction 1

1.1 Problem Statement . 2

1.2 Assumptions and Simplifications . 2

1.3 Definition of Key Terms . 4

1.4 Structure of this Report . 5

2 Background and Related Work 7

2.1 In-Memory Column Stores . 8

2.2 Index Structures . 10

2.3 Cost Models . 11

2.4 Caches . 12

3 System Definition 15

3.1 Parameters . 15

3.2 Physical Column Organization . 17

3.2.1 Dictionary Encoding . 17

3.2.2 Bit-Packing . 19

3.3 Operations on Data Structures . 20

3.4 Plan Operators . 21

3.4.1 Scan with Equality Selection . 21

3.4.2 Scan with Range Selection . 23

3.4.3 Lookup . 25

3.4.4 Insert . 25

4 Parameter Evaluation 27

4.1 Number of Rows . 27

4.2 Number of Distinct Values . 30

4.3 Value Disorder . 31

4.4 Value Length . 32

i

4.5 Value Skewness . 33
4.6 Conclusions . 35

5 Estimating Cache Misses 37
5.1 Background on Caches . 37

5.1.1 Memory Cells . 37
5.1.2 Memory Hierarchy . 38
5.1.3 Cache Internals . 39
5.1.4 Address Translation . 40
5.1.5 Prefetching . 41

5.2 Cache Effects on Application Performance . 41
5.2.1 The Stride Experiment . 41
5.2.2 The Size Experiment . 43

5.3 A Cache-Miss Based Cost Model . 43
5.3.1 Scan with Equality Selection . 45
5.3.2 Scan with Range Selection . 46
5.3.3 Lookup . 48
5.3.4 Insert . 48

6 Index Structures 51
6.1 Dictionary Index . 52
6.2 Column Index . 54

7 Partitioned Columns 59
7.1 Merge Process . 60
7.2 Merging Algorithm . 61

7.2.1 Merging Dictionaries . 63
7.2.2 Updating Compressed Values . 64
7.2.3 Initial Performance Improvements . 65

7.3 Merge Implementation . 66
7.3.1 Scalar Implementation . 67
7.3.2 Exploiting Thread-level Parallelism . 69

7.4 Performance Evaluation . 71
7.4.1 Impact of Delta Partition Size . 72
7.4.2 Impact of Value-Length and Percentage of Unique values 73

7.5 Merge Strategies . 74

8 Conclusions and Future Work 77

References 79

ii

List of Figures

3.1 Influence of parameter skewness on value distributions. 16
3.2 Organization of an uncompressed column. 17
3.3 Organization of a dictionary encoded column with an unsorted dictionary . . . 18
3.4 Organization of a dictionary encoded column with a sorted dictionary 18
3.5 Extraction of a bit-packed value-id . 19

4.1 Operator performance with varying number of rows 28
4.2 Operator performance with varying number of distinct values 29
4.3 Operator performance with varying value disorder 31
4.4 Operator performance with varying value length 33
4.5 Operator performance with varying value skewness 34

5.1 Memory Hierarchy on Intel Nehalem architecture. 38
5.2 Parts of a memory address. 39
5.3 Cycles for cache accesses with increasing stride. 42
5.4 Cache misses for cache accesses with increasing stride. 42
5.5 Cycles and cache misses for cache accesses with increasing working sets. 43
5.6 Evaluation of predicted cache misses. 49

6.1 Example dictionary index. 52
6.2 Operator performance with dictionary index and varying number of distinct

values. 53
6.3 Example column index. 55
6.4 Operator performance with column index and varying number of distinct values. 57

7.1 Example showing data structures for partitioned columns. 61
7.2 Example showing steps executed by merging algorithm. 65
7.3 Update Costs for Various Delta Partition Sizes 71
7.4 Update Costs for Various Value-Lengths . 73

iii

List of Tables

3.1 Complexity of plan operations by data structures. 21

5.1 Cache Parameters . 44

7.1 Symbol Definition for partitioned columns. 62

List of Algorithms

3.1 Scan with equality selection on uncompressed columns 22
3.2 Scan with equality selection on columns with sorted dictionaries 22
3.3 Scan with equality selection on columns with unsorted dictionaries 22
3.4 Scan with range selection on uncompressed columns 23
3.5 Scan with range selection on columns with sorted dictionaries 23
3.6 Scan with range selection on columns with unsorted dictionaries 23
3.7 Lookup on uncompressed columns . 24
3.8 Lookup on dictionary encoded columns . 24
3.9 Insert on columns with sorted dictionaries . 25
3.10 Insert on columns with unsorted dictionaries 25
6.1 Insert on columns with dictionary indices . 54
6.2 Scan with equality selection on column indices 56
6.3 Scan with range selection on column indices . 56

iv

Abstract

Cost models are an essential part of database systems, as they are the basis of query perfor-

mance optimization. Based on predictions made by cost models, the fastest query execution

plan can be chosen and executed or algorithms can be tuned and optimized.

In-memory databases shift the focus from disk to main memory accesses and CPU costs,

compared to disk based systems where input and output costs dominate the overall costs and

other processing costs are often neglected. However, modeling memory accesses is fundamen-

tally different and common models do not apply anymore.

This work presents a detailed parameter evaluation for the plan operators scan with equality

selection, scan with range selection, positional lookup and insert in in-memory column stores.

Based on this evaluation, we develop a cost model based on cache misses for estimating the

runtime of the considered plan operators using different data structures. We consider uncom-

pressed columns, bit compressed and dictionary encoded columns with sorted and unsorted

dictionaries. Furthermore, we discuss tree indices on the columns and dictionaries.

Finally, we consider partitioned columns consisting of one partition with a sorted and one

with an unsorted dictionary. New values are inserted in the unsorted dictionary partition

and moved periodically by a merge process to the sorted partition. We propose an efficient

merge algorithm, supporting the update performance required to run enterprise applications

on read-optimized databases and provide a memory traffic based cost model for the merge

process.

v

Chapter 1

Introduction

In-memory column stores commence to experience a growing attention by the research com-
munity. They are traditionally strong in read intensive scenarios with analytical workloads
like data warehousing, using techniques like compression, clustering and replication of data. A
recent trend introduces column stores for the backbone of business applications as a combined
solution for transactional and analytical processing. This approach introduces high perfor-
mance requirements as well for read performance as also for write performance to the systems.

Typically, optimizing read and write performance of data structures results in trade-offs,
as e.g. higher compression rates introduce overhead for writing, but increase the read perfor-
mance. These trade-offs are usually made during the design of the system, although the actual
workload the system is facing during execution varies significantly. The underlying idea of
this report is a database system, which supports different physical column organizations with
unique performance characteristics, allowing to switch and choose the used structures at run-
time depending on the current, historical or expected future workloads. However, this report
will not provide a complete description or design of such a system. Instead, we provide the
basis for such a system by focusing on selected data structures for in-memory column stores,
presenting a detailed parameter evaluation and providing cache-based cost functions for the
discussed plan operators.

The decision which column organization scheme is used, has to be made by the system
based on knowledge of the performance of individual database operators and data structures.
This knowledge is represented by the cost model. A cost model is an abstract and simplified
version of the actual system, which allows to make predictions about the actual system. A
model is always a tradeoff between accuracy and speed with which predictions can be made.
The most accurate model is the system itself. Obviously, executing a Query Execution Plan
(QEP) in order to determine the time it will take for its execution, does not make sense.

Models based on simulations also produce very accurate predictions. However, evaluating
such a model requires to run costly simulations. Due to the performance requirements for

1

CHAPTER 1. INTRODUCTION

query execution, query optimizers usually build on analytical models. Analytical models can
be described in closed mathematical terms and are therefore very fast to evaluate.

Query optimizers do not require extremely accurate predictions of the model, but they
do require that the relations produced by the model reflect the real system. In other words,
the order of QEPs sorted by their performance should be the same in the model and in the
real system. Additionally, the fastest QEPs usually do not differ significantly in execution
performance, but predicting which of those plans will be the fastest requires a very detailed
model. The time saved by finding the faster execution plan is then outweighed by the time
needed for the additional accuracy of the prediction. Therefore, we are usually not interested
in finding the best possible solution, but rather in finding a sufficiently fast solution in a short
time frame.

Our contributions are i) a detailed parameter discussion and analysis for the operations
scan with equality selection, scan with range selection, lookup and inset on different physi-
cal column organizations in in-memory column stores, ii) a cache based cost model for each
operation and column organization plus dictionary and column indices, iii) an efficient merge al-
gorithm for dictionary encoded in-memory column stores, enabling them to support the update
performance required to run enterprise application workloads on read-optimized databases.

1.1 Problem Statement

In this work, we focus on in-memory databases [52, 7, 27, 69, 58]. Especially columnar in-
memory databases have received recent interest in the research community [25, 44, 59]. A
logical column can be represented in main memory in different ways, called physical column
organization or schemes. Essentially, the physical schema describes how a column is encoded
and stored in main memory.

We focus on estimating query costs for the considered physical column organizations. In
order to answer this problem, we assume a closed system in terms of possible queries, phys-
ical column organizations and given operator implementations. We want to find an accurate
estimation, which is still computable in reasonable time. We also take column and dictionary
indices into account and want to provide a respective cost model for the use of these indices.

1.2 Assumptions and Simplifications

We will make certain assumptions throughout this report and focus on estimating query costs
based on cache misses for the given operators and physical column organizations in a column
oriented in-memory storage engine. In particular, we assume the following:

2

1.2. ASSUMPTIONS AND SIMPLIFICATIONS

Enterprise Environment We base this work on the assumptions of using a columnar in-
memory database for enterprise applications for combined transactional and analytical systems.
Recent work analyzed the workload of enterprise customer systems, finding in total more than
80 % of all queries are read access – for OLAP systems even over 90 % [46]. While this is the
expected result for analytical systems, the high amount of read queries on transactional systems
is surprising as this is not the case in traditional workload definitions. Consequently, the query
distribution leads to the concept of using a read-optimized database for both transactional and
analytical systems. Even though most of the workload is read-oriented, 17 % (OLTP) and
7 % (OLAP) of all queries are updates. A read-optimized database supporting both workloads
has to be able to support this amount of update operations. Additional analyses on the data
have shown an update rate varying from 3,000 to 18,000 updates/second.

Insert Only Column Store In order to achieve high update rates, we chose to model table
modifications following the insert-only approach as in [44, 59]. Therefore, updates are always
modeled as new inserts, and deletes only invalidate rows. We keep the insertion order of tuples
and only the lastly inserted version is valid. We chose this concept because only a small fraction
of the expected enterprise workload are modifications [44] and the insert-only approach allows
queries to also work on the history of data.

Workload We assume a simplified workload, consisting of the query types scan with equality
selection, scan with range selection, positional lookup and inserts. A given workload consists
of a given distribution of these queries and their parameters. We chose these operators as
we identified them as the most basic operators needed by an insert only database system.
Additionally, more complex operators can be assembled by combining these basic operators,
as e.g. a join consisting of multiple scans.

Isolated Column Consideration As columnar databases organize their relations in iso-
lated columns, query execution typically is a combination of multiple operators working on
single columns and combining their results. For simplicity, we assume queries working on a
single column and neglect effects introduced by operators on multiple columns.

Parallelism With high end database servers developing from multi-core to many-core sys-
tems, modern databases are highly parallelized using data level parallelism, instruction level
parallelism and thread level parallelism. However, for our cost model we assume the algorithms
to execute on a single core without thread level or data level parallelism. For future work, an
extension for parallel query processing could be introduced based on the algebra of the generic
cost model introduced in [52].

Materialization Strategies In the process of query execution, multiple columns have to be
stitched together, representing tuples of data as output. This process is basically the opposite
operation of a projection in a row store. The optimal point in the query plan to do this
is not obvious [1]. Additionally to the decision when to add columns to the query plan, a
column store can work on lists of positions or materialize the actual values, which can be
needed by some operators. Abadi et al. present four different materialization strategies - early

3

CHAPTER 1. INTRODUCTION

materialization pipelined, early materialization parallel, late materialization pipelined and late
materialization parallel. We refer to the process of adding multiple columns to the query plan
as tuple reconstruction. The process of switching the output from lists of positions to lists
of position and value pairs is called materialization. Throughout the report, we assume scan
operators to create lists of positions as their result. The process of tuple reconstruction can be
seen as a collection of positional lookup operations on a column.

Column Indices Index structures for databases have been intensely studied in literature
and various indexing techniques exists. We assume a column index to be a mapping from
values to positions, building a classical inverted index known from document retrieval systems.
We assume the index to be implemented by a B+-tree structure as described in Section 6.

Bandwidth Boundness In general, the execution time of an algorithm accessing only main
memory as the lowest level in the memory hierarchy and no other I/O devices can be assembled
by two parts – a) the time spent doing computations on the data and b) the time the processor is
waiting for data from the memory hierarchy. Bandwidth bound algorithms spend a significant
amount of time fetching data from memory so that the actual processing times are comparable
small. We assume our considered algorithms to be bandwidth bound and do not consider
TCPU in our cost model and focus on predicting the memory access costs through the number
of cache misses. However, database systems are not always bandwidth bound and for more
accurate predictions TCPU can be calibrated and considered in the cost model [52].

1.3 Definition of Key Terms

In order to avoid ambiguity, we define the following terms to be used in the rest of the report.

1. Table: A relational table or relation with attributes and containing records.

2. Attribute: A field of a table with an associated type.

3. Record: Elementary units contained in a table, containing one value for each attribute
in the table.

4. Column: Tables are physically stored in main memory as a collection of columns. A
column is the physical representation of an attribute.

5. Physical Column Organization: Describes the organization scheme and how a column is
physically stored in memory, e.g. if it is stored uncompressed or if compression techniques
are applied.

6. Update: Any modification operation on the table resulting in a new entry.

4

1.4. STRUCTURE OF THIS REPORT

7. Partitioned Column: A partitioned column consists of two partitions – one uncompressed
and write optimized delta partition and one compressed and read optimized main par-
tition. All writes go into the delta partition and are merged periodically into the main
partition.

8. Merge: The merge process periodically combines the read and write optimized partitions
of a partitioned column into one read optimized partition.

9. Column Index: A column index is a separate data structure accelerating specific opera-
tions on the column by the costs of index maintenance when inserting new values.

10. Dictionary Index: A dictionary index is a separate tree index on top of an unsorted
dictionary, allowing to leverage binary search algorithms.

11. Dictionary Encoding: Dictionary encoding is a well known light weight compression tech-
nique, reducing the redundancy by substituting occurrences of long values with shorter
references to these values.

12. Dictionary and Attribute Vector: In a dictionary encoded column, the actual column
contains two containers: the attribute vector and the value dictionary. The attribute
vector is a standard vector of integer values storing only the reference to the actual
value, which is the index of the value in the value dictionary and is also called value-id.

13. Bit-Packing: A bit-packed vector of integer values uses only as many bits for each value
as are required to represent the largest value in the vector.

1.4 Structure of this Report

The remainder of the report is structured as follows: Chapter 2 discusses related work re-
garding in-memory column stores, cost models for columnar in-memory databases, caches and
their effects on application performance and indices. Chapter 3 gives an overview of the dis-
cussed system and introduces the considered physical column organizations and plan operators.
Chapter 4 presents an evaluation of parameter influences on the plan operator performance
with varying number of rows, number of distinct values, value disorder, value length and value
skewness. Our cache miss based cost model is presented in Chapter 5, followed by Chap-
ter 6 introducing column and dictionary indices and their respective costs. Then, Chapter 7
describes partitioned columns and the merge process including a memory traffic based cost
model. Finally, the report closes with concluding remarks and future works in Chapter 8.

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Background and Related Work

This section gives an overview of related work regarding in-memory column stores, followed by
work concerning cost models for main memory databases, index structures and cache effects.

Rmakrishnan and Gehrke define a database managements system as ”a software designed
to assist in maintaining and utilizing large collections of data” [61]. Today, a wide range of
database systems exists, varying in their intended use cases and workloads, the used data
models, their logical and physical data organization or the primary data storage locations.

Typical use cases and types of databases are text retrieval systems, stream based databases
[14], real-time databases, transaction processing systems, data warehouses or data mining
systems. Text retrieval systems like [73] usually store collections of free text called documents
and are optimized to execute queries matching a set of stored documents. Stream based
databases are designed to handle constantly changing workloads, as e.g. stock market data or
data generated through RFID tracking [56]. Real-time databases are specifically designed to
guarantee specified time constraints as required by e.g. telephone switching, radar tracking or
arbitrage trading applications [39].

Transaction processing systems are usually based on the relational model [12] and are de-
signed to store data generated by events called transactions, supporting atomicity, consistency,
isolation and durability. OLTP workloads are characterized by a mix of reads and writes to
a few rows at a time, typically leveraging B+-Trees or other index structures. Usually, OLTP
systems store their data in row organized tables, which allows fast retrieval of single rows and
are optimized for fast write performance. Typical use cases for transactional databases are in
the field of operational data for enterprise resource planning systems or as the backbone of
other applications.

Conversely, analytical systems usually work on a copy of the operational data extracted
through extract-transform-load (ETL) processes and stored optimized for analytical queries.
OLAP applications are characterized by bulk updates and large sequential scans, spanning
few columns but many rows of the database, for example to compute aggregate values. The

7

CHAPTER 2. BACKGROUND AND RELATED WORK

analytical systems are often organized in star schemas and work with pre-aggregated data.

Besides the relational data model, various other data models exist like the network data
model, the hierarchical data model or the object data model. However, this report focusses
on relational databases in the context of enterprise applications. Relational databases differ in
their intended data schemata (like normalized or star schemata), their physical layouts of data
storage (e.g. row or column oriented, compression techniques) or their primary data storage
locations (disk or main memory).

Classical disk based transactional databases are IBMs DB2, Oracle Database or SAPs
MaxDB. H-Store [38] is a row-based distributed database system storing data in main memory.
Besides transactional systems, the need for specialized decision support systems evolved [20, 67]
resulting in analytical systems optimized for OLAP processing. SybaseIQ is a column oriented
disk-based system explicitly designed optimizing the analytical query performance [50]. C-Store
and its commercial version Vertica are also disk based column stores designed for analytics,
allowing columns to be stored in multiple sort orders. Writes are accumulated in a writeable
store and moved by a tuple-mover into the read optimized store [66]. MonetDB and Vectorwise
[9, 75, 74, 10] are column oriented databases targeted to support query-intensive applications
like data mining and ad-hoc decision support.

A recent research trend started to reunite the worlds of transactional and analytical pro-
cessing by introducing and proposing systems designed for mixed workloads like SancoussiDB
[58, 59], Hyrise [26] or HyPer [41, 40].

2.1 In-Memory Column Stores

Businesses use their transactional data as a basis to evaluate their business performance, gain
insights, for planning and predictions of future events with the help of separate analytical
systems. In the recent past, a desire for more actual analyses developed, requiring to work
directly on the transactional data. Plattner describes the separation of transactional and
analytical systems and that database structures were designed to support complex business
transactions focusing on the transactional processing [58]. Analytical and financial planning
systems were moved into separate systems, which were highly optimized for the read intensive
workloads, promising more performance and flexibility.

The main reason for separating transactional and analytical systems were their different
performance requirements. Actually, the requirements are even contradicting. Transactional
workloads were believed to be very write intensive, selecting only individual rows of tables and
manipulating them. Analytical workloads usually have a very high selectivity, scanning entire
attributes and joining and grouping them. The underlying problem is that data structures can
only be optimized up to a certain point for all requirements. After that point, each optimization
in one direction becomes a cost factor for another operation. For example, higher compression
of a data structure can speed up complex read operations due to less memory that has to be

8

2.1. IN-MEMORY COLUMN STORES

read, but increases the expenses for adding new items to the data structure. In extreme cases,
the whole compression scheme even has to be rebuilt.

The flexibility and speed which is gained by separating OLTP and OLAP is bought by
introducing high costs for transferring the data (ETL processes) and managing the emerg-
ing redundancy. Additionally, data is only periodically transferred between transactional and
analytical systems, introducing a delay in reporting. This becomes especially important as
through analytical reporting on their transactional data, companies are much more able to
understand and react to events influencing their business. Consequently, there is an increasing
demand for “real-time analytics” – that is, up-to-the moment reporting on business processes
that have traditionally been handled by data warehouse systems. Although warehouse vendors
are doing as much as possible to improve response times (e.g., by reducing load times), the
explicit separation between transaction processing and analytical systems introduces a funda-
mental bottleneck in analytics scenarios. While the predefinition of data to be extracted and
transformed to the analytical system results in business decisions being made on a subset of
the potential information, the separation of systems prevents transactional applications from
using analytics functionality throughout the transaction processing due to the latency that is
inherent in the data transfer.

