Eingang zum Volltext

Home | Suche | Browsen

Lizenz

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:kobv:517-opus-58038
URL: http://opus.kobv.de/ubp/volltexte/2012/5803/


Klar, Jochen

A detailed view of filaments and sheets of the warm-hot intergalactic medium

Eine detaillierte Ansicht der Filamente und Ebenen des warm-heißen intergalaktischen Mediums

pdf-Format:
Dokument 1.pdf (4.857 KB) (SHA-1:dbb6dccf20edcf08e9c524c91ca2a381f26a2331)


Kurzfassung auf Englisch

In the context of cosmological structure formation sheets, filaments and eventually halos form due to gravitational instabilities. It is noteworthy, that at all times, the majority of the baryons in the universe does not reside in the dense halos but in the filaments and the sheets of the intergalactic medium. While at higher redshifts of z > 2, these baryons can be detected via the absorption of light (originating from more distant sources) by neutral hydrogen at temperatures of T ~ 10^4 K (the Lyman-alpha forest), at lower redshifts only about 20 % can be found in this state. The remain (about 50 to 70 % of the total baryons mass) is unaccounted for by observational means. Numerical simulations predict that these missing baryons could reside in the filaments and sheets of the cosmic web at high temperatures of T = 10^4.5 - 10^7 K, but only at low to intermediate densities, and constitutes the warm-hot intergalactic medium (WHIM). The high temperatures of the WHIM are caused by the formation of shocks and the subsequent shock-heating of the gas. This results in a high degree of ionization and renders the reliable detection of the WHIM a challenging task. Recent high-resolution hydrodynamical simulations indicate that, at redshifts of z ~ 2, filaments are able to provide very massive galaxies with a significant amount of cool gas at temperatures of T ~ 10^4 K. This could have an important impact on the star-formation in those galaxies.

It is therefore of principle importance to investigate the particular hydro- and thermodynamical conditions of these large filament structures. Density and temperature profiles, and velocity fields, are expected to leave their special imprint on spectroscopic observations. A potential multiphase structure may act as tracer in observational studies of the WHIM. In the context of cold streams, it is important to explore the processes, which regulate the amount of gas transported by the streams. This includes the time evolution of filaments, as well as possible quenching mechanisms. In this context, the halo mass range in which cold stream accretion occurs is of particular interest.

In order to address these questions, we perform particular hydrodynamical simulations of very high resolution, and investigate the formation and evolution of prototype structures representing the typical filaments and sheets of the WHIM.

We start with a comprehensive study of the one-dimensional collapse of a sinusoidal density perturbation (pancake formation) and examine the influence of radiative cooling, heating due to an UV background, thermal conduction, and the effect of small-scale perturbations given by the cosmological power spectrum. We use a set of simulations, parametrized by the wave length of the initial perturbation L. For L ~ 2 Mpc/h the collapse leads to shock-confined structures. As a result of radiative cooling and of heating due to an UV background, a relatively cold and dense core forms. With increasing L the core becomes denser and more concentrated. Thermal conduction enhances this trend and may lead to an evaporation of the core at very large L ~ 30 Mpc/h.

When extending our simulations into three dimensions, instead of a pancake structure, we obtain a configuration consisting of well-defined sheets, filaments, and a gaseous halo. For L > 4 Mpc/h filaments form, which are fully confined by an accretion shock. As with the one-dimensional pancakes, they exhibit an isothermal core. Thus, our results confirm a multiphase structure, which may generate particular spectral tracers. We find that, after its formation, the core becomes shielded against further infall of gas onto the filament, and its mass content decreases with time. In the vicinity of the halo, the filament's core can be attributed to the cold streams found in other studies. We show, that the basic structure of these cold streams exists from the very beginning of the collapse process. Further on, the cross section of the streams is constricted by the outwards moving accretion shock of the halo. Thermal conduction leads to a complete evaporation of the cold stream for L > 6 Mpc/h. This corresponds to halos with a total mass higher than M_halo = 10^13 M_sun, and predicts that in more massive halos star-formation can not be sustained by cold streams. Far away from the gaseous halo, the temperature gradients in the filament are not sufficiently strong for thermal conduction to be effective.

Kurzfassung auf Deutsch

Im Rahmen der kosmologischen Strukturbildung entstehen durch Gravitationsinstabilitäten Flächen, Filamente und schließlich Halos. Interessanterweise befinden sich zu jedem Zeitpunkt der kosmologischen Entwicklung der Großteil der Baryonen nicht in den Halos, sondern in den Filamenten und Ebenen des intergalaktischen Mediums. Während diese Baryonen bei höheren Rotverschiebungen (z ~ 2) noch in Form durch die Absorbtion von Licht (von weit entfernteren Quellen) durch neutralen Wasserstoff bei einer Temperatur von T ~ 10^4 K beobachtbar sind (Lyman-Alpha Wald), gilt dies bei niedrigeren Rotverschiebungen für nur noch ca. 20 % der Baryonen. Der überwiegende Teil (ca. 50-70 % der gesamten baryonischen Masse) sind bisher noch nicht direkt beobachtbar. Numerische Simulationen sagen jedoch voraus, das sich diese Baryonen in den Filamenten und Flächen des kosmischen Netzes befinden. Die entsprechende Gasverteilung zeichnet sich durch hohe Temperaturen T = 10^5 - 10^7 K und geringe bis mittlere Dichten aus und wird als warm-heißes intergalaktisches Medium (WHIM) bezeichnet. Die hohen Temperaturen entstehen in Folge der Bildung von Stoßwellen und der darauf folgenden Erhitzung des Gases (shock-heating). Das WHIM ist daher hochgradig ionisiert und sein verlässlicher Nachweis stellt eine große Herausforderung für die beobachtende Kosmologie dar. Neuere hydrodynamische Simulationen zeigen, dass sich bei höheren Rotverschiebungen von z ~ 2 Gasströmungen entlang der Filamente bilden, die massive Galaxien mit erheblichen Mengen an relativ kaltem Gas (T ~ 10^4 K) versorgen können. Dies hätte einen erheblichen Einfluss auf die Sternentstehung in diesen Galaxien.

