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CHAPTER 1

Introduction

The central topic of this thesis is the investigation of a rather general class of families of
difference operators Hε, parameterized by a small parameter ε, ε > 0. They act on `2((εZ)d), the
square summable functions on the lattice (εZ)d.

We are going to analyze the asymptotic behavior as ε→ 0 of the spectra and the eigenfunctions
of these operators.

Inspired by the paper of Helffer and Sjöstrand [33], we give sharp estimates for interactions
between different “wells” (minima) of the potential energy, in particular for the discrete tunnelling
effect.

While the continuous case has been exhaustively explored (see for example Helffer-Sjöstrand
[33], [34], [35], [36]), there exist very few results in the discrete setting (see Helffer-Sjöstrand
[37], [38], [39] for the one dimensional Harper equation) and none, known to the author, in the
generality presented here.

For a multiple well potential energy, the interaction between different wells is analyzed by
comparing the eigenvalues of local operators at the wells with the eigenvalues of the original
operator. Eigenvalues of the direct sum of the local operators, which are degenerate, correspond
to eigenvalues of the original operator Hε, which are exponentially close to each other. Thus we
can say that the coupling of the wells induces a splitting of degenerate eigenvalues.

Furthermore, taking the matrix-representation of Hε with respect to the basis of eigenfunctions
of the decoupled operators located at the wells, the non-diagonal terms describe the interaction
and thus the tunnelling between these wells.

1.1. Definition of the Operator Class

We are going to analyze a discrete Hamilton operator Hε, acting on `2
(
(εZ)d

)
, the space of

square summable functions on the d-dimensional ε-scaled lattice (εZ)d. The lattice parameter ε > 0
takes the role of a small parameter, analogously to the Planck constant in Schrödinger operators
in the semi-classical setting. Thus we always assume that ε is small and construct expansions with
respect to ε in the limit ε→ 0.

The operator Hε is given by

Hε = (Tε + Vε) where (1.1)

Tε =
∑

γ∈(εZ)d

aγ(x)τγ

and Vε is a multiplication operator. The operator τγ denotes a translation, i.e. for x, γ ∈ (εZ)d

τγu(x) = u(x+ γ) .

As a function of the lattice point x, aγ is assumed to be slowly varying, i.e., aγ together with all its
derivatives should be bounded uniformly with respect to γ. The summand a0τ0, which is in fact a
multiplication operator, is chosen such that Tε can be interpreted as generalized kinetic energy in
the sense of Definition 2.4 (in particular it has to be positive).

The kinetic energy of the usual Schrödinger operator is given by −~2∆, where the Planck
constant ~ plays the role of the small parameter and is in our setting replaced by the lattice
parameter ε. In contrast to this, the discrete kinetic energy Tε is not a differential operator of
second order (not even polynomial as can be seen by the symbol given in (1.2)). Furthermore,
it is of course not local, since the value of Tεu(x) depends not only on a neighborhood of x, but
on all lattice points x + γ with aγ(x) 6= 0. In addition it is allowed to depend explicitly on the
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2 1. INTRODUCTION

configuration space coordinates x (this is also the case for the usual Schrödinger operator on a
manifold, where the Laplace operator depends via the metric on x). A simple example for Tε
is given by the discrete Laplace operator, i.e., for a0 = 2d, aγ = −1 for γ = ±εei and aγ = 0
otherwise.

The potential energy Vε, which is a multiplication operator, is assumed to be the restriction
to the lattice (εZ)d of a function V̂ε ∈ C∞ (Rd).

We assume that V̂ε can for any N ∈ N be written as asymptotic series

V̂ε = V0 +
N∑
k=1

εkVk +RN ,

where RN is of order εN+1 uniformly in any compact set and Vk, k = 0, 1, . . . , N is independent
of ε. In addition we assume that there exsists a constant c > 0 such that Vε ≥ c > 0 for all
ε ∈]0, ε0] and that the leading term V0 takes its minimal value only at a finite number of points –
the potential wells – and these critical points are non-degenerate (for details see Hypothesis 3.1).

Near these wells of V0, the potential can therefore be approximated by the potential of an
harmonic oscillator.

We define an ε-dependent Fourier transform Fε, which is adapted to the discrete setting and
maps lattice functions on 2π-periodic functions and vice versa (2.3) by means of a Fourier series.
This allows us to introduce in Appendix B a symbolic calculus and to derive microlocal estimates.
The symbol t associated to the kinetic energy Tε and the symbol h associated to the Hamilton
operator Hε, respectively, are then given by

t(x, ξ) =
∑

γ∈(εZ)d

aγ(x)e−
i
εγξ , h(x, ξ) = t(x, ξ) + Vε(x) , x ∈ Rd, ξ ∈ Td , (1.2)

where Td denotes the d-dimensional 2π-torus. For any x, the coefficients aγ are the Fourier
coefficients of the periodic function ξ 7→ t(x, ξ). It is shown that the regularity of t is strongly
related to the decay of aγ with respect to γ (Lemmata A.1, A.2 and A.3). In the several parts of this
work, the regularity we have to assume for t is different, but by Hypothesis 2.7, the coefficients aγ
are assumed to decrease at least polynomially. From Section 3 on, the aγ decay even exponentially
(Hypothesis 3.1) with respect to γ, thus the amplitude of translations to distant points becomes
exponentially small. Although the kinetic energy is non-local, Tε can by this property of aγ be
viewed as weakly local.