Recent research started questioning this separation of transactional and analytical systems
and introduces efforts of uniting both systems again [58, 59, 46, 40, 25, 41]. Although, the
goal is not to advocate a complete unification of OLAP and OLTP systems, because the
requirements of data cleansing, system consolidation and very high selectivity queries cannot
yet be met with the proposed systems and still require additional systems. However, using a
read optimized database system for OLTP allows to move most of the analytical operations
into the transactional systems, so that they profit by working directly on the transactional
data. Applications like real-time stock level calculation, price calculation and online customer
segmentation will benefit from this up-to-date data. A combined database for transactional
as well as analytical workloads eliminates the costly ETL process and reduces the level of
indirection between different systems in enterprise environments, enabling analytical processing
directly on the transactional data.

The authors of [58, 46] pursue the idea of designing a persistence layer which is better
optimized for the observed workload from enterprise applications, as today’s database systems
are designed for a more update intensive workload as they are actually facing. Consequently,
the authors start with a read optimized database system and optimize its update performance
to support transactional enterprise applications. The back-bone of such a system’s architecture
could be a compressed in-memory column-store, as proposed in [58, 25]. Column oriented
databases have proven to be advantageous for read intensive scenarios [50, 75], especially in
combination with an in-memory architecture.

Such a system has to handle contradicting requirements for many performance aspects.
Decisions may be made with the future application in mind or by estimating the expected
workload. Nevertheless, the question arises which column oriented data structures are used in

9

CHAPTER 2. BACKGROUND AND RELATED WORK

combination with light-weight compression techniques, enabling the system to find a balanced
trade-off between the contradicting requirements. This report aims at studying these trade-offs
and at analyzing possible data structures.

2.2 Index Structures

As in disk based systems, indexing in in-memory databases remains important although sequen-
tial access speeds allow for fast complete column scans. Disk based systems often assume that
index structures are in memory and accessing them is cheap compared to the main cost factor
which is accessing the relations stored on secondary storage. However, in-memory databases
still profit from index structures that allow to answer queries selecting single values or ranges of
values. Additionally, translating values into value-ids requires searching on the value domain
which can be accelerated by the use of indices. For in-memory databases the index access
performance is even more essential and must be faster than sequentially scanning the complete
column.

Lehman and Carey [48] describe in their work from 1986 how in-memory databases shift
the focus for data structures and algorithms from minimizing disk accesses to using CPU cycles
and main memory efficiently. They present T-Trees as in-memory index structures, based on
AVL and B-Trees. T-Trees are binary search trees, containing multiple elements in one node
to leverage cache effects.

A recent trend redesigns data structures to be more cache friendly and significantly improve
performance by effectively using caches. Lee et al. introduce a Cache Sensitive T-Tree [47]
whereas Rao and Ross optimize B+-Trees for cache usage introducing Cache Sensitive Search
Trees [62, 63]. The work of Kim et al. presents a performance study evaluating cache sensitive
data structures on multi-core processors [42].

Besides creating indices manually, the field of automatic index tuning promises self-tuning
systems reacting dynamically to their workloads. Some techniques analyze the workload and
periodically optimize the system while other techniques constantly adapt the system with every
query. Graefe and Kuno propose adaptive merging as an adaptive indexing scheme, exploiting
partitioned B-trees [22] by focusing the merge steps only on relevant key ranges requested by
the queries [24, 23]. Idreos et al. propose database cracking as another adaptive indexing
technique, partitioning the keys into disjoint ranges following a logic similar to a quick-sort
algorithm [33, 34]. Finally, Idreos et al. propose a hybrid adaptive indexing technique as
a combination of database cracking and adaptive merging [35]. Besides tree or hash based
indices, bitmap indices are also widely used in in-memory database systems, e.g. Wu et al.
propose the Word-Aligned Hybrid code [72] as compression scheme for bitmap indices.

10

2.3. COST MODELS

2.3 Cost Models

Relatively little work has been done on researching main memory cost models. This probably
is due to the fact, that modeling the performance of queries in main memory is fundamentally
different to disk based systems, where IO access is clearly the most expensive part. In in-
memory databases, query costs consist of memory and cache access costs on the one hand and
CPU costs on the other hand.

In general, cost models differ widely in the costs they estimate. Complexity based models
provide a correlation between input sizes and execution time, but normally abstract constant
factors as in the big O-Notation. Statistical models can be used to estimate the result sizes
of operations based on known parameters and statistics of the processed data. Other cost
models are based on simulations and completely go through a simplified process mapping the
estimated operations. Usually simulation based models provide very accurate results but are
also expensive and complex. Analytical cost models provide closed mathematical formulas,
estimating the costs based on defined parameters. Additionally, system architecture aware
models take system specific characteristics into account, e.g. cache conscious cost models
which rely on parameters of the memory hierarchy of the system.

Based on IBM’s research prototype“Office by Example” (OBE) Whang and Krishnamurthy
[70] present query optimization techniques based on modeling CPU costs. As modeling CPU
costs is complicated and depends on parameters like the hardware architecture and even dif-
ferent programming styles, Whang and Krishnamurthy experimentally determine bottlenecks
in the system and their relative weights and unit costs, building analytical cost formulas.

Listgarten and Neimat [49] compare three different approaches of cost models for in-memory
database systems. Their first approach is based on hardware costs, counting CPU cycles. The
second approach models application costs, similarly to the method presented by Whang and
Krishnamurthy [70]. The third approach is based on execution engine costs, which is a com-
promise between complex hardware-based models and general application-based models. List-
garten and Neimat argue that only the engine-based approach provides accurate and portable
cost models.

Manegold and Kersten [51] describe a generic cost model for in-memory database systems,
to estimate the execution costs of database queries based on their cache misses. The main idea
is to describe and model reoccurring basic patterns of main memory access. More complex
patterns are modeled by combining the basic access patterns with a presented algebra. In
contrast to the cache-aware cost model from Manegold, which focusses on join operators, we
compare scan and lookup operators on different physical column layouts.

Zukowski, Boncz, Nes and Heman [75, 8] describe X100 as an execution engine for monetDB,
optimized for fast execution of in-memory queries. Based on in-cache vectorized processing and
the tuple-at-a-time Volcano [21] pipelining model, fast in cache query execution is enabled. The
X100 cost model is based on the generic cost model of Manegold and Kersten, modeling query

11

CHAPTER 2. BACKGROUND AND RELATED WORK

costs by estimating cache misses.

Sleiman, Lipsky and Konwar [65] present an analytical model, predicting the access times
for memory requests in hierarchical multi-level memory environments, based on a linear-
algebraic queuing theory approach.

Pirk [57] argues that general purpose database systems usually fall short in leveraging the
principle of data locality, because data access patterns can not be determined during designing
the system. He proposes storage strategies, which automatically layout the data in main
memory based on the workload of the database. His cost analyses are based on the generic
cost model of Manegold and Kersten, but are extended for modern hardware architectures
including hardware prefetching.

2.4 Caches

The influences of the cache hierarchy on application performance have been extensively studied
in literature. Various techniques have been proposed to measure costs of cache misses and
pipeline stalling. Most approaches are based on handcrafted micro benchmarks exposing the
respective parts of the memory hierarchy. The difficulty is to find accurate measurement
techniques, mostly relying on hardware monitors to count CPU cycles and cache misses. Other
approaches are based on simulations, allowing detailed statistics of the induced costs.

Drepper [18] describes the concepts of caching, their realization in hardware and summarizes
the implications for software design.

Barr, Cox and Rixner [4] study the penalties occurring when missing the translation look-
aside buffer (TLB) in systems with radix page tables like the x86-64 system and compare
different page table organizations. Due to the page table access, the process of translating
a virtual to a physical address can induce additional TLB cache misses, depending on the
organization of the page table.

Saavedra and Smith [64] develop a model predicting the runtime of programs on analyzed
machines. They present an uniprocessor machine-independent model based on various abstract
operations. By combining the measurement of the performance of such abstract operations on
a concrete processor and the frequency of these operations in a workload, the authors are able
to estimate the resulting execution time. Additionally, penalties of cache misses are taken into
account. However, it is assumed that an underlying miss ratio is known for the respective
workload and no mechanisms for predicting the number of cache misses are provided.

Hirstea and Lenoski [31] identify the increasing performance gap between processors and
memory systems as an essential bottleneck and introduce a memory benchmarking methodol-
ogy based on micro benchmarks measuring restart latency, back-to-back latency and pipelined
bandwidth. The authors show that the bus utilization in uniform-memory-access (UMA) sys-
tems has a significant impact on memory latencies.

12

2.4. CACHES

Babka and Tuma [3] present a collection of experiments investigating detailed parameters
and provide a framework measuring performance relevant aspects of the memory architecture
of x86-64 systems. The experiments vary from determining the presence and size of caches to
measuring the cache line sizes or cache miss penalties.

Puzak et al. [60] propose Pipeline Spectroscopy to measure and analyze the costs of cache
misses. It is based on a visual representation of cache misses, their costs and their overlapping.
The spectrograms are created by simulating the program, allowing to closely track cache misses
and the induced stalling. Due to the simulation approach, the method is cost intensive and
not suited for cost models requiring fast decisions.

13

CHAPTER 2. BACKGROUND AND RELATED WORK

14

Chapter 3

System Definition

This chapter gives an overview of the considered system. First, Section 3.1 gives a formal
definition of the system and considered parameters. Then, Section 3.2 introduces the considered
physical column organization schemes uncompressed column, dictionary encoded columns and
bit-packing. Followed by Section 3.3 discussing operations on columns and their complexities
depending on the internal organization. Finally, Section 3.4 introduces the considered plan
operators and discusses their theoretical complexities.

3.1 Parameters

We consider a database consisting of a set of tables T. A table t ∈ T consists of a set of
attributes A. The number of attributes of a table t will be denoted as |A|. We assume the
value domain V of each attribute a ∈ A to be finite and require the existence of a total order
ρ over V. In particular, we define c.e as the value length of attribute a and assume V to be
the set of alphanumeric strings with the length c.e. An attribute a is a sequence of c.r values
v ∈ D with D ⊆ V, where c.r is also called number of rows of a and D also called the dictionary
of a.

D is a set of values D = {v1, ..., vn}. We define c.d := |D| as the number of distinct values
of an attribute. In case the dictionary is sorted, we require ∀vi∈D : vi < vi+1. In case the
dictionary is unsorted, v1, ..., vn are in insertion order of the values in attribute a. The position
of a value vi in the dictionary defines its value-id id(vi) := i. For bit encoding, the number of
values in D is limited to 2b, with b being the number of bits used to encode values in the value
vector. We define c.ec := b as the compressed value length of a, requiring c.ec ≥ dlog2(c.d)e
bits.

The degree of sortedness in a is described by the measure of disorder denoted by c.u, based
on Knuth’s measure of disorder, describing the minimum amount of elements that need to be

15

CHAPTER 3. SYSTEM DEFINITION

 0

 2000

 4000

 6000

 8000

 10000

 12000

0 1 2 3 4 5 6 7 8 9

N
um

be
r o

f O
cc

ur
en

ce
s

Value

Skewness = 0

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

0 1 2 3 4 5 6 7 8 9

N
um

be
r o

f O
cc

ur
en

ce
s

Value

Skewness = 0.5

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000

0 1 2 3 4 5 6 7 8 9

N
um

be
r o

f O
cc

ur
en

ce
s

Value

Skewness = 1.0

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000

0 1 2 3 4 5 6 7 8 9

N
um

be
r o

f O
cc

ur
en

ce
s

Value

Skewness = 2.0

Figure 3.1: Influence of the parameter skewness on the value distribution. The histograms
reflect the number of occurrences of each distinct value (for 10 distinct values and 100.000
generated values, skewness varying from 0 to 2).

removed from a sequence so that the sequence would be sorted [43].

Finally, we define the value skewness c.k, describing the distribution of values of an at-
tribute, as the exponent characterizing a Zipfian distribution. We chose to model the dif-
ferent distributions by a Zipfian distribution, as the authors in [32] state that the majority
of columns analyzed from financial, sales and distribution modules of an enterprise resource
planning (ERP) system were following a power-law distribution – a small set of values occurs
very often, while the majority of values is rare.

The frequency of the xth value in a set of c.d distinct values can be calculated with the
skewness parameter c.k as:

f(x, c.k, c.d) =
1
xc.k∑c.d
n=1

1
nc.k

(3.1)

Intuitively, c.k describes how heavily the distribution is drawn to one value. Figure 3.1
shows the influence of c.k on a value distribution with c.d = 10 and c.d = 100.000 values,
displaying the distribution as a histogram for c.k = 0, c.k = 0.5, c.k = 1.0 and c.k = 2.0.
In the case of c.k = 0, the distribution equals a uniform distribution and every value occurs
equally often. As c.k increases, the figure shows how the distribution is skewed more and more.

16

3.2. PHYSICAL COLUMN ORGANIZATION

0
1
2
3
4

Germany
Australia

United States
United States

Australia

0
1
2
3
4

Logical Table Column

Germany000000
Australia0000
United States
United States
Australia0000

Figure 3.2: Organization of an uncompressed column with value length 13.

3.2 Physical Column Organization

The logical view of a column is a simple collection of values that allows appending new values,
retrieving the value from a position and scanning the complete column with a predicate. How
the data is actually stored in memory is not specified.

In general, data can be organized in memory in a variety of different ways, e.g. in standard
vectors in insertion order, ordered collections or collections with tree indices [59]. In addition to
the type of organization of data structures, the used compression techniques are also essential
for the resulting performance characteristics. Regarding compression, we will focus on the
light weight compression techniques dictionary encoding and bit compression. As concrete
combinations, we examine uncompressed columns and dictionary encoded columns with bit
compressed attribute vectors whereas the dictionary can be sorted and unsorted.

Uncompressed columns store the values as they are inserted consecutively in memory, as e.g.
used in [46]. This design decision has two important properties that affect the performance of
the data structure. First, the memory consumption increases and second the scan performance
decreases due to the lower number of values per cache line and the lack of a sorted dictionary
for fast queries. The update performance can be very high, as new values have to be written
to memory and no overhead is necessary to maintain the internal organization or for applying
compression techniques.

Figure 3.2 pictures an example of an uncompressed column, showing the logical view of
the table on the left and the layout of the column as it is represented in memory on the right
side. As no compression schemes are applied, the logical layout equals the layout in memory,
storing the values consecutively as fixed length strings in memory.

3.2.1 Dictionary Encoding

Dictionary encoding is a well known, light-weight compression technique [66, 5, 68], which
reduces the redundancy by substituting occurrences of long values with shorter references to
these values. In a dictionary encoded column, the actual column contains two containers:

17

CHAPTER 3. SYSTEM DEFINITION

00000000
00000001
00000010
00000010
00000001

0
1
2
3
4

Germany000000
Australia0000
United States

00
01
10

Germany
Australia

United States
United States
Australia

0
1
2
3
4

Logical Table Column Dictionary

Figure 3.3: Organization of a dictionary encoded column, where the dictionary is unsorted.

00000001
00000000
00000010
00000010
00000000

0
1
2
3
4

Australia0000
Germany000000
United States

00
01
10

Germany
Australia

United States
United States
Australia

0
1
2
3
4

Logical Table Column Dictionary

Figure 3.4: Organization of a dictionary encoded column, where the dictionary is kept sorted.

the attribute vector and the value dictionary. The attribute vector is a vector storing only
references to the actual values of c.ec bits, which represent the index of the value in the value
dictionary and are also called value-ids. For the remainder, we assume c.ec = 32 bits.

The value dictionary may be an unsorted or ordered collection. Ordered collections keep
their tuples in a sorted order, allowing fast iterations over the tuples in sorted order. Addition-
ally, the search operation can be implemented as binary search that has logarithmic complexity.
This comes with the price of maintaining the sort order, and inserting in an ordered collection
is expensive in the general case.

Figure 3.3 gives an example of a dictionary encoded column. The column only stores
references to the value dictionary, represented as 1 byte values. The value-ids are stored
sequentially in memory in the same order as the values are inserted into the column. The
value dictionary is unsorted and stores the values sequentially in memory in the order as they
are inserted. Figure 3.4 shows the same example with a sorted dictionary. Here, the value
dictionary is kept sorted, potentially requiring a re-encoding of the complete column when a
new value is inserted into the dictionary.

18

3.2. OPERATIONS

3.2.2 Bit-Packing

A dictionary encoded column can either store the value-ids in an array of a native type like
integers or compressed, e.g. in a bit-packed form. When using a native type, the number
of representable distinct values in the column is restricted to the size of that type, e.g. with
characters of 8 bit to 28 = 256 or with integers on a 64 bit architecture to 264. The size of
the used type is a tradeoff between the amount of representable distinct values and the needed
memory space.

When using bit-packing, the value-ids are represented with the minimum number of bits
needed to encode the current number of distinct values in the value dictionary. Be d the
number of distinct values, then the number of needed bits is b = dlog2(d)e. The value-ids
are stored sequentially in a pre-allocated area in memory. The space savings are traded for
more extraction overhead when accessing the value-ids. Since normally bytes are the smallest
addressable unit, each access to a value-id has to fetch the block where the id is stored and
correctly shift and mask the block, so that the value-id can be retrieved.

0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0

0 1 0 0 1 0 1 0

0 1 0 0 1 00 0

0 0 0 0 1 10 0

0 0 0 0 1 00 0

a)

b)

d)

e)

&

0 1 0 0 1 00 0c)

1 0 2 2 1

>>2

Figure 3.5: Extraction of a bit-packed value-id.

Figure 3.5 outlines an example of how a value-id can be extracted when using bit-packing.
Part a) shows the column with the compressed value-ids from the unsorted dictionary example
shown in Figure 3.3. As there are only 5 values, the second byte is filled with zeros. The
example shows the extraction of the value-id from row 3. In a first step – shown by b), the
byte containing the searched value-id has to be identified, here the first of two. In c), a logical
right shift of 2 is applied in order to move the searched value-id to the last two bits of the
byte. d) extracts the searched value-id by masking the shifted byte with a bit-mask so that
the searched value-id is obtained as shown in e). In order to increase the decompression speed
techniques like Streaming SIMD Extensions (SSE) can be applied to the extraction process
[71]. Another way is to block-wise extract the compressed values, therefore amortizing the
decompression costs over multiple values.

19

CHAPTER 3. SYSTEM DEFINITION

3.3 Operations on Data Structures

A column is required to support the two operations getValueAt and getSize in order to al-
low accessing and iterating over its values. Additionally, the operation appendValue supports
inserting new values at the end of the column. A dictionary supports the operations getVal-
ueForValueId and getSize in order to allow accessing and iterating over the stored values.
Additionally, addValue adds a new value to the dictionary, potentially requiring a rewrite of
the complete column. With getValueIdForValue, the dictionary can be searched for a specific
value. If the dictionary is sorted, a binary search can be used, otherwise the dictionary has to
be scanned linearly.

Dictionary Operations As both sorted and unsorted dictionaries are implemented as a
sequential array of fixed length values, the operation getValueForValueId can be implemented
by directly calculating the respective address in memory, reading and returning the requested
value. Therefore, the costs only depend on the size of the stored values c.e resulting in a
complexity of O(c.e).

In case a new value is added to a sorted dictionary, the value has to be inserted at the
correct position into the collection. In the worst case, when the new value is the smallest,
every other value has to be moved in order to free the first position. Therefore, the complexity
for addValue in the sorted case is O(c.d ·c.e). In case of an unsorted dictionary, the new value
can be directly written to the end of the array, resulting in a complexity of O(c.e).

getValueForValueId searches in the dictionary for a given value, returning its value-id or
a not found value in case the value is not in the dictionary. If the dictionary is sorted, the
search can be performed with a binary search algorithm, resulting in logarithmic complexity of
O(log c.d · c.e). If the dictionary is unsorted, all values have to be scanned linearly, resulting
in complexity of O(c.d · c.e).

Column Operations In the case of an uncompressed column, getValueAt can directly return
the requested value. If the column is dictionary encoded, the value-id has to be retrieved first
and then the requested value is returned. The complexity for the uncompressed case therefore
results in O(c.e) and in a complexity for the dictionary encoded cases of O(c.e · c.ec).

appendValue on an uncompressed column is trivial, assuming the array has enough free
space left, as the value is appended to the array, resulting in a complexity of O(c.e). In
case of an unsorted dictionary, we first check whether the appended value is already in the
dictionary. This check is performed with the dictionary operation getValueForValueId and
linearly depends on c.e and c.d. If the value is not in the dictionary, it is added with addValue
and the value-id is appended to the column. The total complexity for the unsorted case
is therefore in O(c.d + c.ec + c.e). In case of a sorted dictionary, getValueForValueId has
logarithmic costs and addValue depends linearly on c.d. Additionally, the insertion of a new
value-id may invalidate all old value-ids in the column, requiring a rewrite of the complete
column and resulting in a complexity of O(c.d + c.r · c.ec + c.e).