Es ist daher von grundsätzlichem Interesse, die spezifischen hydro- und thermodynamischen Bedingungen in den Strukturen des WHIM zu untersuchen. Sowohl Dichte- und Temperaturprofile als auch Geschwindigkeitsfelder prägen spektroskopische Beobachtungen. Eine mögliche Mehrphasenstruktur des WHIM könnte daher als Indikator in beobachtenden Studien dienen. Im Zusammenhang mit den kalten Strömen ist es besonders interessant, Prozesse zu untersuchen die den Zufluss von kaltem Gas zu den Galaxien regulieren. Dies umfasst die Zeitentwicklung des Anteils an kaltem Gas in den Filamenten, sowie mögliche Mechanismen, die zum Versiegen des Zuflusses von kaltem Gas auf die Galaxienscheibe führen.

Um diese Zusammenhänge zu erforschen, führen wir spezielle hydrodynamische Simulationen mit sehr hoher Auflösung durch, die zu ausgewählten, wohldefinierten Strukturen führen, die das WHIM charakterisieren.

Wir beginnen mit einer ausführlichen Untersuchung des eindimensionalen Kollaps einer sinusförmigen Störung (pancake formation). Hierbei untersuchen wir den Einfluss von Strahlungkühlung, Heizung durch den intergalaktischen UV Hintergrund, Wärmeleitung, sowie von kleinskaligen Störungen, welche dem kosmologischen Störungsspektrum folgen. Wir benutzen hierbei eine Reihe von Simulationen, welche die Längenskala der anfänglichen Störung L als Parameter verwenden. Für L ~ 2 Mpc/h führt der Kollaps zur Ausbildung einer Stoßwelle. Zusätzlich entsteht als Folge der Strahlungskühlung und der Heizung durch den UV Hintergrund ein relativ dichter und kalter isothermer Kern. Mit ansteigendem L wird dieser Kern dichter und kompakter. Durch Wärmeleitung reduziert sich die räumliche Ausdehnung des Kerns. Für L ~ 30 Mpc/h führt dies zu einem Verschwinden des Kerns.

Mit der Erweiterung unserer Methodik auf dreidimensionale Simulationen, entsteht nun eine Konfiguration, welche aus wohldefinierten Flächen, Filamenten und einem gasförmigen Halo besteht. Für L > 4 Mpc/h, erhalten wir Filamente, die vollständig durch Akkretionsschocks begrenzt sind. Wie in unseren eindimensionalen Simulationen weisen auch sie einen isothermen Kern auf. Dies legt nahe, dass das WHIM eine Mehrphasenstruktur besitzt und mögliche Spektralsignaturen erzeugen kann. Nach seiner Entstehung ist der Kern gegen weiteren Zufluss von Gas abgeschirmt und seine Masse reduziert sich mit der Zeit. In der direkten Umgebung des Halos entspricht der Kern des Filamentes den oben angesprochenen kalten Strömen. Unsere Untersuchung zeigt, dass diese während der gesamten Entwicklung des Halos existent sind. In der weiteren Entwicklung werden sie durch den expandierenden Akkretionsschock des Halos verengt. Ab einer Skala von L > 6 Mpc/h kann Wärmeleitung zu einem Verschwinden des Zustroms von kaltem Gas führen. Diese Skala entspricht Halos mit einer Gesamtmasse von M_halo = 10^13 M_sun. Galaxien, die sich in noch massiveren Halos bilden, können daher nicht durch kalte Ströme mit Gas für die Sternentstehung versorgt werden. Im Filament, weit außerhalb des gasförmigen Halos, sind die Temperaturgradienten zu klein, um effiziente Wärmeleitung zu ermöglichen.

Freie Schlagwörter (deutsch): Kosmologie , Hydrodynamik , Intergalaktisches Medium
Freie Schlagwörter (englisch): cosmology , hydrodynamics , intergalactic medium
RVK - Regensburger Verbundklassifikation US 3100
Institut: Institut für Physik und Astronomie
Fakultät: Mathematisch-Naturwissenschaftliche Fakultät
DDC-Sachgruppe: Astronomie
Dokumentart: a Dissertation
Hauptberichter: Steinmetz, Matthias (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 27.01.2012
Erstellungsjahr: 2012
Publikationsdatum: 14.02.2012
Bemerkung:
PACS-KLassifikation: 98.62.Ra 9
The present work constitutes a cumulative dissertation. Parts of the thesis have already been published or are in submission:
Klar, J.S., Mücket, J.P., A&A 522, A114 (2010)
Klar, J.S., Mücket, J.P., MNRAS (submitted)
Lizenz: Diese Nutzungsbedingung gilt nicht, wenn in den Metadaten eine modifizierende Lizenz genannt ist. Keine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht


Home | Leitlinien | Impressum | Haftungsausschluss | Statistik | Universitätsverlag | Universitätsbibliothek
Ihr Kontakt für Fragen und Anregungen:
Universitätsbibliothek Potsdam
powered by OPUS  Hosted by KOBV  Open
Archives Initiative  DINI Zertifikat 2007  OA Netzwerk