The AGN-host galaxy connection : new insights from the extended ionised gas

Die AGN-Galaxien Verbindung : neue Erkenntnisse durch das ausgedehnte ionisierte Gas

  • Active Galactic Nuclei (AGN) are powered by gas accretion onto supermassive Black Holes (BH). The luminosity of AGN can exceed the integrated luminosity of their host galaxies by orders of magnitude, which are then classified as Quasi-Stellar Objects (QSOs). Some mechanisms are needed to trigger the nuclear activity in galaxies and to feed the nuclei with gas. Among several possibilities, such as gravitational interactions, bar instabilities, and smooth gas accretion from the environment, the dominant process has yet to be identified. Feedback from AGN may be important an important ingredient of the evolution of galaxies. However, the details of this coupling between AGN and their host galaxies remain unclear. In this work we aim to investigate the connection between the AGN and their host galaxies by studying the properties of the extendend ionised gas around AGN. Our study is based on observations of ~50 luminous, low-redshift (z<0.3) QSOs using the novel technique of integral field spectroscopy that combines imaging andActive Galactic Nuclei (AGN) are powered by gas accretion onto supermassive Black Holes (BH). The luminosity of AGN can exceed the integrated luminosity of their host galaxies by orders of magnitude, which are then classified as Quasi-Stellar Objects (QSOs). Some mechanisms are needed to trigger the nuclear activity in galaxies and to feed the nuclei with gas. Among several possibilities, such as gravitational interactions, bar instabilities, and smooth gas accretion from the environment, the dominant process has yet to be identified. Feedback from AGN may be important an important ingredient of the evolution of galaxies. However, the details of this coupling between AGN and their host galaxies remain unclear. In this work we aim to investigate the connection between the AGN and their host galaxies by studying the properties of the extendend ionised gas around AGN. Our study is based on observations of ~50 luminous, low-redshift (z<0.3) QSOs using the novel technique of integral field spectroscopy that combines imaging and spectroscopy. After spatially separating the emission of AGN-ionised gas from HII regions, ionised solely by recently formed massive stars, we demonstrate that the specific star formation rates in several disc-dominated AGN hosts are consistent with those of normal star forming galaxies, while others display no detectable star formation activity. Whether the star formation has been actively suppressed in those particular host galaxies by the AGN, or their gas content is intrinsically low, remains an open question. By studying the kinematics of the ionised gas, we find evidence for non-gravitational motions and outflows on kpc scales only in a few objects. The gas kinematics in the majority of objects however indicate a gravitational origin. It suggests that the importance of AGN feedback may have been overrated in theoretical works, at least at low redshifts. The [OIII] line is the strongest optical emission line for AGN-ionised gas, which can be extended over several kpc scales, usually called the Narrow-Line Region (NLR). We perform a systematic investigation of the NLR size and determine a NLR size-luminosity relation that is consistent with the scenario of a constant ionisation parameter throughout the NLR. We show that previous narrow-band imaging with the Hubble Space Telescope underestimated the NLR size by a factor of >2 and that the continuum AGN luminosity is better correlated with the NLR size than the [OIII] luminosity. These affects may account for the different NLR size-luminosity relations reported in previous studies. On the other hand, we do not detect extended NLRs around all QSOs, and demonstrate that the detection of extended NLRs