20

3.4. PLAN OPERATORS

U
n
co

m
p
re
ss
ed

D
ic
ti
o
n
a
ry

S
o
rt
ed

D
ic
ti
o
n
a
ry

U
n
so
rt
ed

ScanEqual O(c.r · c.e + q.s)
O(log c.d + c.r ·

c.ec + q.s)
O(c.d + c.r ·
c.ec + q.s)

ScanRange O(c.r · c.e + q.s)
O(log c.d + c.r ·

c.ec + q.s)
O(c.r · c.ec +
c.r · c.e + q.s)

Lookup O(c.e) O(c.ec + c.e) O(c.ec + c.e)

Insert O(c.e)
O(c.d · c.e +
c.r · c.ec)

O(c.d ·c.e+c.ec)

Table 3.1: Complexity of plan operations by data structures.

3.4 Plan Operators

We now introduce the plan operators scan with equality selection, scan with range selection,
positional lookup and insert and discuss their theoretical complexity. These operators were
chosen, as we identified them as the most basic operators needed by a database system, assum-
ing an insert only system as proposed in [58, 59, 46, 25]. Additionally, more complex operators
can be assembled by combining these basic operators, as e.g. a nested loop join consisting of
multiple scans. We differentiate between equality and range selections as they have different
performance characteristics due to differences when performing value comparisons introduced
by the dictionary encoding. Table 3.1 gives an overview of the asymptotic complexity of the
four discussed operators on the different data structures.

3.4.1 Scan with Equality Selection

A scan with equality selection sequentially iterates through all values of a column and returns a
list of positions where the value in the column equals the searched value. Algorithm 3.4.1 shows
the implementation as pseudocode for the case of an uncompressed column. As the column
is uncompressed, no decompression has to be performed and the values can be compared
directly with the searched value. The costs for an equal scan on an uncompressed column
are characterized by comparing all c.r values and by building the result set, resulting in
O(c.r · c.e + q.s).

21

CHAPTER 3. SYSTEM DEFINITION

Algorithm 3.4.1: ScanEqualUncompressed(X, column)

result← array[], pos← 0
for each value ∈ column

do


if value == X

then result.append(pos)
pos← pos+ 1

return (result)

Algorithm 3.4.2: ScanEqualDictSorted(X, column, dictionary)

result← array[], pos← 0
valueIdX = dictionary.binarySearch(value)
for each valueId ∈ column

do


if valueId == valueIdX

then result.append(pos)
pos← pos+ 1

return (result)

Algorithm 3.4.3: ScanEqualDictUnsorted(X, column, dictionary)

result← array[], pos← 0
valueID = dictionary.scanFor(value)
for each valueId ∈ column

do


if valueId == valueIdX

then result.append(pos)
pos← pos+ 1

return (result)

We do not discuss a scan for inequality, as the implementation and performance character-
istics are assumed to be the same as for a scan operator with equality selection.

Algorithm 3.4.2 shows how a scan with equality selection is performed on a column with
a sorted dictionary. First, the value-id in the value dictionary of the column for the searched
value x is retrieved by performing a binary search for x in the dictionary. Then, the value-ids of
the column are scanned sequentially and each matching value-id is added to the set of results.

The costs for an equal scan on a column with a sorted dictionary consist of the binary search
cost in the dictionary and comparing each value-id, resulting in O(log c.d + c.r · c.ec + q.s).

Algorithm 3.4.3 outlines a scan with equality selection on a column with an unsorted
dictionary. As we are scanning the column searching for all occurrences of exactly one value,
we can perform the comparison similarly as in the case of a sorted dictionary based only on

22

3.4. PLAN OPERATORS

Algorithm 3.4.4: ScanRangeUncompressed(low, high, column)

result← array[], pos← 0
for each value ∈ column

do


if (value > low) and (value < high)

then result.append(pos)
pos← pos+ 1

Algorithm 3.4.5: ScanRangeDictSorted(low, high, column, dictionary)

result← array[], pos← 0
valueIdlow ← dictionary.binarySearch(low)
valueIdhigh ← dictionary.binarySearch(high)
for each valueId ∈ column

do


if (valueId > valueIdlow) and (valueId < valueIdhigh)

then result.append(pos)
pos← pos+ 1

return (result)

Algorithm 3.4.6: ScanRangeDictUnsorted(low, high, column, dictionary)

result← array[], pos← 0
for each valueId ∈ column

do


value← dictionary[valueId]
if (value > low) and (value < high)

then result.append(pos)
pos← pos+ 1

return (result)

the value-ids. The difference to the sorted dictionary case is that a linear search has to be
performed instead of a binary search to retrieve the value-id of the searched value x.

Similar to the costs for a scan with equality selection on a column with a sorted dictionary,
the costs on a column with an unsorted dictionary consist of the search costs for the scanned
value in the dictionary and comparing each value-id. In contrast to the sorted dictionary case,
the search costs are linear, resulting in a complexity of O(c.d + c.r · c.ec + q.s).

3.4.2 Scan with Range Selection

A scan operator with range selection sequentially iterates through all values of a column and
returns a list of positions, where the value in the column is between low and high. In contrast
to a scan operator with an equality selection, it is searched for a range of values instead of one

23

CHAPTER 3. SYSTEM DEFINITION

Algorithm 3.4.7: LookupUncompressed(position, column)

value← column[position]
return (value)

Algorithm 3.4.8: LookupDictionary(position, column, dictionary)

valueId← column[position]
value← dictionary[valueId]
return (value)

single value.

Algorithm 3.4.4 outlines the implementation of a range scan in pseudocode for an uncom-
pressed column. Similarly to a scan operator with equality selection, we can perform the
comparisons directly on the values while iterating sequentially through the column. Therefore,
the costs are determined by the value length c.e, the number of rows c.r and the selectivity
q.s of the scan, resulting in O(c.r · c.e + q.s).

Algorithm 3.4.5 shows the implementation for the range scan on a dictionary encoded
column with a sorted dictionary. First, the value-ids of low and high are retrieved with a
binary search in the dictionary. As the dictionary is sorted, we know that idlow > idhigh ⇒
value(idlow) > value(idhigh). Therefore, we can scan the value-ids of the column and decide
only by comparing with the value-ids of low and high if the current value-id has to be a part of
the result set. The costs are similar to the costs for a scan with equality selection, determined
by the binary search costs, the scanning of the column and building the result set, resulting in
O(log c.d + c.r · c.ec + q.s).

Finally, algorithm 3.4.6 shows the implementation of a scan operator with range selection
on a column with an unsorted dictionary. As the dictionary is unsorted, we can not draw
any conclusions of the relations between two values based on their value-ids in the dictionary.
We iterate sequentially through the value-ids of the column. For each value-id, we perform
a lookup retrieving the actual value stored in the dictionary. The comparison can then be
performed on that value with low and high.

In contrast to the sorted dictionary case, the costs in the unsorted case are determined by
scanning the value-ids, performing the lookup in the dictionary and building the result set,
resulting in a complexity of O(c.r · c.ec + c.r · c.e + q.s).

24

3.4. PLAN OPERATORS

Algorithm 3.4.9: InsertDictSorted(value, column, dictionary)

valueId← dictionary.binarySearch(value)
if valueId = NotInDictionary

then


valueId← dictionary.insert(value)
if valueId < dictionary.size()

then column.reencode()
column.append(valueId)

else
{
column.append(valueId)

Algorithm 3.4.10: InsertDictUnsorted(position, column, dictionary)

valueId← dictionary.scanFor(value)
if valueId = NotInDictionary

then valueId← dictionary.insert(value)
column.append(valueId)

3.4.3 Lookup

A positional lookup retrieves the value of a given position from the column. The output is the
actual value, as the position is already known. Algorithm 3.4.7 shows the lookup in case of
an uncompressed column, where the value can be returned directly. The costs only depend on
the value length, resulting in a complexity of O(c.e).

In the case of a dictionary encoded column, the algorithms for a positional lookup do
not differ between a sorted and an unsorted dictionary. Therefore, algorithm 3.4.8 shows the
lookup for a dictionary encoded column, where the value-id is retrieved from the requested
position and a dictionary lookup is performed in order to retrieve the searched value. The
costs depend on the compressed and the uncompressed value length, resulting in a complexity
of O(c.ec + c.e).

3.4.4 Insert

An insert operation appends a new value to the column. As we keep the values always in
insertion order, this can be implemented as a trivial append operation, assuming enough free
and allocated space to store the inserted value. In the case of a dictionary encoded column,
we have to check if the value is already in the dictionary.

Algorithm 3.4.9 outlines the insert operation for a column with a sorted dictionary. First, a

25

CHAPTER 3. SYSTEM DEFINITION

binary search is performed on the dictionary for value v. If v is not found in the dictionary, it is
inserted so that the sort order of the dictionary is preserved. In case that v is not inserted at the
end of the dictionary, a re-encode of the complete column has to be performed in order to reflect
the updated value-ids of the dictionary. After the re-encode or if v was already found in the
dictionary, the value-id is appended to the column. The complexity is in O(c.d·c.e+c.r·c.ec).

Algorithm 3.4.10 shows the insertion of a new value for a column with an unsorted dic-
tionary. Similarly to the sorted case, we first search for the inserted value in the dictionary
by performing a linear search. As the dictionary is not kept in a particular order, the values
are always appended to the end of the dictionary. Therefore, no re-encode of the column is
necessary. The resulting complexity is O(c.d · c.e + c.ec).

26

Chapter 4

Parameter Evaluation

In the previous chapter, we defined plan operators and discussed their implementations and
complexity depending on the parameters defined in Section 3.1. This chapter thrives to ex-
perimentally verify the theoretical discussion of the parameters and their influence on plan
operations.

We implemented all operators in a self designed experimental system written in C++.
All experiments were conducted on an Intel Xeon X5650, with 2x6 cores, hyper-threading,
2.67 GHz and 48 GB main memory. The system has 32 KB L1 data cache, 256 KB unified
L2 cache, 12 MB unified L3 cache and a two level TLB cache with 64 entries in the L1 data
TLB and 512 entries in the unified L2 TLB. The TLB caches are 4-way associative, the L1
and L2 cache are 8-way associative and the L3 cache is 16-way associative. The data was
generated in such a way that all parameters were fixed except the varied parameter. We
compiled our programs using Clang++ version 3.0 with full optimizations. In order to avoid
scheduling effects, we pinned the process to a fixed CPU and increased the process priority to
its maximum. We used the PAPI framework to measure cache misses and CPU cycles [17].

4.1 Number of Rows

We start by discussing the influence of the number of rows c.r on the plan operator perfor-
mance.

Scan with Equality and Range Selection Figure 4.1(a) shows the time needed to perform
a scan operator with equality selection on a column with the number of rows c.r varied from
2 million to 20 million. The time for the scan operation increases linearly with the number
of rows, whereas the time per row stays constant. Similar to the scan with equality selection,
Figure 4.1(b) shows the linear influence of the number of rows on the runtime for a scan with
range selection.

27

CHAPTER 4. PARAMETER EVALUATION

0

50M

100M

150M

200M

250M

300M

350M

2M 4M 6M 8M 10M 12M 14M 16M 18M 20M
Number of Rows

Uncompr. S.Dict. U.Dict.

CP
U

 C
yc

le
s

(a) Equal Scan

0

50M

100M

150M

200M

250M

300M

350M

400M

2M 4M 6M 8M 10M 12M 14M 16M 18M 20M
Number of Rows

Uncompr. S.Dict. U.Dict.

CP
U

 C
yc

le
s

(b) Range Scan

0

2

4

6

8

10

12

14

16

2M 4M 6M 8M 10M 12M 14M 16M 18M 20M
Number of Rows

Uncompr. S.Dict. U.Dict.

CP
U

 C
yc

le
s

(c) Positional Lookup

10

100

1k

10k

100k

1M

10M

100M

2M 4M 6M 8M 10M 12M 14M 16M 18M 20M
Number of Rows

Uncompr.
S.Dict.

S.Dict. + Reencode
U.Dict.

CP
U

 C
yc

le
s

(d) Insert

Figure 4.1: CPU cycles for (a) equal scan, (b) range scan, (c) positional lookup and (d) insert
on one column with number of rows c.r varied from 2 million to 20 million, c.d = 200,000,
c.u = 0, c.e = 8, c.k = 0 and a query selectivity of q.s = 2,000.

Positional Lookup For a positional lookup on a column, we expect the number of rows to
have no influence on the performance on the lookup operation, as confirmed by Figure 4.1(c).
The costs for performing a lookup on a dictionary encoded column is greater compared to an
uncompressed column, as the value-id has to be retrieved first.

Insert For inserting new values into a column, we do expect the number of rows c.r to
have no influence on the time an actual insert operation takes, regardless if the column is
uncompressed or dictionary encoded. In case the column uses dictionary encoding with a
sorted dictionary, we expect a linear influence on the re-encode operation by the number of
rows in the column.

Figure 4.1(d) shows the number of CPU cycles for an insert operation with a varying
number of rows on an uncompressed column, a dictionary encoded column with a sorted
dictionary, a dictionary encoded column with a sorted dictionary and performing a re-encode

28

4.2. NUMBER OF DISTINCT VALUES

20M

40M

60M

80M

100M

120M

140M

160M

210 212 214 216 218 220 222

Number of Distinct Values

Uncompr. S.Dict. U.Dict.

CP
U

 C
yc

le
s

(a) Equal Scan

0

100M

200M

300M

400M

500M

600M

700M

800M

900M

210 212 214 216 218 220 222

[L1: 32k] [L2: 256k]

Number of Distinct Values

Uncompr. S.Dict. U.Dict.

[L3: 12mb]

CP
U

 C
yc

le
s

(b) Range Scan

0

2

4

6

8

10

12

14

210 212 214 216 218 220 222

Number of Distinct Values

Uncompr. S.Dict. U.Dict.

CP
U

 C
yc

le
s

(c) Positional Lookup

10

100

1k

10k

100k

1M

10M

100M

1G

210 212 214 216 218 220 222

Number of Distinct Values

Uncompr.
S.Dict.

S.Dict. + Reencode
U.Dict.

CP
U

 C
yc

le
s

(d) Insert

Figure 4.2: CPU cycles for (a) equal scan, (b) range scan, (c) positional lookup and (d) insert
on one column with number of distinct values c.d varied from 210 to 223, c.r = 223, c.u = 223,
c.e = 8, c.k = 0 and a query selectivity of q.s = 2,000.

and a dictionary encoded column with an unsorted dictionary.

Inserting into an uncompressed column is very fast and not influenced by the number of
rows in the column. In the case of a dictionary encoded column, the insert takes longer as it
takes to search the dictionary for the inserted value. The large difference between the sorted
and the unsorted dictionary is due to the effect of the binary search, which can be leveraged
in the sorted dictionary case. Finally, we can see the linear impact of the number of rows on
the insert with the re-encode operation – note the logarithmic scale.

29

CHAPTER 4. PARAMETER EVALUATION

4.2 Number of Distinct Values

We now focus on the number of distinct values c.d of a column and their influence on the
operators scan, insert and lookup.

Scan with Equality Selection When scanning a column with an equality selection, we
expect the number of distinct values to influence the dictionary encoded columns, but not the
uncompressed column. Figure 4.2(a) shows the results of an experiment performing an equal
scan on a column with 223 rows and c.d varied from 210 to 223. We chose a selectivity of 2,000
rows, in order to keep the effect of writing the result set minimal. As expected, the runtime
for the scan on the uncompressed column is not affected and we clearly see the linear impact
on the unsorted dictionary column. However, the logarithmically increasing runtime for the
column using a sorted dictionary is hard to recognize due to the large scale.

Scan with Range Selection In contrast to a scan operator with equality selection, the
implementation of a range scan only differs in the case for an unsorted dictionary. The cases
for an uncompressed column and a column with a sorted dictionary are the same as for a scan
operator with equality selection, as Figure 4.2(b) shows.

For an unsorted dictionary encoded column, Figure 4.2(b) shows a strong impact of the
varied number of distinct values on the runtime. Based on our earlier discussion of a scan
operator with range selection on an unsorted dictionary, we would not expect this characteristic.
The increase in CPU cycles with increasing distinct values is due to a cache effect. As c.u = 223,
we access the dictionary in a random fashion while iterating over the column. As long as the
dictionary is small and fits into the cache, these accesses are relatively cheap. With a growing
number of distinct values the dictionary gets too large for the individual cache levels and the
number of cache misses per dictionary access increases. Considering a value length of 8 bytes,
we can identify jumps slightly before each cache level size of 32KB, 256KB and 12MB – e.g.
at c.e · 215 = 256 KB, which are discussed in more detail in Section 5.2.

Lookup Figure 4.2(c) shows the influence of the number of distinct values when performing
a positional lookup on one column. As we can see, the time for one single lookup is not
influenced by the number of distinct values.

Insert Figure 4.2(d) shows the influence for the number of distinct values when inserting new
values into a column. For an uncompressed column, the insert takes the same, independent of
the number of distinct values. When using dictionary compression and an unsorted dictionary,
the time for inserting a new value increases linearly with the numbers of distinct values as the
dictionary is searched linearly for the new value. In case of a sorted dictionary without re-
encoding the column, we notice a logarithmic increase with increasing values respective to the
binary search in the dictionary. If the newly inserted value did change existing value-ids, the
column has to be re-encoded. As we can see, the increase for binary searching the dictionary
is negligible, as it is shadowed by the high amount of work for re-encoding the column.

30

4.3. VALUE DISORDER

0

50M

100M

150M

200M

250M

300M

350M

0 5M 10M 15M 20M
Value Disorder

Uncompr. S.Dict. U.Dict.

CP
U

 C
yc

le
s

(a) Equal Scan

0

100M

200M

300M

400M

500M

600M

700M

800M

900M

0 5M 10M 15M 20M
Value Disorder

Uncompr. S.Dict. U.Dict.

CP
U

 C
yc

le
s

(b) Range Scan

0

2

4

6

8

10

12

0 5M 10M 15M 20M
Value Disorder

Uncompr. S.Dict. U.Dict.

CP
U

 C
yc

le
s

(c) Positional Lookup

10

100

1k

10k

100k

1M

10M

100M

0 5M 10M 15M 20M
Value Disorder

Uncompr.
S.Dict.

S.Dict. + Reencode
U.Dict.

CP
U

 C
yc

le
s

(d) Insert

Figure 4.3: CPU cycles for (a) equal scan, (b) range scan, (c) positional lookup and (d) insert
on one column with value disorder c.u varied from 0 to 20 million, c.r = 20 million, c.d = 2
million, c.e = 8, c.k = 0 and a query selectivity of q.s = 2,000.

4.3 Value Disorder

This section evaluates the influence of the parameter value disorder c.u in a column on the
discussed operators.

Scan with Equality Selection When performing a scan with equality selection, the com-
parisons can be done directly on the value-ids in case of a dictionary encoded column or are
done directly on the values in case of an uncompressed column. Therefore, we do not expect
the value disorder to influence the performance of an equal scan. Figure 4.3(a) confirms this
assumption.

Scan with Range Selection Figure 4.3(a) shows the performance of a scan operator with
range selection with varied disorder of values in the column. As expected, we see no influence

31

CHAPTER 4. PARAMETER EVALUATION

in case of an uncompressed column or a column with a sorted dictionary. In case of a dictionary
encoded column with an unsorted dictionary, we see an increase in CPU cycles. In contrast to
a scan with equality selection, a scan operator with range selection on an unsorted dictionary
has to lookup the actual values in the dictionary in order to compare them. When the value
disorder is low, temporal and spatial locality for the dictionary access is high, which results in
good cache usage with a high number of cache hits. The greater the disorder, the more random
accesses to the dictionary are performed, resulting in more CPU cycles for the scan operation.

Lookup and Insert We do expect the value disorder to have no influence on single positional
lookups and inserts. Figure 4.3(c) and 4.3(d) confirm our assumptions.

4.4 Value Length

We now focus on the influence of the value length c.e of the values in a column on the discussed
operators.

Scan with Equality Selection Figure 4.4(a) shows the influence of an increased value
length on a scan operator with equality selection. For uncompressed columns we see an increase
in cycles for scan operators with longer values, as expected. However, we see a drop for every
16 bytes, due to alignment effects, showing how crucial it is to align memory correctly. In case
of a dictionary compressed column, we see no significant influence in case of a sorted dictionary
based on the value length. Although, the costs for the search do increase slightly, the increase
is shadowed by the costs for scanning the value-ids. When using an unsorted dictionary, the
costs for scanning the dictionary are significantly higher and we see a significant impact of the
value length on the total scan costs.

