Eingang zum Volltext

Home | Suche | Browsen

Lizenz

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:kobv:517-opus-26166
URL: http://opus.kobv.de/ubp/volltexte/2008/2616/


Melo, S. T. ; Nest, R. ; Schrohe, Elmar

C*-structure and K-theory of Boutet de Monvel's algebra

pdf-Format:
Dokument 1.pdf (392 KB) (SHA-1: d9f7ceecb0315e1c5ff6abf31c5148fcce8ebff4)


Kurzfassung auf Englisch

We consider the norm closure A of the algebra of all operators of order and class zero in Boutet de Monvel's calculus on a manifold X with boundary ∂X. We first describe the image and the kernel of the continuous extension of the boundary principal symbol homomorphism to A. If X is connected and ∂X is not empty, we then show that the K-groups of A are topologically determined. In case the manifold, its boundary, and the cotangent space of its interior have torsion free K-theory, we get Ki(A,k) congruent Ki(C(X))⊕Ksub(1-i)(Csub(0)(T*X)),i = 0,1, with k denoting the compact ideal, and T*X denoting the cotangent bundle of the interior. Using Boutet de Monvel's index theorem, we also prove that the above formula holds for i = 1 even without this torsion-free hypothesis. For the case of orientable, two-dimensional X, Ksub(0)(A) congruent Z up(2g+m) and Ksub(1)(A) congruent Z up(2g+m-1), where g is the genus of X and m is the number of connected components of ∂X. We also obtain a composition sequence 0 ⊂ k ⊂ G ⊂ A, with A/G commutative and G/k isomorphic to the algebra of all continuous functions on the cosphere bundle of ∂X with values
in compact operators on L²(R+).

RVK - Regensburger Verbundklassifikation SI 990
Collection 1 Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Collection 2 Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2001
Institut: Institut für Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: c Preprint (Vorabdruck)
Schriftenreihe: Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Band Nummer: (2001) 33
Sprache: Englisch
Erstellungsjahr: 2001
Publikationsdatum: 10.11.2008
Bemerkung:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

Lizenz: Diese Nutzungsbedingung gilt nicht, wenn in den Metadaten eine modifizierende Lizenz genannt ist. Keine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht


Home | Leitlinien | Impressum | Haftungsausschluss | Statistik | Universitätsverlag | Universitätsbibliothek
Ihr Kontakt für Fragen und Anregungen:
Universitätsbibliothek Potsdam
powered by OPUS  Hosted by KOBV  Open
Archives Initiative  DINI Zertifikat 2007  OA Netzwerk