goes along with radio emission. We employ emission line ratios as a diagnostic for the abundance of heavy elements in the gas, i.e. its metallicity, and find that the radial metallicity gradients are always flatter than in inactive disc-dominated galaxies. This can be interpreted as evidence for radial gas flows from the outskirts of these galaxies to the nucleus. Recent or ongoing galaxy interactions are likely responsible for this effect and may turn out to be a common prerequisite for QSO activity. The metallicity of bulge-dominated hosts are systematically lower than their disc-dominated counterparts, which we interpret as evidence for minor mergers, supported by our detailed study of the bulge-dominated host of the luminous QSO HE 1029-1401, or smooth gas accretion from the environment. In this line another new discovery is that HE 2158-0107 at z=0.218 is the most metal poor luminous QSO ever observed. Together with a large (30kpc) extended structure of low metallicity ionised gas, we propose smooth cold gas accretion as the most likely scenario. Theoretical studies suggested that this process is much more important at earlier epochs of the universe, so that HE 2158-0107 might be an ideal laboratory to study this mechanism of galaxy and BH growth at low redshift more detailed in the furture.show moreshow less
  • Aktive Galaxienkerne (AGN) entstehen durch die Akkretion von Gas auf massive Schwarze Löcher, welche im Zentrum jeder Galaxie mit einer spherodialen Komponente vermutet werden. Die Leuchtkraft eines AGN kann die seiner gesamten Muttergalaxie um Größenordnungen übersteigen. In diesem Fall werden AGN oft als Quasi-Stellare Objekte (Quasare) bezeichnet. Spezielle Mechanismen müssen für das Auslösen dieser Kernaktivität in Galaxien verantwortlich sein. Verschiedene Prozesse wurden bereits identifiziert, aber der entscheidende Mechanismus wurde bisher noch nicht entdeckt. Die Wechselwirkung mit einem AGN könnte außerdem einen entscheidenden Einfluss auf die Entwicklung von Galaxien haben. Es ist noch unklar wie diese Wechselwirkung genau abläuft und ob es die Sternentstehung in Galaxien beeinflusst. In dieser Arbeit studieren wir die Eigenschaften des ausgedehnten ionisierten Gases in AGN-Muttergalaxien, um mögliche Wechselwirkungen zu untersuchen. Wir benutzen dazu eine Stichprobe von ~50 Quasaren bei geringer Rotverschiebung (z<0.3), dieAktive Galaxienkerne (AGN) entstehen durch die Akkretion von Gas auf massive Schwarze Löcher, welche im Zentrum jeder Galaxie mit einer spherodialen Komponente vermutet werden. Die Leuchtkraft eines AGN kann die seiner gesamten Muttergalaxie um Größenordnungen übersteigen. In diesem Fall werden AGN oft als Quasi-Stellare Objekte (Quasare) bezeichnet. Spezielle Mechanismen müssen für das Auslösen dieser Kernaktivität in Galaxien verantwortlich sein. Verschiedene Prozesse wurden bereits identifiziert, aber der entscheidende Mechanismus wurde bisher noch nicht entdeckt. Die Wechselwirkung mit einem AGN könnte außerdem einen entscheidenden Einfluss auf die Entwicklung von Galaxien haben. Es ist noch unklar wie diese Wechselwirkung genau abläuft und ob es die Sternentstehung in Galaxien beeinflusst. In dieser Arbeit studieren wir die Eigenschaften des ausgedehnten ionisierten Gases in AGN-Muttergalaxien, um mögliche Wechselwirkungen zu untersuchen. Wir benutzen dazu eine Stichprobe von ~50 Quasaren bei geringer Rotverschiebung (z<0.3), die mit der neuartigen Technik der Integralfeld-Spektroskopie beobachtet wurden. Diese Technik kombiniert bildgebende und spektroskopische Verfahren. Wir können mit unserer Analyse zeigen, dass die spezifische Sternentstehungsrate in einigen Scheiben-dominierten AGN-Muttergalaxien vergleichbar mit denen von normalen Galaxien ohne Kernaktivität ist. Allerdings können wir in einigen AGN-Muttergalaxien keine Anzeichen von Sternentstehung feststellen. Ob Sternentstehung in diesen Galaxien