Scan with Range Selection The impact of an increasing value length on a scan operator
with range selection is similar to a scan with equality selection, as shown by Figure 4.4(b). In
case of an uncompressed column, we see an increase in costs with larger value lengths and the
same alignment effect, as the values are compared directly and larger values result in larger
costs for comparing the values. We see no significant impact of the value length for the case
of a sorted dictionary but an increase in case of an unsorted dictionary.

Positional Lookup The costs for a positional lookup do increase linearly with increasing
size of values, as the actual values are returned by the lookup operation, resulting in more
work for longer values as shown by Figure4.4(c)

Insert The costs for inserting new values always increase with larger values, as the costs for
writing the values do increase. Figure 4.4(d) shows that in case of an uncompressed column
the increase is quite small, which probably is due to block writing and write caching effects.
The costs on a column with a sorted dictionary also increase slightly based on the increased
costs for the binary search. However, in case a re-encode is necessary, the increase is shadowed

32

4.5. VALUE SKEWNESS

1M

10M

100M

20 40 60 80 100 120
Length of Values in Bytes

Uncompr. S.Dict. U.Dict.

CP
U

 C
yc

le
s

(a) Equal Scan

0

10M

20M

30M

40M

50M

60M

20 40 60 80 100 120
Length of Values in Bytes

Uncompr. S.Dict. U.Dict.

CP
U

 C
yc

le
s

(b) Range Scan

0

10

20

30

40

50

60

 20 40 60 80 100 120
Length of Values in Bytes

Uncompr. S.Dict. U.Dict.

CP
U

 C
yc

le
s

(c) Positional Lookup

10

100

1k

10k

100k

1M

10M

 20 40 60 80 100 120
Length of Values in Bytes

Uncompr.
S.Dict.

S.Dict. + Reencode
U.Dict.

CP
U

 C
yc

le
s

(d) Insert

Figure 4.4: CPU cycles for (a) equal scan, (b) range scan, (c) positional lookup and (d) insert
on one column with value length c.e varied from 8 to 128 byte, c.r = 512,000 , c.d = 100,000,
c.u = 512,000, c.k = 0 and a query selectivity of q.s = 1,024.

by the large costs for re-encoding the column. When using an unsorted dictionary, we also see
a linear increase in costs with larger values.

4.5 Value Skewness

We now focus on the influence of the skewness c.k of the value distribution of the values in a
column on the discussed operators.

Scan with Equality Selection, Lookup and Insert The skewness of values influences
the pattern in which the dictionary of a column is accessed when scanning its value-ids and
looking them up in the dictionary, the skewer the value distribution, the less cache misses

33

CHAPTER 4. PARAMETER EVALUATION

0

50M

100M

150M

200M

250M

300M

350M

400M

0.0 0.5 1.0 1.5 2.0
Skewness of Values

Uncompr. S.Dict. U.Dict.

CP
U

 C
yc

le
s

(a) Equal Scan

100M

150M

200M

250M

300M

350M

400M

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Skewness of Values

Uncompr. S.Dict. U.Dict.

CP
U

 C
yc

le
s

(b) Range Scan

0
2
4
6
8

10
12
14
16
18
20

0.0 0.5 1.0 1.5 2.0
Skewness of Values

Uncompr. S.Dict. U.Dict.

CP
U

 C
yc

le
s

(c) Positional Lookup

10

100

1k

10k

100k

1M

10M

100M

0.0 0.5 1.0 1.5 2.0
Skewness of Values

Uncompr.
S.Dict.

S.Dict. + Reencode
U.Dict.

CP
U

 C
yc

le
s

(d) Insert

Figure 4.5: CPU cycles for (a) equal scan, (b) range scan, (c) positional lookup and (d) insert
on one column with value skewness c.k varied from 0 to 2, c.r = 20 million, c.d = 200,000,
c.u = 20 million, c.e = 8 and a query selectivity of q.s = 2,000.

occur. In case of a scan operator with equality selection, positional lookup or insert we do not
have this pattern of scanning the column and accessing the dictionary. Therefore, we do not
expect the skewness of values in a column to influence these operators, which is confirmed by
the experimental results shown in Figures 4.5(a),4.5(c) and 4.5(d).

Scan with Range Selection In contrast, Figure 4.5(b) shows the influence of the value
skewness on a scan operator with range selection. In case of a dictionary encoded column with
an unsorted dictionary, we scan the value-ids of the column sequentially and randomly access
the value dictionary (value disorder c.u = 20 million). The skewer the value distribution is,
the more likely it gets that a value with a high frequency is accessed and is still in the cache.
Therefore, the number of cache misses is reduced for skewed value distributions, resulting in a
faster execution of the scan operator.

34

4.6. CONCLUSIONS

4.6 Conclusions

In this section, we presented a detailed parameter evaluation for the in Chapter 3 presented
algorithms. We presented a set of experimental results, giving an overview of the influences of
our defined parameters on the operators scan with equality selection, scan with range selection,
positional lookup and insert.

Additionally, we discussed and confirmed the expected influences based on the complexity
discussion of the operators presented in Section 3.4 and confirmed our expectations. However,
we found some cases like the influence of the number of distinct values or the effect of the
value skewness on a scan operator with range selection in case an unsorted dictionary is used,
that we did not predict based on the discussion of complexity. These influences are based on
caching effects, which will be discussed in detail in the following chapter.

35

CHAPTER 4. PARAMETER EVALUATION

36

Chapter 5

Estimating Cache Misses

In our experimental validation of the parameter influences on the operators scan with equality
selection, scan with range selection, insert and lookup we found significant influences depending
on parameters introduced by cache effects. First, this chapter describes the memory hierarchy
on modern computer systems and discusses why the usage of caches is so important for the
performance of applications. Second, we introduce a cost model to predict the number of cache
misses for plan operators and to estimate their execution time.

5.1 Background on Caches

In early computer systems, the frequency of the Central Processing Unit (CPU) was the same
as the frequency of the memory bus and register access was only slightly faster than memory
access. However, CPU frequencies did heavily increase in the last years following Moores Law
[55], but frequencies of memory buses and latencies of memory chips did not grew with the
same speed. As a result, memory access gets more expensive, as more CPU cycles are wasted
while stalling for memory access.

This development is not due to the fact that fast memory can not be built, it is an eco-
nomical decision as memory, which is as fast as current CPUs, would be orders of magnitude
more expensive and would require extensive physical space on the boards. In general, mem-
ory designers have the choice between Static Random Access Memory (SRAM) and Dynamic
Random Access Memory (DRAM).

5.1.1 Memory Cells

SRAM cells are usually built out of six transistors (although variants with only 4 do exist but
have disadvantages [53, 18]) and can store a stable state as long as the power is supplied. Their

37

CHAPTER 5. ESTIMATING CACHE MISSES

Memory Page

Nehalem Quadcore

Core 0 Core 1 Core 2 Core 3

L3 Cache

L2

L1

TLB

Main Memory Main Memory

QPI

Nehalem Quadcore

Core 0Core 1 Core 2 Core 3

L3 Cache

L2

L1

TLB

QPI

L1 Cacheline

L2 Cacheline

L3 Cacheline

Figure 5.1: Memory Hierarchy on Intel Nehalem architecture.

stored state is immediately available for reading and no synchronization or wait periods have
to be considered.

In contrast, DRAM cells can be constructed using a much simpler structure consisting of
only one transistor and a capacitor. The state of the memory cell is stored in the capacitor
while the transistor is only used to guard the access to the capacitor. This design is more
economical compared to SRAM. However, it introduces a couple of complications. First, the
capacitor discharges over time while reading the state of the memory cell. Therefore, today’s
systems refresh DRAM chips every 64 ms and after every read of the cell in order to recharge
the capacitor [16]. During the refresh, no access to the state of the cell is possible. The charging
and discharging of the capacitor takes time, which means that the current can not be detected
immediately after requesting the stored state, therefore limiting the speed of DRAM cells.

In a nutshell, SRAM is fast but expensive as it requires a lot of space. In contrast, DRAM
chips are slower but cheaper as they allow larger chips due to their simpler structure. For
more details regarding the two types of Random Access Memory (RAM) and their physical
realization the interested reader is referred to [18].

5.1.2 Memory Hierarchy

An underlying assumption of the memory hierarchy of modern computer systems is a principle
known as data locality [29]. Temporal data locality indicates that accessed data is likely to
be accessed again soon, whereas spatial data locality indicates that data stored together in
memory is likely to be accessed together. These principles are leveraged by using caches,
combining the best of both worlds by leveraging the fast access to SRAM chips and the sizes
made possible by DRAM chips. Figure 5.1 shows a hierarchy of memory on the example of the
Intel Nehalem architecture. Small and fast caches close to the CPUs built out of SRAM cells
cache accesses to the slower main memory built out of DRAM cells. Therefore, the hierarchy

38

5.1. BACKGROUND ON CACHES

Tag T

64 0

Set S Offset O

Figure 5.2: Parts of a memory address.

consists of multiple levels with increasing storage sizes but decreasing speed. Each CPU core
has its private L1 and L2 cache and one large L3 cache shared by the cores on one socket.
Additionally, the cores on one socket have direct access to their local part of main memory
through an Integrated Memory Controller (IMC). When accessing other parts than their local
memory, the access is performed over a Quick Path Interconnect (QPI) controller coordinating
the access to the remote memory.

The first level is the actual registers inside the CPU, used to store inputs and outputs of
the processed instructions. Processors usually only have a small amount of integer and floating
point registers which can be accessed extremely fast. When working with parts of the main
memory, their content has to be first loaded and stored in a register to make it accessible for
the CPU. However, instead of accessing the main memory directly the content is first searched
in the Level 1 Cache (L1 Cache). If it is not found in L1 Cache it is requested from Level 2
Cache (L2 Cache). Some systems even make use of a Level 3 Cache (L3 Cache).

5.1.3 Cache Internals

Caches are organized in cache lines, which are the smallest addressable unit in the cache. If
the requested content can not be found in any cache, it is loaded from main memory and
transferred down the hierarchy. The smallest transferable unit between each level is one cache
line. Caches where every cache line of level i is also present in level i + 1 are called inclusive
caches, otherwise they are called exclusive caches. All Intel processors implement an inclusive
cache model, which is why an inclusive cache model is assumed for the rest of this report.

When requesting a cache line from the cache, the process of determining if the requested
line is already in the cache and locating where it is cached is crucial. Theoretically, it is
possible to implement fully associative caches, where each cache line can cache any memory
location. However, in practice this is only realizable for very small caches as a search over
the complete cache is necessary when searching for a cache line. In order to reduce the search
space, the concept of a n-way set associative cache with associativity Ai divides a cache of
size Ci into Ci/Bi/Ai sets and restricts the number of cache lines which can hold a copy of a
certain memory address to one set or Ai cache lines. Thus, when determining if a cache line is
already present in the cache, only one set with Ai cache lines has to be searched.

For determining if a requested address is already cached, the address is split into three parts
as shown by Figure 5.2. The first part is the offset O, which size is determined by the cache
line size of the cache. So with a cache line size of 64 byte, the lower 6 bits of the address would

39

CHAPTER 5. ESTIMATING CACHE MISSES

be used as the offset into the cache line. The second part identifies the cache set. The number
s of bits used to identify the cache set is determined by the cache size Ci, the cache line size
Bi and the associativity Ai of the cache by s = dlog2(Ci/Bi/Ai)e. The remaining 64 − o − s
bits of the address are used as a tag to identify the cached copy. Therefore, when requesting
an address from main memory, the processor can calculate S by masking the address and then
search the respective cache set for the tag T . This can be easily done by comparing the tags
of the Ai cache lines in the set in parallel.

5.1.4 Address Translation

The operating system provides each process a dedicated continuous address space, containing
an address range from 0 to 2x. This has several advantages as the process can address the
memory through virtual addresses and does not have to bother with the physical fragmentation.
Additionally, memory protection mechanisms can control the access to memory and restrict
programs to access memory which was not allocated by them.

Another advantage of virtual memory is the use of a paging mechanism, which allows a
process to use more memory than is physically available by paging pages in and out and saving
them on secondary storage. The continuous virtual address space of a process is divided into
pages of size p, which is on most operating system 4 KB. Those virtual pages are mapped to
physical memory. The mapping itself is saved in a page table, which resides in main memory
itself. When the process accesses a virtual memory address, the address is translated by the
operating system into a physical address with help of the memory management unit inside the
processor.

The address translation is usually done by a multi-level page table, where the virtual address
is split into multiple parts, which are used as an index into the page directories resulting in
a physical address and a respective offset. As the page table is kept in main memory, each
translation of a virtual address into a physical address would require additional main memory
accesses or cache accesses in case the page table is cached.

In order to speed up the translation process, the computed values are cached in the Trans-
action Look-Aside Buffer (TLB), which is a small and fast cache. When accessing a virtual
address, the respective tag for the memory page is calculated by masking the virtual address
and the TLB is searched for the tag. In case the tag is found, the physical address can be
retrieved from the cache. Otherwise, a TLB miss occurs and the physical address has to be
calculated, which can be quite costly. Details about the address translation process, TLBs and
paging structure caches for Intel 64 and IA-32 architectures can be found in [36].

The costs introduced by the address translation scale linearly with the width of the trans-
lated address [29, 15], therefore making it hard or impossible to built large memories with very
small latencies.

40

5.2. CACHE EFFECTS ON APPLICATION PERFORMANCE

5.1.5 Prefetching

Modern processors try to guess which data will be accessed soon and initiate loads before
the data is accessed in order to reduce the incurring access latencies. Good prefetching can
completely hide the latencies so that the data is already in the cache when accessed. However,
if data is loaded which is not accessed later it can also evict data inducing additional misses.
Processors support software and hardware prefetching. Software prefetching can be seen as
a hint to the processor, indicating which addresses are accessed next. Hardware prefetching
automatically recognizes access patterns by utilizing different prefetching strategies. The Intel
Nehalem architecture contains two second level cache prefetcher – the L2 streamer and data
prefetch logic (DPL) [37]. The prefetching mechanisms only work inside the page boundaries
of 4KB, in order to avoid triggering expensive TLB misses.

5.2 Cache Effects on Application Performance

The described caching and virtual memory mechanisms are implemented as transparent sys-
tems from the viewpoint of an actual application. However, knowing the system and its
characteristics can have crucial implications on application performance.

5.2.1 The Stride Experiment

As the name random access memory suggests, the memory can be accessed randomly and
one would expect constant access costs. In order to test this assumption we ran a simple
benchmark accessing a constant number (4,096) of addresses with an increasing stride between
the accessed addresses. We implemented this benchmark by iterating through an array chasing
a pointer.

The array is filled with structs so that following the pointer of the elements creates a circle
through the complete array. The structs consist of a pointer and an additional data attribute
realizing the padding in memory, resulting in a memory access with the desired stride when
following the pointer chained list. In case of a sequential array, the pointer of element i points
to element i + 1 and the pointer of the last element references the first element so that the
circle is closed. In case of a random array, the pointer of each element points to a random
element of the array while ensuring that every element is referenced exactly once.

If the assumption holds and random memory access costs are constant, then the size of the
padding in the array and the array layout (sequential or random) should make no difference
when iterating over the array. Figure 5.3 shows the result for iterating through a list with
4,096 elements, while following the pointers inside the elements and increasing the padding
between the elements. As we can clearly see, the access costs are not constant and increase
with an increasing stride. We also see multiple points of discontinuity in the curves, e.g. the

41

CHAPTER 5. ESTIMATING CACHE MISSES

0

50

100

150

200

250

300

350

400

450

500

550

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

[Cache Linesize] [Pagesize]

C
P

U
 C

y
cl

es
 p

er
 E

le
m

en
t

Stride in Bytes

Random Sequential

Figure 5.3: Cycles for cache accesses with increasing stride.

0.0

0.5

1.0

1.5

2.0

2.5

20 22 24 26 28 210 212 214 216 218

[Cache Linesize] [Pagesize]

M
is

se
s

pe
r E

le
m

en
t

Stride in Bytes

Seq. L1 Misses
Seq. L2 Misses

Seq. L3 Misses
Seq. TLB Misses

(a) Sequential Access

0.0

0.5

1.0

1.5

2.0

2.5

20 22 24 26 28 210 212 214 216 218

[Cache Linesize] [Pagesize]

M
is

se
s

pe
r E

le
m

en
t

Stride in Bytes

Random, L1 Misses
Random, L2 Misses

Random, L3 Misses
Random, TLB Misses

(b) Random Access

Figure 5.4: Cache misses for cache accesses with increasing stride.

random access times increase heavily up to a stride of 64 byte and continue increasing with a
smaller slope.

Figure 5.4 confirms the assumption, that an increasing number of cache misses is causing
the increase in access times. The first point of discontinuity in Figure 5.3 is roughly the size
of the cache lines of the test system. The strong increase is due to the fact, that with a stride
smaller than 64 byte, multiple list elements are located on one cache line and the overhead of
loading one line is amortized over the multiple elements.

For strides greater than 64 byte, we would expect a cache miss for every single list element
and no further increase in access times. However, as the stride gets larger, the array is placed
over multiple pages in memory and more TLB misses occur, as the virtual addresses on the
new pages have to be translated into physical addresses. The number of TLB cache misses
increases up to the page size of 4 KB and stays at its worst case of one miss per element.

42

5.3. A CACHE-MISS BASED COST MODEL

1.0

10.0

100.0

1000.0

16KB 64KB 256KB 1MB 4MB 16MB 64MB256MB

[L1] [L2] [L3]

C
P

U
 C

y
cl

es
 p

er
 E

le
m

en
t

Size of Accessed Area in Bytes

Random Sequential

(a) Sequential Access

0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.10
1.00

10.00

16KB 64KB 256KB 1MB 4MB 16MB 64MB 256MB

[L1] [L2] [L3]

M
is

se
s

pe
r E

le
m

en
t

Size of Accessed Area in Bytes

Random, L3 Misses
Random, L1 Misses

Random, L2 Misses
Random, TLB Misses

(b) Random Access

Figure 5.5: Cycles and cache misses for cache accesses with increasing working sets.

With strides greater as the page size, the TLB misses can induce additional cache misses when
translating the virtual to a physical address. These cache misses are due to accesses to the
paging structures, which reside in main memory [4, 3, 64].

5.2.2 The Size Experiment

In a second experiment, we access a constant number of addresses in main memory with a
constant stride of 64 byte and vary the size of the working set size or accessed area in memory.
A run with n memory accesses and a working set size of s byte would iterate n

s·64 times through
the array.

Figure 5.5(a) shows that the access costs differ up to a factor of 100 depending on the
working set size. The points of discontinuity correlate with the sizes of the caches in the
system. As long as the working set size is smaller than the size of the L1 Cache, only the first
iteration results in cache misses and all other accesses can be answered out of the cache. As
the working set size increases, the accesses in one iteration start to evict the earlier accessed
addresses, resulting in cache misses in the next iteration.

Figure 5.5(b) shows the individual cache misses with increasing working set sizes. Up to
working sets of 32 KB the misses for the L1 Cache go up to one per element, the L2 cache
misses reach their plateau at the L2 cache size of 256 KB and the L3 cache misses at 12 MB.

5.3 A Cache-Miss Based Cost Model

In traditional disk based systems, IO operations are counted and used as a measurement for
costs. For in-memory database systems IO operations are not of interest and the focus shifts to

43

CHAPTER 5. ESTIMATING CACHE MISSES

description unit symbol

cache level - i

cache capacity [byte] Ci

cache block size [byte] Bi

number of cache lines - #i = Ci/Bi

Table 5.1: Cache Parameters with i ∈ {1, ..., N}

main memory accesses. The initial examples from Section 5.2, measuring memory access costs
for varying strides and working set sizes, showed that memory access costs are not constant
and an essential factor of the overall costs. In general, assuming all data is in main memory,
the total execution time of an algorithm can be separated into computing time and time for
accessing data in memory [51].

TTotal = TCPU + TMem (5.1)

In case the considered algorithms are close to bandwidth bound, TMem is the dominant
factor driving the execution time. Additionally, modeling TCPU requires internal knowledge of
the used processor, is very implementation specific and also dependent on the resulting machine
code created by the compiler which makes it extremely hard to model. As our considered
operators on the various data structures only perform a small amount of computations while
accessing large amounts of data, we assume our algorithms to be bandwidth bound and believe
TMem to be a good estimation of overall costs.

