Eingang zum Volltext

Home | Suche | Browsen

Lizenz

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:kobv:517-opus-29912
URL: http://opus.kobv.de/ubp/volltexte/2009/2991/


Krainer, Thomas

Elliptic boundary problems on manifolds with polycylindrical ends

pdf-Format:
Dokument 1.pdf (357 KB) (SHA-1: 62eb12f9d3de6273ac92558d7694ede126f065e8)


Kurzfassung auf Englisch

We investigate general Shapiro-Lopatinsky elliptic boundary value problems on manifolds with polycylindrical ends. This is accomplished by compactifying such a manifold to a manifold with corners of in general higher codimension, and we then deal with boundary value problems for cusp differential operators. We introduce an adapted Boutet de Monvel’s calculus of pseudodifferential boundary value problems, and construct parametrices for elliptic cusp operators within this calculus. Fredholm solvability and elliptic regularity up to the boundary and up to infinity for boundary value problems on manifolds with polycylindrical ends follows.

MSC - Klassifikation 74K20 , 35J70
Collection 1 Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2005
Collection 2 Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Institut: Institut für Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: c Preprint (Vorabdruck)
Schriftenreihe: Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Band Nummer: (2005) 15
Sprache: Englisch
Erstellungsjahr: 2005
Publikationsdatum: 29.04.2009
Bemerkung:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

RVK-KLassifikation: SI 990
Lizenz: Diese Nutzungsbedingung gilt nicht, wenn in den Metadaten eine modifizierende Lizenz genannt ist. Keine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht


Home | Leitlinien | Impressum | Haftungsausschluss | Statistik | Universitätsverlag | Universitätsbibliothek
Ihr Kontakt für Fragen und Anregungen:
Universitätsbibliothek Potsdam
powered by OPUS  Hosted by KOBV  Open
Archives Initiative  DINI Zertifikat 2007  OA Netzwerk