momentan durch die Wechselwirkung mit dem AGN unterdrückt wird, ist daher nicht eindeutig. Hinweise auf Gasausflüsse liefert die Kinematik des ionisierten Gases für einige wenige Objekte, doch die Kinematik für die meisten AGN-Muttergalaxien kann allein durch das Wirken der Gravitation erklärt werden. Daraus schließen wir, dass der Einfluss von AGN auf ihre Muttergalaxien geringer sein könnte als theoretisch angenommen wird. Die [OIII] Emissionslinie ist die stärkste optische Linie für AGN-ionisiertes Gas und kann sich über eine Region von mehreren kpc vom Kern erstrecken, die als "Narrow-Line Region" (NLR) bezeichnet wird. Durch eine systematische Untersuchung der NLR-Ausdehnung können wir eine Beziehung zwischen NLR-Radius und AGN-Leuchtkraft bestimmen. Diese Relation ist konsistent mit einem konstanten Ionisationsparameter über die gesamte Ausdehnung der NLR. Frühere Studien mit dem Hubble Weltraumteleskop unterschätzten die Größe der NLR um mehr als einen Faktor 2. Andererseits können wir nicht für alle Quasare eine ausgedehnte NLR nachweisen, wobei eine NLR-Detektion bei einer höheren Radioleuchtkraft des Quasars wahrscheinlicher ist. Dies deutet auf eine Wechselwirkung eines Radio-Jets mit dem kernumgebenden Gas hin. Wir benutzen Emissionslinien des ionisierten Gases, um den Anteil von schweren Elementen im Gas, die so genannte Metallizität, zu bestimmen. Dabei finden wir, dass die radialen Metallizitätsgradienten in Scheiben-dominierten AGN-Muttergalaxien deutlich flacher sind als in vergleichbaren Galaxien ohne Kernaktivität, was wir als Anzeichen für radialen Gastransport vom Rand der Galaxien zum Kern interpretieren. Dies könnte durch kürzliche oder immer noch andauernde gravitative Wechselwirkungen zwischen Nachbargalaxien entstanden sein und stellt eventuell eine Voraussetzung für Kernaktivität dar. Sehr interessant ist unser Ergebnis, dass die ellptischen AGN-Muttergalaxien eine geringere Metallizität aufweisen als die Spiralgalaxien. Dies könnte z.B. durch das Verschmelzen mit kleinen Nachbargalaxien induziert werden, welche eine intrinsisch geringe Metallizität aufweisen. Am Beispiel der elliptischen Muttergalaxie des Quasars HE 1029-1401 können wir durch eine detaillierte Analyse des ionisierten Gases verschiedene Indizien für einen solchen Prozess nachweisen. Eine weiteres Resultat dieser Arbeit ist die Entdeckung eines leuchtkräftigen Quasars mit der geringsten Metallizität, die bisher für solche Objekte nachgewiesen werden konnte. Wir interpretieren die geringe Metallizität und die Ausdehnung des ionisierten Gases über 30kpc als deutliche Indizien für die Akkretion von intergalaktischem Gas. Dieser Prozess findet viel häufiger im frühen Universum statt. HE 2158-0107 könnte daher ein ideales Objekt sein, um diesen Prozess im nahen Universum detaillierter studieren zu können.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Bernd Husemann
URN:urn:nbn:de:kobv:517-opus-55556
Supervisor(s):Lutz Wisotzki
Publication type:Doctoral Thesis
Language:English
Publication year:2011
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2011/10/26
Release date:2011/11/17
Tag:Galaxien; Integralfeld-Spectroskopie; Interstellares Medium; Quasare
Galaxies; Integral field spectroscopy; Interstellar medium; Quasars
RVK - Regensburg classification:US 3300
RVK - Regensburg classification:US 5400
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
License (German):License LogoCreative Commons - Namensnennung, Nicht kommerziell, Weitergabe zu gleichen Bedingungen 3.0 Deutschland
External remark:PACS-Klassifikation: 98.54.Aj

The 2nd chapter is published at: Astronomy & Astrophysics, Vol. 519, p. A115, 2010.
doi:10.1051/0004-6361/201014559
The 5th chapter is in press at: Astronomy & Astrophysics.
doi:10.1051/0004-6361/201117596
Both articles are reproduced with permission kindly granted by the journal.
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.