As discussed in Section 5.2, the costs for accessing memory can vary significantly due to the
underlying memory hierarchy and mechanisms like prefetching and virtual address translation.
Therefore, the costs for accessing memory can be quantified by the number of cache misses on
each level in the memory hierarchy, assuming constant costs for each cache miss.

In this section, we will provide explicit functions to calculate the estimated number of
cache misses for each operator and column organization. Some cost functions are based on the
work presented by Manegold and Kersten [51], presenting a generic cost model to estimate the
execution times of algorithms based on their cache misses by modeling basic access patterns and
an algebra to combine basic patterns to model more complex ones. However, we develop our
own cost functions, as they are specifically designed for the operators and column organization
schemes.

We develop parameterized functions estimating the number of cache misses for each oper-
ation. With the specific parameters for each cache level, the cache misses on that level can be
predicted. Furthermore, the total costs can be calculated by multiplying the number of cache
misses with the latency of the next level in the hierarchy as proposed in [51]. Measuring the

44

5.3. A CACHE-MISS BASED COST MODEL

individual cache level latencies requires accurate calibration and is very system specific. As a
simpler and more robust estimation, we use the number of cache misses as a direct indicator
for the resulting number of cycles, only roughly weighting the different cache levels. The cache
level in the hierarchy is indicated by i, whereas the TLB is treated as an additional level in
the hierarchy. The cache line size or block size of a respective level is given by Bi and the size
by Ci. The number of cache lines at the level i is denoted by #i. Table 5.1 gives an overview
of the required parameters of the memory hierarchy.

The function Mi(o, c) describes the estimated amount of cache misses for an operation o
on a column c. The operations are escan, rscan, lookup and insert. The respective physical
column organization is given by a subscript indicating A) an uncompressed column, B) a
dictionary encoded column with an unsorted dictionary and C) a dictionary encoded column
with a sorted dictionary.

5.3.1 Scan with Equality Selection

We start by developing functions estimating the number of cache misses for a scan operator
with equality selection on an uncompressed column. The scan consists of sequentially iterating
over the column, resulting in one random miss and as many sequential misses as the column
covers cache lines.

Mi(escanA, c) =

⌈
c.r · c.e
Bi

⌉

In case the column is dictionary encoded with a sorted dictionary, the binary search for
the searched value results in log2 random cache misses, while the sequential scan over the
compressed value-ids results in as many cache misses as the compressed column covers cache
lines.

Mi(escanB, c) =

⌈
c.r · c.ec

Bi

⌉
+ dlog2(c.d)e ·

⌈
c.e

Bi

⌉

The number of cache misses for an equal scan on a column with an unsorted dictionary is
similar as with a sorted dictionary, but instead of a binary search a linear search is performed,
scanning in average half the dictionary.

Mi(escanC , c) =

⌈
c.r · c.ec

Bi

⌉
+

⌈
c.d · c.e

2 ·Bi

⌉

Figure 5.6(a) shows the number of L1 cache misses of an experiment performing a scan with
equality selection on a column while varying the number of rows from 2 million to 20 million.
The experimental results are compared to the predictions calculated based on the presented
cost functions. The predicted cache misses follow closely the measured number of misses.

45

CHAPTER 5. ESTIMATING CACHE MISSES

5.3.2 Scan with Range Selection

In case of an uncompressed column, a scan with range selection iterates sequentially over the
uncompressed values, comparing the values with the requested range. Similarly, in case of a
sorted dictionary, the searched values are retrieved from the dictionary with a binary search and
the value-ids are scanned sequentially for the searched value-ids. In both cases, the resulting
cache misses are the same as for a scan with equality selection.

In case of an unsorted dictionary, the scan operation sequentially iterates over the column
and has to perform a random access into the dictionary due to the range selection. Regarding
the random access into the dictionary, we assume that every value in the dictionary is accessed
at least once. In the best case, the access to the dictionary is sequentially, utilizing all values
in a cache-line. In the worst case, every access to the dictionary may result in a cache miss.
The number of cache misses increases with increasing dictionary sizes respective to the cache
size and the amount of disorder in the column. Therefore, we model the number of random
misses by interpolating between 0 and the number of rows in the column.

In order to smoothly interpolate between two values, we define the following helper func-
tions. Il is a simple linear interpolation function between y0 and y1, whereas t varies from
0 to 1. Furthermore, we define Id as a decelerating interpolation function.

Il(y0, y1, t) = y0 + t · (y1 − y0)

Id(y0, y1, t) = Il(y0, y1, 1− (1− t)2)

Based on Il and Id, we construct Ic as a cosinus-based interpolation function to smoothly
interpolate between two values, as we found this interpolation type to fit well to the cache
characteristics.

Ic(y0, y1, t) = Il

(
y0, y1,

1− cos(π · Id〈0, 1, t〉)
2

)
Finally, we introduce I as a helper function modeling a function stepping smoothly from y0
to y1 around a location of x0, whereas ρ indicates the range in which the interpolation and τ
the degree of how asymmetric the interpolation is performed. These values might be system
specific and can be calibrated as needed.

I(x, x0, y0, y1, ρ, τ) =


y0 : x < 2x0−ρ

y1 : x ≥ 2x0+ρ∗τ

Ic(y0, y1,
log2(x)−x0+ρ
ρ∗(τ+1)) : else

If the number of covered cache-lines Ci is smaller than the number of available cache-lines
#i, every cache-line is loaded at its first access and remains in the cache. For subsequent
accesses, this cache-line is already in the cache and the access does not create an additional
cache miss.

46

5.3. A CACHE-MISS BASED COST MODEL

If Ci > #i, then already loaded cache-lines may be evicted from cache by loading other
cache-lines. Subsequent accesses then have to load the same cache-line again, producing more
cache misses.

The worst case is that every access to a cache-line has to load the line again, because it
was already evicted, resulting in c.r cache misses. Assuming randomly distributed values in a
column, how often cache-lines are evicted depends on the ratio of the number of cache-lines #i

and the number of covered cache-lines Ci. With increasing Ci the probability that cache-lines
are evicted before they are accessed again increases. This results in the number of random
cache misses of:

Mr
i (rscanC , c) = I(c.d, log2(Ci), 0, c.r, ρ, τ)

The number of sequential cache misses depends on the success of the prefetcher. In case no or
only a few random cache misses occur, the prefetcher has not enough time to load the requested
cache lines, resulting in sequential misses. With increasing numbers of random cache misses,
the time window for prefetching increases, resulting in less sequential cache misses.

Assuming a page size of 4KB, we found Ms
i to be a good estimation, as a micro benchmark

turned out that every three random cache misses when accessing the dictionary leave the
prefetcher enough time to load subsequent cache lines. We calculate the number of sequential
cache misses as follows:

Ms
i (rscanC , c) = max

(⌈
C(i, c)

4096

⌉
,C(i, c)−

Mr
i

3

)

Additionally, we also have to consider extra penalties payed for TLB misses. In case an
address translation misses the TLB and the requested page table entry is not present in the
respective cache level, another cache miss occurs. In the worst case, this can introduce an
additional cache miss for every dictionary lookup. Therefore, we calculate the number of TLB
misses by:

Mtlb
i (rscanC , c) = I(c.d, log2(Ctlb · 4i), 0, c.r, ρ, τ)

Finally, the total number of cache misses for a scan operation with range selection on a column
with an uncompressed dictionary is given by adding random, sequential and TLB misses.
Figure 5.6(b) shows a comparison of the measured effect of an increasing number of distinct
values on a range scan on an uncompressed column with the predictions based on the provided
cost functions. The figure shows the number of cache misses for each level and the model
correctly predicts the jumps in the number of cache misses.

47

CHAPTER 5. ESTIMATING CACHE MISSES

5.3.3 Lookup

A lookup on an uncompressed column results in as many cache misses as one value covers
cache lines on the respective cache level.

Mi(lookupA, c) =

⌈
c.e

Bi

⌉

In case the column is dictionary encoded it makes no difference if the lookup is performed on
a column with a sorted or an unsorted dictionary, hence we provide one function Mi(lookupB/C)
for both cases.

Mi(lookupB/C , c) =

⌈
c.ec
Bi

⌉
+

⌈
c.e

Bi

⌉
Figure 5.6(c) shows a comparison of the predicted number of L1 cache misses and the experi-
mental results for a lookup operation while varying the number of rows and that the prediction.
The predicted number of cache misses closely matches the experimental results.

5.3.4 Insert

The insert operation is the only operation we consider writing to main memory. Although
it is not quite accurate, we will treat write access similar as reading from main memory and
consider the resulting cache misses.

Mi(insertA, c) =

⌈
c.e

Bi

⌉

In case we perform an insert into a column with a sorted dictionary, we first perform a
binary search determining if the value is already in the dictionary, before writing the value and
value-id, assuming the value was not already in the dictionary.

Mi(insertB, c) =

⌈
c.e

Bi

⌉
+

⌈
c.ec
Bi

⌉
+ dlog2 (c.d)e ·

⌈
c.e

Bi

⌉

The number of cache misses in the unsorted dictionary case are similar to the sorted dictio-
nary case, although the cache misses for the search depend linearly on the number of distinct
values.

Ms
i (insertC , c) =

⌈
c.e

Bi

⌉
+

⌈
c.ec
Bi

⌉
+

⌈
c.d

2

⌉
·
⌈
c.e

Bi

⌉
Figure 5.6(d) shows the predicted number of cache misses for an insert operation and that

the prediction closely matches the experimental results.

48

5.3. A CACHE-MISS BASED COST MODEL

0.0

500k

1.0M

1.5M

2.0M

2.5M

3.0M

2M 4M 6M 8M 10M 12M 14M 16M 18M 20M
Number of Rows

L1 Misses Uncompressed
L1 Misses Dictionary

Pred. L1 Misses Uncompressed
Pred. L1 Misses Dictionary

Ca
ch

e
M

is
se

s

(a) Equal scan

0
2M
4M
6M
8M

10M
12M
14M
16M

16KB 64KB 256KB 1MB 4MB 16MB 64MB

[L1: 32k] [L2: 256k] [L3: 12mb]

 Dictionary Size

L1 Misses

L3 Misses
L2 Misses

TLB Misses

Pred. L1 Misses
Pred. L2 Misses
Pred. L3 Misses

Pred. TLB Misses

Ca
ch

e
M

is
se

s

(b) Range Scan

0.0

0.5

1.0

1.5

2.0

2.5

2M 4M 6M 8M 10M 12M 14M 16M 18M 20M
Number of Rows

Uncompr.
Dictionary

Pred. L1 Misses Uncompressed
Pred. L1 Misses Dictionary

L1
 C

ac
he

 M
is

se
s

(c) Lookup

100.0m

1.0

10.0

100.0

1.0k

10.0k

100.0k

2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

L1
 C

ac
he

 M
is

se
s

Number of Rows

Uncompr.
S.Dict.
U.Dict.

Pred. Uncompressed
Pred. Sorted

Pred. Unsorted

(d) Insert

Figure 5.6: Evaluation of predicted cache misses. Predicted cache misses for (a) equal scan,
(b) range scan, (c) lookup and (d) insert. For (a), (c) and (d), the number of rows c.r was
varied from 2 million to 20 million, c.d = 200,000, c.u = 0, c.e = 8, c.k = 0 and a query
selectivity of q.s = 2,000. For (b), the number of distinct values was varied from 1024 to 223,
c.r = 223, c.u = 223, c.e = 8, c.k = 0.

49

CHAPTER 5. ESTIMATING CACHE MISSES

50

Chapter 6

Index Structures

This chapter discusses the influence of index structures on top of the evaluated data structures
and their influence on the discussed plan operators. First, we extend the unsorted dictionary
case by adding a tree structure on top, keeping a sorted order and allowing binary searches.
Second, we discuss the influence of inverted indices on columns and extend our model to reflect
these changes.

Indices have been studied by many researchers and database literature uses the term index
in many ways. Some disk based database systems define an index as an alternative sort order
of a table on one or more attributes. Thus, by leveraging the index structure, a query can
search a table in logarithmic complexity with binary search. In disk based systems, it is often
assumed that the index structure is in memory and accessing it is cheap, as accessing the
relation stored on secondary storage is the main cost factor.

In the field of text search and search engines, an inverted index maps words to documents,
so for every word a list of matching document-ids is maintained. The index is called inverted,
as a document traditionally is a list of words and the index enables a mapping from words to
documents. Recent literature mentions inverted indices [59] for main memory column stores.
However, we think the term inverted index is misleading at that point as a classical index also
provides the mapping from values to record-ids.

In this report, we assume an index to be a data structure that allows us to efficiently
find tuples satisfying a given search condition. As tuples are stored in insertion order, we
assume an index to be a separate auxiliary data structure on top of a column, not affecting the
placement of values inside the column. Furthermore, we distinguish between column indices
and dictionary indices. A column index is built on top of the values of one column, e.g.
by creating a tree structure to enable binary search on the physically unsorted values in the
column. In contrast, a dictionary index is a B+-Tree built only on the distinct values of a
column, enabling binary searching an unsorted dictionary in order to find the position of a
given value in the dictionary.

51

CHAPTER 6. INDEX STRUCTURES

Alpha

Bravo

Charlie
Hotel

Dictionary (unsorted)

000

001

010

011

010

Column (Compressed)

0

2

3

4

Alpha

Echo

Bravo

Charlie

Bravo

Echo1100Hotel

Dictionary Index

Charlie Echo

Alpha Bravo
0 2

Charlie Delta
3 6

Echo Golf Hotel
1 5 4

101Golf
110Delta

Golf5

Delta6

Figure 6.1: Example dictionary index.

Column and dictionary indices are assumed to be implemented as B+-Tree structures. A
B+-Tree is a tree structure supporting insertions, deletions and searches in logarithmic time
and are optimized for systems reading blocks of data as it is the case for disk based systems
but also when accessing main memory and reading cache lines. In contrast to B-Trees, the
internal nodes of B+-Trees store copies of the keys and the information is stored exclusively in
the leaves, including a pointer to the next leaf node for sequential access. We denote the fan
out of a tree index structure with If and the number of nodes needed to store c.d keys with In.
The fan out constrains the number n of child nodes of all internal nodes to If/2 ≤ n ≤ If . IBi

denotes the numbers of cache lines covered per node at cache level i. The number of matching
keys for a scan with a range selection is denoted by q.nk and q.nv denotes the average number
of occurrences of a key in the column.

6.1 Dictionary Index

A dictionary index is defined as a B+-Tree structure [13] on top of an unsorted dictionary.
Figure 6.1 shows an example of an uncompressed column, which is encoded with an unsorted
dictionary. The compressed column and the unsorted dictionary are stored as described in
Section 3.2. Additionally, a B+-Tree with a branching factor If = 2 is maintained as a
dictionary index.

We now discuss the influence of a dictionary index on our examined operations and compare
a column using an unsorted dictionary with and without a dictionary index.

Scan with Equality Selection The algorithm on a column with a dictionary index is similar
to Algorithm 3.4.3, except that for retrieving the value-id we leverage the dictionary index and
perform a binary search. The number of cache misses regarding the sequential scanning of the
value-ids of the column stays the same as in Equation 5.3.1 and the costs for the binary search

52

6.1. DICTIONARY INDEX

20M

40M

60M

80M

100M

120M

140M

160M

210 212 214 216 218 220 222

Number of Distinct Values

U.Dict.
with Dictionary Index

CP
U

 C
yc

le
s

(a) Scan with equality selection

28
210
212
214
216
218
220
222
224
226
228

20 25 210 215 220

CP
U

 C
yc

le
s

Number of Distinct Values

U.Dict.
with Dictionary Index

(b) Insert

Figure 6.2: Influence of a dictionary index on CPU cycles for (a) scan with an equality selection
and (b) inserting new values into a column with an unsorted dictionary while varying the
number of distinct values. c.r = 10M, c.e = 8, c.u = 0, c.k = 0.5, q.s = 1000.

logarithmically depend on the number of distinct values of the column.

Figure 6.2(a) shows how the costs for a scan with equality selection develop with an increas-
ing number of distinct values for a column using an unsorted dictionary without a dictionary
index compared to a column with a dictionary index. We notice similar costs for the scan
operation on columns with few distinct values. However, as the dictionary grows, the costs for
linearly scanning the dictionary increase linearly in case of not using a dictionary index and
the costs with an index only increase slightly due to the logarithmic cost for the binary search,
resulting in better performance when using a dictionary index.

Scan with Range Selection Although the dictionary index maintains a sort order over the
dictionary, the value-ids of two values still allow no conclusions about which value is larger or
smaller as in the case of a sorted dictionary. Therefore, a scan with a range selection still needs
to lookup and compare the actual values as described in Algorithm 3.4.6.

Insert a Record One main cost factor for inserting new values into a column with an
unsorted dictionary is the linear search determining if the value is already in the dictionary.
This can be accelerated through the dictionary index, although it comes with the costs of
maintaining the tree structure as outlined in Algorithm 6.1.1. Assuming the new value is not
already in the dictionary, the costs for inserting it are writing the new value in the dictionary,
writing the compressed value-id, performing the binary search in the index and adding the new
value to the index.

Lookup a Record Looking up a record is not affected by a dictionary index as the index
can not be leveraged performing the lookup and does not have to be maintained. Therefore

53

CHAPTER 6. INDEX STRUCTURES

Algorithm 6.1.1: InsertDictIndex(column, dictionary)

valueId← dictionary.index.binarySearch(value)
if valueId = NotInDictionary

then

{
valueId← dictionary.insert(value)
dictionary.index.insert(value, valueId)

column.append(valueId)

the Algorithm as outlined in 3.4.8 is also applicable when using a dictionary index.

Conclusions

Considering the discussed operations, a dictionary encoded column always profits by using a
dictionary index. Therefore, we do not provide adapted cost functions for a dictionary index
as we do not have to calculate in which cases it is advisable to use. Even insert operations do
profit from the index as the dictionary can be searched with logarithmic costs which outweighs
the additional costs of index maintenance, as shown by Figure 6.2(b). The costs for index
maintenance overshadow the saved costs only in cases with very few distinct values, where
scanning the dictionary is similarly fast as a binary search. However, the additional costs in
these cases are very small and a dictionary index for unsorted dictionaries is still advisable.

6.2 Column Index

A column index can be any auxiliary data structure accelerating the search of tuples given a
value or range of values for an attribute. The most popular methods are hash-based indexing
and tree-based indexing as described in [61].

Hash-based indexing groups all values in a column into buckets, based on a hash function
determining which value belongs into which bucket. A bucket consists of a linked chain of values
and can hold a variable number of values. When searching for a specific value, calculating the
value of the hash function and accessing the resulting bucket can be achieved in constant time,
assuming a good distribution over all buckets. However, support for selections with range
queries is not given using hash-based indexing.

Tree-based indexing allows for fast selections using equality predicates and also supports
efficient range queries. Therefore, we assume a column index to be a B+-Tree structure, similar
to the dictionary index described above. However, the index is built on top of the complete
column and not only on the distinct values. Therefore, the index does not only store one

54

6.2. COLUMN INDEX

Alpha

Echo

Bravo

Charlie

Bravo

Column (Uncompressed)

Hotel

Dictionary Index

Charlie Echo

Alpha Bravo Charlie Delta Echo Golf Hotel

(0) (2,4) (3) (7) (1) (6) (5)
Golf

Delta

Figure 6.3: Example column index.

position, but has to store a list of positions for every value. A column index can be added
to any column, regardless of the physical organization of the column. Figure 6.3 shows an
example of a column index on an uncompressed column.

Lookup Performing a positional lookup on a column can not profit from a column index and
also does not require any maintenance operations for the index. Therefore the Algorithm as
outlined in 3.4.8 is still applicable.

Search with Equality Selection A search with equality selection can be answered entirely
by using the column index. Therefore, the costs do not depend on the physical layout of
the column and the same algorithm can be used for all column organizations, as outlined
by Algorithm 6.2.1. First, the index is searched for value X by binary searching the tree
structure resulting in a list of positions. If the value is not found, an empty list is returned.
The resulting list of positions then has to be converted into the output format by adding all
positions to the result array. Locating the leaf node for the searched key requires reading
logIf (In) · IBi cache lines for reading every node from the root node to the searched leaf node,
assuming each accessed node lies on a separate cache line. Then, iterating through the list
of positions and adding every position to the result array requires to read and write q.nv/Bi
cachelines, assuming the positions are placed sequentially in memory.

Mi(escanI) = logIf (In) · IBi + 2 · q.nk ·
⌈
q.nv
Bi

⌉
(6.1)

Search with Range Selection Similarly to the search with equality selection, a search
with range selection can be answered entirely by using the column index, as outlined by Al-
gorithm 6.2.2. Assuming the range selection matches any values, we locate the node with the
first matching value by performing a binary search on the column index. The number of cache
misses for the binary search are logIf (In) · IBi . Then, we sequentially retrieve the next nodes
by following the next pointer of each node until we find a node with a key greater or equal
to high. Assuming completely filled nodes, this requires reading all nodes containing the q.nk

55

CHAPTER 6. INDEX STRUCTURES

Algorithm 6.2.1: SearchEqualIndex(X, columnIndex)

result← array[];node← columnIndex.binarySearch(X)
if node not NotFound

then

{
for each pos ∈ node.positionList

do
{
result.append(pos)

return(result)

Algorithm 6.2.2: SearchRangeIndex(X,Y, columnIndex)

result← array[]
node← columnIndex.binarySearch(X)
if node not NotFound

then


while node.key < Y

do


for each pos ∈ node.positionList

do
{
result.append(pos)

node← node.next
return(result)

matching keys, resulting in q.nk/If nodes. For all matching nodes the positions are added to
the result array, requiring to read and write q.nv/Bi cache lines per key.

Mi(rscanI) = logIf (In) · IBi + IBi ·
q.nk
If

+ 2q.nk ·
⌈
q.nv
Bi

⌉
(6.2)

Insert Inserting new values into the physical organization of a column is not affected by a
column index. However, the new value has also to be inserted into the column index. The
costs incurring for the index maintenance are independent from the physical organization of the
column. This requires searching the tree structure for the inserted value, reading logIf (In) ·IBi

cache lines. If the value already exists, the newly inserted position is added to the list of
positions of the respective node, otherwise the value is inserted and the tree has to be potentially
rebalanced. The costs for rebalancing are in average logIf (In) · IBi .

Mi(insertI) = 2 · logIf (In) · IBi (6.3)

Evaluation

Figure 6.4(a) shows a comparison for a range scan on a column index compared to a column
with a sorted dictionary and without an index. The figure shows the resulting CPU cycles for

56

6.2. COLUMN INDEX

0

50M

100M

150M

200M

250M

300M

350M

400M

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Selectivity

no index with index

CP
U

 C
yc

le
s

(a) Range scan performance with and without column
index

0

1M

2M

3M

4M

5M

6M

7M

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Selectivity

L1
L2
L3

TLB
Pred. L1
Pred. L2

Pred. L3
Pred. TLB

Ca
ch

e
M

is
se

s

(b) Cache misses for range scan with column index

2
9

2
10

2
11

2
12

2
6

2
8

2
10

2
12

2
14

2
16

2
18

2
20

2
22

C
P

U
 C

y
cl

es
 f

o
r

o
n
e

In
se

rt

Number of Distinct Values

U.Dict, Dict.Index no Col.Index
U.Dict, Dict.Index and Col.Index

(c) Insert performance with and without column index

22

23

24

25

26

27

28

29

26 28 210 212 214 216 218 220 222

Ca
ch

e
M

is
se

s

Number of Distinct Values

L1
TLB

Pred. L1
Pred. TLB

(d) L1 and TLB misses for insert with column index

Figure 6.4: CPU cycles for (a) scan with a range selection and (c) inserting new values into
a column with and without a column index. (b) and (d) show the respective cache misses for
the case of using a column index. c.r = 10M , c.d =1M, c.e = 8, c.u = 0, c.k = 0

the scan operation with increasing result sizes. For small results the index performs better, but
around a selectivity of roughly 4 million the complete scan performs better due to its sequential
access pattern. Figure 6.4(b) shows the resulting cache misses for the scan operation using the
column index and the predictions based on the defined model.

Figure 6.4(c) shows the costs for inserting a new value into a column using dictionary
encoding with an unsorted dictionary plus dictionary index and no column index compared to
a column with a column index. As expected, the cost for inserting in a column with a column
index are approximately twice as high. Figure 6.4(d) shows the resulting L1 and TLB cache
misses for inserting into a column with a column index and the respective predictions.

57

CHAPTER 6. INDEX STRUCTURES

58

Chapter 7

Partitioned Columns

This chapter introduces a partitioned column organization, consisting of a main and a delta
partition and outlines the merge process. We present an efficient merge algorithm, enabling
dictionary encoded in-memory column stores to support the update performance required to
run enterprise application workloads on read-optimized databases. The chapter is based on
the work presented in [46].

Traditional read-optimized databases often use a compressed column oriented approach to
store data [66, 50, 75]. Performing single inserts in such a compressed persistence can be as
complex as inserting into a sorted list [28]. One approach to handle updates in a compressed
storage is a technique called differential updates, maintaining a write-optimized delta partition
that accumulates all data changes. Periodically, this delta partition is combined with the
read-optimized main partition. We refer to this process as merge throughout the report, also
referred to as checkpointing by others [28]. This process involves uncompressing the compressed
main partition, merging the delta and main partitions and recompressing the resulting main
partition. In contrast to existing approaches, the complete process is required to be executed
during regular system load without downtime.

The update performance of such a system is limited by two factors – (a) the insert rate
for the write-optimized structure and (b) the speed with which the system can merge the
accumulated updates back into the read-optimized partition. Inserting into the write-optimized
structure can be performed fast if the size of the structure is kept small enough. As an
additional benefit, this also ensures that the read performance does not degrade significantly.
However, keeping this size small implies merging frequently, which increases the overhead of
updates.

59

CHAPTER 7. PARTITIONED COLUMNS

7.1 Merge Process

For supporting efficient updates, we want the supported update rate to be as high as possible.
Furthermore, the update rate should also be greater than the minimum sustained update rate
required by the specific application scenario. When the number of updates against the system
durably exceed the supported update rate, the system will be rendered incapable of processing
new inserts and other queries, leading to failure of the database system.

An important performance parameter for a partitioned column is the frequency at which
the merging of the partitions must be executed. The frequency of executing the merging of
partitions affects the size (number of tuples) of the delta partition. Computing the appropriate
size of the delta partition before executing the merge operation is dictated by the following
two conflicting choices:

1. Small delta partition A small delta partition implies a relatively low overhead to
the read query, implying a small reduction in the read performance. Furthermore, the
insertion into the delta partition will also be fast. This means however that the merging
step needs to be executed more frequently, thereby increasing the impact on the system.

2. Large delta partition A large delta partition implies that the merging is executed less
frequently and therefore adds only a little overhead to the system. However, increasing
the delta partition size implies a slower read performance due to the fact that the delta
partition stores uncompressed values, which consume more compute resources and mem-
ory bandwidth, thereby appreciably slowing down read queries (scan, index lookup, etc.)
Also, while comparing values in the main partition with those in delta partition, we need
to look up the dictionary for the main partition to obtain the uncompressed value (forced
materialization), thereby adding overhead to the read performance.

In our system, we trigger the merging of partitions when the number of tuples ND in the
delta partition is greater than a certain pre-defined fraction of tuples in the main partition
NM .

Figure 7.1 shows an example of a column with its main and delta partitions. Note that
the other columns of the table would be stored in a similar fashion. The main partition has
a dictionary consisting of its sorted unique values (6 in total). Hence, the encoded values are
stored using 3 = dlog2 6e bits. The uncompressed values (in gray) are not actually stored, but
shown for illustration purpose. The compressed value for a given value is its position in the
dictionary which is also called value-id, stored using the appropriate number of bits (in this
case 3 bits).

The delta partition stores the uncompressed values themselves. In this example, there are
five tuples with the shown uncompressed values. In addition, a Cache Sensitive B+-Tree (CSB-
Tree) [63] containing all the unique uncompressed values is maintained. Each value in the tree
also stores a pointer to the list of tuple ids where the value was inserted. For example, the

60

7.2. MERGING ALGORITHM

0000

0001

0010

0011

0100

0101

0110

0111

1000

000

001

010

011

100

101

100

010

011

010

apple

charlie

delta

frank

hotel

inbox

hotel

delta

frank

delta

bravo

charlie

charlie

golf

young

0110

0011

0100

0011

hotel

delta

frank

delta

0001

0010

bravo

charlie

bravo

charlie

delta

frank

hotel

inbox

apple

golf

young

Main(Compressed) Main Dictionary

Partition after merge

(Compressed)
Merged

Dictionary

P
a
rt

it
io

n
 f
ro

m
M

a
in

P
a
rt

it
io

n

fr
o
m

 D
e
lt
a

golf

charlie young

bravo charlie golf young

(0) (1,3) (2) (4)

Delta (Uncompressed)

CSB+ tree

(#): Index to Delta Partition

0

1

2

3

4

Merge of

two

partitions
NM

U
J

M
M

J

D
J

ND

Figure 7.1: Example showing the data structures maintained for each column. The main
partition is stored compressed together with the dictionary. The delta partition is stored
uncompressed, along with the CSB+ tree. After the merging of the partitions, we obtain the
concatenated compressed main column and the updated dictionary.

value “charlie” is inserted at positions 1 and 3. Upon insertion, the value is appended to the
delta partition and the CSB+ tree is updated accordingly.

After the merging of the partitions has been performed, the main and delta partitions are
concatenated and a new dictionary for the concatenated partition is created. Furthermore, the
compressed values for each tuple are also updated. For example, the encoded value for“hotel”
was 4 before merging and is 6 after merging. Furthermore, it is possible that the number of bits
that are required to store the compressed value will increase after merging. Since the number
of unique values in this example is increased to 9 after merging, each compressed value is now
stored using dlog 9e = 4 bits.

7.2 Merging Algorithm

We now describe the merge algorithm in detail and enhance the näıve merge implementation
by applying optimizations known from join processing. Furthermore, we will parallelize our
implementation and make it architecture-aware to achieve the best possible throughput. For
the remainder of the report, we refer to the symbols explained in Table 7.1.

We use a compression scheme wherein the unique values for each column are stored in a

61

CHAPTER 7. PARTITIONED COLUMNS

Description Unit Symbol

Number of columns in the table - NC

Number of tuples in the main table - NM

Number of tuples in the delta table - ND

Number of tuples in the updated table - NM
′

For a given column j; j ∈ [1 . . .NC]:

Main partition of the jth column - Mj

Merged column - M′j

Sorted dictionary of the main partition - Uj
M

Sorted dictionary of the delta partition - Uj
D

Updated main dictionary - U′jM
Delta partition of the jth column. - Dj

Uncompressed Value-Length bytes Ej

Compressed Value-Length bits Ej
C

Compressed Value-Length after merge bits E′jC
Fraction of unique values in delta - λjD
Fraction of unique values in main - λjM
Merge auxiliary structure for the main - Xj

M

Merge auxiliary structure for the delta - Xj
D

Memory Traffic bytes MT
Number of available parallel threads - NT

Table 7.1: Symbol Definition. Entities annotated with ′ represent the merged (updated) entry.

separate dictionary structure consisting of the uncompressed values stored in a sorted order.
Hence, |Uj

M| = λjM ·NM with |X| denoting the number of elements in the set X. By definition,

λjM, λ
j
D ∈ [0 . . . 1]. Furthermore, the compressed value stored for a given value is its index

in the (sorted) dictionary structure, thereby requiring dlog |Uj
M|e bits 1 to store it. Hence,

Ej
C = dlog |Uj

M|e.

Input(s) and Output(s) of the Algorithm:

For each column of the table, the merging algorithm combines the main and delta partitions
of the column into a single (modified) main partition and creates a new empty delta partition.
In addition, the dictionary U′j maintained for each column of the main table is also updated
to reflect the modified merged column. This also includes modifying the compressed values
stored for the various tuples in the merged column.

For the jth column, the input for the merging algorithm consists of Mj , Dj and Uj
M, while

1Unless otherwise stated, log refers to logarithm with base 2 (log2).

62

7.2. MERGING ALGORITHM

the output consists of M′j and U′jM. Furthermore, we define the cardinality NM
′ of the output

and the size of the merged dictionary |U′jM| as shown in Equation 7.1 and 7.2.

NM
′ = NM + ND (7.1)

|U′jM| = |D
j ∪Uj

M| (7.2)

We perform the merge using the following two steps:

1. Merging Dictionaries: This step consists of the following two sub-steps: a) Extracting
the unique values from the delta partition Dj to form the corresponding sorted dictionary
denoted as Uj

D. b) Merging the two sorted dictionaries Uj
M and Uj

D, creating the sorted

dictionary U′jM without duplicate values.

2. Updating Compressed Values: This step consists of appending the delta partition
Dj to the main partition Mj and updating the compressed values for the tuples, based on
the new dictionary U′jM. Since Dj may have introduced new values, this step requires: a)
Computing the new compressed value-length. b) Updating the compressed values for all
tuples with the new compressed value, using the index of the corresponding uncompressed
value in the new dictionary U′jM.

We now describe the above two steps in detail and also compute the order of complexity
for each of the steps. As mentioned earlier, the merging algorithm is executed separately for
each column of the table.

7.2.1 Merging Dictionaries

The basic outline of step one is similar to the algorithm of a sort-merge-join [54]. However,
instead of producing pairs as an output of the equality comparison, the merge will only generate
a list of unique values. The merging of the dictionaries is performed in two steps (a) and (b).

Step 1 (a) This step involves building the dictionary for the delta partition Dj . Since we
maintain a CSB+ tree to support efficient insertions into Dj , extracting the unique values in
a sorted order involves a linear traversal of the leaves of the underlying tree structure [63].
The output of Step 1(a) is a sorted dictionary for the delta partition Uj

D, with a run-time

complexity of O(|Uj
D|)

Step 1(b) This step involves a linear traversal of the two sorted dictionaries Uj
M and Uj

D

to produce a sorted dictionary U′jM. In line with a usual merge operation, we maintain two
pointers called iteratorM and iteratorD, to point to the values being compared in the two
dictionaries Uj

D and Uj
M, respectively. Both are initialized to the start of their respective

dictionaries. At each step, we compare the current values being pointed to and append the

63

CHAPTER 7. PARTITIONED COLUMNS

smaller value to the output. Furthermore, the pointer with the smaller value is also incre-
mented. This process is carried out until the end of one of the dictionaries is reached, after
which the remaining dictionary values from the other dictionary are appended to the output
dictionary. In case both values are identical the value is appended to the dictionary once and
the pointers for the dictionaries are incremented. The output of Step 1(b) is a sorted dictionary
U′jM for the merged column, with |U′jM| denoting its cardinality. The run-time complexity of

this step is O(|Uj
M|+ |U

j
D|).

7.2.2 Updating Compressed Values

The compressed values are updated in two steps – (a) computing the new compressed value
length and (b) writing the new main partition and updating the compressed values.

Step 2(a) The new compressed value-length is computed as shown in Equation 7.3. Note
that the length for storing the compressed values in the column may has increased from the
one used for storing the compressed values before the merging algorithm. Since we use the
same length for all the compressed values, this step executes in O(1) time.

E′jC = dlog(|U′jM|)e bits (7.3)

Step 2(b) We need to append the delta partition to the main partition and update the com-
pressed values. As far as the main partition Mj is concerned, we use the following methodology.
We iterate over the compressed values and for a given compressed value Ki

C , we compute the

corresponding uncompressed value Ki by performing a lookup in the dictionary Uj
M. We then

search for Ki in the updated dictionary U′jM and store the resultant index as the encoded value

using the appropriate number of Ej
C bits in the output. For the delta partition Dj , we already

store the uncompressed value, hence it requires a search in the updated dictionary to compute
the index, which is then stored.

Since the dictionary is sorted on the values, we use a binary search algorithm to search for
a given uncompressed value. The resultant run-time of the algorithm is

O(NM + (NM + ND) · log(|U′jM|)). (7.4)

To summarize the above, the total run-time for the merging algorithm is dominated by Step
2(b) and depends heavily on the search run-time. As shown in Section 7.4, this makes the
merging algorithm prohibitively slow and infeasible for current configurations of tables. We
now present an efficient variant of Step 2(b), which performs the search in linear time at the
expense of using an auxiliary data structure. Since merging is performed on every column
separately, we expect the overhead of storing the auxiliary structure to be very small, as
compared to the total storage, and independent of the number of columns in a table and the
number of tables residing in the main memory.

64

7.2. MERGING ALGORITHM

apple
charlie
delta
frank
hotel
inbox

00
01
10
11

bravo
charlie

golf
young

Delta Dictionary
Delta Partition

(Compressed)

00
01
10
01
11

bravo
charlie

charlie
golf

young

0000
0010
0011
0100
0110
0111

0001
0010
0101
1000

100 hotel

00 bravo

Old

Main

Partition

Old Delta

Partition

Main Auxiliary

Delta Auxiliary
0110

0001

0
1
2
3
4
5

Merged

Partition

Use 100 (i.e., 4) as an index

to the auxiliary structure to

get a new value -- 0110

Step1(a) Step1(b)

Step2(b)

bravo
charlie

golf
young

U
J

D X
J

M

X
J

D

Figure 7.2: Example showing the various steps executed by our linear-time merging algorithm.
The values in the column are similar to those used in Figure 7.1.

7.2.3 Initial Performance Improvements

Based on the previously described näıve algorithm, we significantly increase the merge per-
formance by adding an additional auxiliary data structure per main and per delta partition,
denoted as Xj

M and Xj
D respectively. The reasoning for the auxiliary data structure is to

provide a translation table with constant access cost during the expensive Step 2(b). We now
describe the modified Steps 1(a), 1(b) and 2(b) to linearize the update algorithm of compressed
values and improve the overall performance.

Modified Step 1(a) In addition to computing the sorted dictionary for the delta partition,
we also replace the uncompressed values in the delta partition with their respective indices
in the dictionary. By this approach lookup indices for Step 2 are changed to fixed width and
allow better utilization of cache lines and CPU architecture aware optimizations like SSE.

Since our CSB+ tree structure for the delta partition also maintains a list of tuple ids
with each value, we access these values while performing the traversal of the tree leaves and
replace them by their newly computed index into the sorted dictionary. Although this involves
non-contiguous access of the delta partition, each tuple is only accessed once, hence the run-
time is O(ND). For example, consider Figure 7.2, borrowing the main/delta partition values
depicted in Figure 7.1. As shown in Step 1(a), we create the dictionary for the delta partition

65

CHAPTER 7. PARTITIONED COLUMNS

(with 4 distinct values) and compute the compressed delta partition using 2 bits to store each
compressed value.

Modified Step 1(b) In addition to appending the smaller value (of the two input dictio-
naries) to U′jM, we also maintain the index to which the value is written. This index is used

to incrementally map each value from Uj
D and Uj

M to U′jM in the selected mapping table Xj
M

or Xj
D. If both compared values are equal, the same index will be added to the two mapping

tables.

At the end of Step 1(b), each entry in Xj
M corresponds to the location of the corresponding

uncompressed value of Uj
M in the updated U′jM. Similar observations hold true for Xj

D (w.r.t.

Uj
D). Since this modification is performed while building the new dictionary and both Xj

M

and Xj
D are accessed in a sequential fashion while populating them, the overall run-time of

Step 1(b) remains as noted in Equation 7.2 – linear in sum of number of entries in the two
dictionaries. Step 1(b) in Figure 7.2 depicts the corresponding auxiliary structure for the
example in Figure 7.1.

Modified Step 2(b) In contrast to the original implementation described earlier, computing
the new compressed value for the main (or delta) table reduces to reading the old compressed
value Ki

C and retrieving the value stored at Ki
Cth index of the corresponding auxiliary structure

Xj
M or Xj

D. For example in Figure 7.2, the first compressed value in the main partition has a
compressed value of 4 (1002 in binary).

In order to compute the new compressed value, we look up the value stored at index 4 in
the auxiliary structure that corresponds to 6 (11002 in binary). So value 6 is stored as the
new compressed value, using 4 bits since the merged dictionary has 9 unique values, as shown
in Figure 7.1. Therefore, a lookup and binary search in the original algorithm description is
replaced by a lookup in the new algorithm, reducing the run-time to O(NM + ND).

To summarize, the modifications described above result in a merging algorithm with overall
run-time of

O(NM + ND + |Uj
M|+ |U

j
D|) (7.5)

which is linear in terms of the total number of tuples and a significant improvement com-
pared to Equation 7.4.

7.3 Merge Implementation

In this section, we describe our optimized merge algorithm on modern CPUs in detail and
provide an analytical model highlighting the corresponding compute and memory traffic re-
quirements. We first describe the scalar single-threaded algorithm and later extend it to exploit
the multiple cores present on current CPUs.

66

7.3. MERGE IMPLEMENTATION

The model serves the following purposes: (1) Computing the efficiency of our implementa-
tion. (2) Analyzing the performance and projecting performance for varying input parameters
and underlying architectural features like varying core and memory bandwidth.

7.3.1 Scalar Implementation

Based on the modified Step 1(a) (Section 7.2.3), extracting the unique values from Dj involves
an in-order traversal of the underlying tree structure. We perform an efficient CSB+ tree
traversal using the cache-friendly algorithm described by Rao et al. [63]. The number of
elements in each node (of cache-line size) depends on the size of the uncompressed values c.ej

in the jth column of the delta partition. For example, with c.ej = 16 bytes, each node consists
of a maximum of 3 values. In addition to append the value to the dictionary during the in-
order traversal, we also traverse the list of tuple-ids associated with that value and replace the
tuples with the newly computed index into the sorted dictionary. Since the delta partition is
not guaranteed to be cache-resident at the start of this step (irrespective of the tree sizes), the
run-time of Step 1(a) depends on the available external memory bandwidth.

As far as the total amount of data read from the external memory is concerned, the total
amount of memory required to store the tree is around 2X the total amount of memory con-
sumed by the values themselves [63]. In addition to traversing the tree, writing the dictionary
Uj

D involves fetching the data for write. Therefore, the total amount of bandwidth required for
the dictionary computation is around 4 ·c.e bytes per value (3 ·c.e bytes read and 1 ·c.e bytes
written) for the column. Updating the tuples involves reading their tuple id and a random
access into Dj to update the tuple. Since each access would read a cache-line (Bi bytes wide)
the total amount of bandwidth required would be (2 ·Bi+4) bytes per tuple (including the read
for the write component). This results in the total required memory traffic for this operation
as shown by Equation 7.7. Note that at the end of Step 1(a), Dj also consists of compressed
values (based on its own dictionary Uj

D).

Applying the modified Step 1(b) (as described in Section 7.2.3), the algorithm iterates over
the two dictionaries and produces the output dictionary with the auxiliary structures. As far
as the number of operations is concerned, each element appended to the output dictionary
involves around 12 ops 2 [11]. As far as the required memory traffic is concerned, both Uj

M

and Uj
D are read sequentially, while U′jM, Xj

M and Xj
D are written in a sequential order. Note

that the compressed value-length used for each entry in the auxiliary structures is

e′c = dlog(|U′jM|)e. (7.6)

Hence, the total amount of required read memory traffic can be calculated as shown in Equa-
tion 7.8. The required write memory traffic for building the new dictionary and generate the
translation table is calculated as shown in Equation 7.9.

21 op implies 1 operation or 1 executed instruction.

67

CHAPTER 7. PARTITIONED COLUMNS

MT = 4 · c.e · |Uj
D|+ (2 ·Bi + 4) ·ND (7.7)

MT = c.e · (|Uj
M|+ |U

j
D|+ |U

′j
M|) +

e′c · (|X
j
M|+ |X

j
D|)

8
(7.8)

MT = c.e · |U′jM|+
e′c · (|X

j
M|+ |X

j
D|)

8
(7.9)

As shown for the modified Step 2(b) in Section 7.2.3, the algorithm iterates over the com-
pressed values in Mj and Dj to produce the compressed values in the output table M′j . For
each compressed input value, the new compressed value is computed using a lookup into the
auxiliary structure Xj

M for the main partition or Xj
D for the delta partition, with an offset

equal to the stored compressed value itself.

The function shown in Equation 7.10 is executed for each element of the main partition
and similar for the delta partition.

M′j [i]← Xj
M [M [i]] (7.10)

As far as the memory access pattern is concerned, updating each successive element in the main
or delta partition may access a random location in the auxiliary data structure (depending on
the stored compressed value). Since there may not exist any coherence in the values stored in
consecutive locations, each access can potentially access a different cache line (size Bi bytes).
For scenarios where the complete auxiliary structure cannot fit in the on-die caches, the amount
of read memory traffic to access the auxiliary data structure is approximated by Equation 7.11.

MT = Bi · (NM + ND) (7.11)

In addition, reading the main/delta partition requires a read memory traffic as shown in
Equation 7.12, while writing out the concatenated output column requires a total memory
traffic that can be calculated as in Equation 7.13.

MT = c.eC · (NM + ND) /8 (7.12)

MT = 2e′c (NM + ND) /8 (7.13)

In case Xj
M (or Xj

D) fits in the on-die caches, their access will be bound by the computation
rate of the processor, and only the main/delta partitions will be streamed in and the con-
catenated table is written (streamed) out. As far as the relative time spent in each of these
steps is concerned, Step 1 takes about 33 % of the total merge time (with c.e = 8 bytes and
50 % unique values) and Step 2 takes the remainder. 3 In terms of evidence of compute and

3Section 7.4 gives more details.

68

7.3. MERGE IMPLEMENTATION

bandwidth bound, our analytical model defines upper bounds on the performance, if the im-
plementation was indeed bandwidth bound (and a different bound if compute bound). Our
experimental evaluations show that our performance closely matches the lower of these upper
bounds for compute and bandwidth resources – which proves that our performance is bound
by the resources as predicted by the model.

7.3.2 Exploiting Thread-level Parallelism

We now present the algorithms for exploiting the multiple cores/threads available on modern
CPUs. NT denotes the number of available processing threads.

Parallelization of Step 1

Recalling Step 1(a), we perform an in-order traversal of the CSB+ tree and simultaneously
update the tuples in the delta partition with the newly assigned compressed values.

There exist two different strategies for parallelization:

1. Dividing the columns within a table amongst the available threads: Since the time spent
on each column varies based on the number of unique values, dividing the columns evenly
amongst threads may lead to load imbalance between threads. Therefore, we use a task
queue based parallelization scheme [2] and enqueue each column as a separate task. If
the number of tasks is much larger than the number of threads (as in our case with only a
few tens to hundred columns and a few threads), the task queue mechanism of migrating
tasks between threads works well in practice to achieve a good load balance.

2. Parallelizing the execution of Step 1(a) on each column amongst the available threads:
Since a small portion of the run-time is spent in computing the dictionary, we execute it
on a single-thread, and keep a cumulative count of the number of tuples that needs to
be updated as we create the dictionary. We parallelize the next phase where these tuples
are evenly divided amongst the threads and each thread scatters the compressed values
to the delta partition.

For a table with very few columns, scheme (ii) performs better than scheme (i). We imple-
mented both (i) and (ii) and since our input table consisted of few tens to hundreds of columns,
we achieved similar scaling for both these schemes on current CPUs. In Section 7.4.2, we re-
port the results for (i) – the results for (ii) would be similar. Step 1(b) involves merging the
two sorted dictionaries Uj

M and Uj
D with duplicate removal and simultaneously populating

the auxiliary structures Xj
M and Xj

D. This is an inherent sequential dependency in this merge
process and also requires the merge process to remove duplicates. Also note that for tables
with large fractions of unique values or large value-lengths (≥ 8 bytes) a significant portion

69

CHAPTER 7. PARTITIONED COLUMNS

of the total run-time is spent in Step 1(b). Therefore, it is imperative to parallelize well, in
order to achieve speedups in the overall run-time of the merging algorithm. We now describe
our parallelization scheme in detail that in practice achieves a good load-balance. Let us
first consider the problem of parallelizing the merging of Uj

M and Uj
D without duplicate re-

moval. In order to evenly distribute the work among the NT threads it is required to partition
both dictionaries into NT -quantiles. Since both dictionaries are sorted this can be achieved
in NT log(|Uj

M|+ |U
j
D|) steps [19]. Furthermore, we can also compute the indices in the two

dictionaries for the ith thread ∀i ∈ NT following the same algorithm as presented in [11].
Thus, each thread can compute its start and end indices in the two dictionaries and proceed
with the merge operation. In order to handle duplicate removal while merging, we use the
following technique consisting of three phases. We additionally maintain an array counter of
size (NT + 1) elements.

Phase 1 Each thread computes its start and end indices in the two dictionaries and writes
the merged output, while locally removing duplicates. Since the two dictionaries consisted of
unique elements to start with, the only case where this can create duplicate elements is when
the last element produced by the previous thread matches the first element produced by the
current thread. This case is checked for by comparing the start elements in the two dictionaries
with the previous elements in the respectively other dictionary. In case there is a match, the
corresponding pointer is incremented before starting the merge process. Once a thread (say the
ith thread) completes the merge execution, it stores the number of unique elements produced
by that thread to the corresponding location in the counter array (i.e. counter[i]). There is an
explicit global barrier at the end of phase 1.

Phase 2 In the second phase, we compute the prefix sum of the counter array, so that
counter[i] corresponds to the total number of unique values that would be produced by the
previous i threads. Additionally, counter[NT] is the total number of unique values that the
merge operation would produce. We parallelize the prefix sum computation using the algorithm
by Hillis et al. [30].

Phase 3 The counter array produced at the end of phase 2 also provides the starting index
at which a thread should start writing the locally computed merged dictionary. Similar to
phase 1, we recompute the start and end indices in the two dictionaries. Now consider the
main partition. The range of indices computed by the thread for Uj

M also corresponds to the

range of indices for which the thread can populate Xj
M with the new indices for those values.

Similar observations hold for the delta partition. Each thread performs the merge operation
within the computed range of indices to produce the final merged dictionary and auxiliary data
structures.

Summary In comparison to the single-threaded implementation, the parallel implementation
reads the dictionaries twice and also writes the output dictionary one additional time, thereby
increasing the total memory traffic by

c.e ·
(
|Uj

M|+ |U
j
D|
)

+ 2c.e · |U′jM| (7.14)

70

7.4. PERFORMANCE EVALUATION

0
10
20
30
40
50
60
70
80
90

10
0K

 (U
nO

pt
)

10
0K

 (O
pt
)

50
0K

 (U
nO

pt
)

50
0K

 (O
pt
)

1M
 (U

nO
pt
)

1M
 (O

pt
)

2M
 (U

nO
pt
)

2M
 (O

pt
)

4M
 (U

nO
pt
)

4M
 (O

pt
)

8M
 (U

nO
pt
)

8M
 (O

pt
)

U
pd

at
e
Co

st
 (C

yc
le
s
pe

r T
up

le
)

Merge ‐ Step2

Merge ‐ Step1

Update Delta

Figure 7.3: Update Costs for Various Delta Partition Sizes with a main partition size of
100 million tuples with 10 % unique values using 8-byte values. Both optimized (Opt) and
unoptimized (UnOpt) merge implementations were parallelized.

bytes. The overhead of the start and end index computation is also very small as compared
to the total computation performed by Step 1(b). The resultant parallel algorithm evenly
distributes the total amount of data read/written to each thread, thereby completely exploiting
the available memory bandwidth.

Parallelization of Step 2

To parallelize the updating of compressed values, we evenly divide the total number of all
tuples N′M amongst the available threads. Specifically, each thread is assigned N′M/NT tuples
to operate upon. Since each thread reads/writes from/to independent chunks of tables, this
parallelization approach works well in practice. Note that in case any of Xj

M or Xj
D can

completely fit in the on-die caches, this parallelization scheme still exploits to read the new
index for each tuple from the caches and that the run-time is proportional to the amount of
bandwidth required to stream the input and output tables.

7.4 Performance Evaluation

We now evaluate the performance of our algorithm on a dual-socket six-core Intel Xeon X5680
CPU with 2-way SMT per core, and each core operating at a frequency of 3.3 GHz. Each
socket has 32 GB of DDR (for a total of 64 GB of main memory). The peak external memory
bandwidth on each socket is 30 GB/sec. We used SUSE SLES 11 as operating system, the
pthread library and the Intel ICC 11.1 as compiler. As far as the input data is concerned,
the number of columns in the partition NC varies from 20 to 300. The value-length of the
uncompressed value c.e for a column is fixed and chosen from 4 bytes to 16 bytes. The number

71

CHAPTER 7. PARTITIONED COLUMNS

of tuples in the main partition NM varies from 1 million to 1 billion, while the number of tuples
in the delta partition ND varies from 500,000 to 50 million, with a maximum of around 5 % of
NM . Since the focus of the report is on in-memory databases, the number of columns is chosen
so that the overall data completely fits in the available main memory of the CPU. The fraction
of unique values λjM and λjD varies from 0.1 % to 100 % to cover the spectrum of scenarios
in real applications. For all experiments, the values are generated uniformly at random. We
chose uniform value distributions, as this represents the worst possible cache utilization for the
values and auxiliary structures. Different value distributions can only improve cache utilization,
leading to better merge times. However, differences in merge times due to different value
distributions are expected to be very small and are therefore negligible. We first show the
impact of varying ND on the merge performance. We then vary c.e from 4–16 bytes to
analyze the effect of varying value-lengths on merge operations. We finally vary the percentage
of unique values (λjM, λjD) and the size of the main partition NM . In order to normalize
performance w.r.t. varying input parameters, we introduce the term – update cost. Update
Cost is defined as the amortized time taken per tuple per column (in cycles/tuple), where the
total time is the sum of times taken to update the delta partition TU and the time to perform
the merging of main and delta partitions TM , while the total number of tuples is NM + ND.

7.4.1 Impact of Delta Partition Size

Figure 7.3 shows the update cost for varying tuples of the delta partition. In addition to the
delta partition update cost, we also show both run-times for the unoptimized and optimized
Steps 1 and 2 in the graph. NM is fixed to be 100 million tuples, while ND is varied from
500,000 (0.5 %) to 8 million (8 %) tuples. λjM and λjD are fixed to be around 10 %. The
uncompressed value-length c.e is 8 bytes. We fix the number of columns NC to 300. Note that
the run-times are on a parallelized code for both implementations on our dual-socket multi-core
system.

As far as the unoptimized merge algorithm is concerned, Step 2 (updating the compressed
values) takes up the majority of the run-time and does not change (per tuple) with the varying
number of tuples in the delta partition. The optimized Step 2 algorithm drastically reduces the
time spent in the merge operation (by 9–10 times) as compared to the unoptimized algorithm.
Considering the optimized code, as the delta partition size increases, the percentage of the
total time spent on delta updates increases and is 30 % – 55 % of the total time. This signifies
that the overhead of merging contributes a relatively small percentage to the run-time, thereby
making our scheme of maintaining separate main and delta partitions with the optimized merge
an attractive option for performing updates without a significant overhead.

The update rate in tuples/second is computed by dividing the total number of updates
with the time taken to perform delta updates and merging the main and delta partitions for
the NC columns. As an example, for ND = 4 million and say NC = 300, an update cost of

72

7.4. PERFORMANCE EVALUATION

0
0.5
1

1.5
2

2.5
3

3.5
4

4 8 16 4 8 16

1M delta 3M delta

Up
da

te
 C
os
t (
Cy
cl
es
 p
er
 T
up

le
)

(a) 1% Unique Values

Update Delta Merge ‐ Step1 Merge ‐ Step2

0
2
4
6
8
10
12
14

4 8 16 4 8 16

1M delta 3M delta

Up
da

te
 C
os
t (
Cy
cl
es
 p
er
 Tu

pl
e)

(b) 100% Unique Values

Update Delta Merge ‐ Step1 Merge ‐ Step2

Figure 7.4: Update Costs for Various Value-Lengths for two delta sizes with 100 million tuples
in the main partition for 1 % and 100 % unique values.

13.5 cycles per tuple (from Figure 7.3) evaluates to

4, 000, 000 · 3.3 · 109

13.5 · 104, 000, 000 · 300
≈ 31, 350 updates/second. (7.15)

7.4.2 Impact of Value-Length and Percentage of Unique values

Figure 7.4 shows the impact of varying uncompressed value-lengths on the update cost. The
uncompressed value-lengths are varied between 4, 8 and 16 bytes. We show two graphs with
the percentage of unique values fixed at (a) 1 % and (b) 100 % respectively. NM is fixed to be
100 million tuples for this experiment and the breakdown of update cost for ND equal to 1
million and 3 million tuples is shown. We fix the number of columns NC to 300.

As the value-length increases, the time taken per tuple to update the delta partition in-
creases and becomes a major contributor to the overall run-time. This time also increases as
the size of the delta partition increases. For example, in Figure 7.4(a), for an uncompressed
value-length of 16 bytes, the delta update time increases from about 1.0 cycles per tuple for ND

= 1 million to about 3.3 cycles for ND = 3 million. This time increases as the percentage of
unique values increases. The corresponding numbers in Figure 7.4(b) for 100 % unique values
are 5.1 cycles for ND = 1 million and 12.9 cycles for ND = 3 million.

As far as the Step 2 of the merge is concerned, the run-time depends on the percentage
of unique values. For 1 % unique values, the auxiliary structures fit in cache. As described in
Section 7.3.2, the auxiliary structures being gathered fit in cache and the run-time is bound
by the time required to read the input partitions and write the updated partitions. We get
a run-time of 1.0 cycles per tuple (around 1.8 cycles per tuple on 1-socket), which is close
to the bandwidth bound computed in Section 7.3.2. For 100 % unique values, the auxiliary
structures do not fit in cache and must be gathered from memory. The time taken is then

73

CHAPTER 7. PARTITIONED COLUMNS

around 8.3 cycles (15.0 cycles on 1-socket), which closely matches (within 10 %) the analytical
model developed in Section 7.3. The time for Step 2 mainly depends on whether the auxiliary
structures can fit in cache and therefore is constant with small increases in the delta size from
1 million to 3 million.

As far as Step 1 is concerned, for a given delta partition size ND, the time spent in Step
1 increases sub-linearly with the increase in value-length (Section 7.3.1). For a fixed value-
length, the time spent increases marginally with the increase in ND – due to the fact that
this increase in partition size only changes the unique values by a small amount and hence the
compressed value-length also changes slightly, resulting in a small change in the run-time of
Step 1. With larger changes in the percentage of unique values from 1 % to 100 %, the run-time
increases. For instance, for 8-byte values and 1 million delta partitions, Step 1 time increases
from 0.1 cycles per tuple at 1 % unique values to 3.3 cycles per tuple at 100 % unique values.

Finally, the percentage of time spent in updating the tuples as compared to the total
time increases both with increasing value-lengths for fixed ND and increase in ND for fixed
value-lengths.

7.5 Merge Strategies

An important performance parameter for a system with a merge process as described in the
preceding sections, is the frequency at which the merging of the partitions must be executed.
This frequency is given by the size of the delta partition, at which a merge process is initiated.
The appropriate size is dictated by two conflicting choices: a) A small delta partition means
fast insertions into the delta partition and only a small overhead for read queries, but implies
a more frequently executed merge process with higher impact to the system. b) A large delta
partition reduces the overhead of the merge process, but implies higher insertion costs in the
delta partition and a higher overhead for read queries. In our system, we trigger the merging
of partitions when the number of tuples ND in the delta partition is greater than a certain
pre-defined fraction of tuples in the main partition NM .

In contrast to the previously introduced partitioned column with one main and one delta
partition, we extend the concept of a partitioned column and allow an arbitrary number of
partitions. A partition can be either a write optimized store (WOS) or a read optimized store
(ROS). A WOS is optimized for write access similar to the delta partition whereas a ROS
is optimized for read queries similar to the main partition. In order to further balance this
tradeoff between merge costs and query performance, merge strategies can be applied, similar
to tradeoffs in the context of index structures between index maintenance costs and query
performance [6]. A merge strategy defines which partitions are merged together when a merge
process is executed. We now discuss the strategies immediate merge, no merge and logarithmic
merge.

74

7.5. MERGE STRATEGIES

Immediate Merge Every write optimized store is merged immediately with the existing
read optimized store and hence the strategy is called Immediate Merge. Note that this means
that there is exactly one WOS and one ROS at all times and that the one ROS is constantly
growing and potentially very large. This results in high costs for the merge process, because
for every merge all tuples are touched. For the query processing this is an advantage, because
only one read and one write optimized storage have to be considered instead of combining the
results of multiple storages. The immediate merge strategy can be classified as an extreme
strategy, with an unbalanced trade-off between query and merge costs.

No Merge The counterpart strategy of the immediate merge is called No Merge. In order to
compact one WOS, the strategy always creates one new ROS out of the WOS. Therefore, only
tuples from the small WOS have to be considered, which makes the merge very fast. However,
the result is a growing collection of equally sized ROS, which all have to be queried in order
to answer one single query. Although the queries against the storages can be parallelized, the
conflation of the results is an additional overhead. The No Merge Strategy can be considered
as an extreme strategy as well, shifting the costs from merge process to the query processing.

Logarithmic Merge The idea behind the logarithmic merge strategy is to find a balance
between query and merge costs. This is accomplished by allowing multiple ROS to exists, but
also merging several WOS into one ROS from time to time. In a b-way logarithmic merge strat-
egy each storage is assigned a generation g. If a new ROS is created exclusively from one WOS,
it is assigned g = 0. When b storages with g = x exist, they are merged into one storage with
g = x+1. The number of ROS is bounded by O(log n), where n is the total size of the collection.

With an Immediate Merge Strategy the storage maintenance costs grow linearly with every
applied merge whereas the query costs stay low. When a No Merge Strategy is applied the
contrary image appears where merge costs stay low and query costs grow linearly. The center
part shows how query and merge costs grow with a 2-way Logarithmic Merge Strategy. The
merge costs are varying depending on how many storages have to be touched. In every 2x cases
all storages have to be merged into one. The query costs depend on the number of existing
storages and are therefore lowest when all storages have been merged into one.

In order to choose a merge strategy, the workload has to be analyzed and characterized.
In a second step the resulting costs for each merge strategy can be calculated and the most
promising strategy should be chosen, based on an analytical cost model predicting the cost
differences for each merge strategy. Building on top of the presented cache-miss-based cost
model, our goal is to roughly estimate the ratio between the costs for read queries and write
queries. In order to do so, we calculate the number of select statements compared to insert
statements and weigh them according to their complexity and estimated selectivity. This results
in an abstract ratio q between read and write query costs for the workload. This number is
used as an input parameter for the calculated cost functions for each merge strategy.

The actual total costs for a workload depend on several parameters. The costs are added

75

CHAPTER 7. PARTITIONED COLUMNS

up from the costs for read queries, write queries and the performed merges. The costs for the
read queries highly depend on the number of queries, their selectivity, their complexity and the
size of the tables they are accessing. The costs for the write queries are given by the number
of write queries and the number of distinct values in the write optimized storage. The merge
costs depend on the number of touched tuples per write and the characteristics of the tables’
distinct values (intersection, tail).

However, we are not interested in modeling the actual total costs for one merge strategy.
Instead, we are interested in modeling only the costs that are influenced by the merge strategy
in order to determine the merge strategy with the lowest total costs. The total costs for one
merge strategy comprise the read, write and merge costs. The cost estimations are very similar
to the index maintenance case presented in [6].

76

Chapter 8

Conclusions and Future Work

This last chapter presents the conclusion of this report. We summarize the content of this
work and give an outlook of future work.

In this report, we presented a cost model for estimating cache misses for the plan operators
scan with equality selection, scan with range selection, positional lookup and insert in a column-
oriented in-memory database. We outlined functions estimating the cache misses for columns
using different data structures and covered uncompressed columns, bit-packed and dictionary
encoded columns with sorted and unsorted dictionaries. We presented detailed cost functions
predicting cache misses and TLB misses.

Chapter 3 gave an overview of the discussed system and introduced the considered physical
column organizations and plan operators. As expected, uncompressed columns are well suited
if fast insertions are required and also support fast single lookups. However, scan performance
is slow compared to dictionary encoded columns. Especially scan operators with equality
selection profit from scanning only the compressed attribute vector.

Chapter 4 presented n evaluation of parameter influences on the plan operator performance
with varying number of rows, number of distinct values, value disorder, value length and
value skewness. For dictionary encoded columns using an unsorted dictionary, we identified –
besides the number of rows and the value length – three additional parameters influencing the
performance of scan operations. The number of distinct values has a strong impact on range
and equal scans, and renders unsorted dictionaries unusable for columns with a large amount of
distinct values and dictionaries larger than available cache sizes. However, if the disorder in the
column is low, the penalties paid for range scans are manageable. Additionally, the skewness of
values in a column can influence the performance of range scan operators, although the impact
is small unless the distribution is extremely skewed. Regarding single lookup operations, the
physical column organizations do not largely differ, except that the lookup in uncompressed
columns is slightly faster.

In a nutshell, uncompressed columns seem to be well suited for classical OLTP workloads

77

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

with a high number of inserts and mainly single lookups. As the number of scan operations and
especially range scans increases, the additional insert expenses pay off, rendering dictionary
encoded column suitable for analytical workloads. Considering mixed workloads as in [46, 45],
there is no optimal column organization as the result is depending on the concrete query
distribution in the workload. Especially in the cases of mixed workloads, where the optimal
column organization is unclear, our analytical cost model presented in Chapter 5 and extended
for index structures in Chapter 6, allows to roughly estimate the costs and decide for a suited
column organization.

Chapter 7 introduced partitioned columns and proposed an optimized online merge algo-
rithm for dictionary encoded in-memory column stores, enabling them to support the update
performance required to run enterprise application workloads on read-optimized databases.
Additionally, we introduced a memory traffic based cost model for the merge process and
proposed merge strategies to further balance the tradeoff between merge costs and query per-
formance.

Possible directions of future work could be the extension of the model for non uniform mem-
ory access systems or to take more sophisticated algorithms for the discussed plan operations
or additional operators into account.

For example, the range scan operation on an uncompressed dictionary can be implemented
by first scanning the dictionary to build a bitmap index and then iterating over the value-
ids performing lookups into the bitmap index instead of accessing the dictionary. Such an
algorithm performs well in case the bitmap index fits into the cache. A similar direction of
research would be to extend the model for various index structures.

78

References

[1] D. Abadi, D. Myers, D. DeWitt, and S. Madden. Materialization strategies in a column-
oriented DBMS. IEEE 23rd International Conference on Data Engineering, 2007. ICDE
2007, pages 466–475, 2007.

[2] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of work stealing. In
SPAA, pages 1–12, 2000.

[3] V. Babka and P. Tůma. Investigating Cache Parameters of x86 Family Processors. Com-
puter Performance Evaluation and Benchmarking, pages 77–96, 2009.

[4] T. Barr, A. Cox, and S. Rixner. Translation Caching: Skip, Don’t Walk (the Page Table).
ACM SIGARCH Computer Architecture News, 38(3):48–59, 2010.

[5] J. Bernet. Dictionary Compression for a Scan-Based, Main-Memory Database System.
PhD thesis, ETH Zurich, Apr. 2010.

[6] S. Blum. A generic merge-based dynamic indexing framework for imemex. Master’s thesis,
ETH Zurich, 2008.

[7] P. Boncz, S. Mangold, and M. L. Kersten. Database Architecture Optimized for the new
Bottleneck: Memory Access. page 12, Nov. 1999.

[8] P. Boncz and M. Zukowski. MonetDB/X100: Hyper-pipelining query execution. Proc.
CIDR, 2005.

[9] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the memory wall in MonetDB.
Communications of the ACM, 51(12):77, Dec. 2008.

[10] P. A. Bonczk. Monet: A Next-Generation DBMS Kernel For Query-Intensive Applica-
tions. PhD thesis, CWI Amsterdam, 2002.

[11] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen, A. Baransi,
S. Kumar, and P. Dubey. Efficient implementation of sorting on multi-core SIMD CPU
architecture. In VLDB, pages 1313–1324, 2008.

79

REFERENCES

[12] E. Codd. A relational model of data for large shared data banks. Communications of the
ACM, 13(6), 1970.

[13] D. Comer. Ubiquitous B-Tree. CSUR, 1979.

[14] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: a stream database
for network applications. Journal of Instruction-Level Parallelism, 10:1–33, 2008.

[15] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance comparison of contemporary
DRAM architectures. Proceedings of the 26th annual international symposium on . . . ,
1999.

[16] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. High-performance DRAMs in workstation
environments. Computers, IEEE Transactions on, 50(11):1133–1153, 2001.

[17] J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra. Using PAPI for hardware
performance monitoring on Linux systems. Conference on Linux Clusters: The HPC
Revolution, 2001.

[18] U. Drepper. What Every Programmer Should Know About Memory. http://people. redhat.
com/drepper/cpumemory. pdf, 2007.

[19] R. S. Francis and I. D. Mathieson. A Benchmark Parallel Sort for Shared Memory Mul-
tiprocessors. IEEE Trans. Computers, 37(12):1619–1626, 1988.

[20] C. D. French. One Size Fits All Database Architectures Do Not Work for DSS. SIGMOD,
1995.

[21] G. Graefe. Volcano — An Extensible and Parallel Query Evaluation System. IEEE
Transactions on Knowledge and Data Engineering, 1994.

[22] G. Graefe. Sorting and indexing with partitioned B-trees. Proc. of the 1st Int’l Conference
on Innovative Data Systems Research (CIDR), Asilomar, CA, USA, 2003.

[23] G. Graefe and H. Kuno. Adaptive indexing for relational keys. Data Engineering Work-
shops (ICDEW), 2010 IEEE 26th International Conference on, pages 69–74, 2010.

[24] G. Graefe and H. Kuno. Self-selecting, self-tuning, incrementally optimized indexes. Pro-
ceedings of the 13th International Conference on Extending Database Technology, pages
371–381, 2010.

[25] M. Grund et al. HYRISE—A Main Memory Hybrid Storage Engine. VLDB, 2010.

[26] M. Grund et al. Optimal Query Operator Materialization Strategy for Hybrid Databases.
DBKDA, 2010.

[27] B. He, Y. Li, Q. Luo, and D. Yang. EaseDB: a cache-oblivious in-memory query processor.
SIGMOD, 2007.

80

REFERENCES

[28] S. Héman, M. Zukowski, N. J. Nes, L. Sidirourgos, and P. A. Boncz. Positional update
handling in column stores. SIGMOD, 2010.

[29] J. Hennessy and D. Patterson. Computer architecture: a quantitative approach. Morgan
Kaufmann, 2003.

[30] W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms. Commun. ACM, 29(12):1170–
1183, 1986.

[31] C. Hristea, D. Lenoski, and J. Keen. Measuring Memory Hierarchy Performance of Cache-
Coherent Multiprocessors Using Micro Benchmarks. ACM/IEEE Supercomputing Con-
ference, 1997.

[32] F. Hübner, J. Böse, and J. Krüger. A cost-aware strategy for merging differential stores
in column-oriented in-memory DBMS. BIRTE, 2011.

[33] S. Idreos, M. Kersten, and S. Manegold. Database cracking. Proceedings of CIDR, 2007.

[34] S. Idreos, M. Kersten, and S. Manegold. Self-organizing tuple reconstruction in column-
stores. SIGMOD Conference, pages 297–308, 2009.

[35] S. Idreos, S. Manegold, H. Kuno, and G. Graefe. Merging what’s cracked, cracking what’s
merged: adaptive indexing in main-memory column-stores. VLDB, 2011.

[36] Intel Inc. TLBs, Paging-Structure Caches, and Their Invalidation, 2008.

[37] Intel Inc. Intel 64 and IA-32 Architectures Optimization Reference Manual, 2011.

[38] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. Jones, S. Madden,
M. Stonebraker, and Y. Zhang. H-store: a high-performance, distributed main memory
transaction processing system. Proceedings of the VLDB Endowment archive, 1(2):1496–
1499, 2008.

[39] B. Kao and H. Garcia-Molina. An overview of real-time database systems. Prentice-Hall,
Inc, 1995.

[40] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main memory database
system based on virtual memory snapshots. ICDE, 2011.

[41] A. Kemper, T. Neumann, F. Funke, V. Leis, and H. Muehe. HyPer: Adapting Columnar
Main-Memory Data Management for Transactional AND Query Processing. Bulletin of
the Technical Committee on Data Engineering, 2012.

[42] K. Kim, J. Shim, and I.-h. Lee. Cache conscious trees: how do they perform on contem-
porary commodity microprocessors? ICCSA’07, 2007.

[43] D. E. Knuth. Art of Computer Programming, Volume 3: Sorting and Searching. Addison-
Wesley Professional, 1973.

81

REFERENCES

[44] J. Krueger, M. Grund, C. Tinnefeld, H. Plattner, A. Zeier, and F. Faerber. Optimiz-
ing Write Performance for Read Optimized Databases. Database Systems for Advanced
Applications, pages 291–305, 2010.

[45] J. Krueger, C. Tinnefeld, M. Grund, A. Zeier, and H. Plattner. A case for online mixed
workload processing. DBTest, 2010.

[46] J. Krüger, K. Changkyu, M. Grund, N. Satish, D. Schwalb, and C. Jatin. Fast Updates
on Read Optimized Databases Using Multi Core CPUs. VLDB, 2011.

[47] I. Lee, S. Lee, and J. Shim. Making T-Trees Cache Conscious on Commodity Micropro-
cessors. Journal of information science and engineering, 27:143–161, 2011.

[48] T. J. Lehman and M. J. Carey. A Study of Index Structures for Main Memory Database
Management Systems. VLDB, 1968.

[49] S. Listgarten. Modelling Costs for a MM-DBMS. RTDB, 1996.

[50] R. MacNicol and B. French. Sybase IQ Multiplex — Designed For Analytics. VLDB,
2004.

[51] S. Manegold, P. A. Boncz, and M. L. Kersten. Generic database cost models for hierar-
chical memory systems. VLDB, 2002.

[52] S. Manegold and M. Kersten. Generic database cost models for hierarchical memory
systems. Proceedings of the 28th international conference on Very Large Data Bases,
pages 191–202, 2002.

[53] A. Mazreah, M. Sahebi, M. Manzuri, and S. Hosseini. A Novel Zero-Aware Four-Transistor
SRAM Cell for High Density and Low Power Cache Application. In Advanced Computer
Theory and Engineering, 2008. ICACTE ’08. International Conference on, pages 571–575,
2008.

[54] P. Mishra and M. H. Eich. Join Processing in Relational Databases. CSUR, 1992.

[55] G. Moore. Cramming more components onto integrated circuits. Electronics, 38:114 ff.,
1965.

[56] J. Müller. A Real-Time In-Memory Discovery Service. PhD thesis, Hasso Plattner Insti-
tute, 2012.

[57] H. Pirk. Cache Conscious Data Layouting for In-Memory Databases. Master’s thesis,
Humboldt-Universität zu Berlin, 2010.

[58] H. Plattner. A Common Database Approach for OLTP and OLAP Using an In-Memory
Column Database. ACM Sigmod Records, 2009.

82

REFERENCES

[59] H. Plattner and A. Zeier. In-Memory Data Management: An Inflection Point for Enter-
prise Applications. Springer, 2011.

[60] T. Puzak, A. Hartstein, P. Emma, V. Srinivasan, and A. Nadus. Analyzing the Cost
of a Cache Miss Using Pipeline Spectroscopy. Journal of Instruction-Level Parallelism,
10:1–33, 2008.

[61] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill Sci-
ence/Engineering/Math, 3rd edition, 1999.

[62] J. Rao and K. A. Ross. Cache Conscious Indexing for Decision-Support in Main Memory.
VLDB, 1999.

[63] J. Rao and K. A. Ross. Making B+-Trees Cache Conscious in Main Memory. In SIGMOD,
pages 475–486, 2000.

[64] R. Saavedra and A. Smith. Measuring cache and TLB performance and their effect on
benchmark runtimes. IEEE Transactions on Computersn, 1995.

[65] M. Sleiman, L. Lipsky, and K. Konwar. Performance Modeling of Hierarchical Memories.
CAINE, 2006.

[66] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B. Zdonik.
C-Store: A Column-oriented DBMS. VLDB, 2005.

[67] M. Stonebraker and U. Cetintemel. “One size fits all”: an idea whose time has come and
gone. ICDE, 2005.

[68] J. A. Storer. Data Compression: Methods and Theory. Computer Science Press, 1988.

[69] C. T. Team. In-memory data management for consumer transactions the timesten ap-
proach. SIGMOD, 1999.

[70] K. Whang. Query optimization in a memory-resident domain relational calculus database
system. TODS, 1990.

[71] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J. Schaffner. SIMD-
scan: ultra fast in-memory table scan using on-chip vector processing units. Proceedings
of the VLDB Endowment, 2(1):385–394, 2009.

[72] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap indices with efficient compression.
TODS, 2006.

[73] N. Zhang, A. Mukherjee, T. Tao, T. Bell, R. VijayaSatya, and D. Adjeroh. A Flexible
Compressed Text Retrieval System Using a Modified LZW Algorithm. Data Compression
Conference, 2005.

83

REFERENCES

[74] M. Zukowski. Balancing Vectorized Query Execution with Bandwidth-Optimized Storage.
PhD thesis, CWI Amsterdam, 2009.

[75] M. Zukowski, P. Boncz, N. Nes, and S. Héman. MonetDB/X100 - A DBMS In The CPU
Cache. IEEE Data Engineering Bulletin, 2005.

84

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

66 978-3-86956-

227-8
Model-Driven Engineering of Adaptation
Engines for Self-Adaptive Software

Thomas Vogel, Holger Giese

65 978-3-86956-
226-1

Scalable Compatibility for Embedded
Real-Time components via Language
Progressive Timed Automata

Stefan Neumann, Holger Giese

64 978-3-86956-
217-9

Cyber-Physical Systems with Dynamic
Structure: Towards Modeling and
Verification of Inductive Invariants

Basil Becker, Holger Giese

63 978-3-86956-
204-9

Theories and Intricacies of
Information Security Problems

Anne V. D. M. Kayem,
Christoph Meinel (Eds.)

62 978-3-86956-
212-4

Covering or Complete?
Discovering Conditional Inclusion
Dependencies

Jana Bauckmann, Ziawasch
Abedjan, Ulf Leser, Heiko Müller,
Felix Naumann

61 978-3-86956-
194-3

Vierter Deutscher IPv6 Gipfel 2011 Christoph Meinel, Harald Sack
(Hrsg.)

60 978-3-86956-
201-8

Understanding Cryptic Schemata in Large
Extract-Transform-Load Systems

Alexander Albrecht,
Felix Naumann

59 978-3-86956-
193-6

The JCop Language Specification

Malte Appeltauer,
Robert Hirschfeld

58 978-3-86956-
192-9

MDE Settings in SAP: A Descriptive Field
Study

Regina Hebig, Holger Giese

57 978-3-86956-
191-2

Industrial Case Study on the Integration of
SysML and AUTOSAR with Triple Graph
Grammars

Holger Giese, Stephan
Hildebrandt, Stefan Neumann,
Sebastian Wätzoldt

56 978-3-86956-
171-4

Quantitative Modeling and Analysis of
Service-Oriented Real-Time Systems
using Interval Probabilistic Timed
Automata

Christian Krause, Holger Giese

55 978-3-86956-
169-1

Proceedings of the 4th Many-core
Applications Research Community
(MARC) Symposium

Peter Tröger,
Andreas Polze (Eds.)

54 978-3-86956-
158-5

An Abstraction for Version Control
Systems

Matthias Kleine,
Robert Hirschfeld, Gilad Bracha

53 978-3-86956-
160-8

Web-based Development in the Lively
Kernel

Jens Lincke, Robert Hirschfeld
(Eds.)

52 978-3-86956-
156-1

Einführung von IPv6 in
Unternehmensnetzen: Ein Leitfaden

Wilhelm Boeddinghaus,
Christoph Meinel, Harald Sack

51 978-3-86956-
148-6

Advancing the Discovery of Unique
Column Combinations

Ziawasch Abedjan,
Felix Naumann

50 978-3-86956-
144-8

Data in Business Processes Andreas Meyer, Sergey Smirnov,
Mathias Weske

49 978-3-86956-
143-1

Adaptive Windows for Duplicate Detection Uwe Draisbach, Felix Naumann,
Sascha Szott, Oliver Wonneberg

ISBN 978-3-86956-228-5
ISSN 1613-5652

	Titelblatt
	Impressum

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Introduction
	Problem Statement
	Assumptions and Simplifications
	Definition of Key Terms
	Structure of this Report

	Background and Related Work
	In-Memory Column Stores
	Index Structures
	Cost Models
	Caches

	System Definition
	Parameters
	Physical Column Organization
	Dictionary Encoding
	Bit-Packing

	Operations on Data Structures
	Plan Operators
	Scan with Equality Selection
	Scan with Range Selection
	Lookup
	Insert

	Parameter Evaluation
	Number of Rows
	Number of Distinct Values
	Value Disorder
	Value Length
	Value Skewness
	Conclusions

	Estimating Cache Misses
	Background on Caches
	Memory Cells
	Memory Hierarchy
	Cache Internals
	Address Translation
	Prefetching

	Cache Effects on Application Performance
	The Stride Experiment
	The Size Experiment

	A Cache-Miss Based Cost Model
	Scan with Equality Selection
	Scan with Range Selection
	Lookup
	Insert

	Index Structures
	Dictionary Index
	Column Index

	Partitioned Columns
	Merge Process
	Merging Algorithm
	Merging Dictionaries
	Updating Compressed Values
	Initial Performance Improvements

	Merge Implementation
	Scalar Implementation
	Exploiting Thread-level Parallelism

	Performance Evaluation
	Impact of Delta Partition Size
	Impact of Value-Length and Percentage of Unique values

	Merge Strategies

	Conclusions and Future Work
	References
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