One important tool in the various parts of this work lies in the approximation of Tε by the
kinetic energy of a usual Schrödinger operator. With respect to the usual symbolic calculus and
quantization procedure on Rd including the Planck constant h as small parameter, which is in-
troduced for example in Dimassi-Sjöstrand [16] and Robert [50], the symbol of −~2∆ is given by
ξ2. Localization of t in phase space at a microlocal minimum x = xj and ξ = 0 thus leads to the
assumption that the expansion of t with respect to ξ at a point (xj , 0) starts with a quadratic term
in ξ (Definition 2.4), which gives some further conditions for the coefficients aγ (Remark 2.5(d)).

We can summarize the assumptions on the Hamilton operator Hε by saying that it should be
a translation operator with underlying potential, such that the leading order term in ε for x near
a potential well and ξ small is equal to an harmonic oscillator.

1.2. General Strategy and Main Results

The interaction between neighboring potential wells leads by means of the tunnelling effect
to the fact that the eigenvalues and eigenfunctions are different from those of an operator with
decoupled wells, which is realized by the direct sum of “Dirichlet-operators” situated at the several
wells. Since the interaction is small, it can be treated as a perturbation of the decoupled system.

Thus the idea is to approximate the eigenfunctions of the original Hamilton operator Hε

with respect to a fixed spectral interval by the eigenfunctions of the several Dirichlet operators
situated at the different wells and to give a representation of Hε with respect to a basis of Dirichlet-
eigenfunctions. The non-diagonal part of this matrix-representation can be interpreted as a current,
describing the tunnelling between the different wells.

In a second step, these Dirichlet eigenfunctions are approximated by WKB-expansions at the
wells using the eigenfunctions of the associated harmonic oscillators. This allows us to compute
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explicit expansions for the elements of the interaction matrix and to obtain sharp estimates for the
leading order term.

We start the analysis of the spectrum and the eigenfunctions of discrete Hamilton operators
in Chapter 2 by a stability result for the low lying spectrum. It is shown in Theorem 2.10 that
the first n eigenvalues of Hε are in the “continuum limit” ε → 0 equal to the first n eigenvalues
of the direct sum of harmonic oscillators on Rd located at the several wells. Our proof is close to
analogous estimates by Simon [55] (see also [15]) for Schrödinger operators. The main difficulty
is the step from a discrete operator Hε on `2((εZ)d) to the associated operator Ĥ on L 2(Rd). A
more technical difficulty is the fact that contrary to the situation discussed by Simon in [55], the
kinetic energy term Tε is allowed to depend on the lattice point. The fact that t is a function of x
and ξ forces us to use microlocal estimates and thus to build up a full symbolic calculus, which is
adapted to the discrete setting, allowing us to give a discrete version of the Calderon-Vaillancourt
Theorem and of the Persson Theorem, which are essential for the proof of Theorem 2.10.

The quite rough result of Chapter 2 leads to the conjecture that the eigenfunctions associated
to the first eigenvalues are localized in a small neighborhood of the union of the different wells.
Therefore we restrict the system in Chapter 3 to a neighborhood of one well. Motivated by the wish
to find approximate eigenfunctions, which decrease exponentially fast, we assume that the symbol t
of the kinetic energy has an analytic continuation to the complex plane with respect to ξ. Then by
use of WKB-methods and conjugation with a suitable exponential weight (dilation), we construct
asymptotic expansions with respect to ε and x for the quasi-modes and for the eigenvalues of Hε.
The quasi-modes decay exponentially fast with a real-valued rate function ϕ solving the generalized
eikonal equation

t(x, i∇ϕ(x)) + V0(x) = 0 (1.3)

near the well. One of the main difficulties in this chapter is that the symbol t of the kinetic energy
is periodic with respect to the momentum variable ξ.

In order to find a rate function describing the exponential behavior of the eigenfunctions away
from the critical points, i.e., an extension of ϕ outside of the neighborhood of the well, we introduce
a Finsler distance d on Rd in Chapter 4. Similar to the Jacobi metric (or the Agmon metric
respectively) for Schrödinger operators, this distance function is adapted to the Hamilton operator
in the sense that the base integral curves of the Hamiltonian vector field are geodesics with respect
to the metric associated to d. Additional assumptions for t are made in this chapter in order to
ensure that the function h̃0(x, ξ) := −t(x, iξ)− V0(x), obtained by rotating the leading order term
of h in the complex plane, is a hyper-regular Hamilton function in the sense of Abraham-Marsden
[2].

The distance function is derived by a variational process, inspired by the Maupertuis principle
in classical mechanics. More specifically, we define for fixed energy E the length of a path γ in
Rd as an integral over the canonical pairing ξ · γ̇. The momentum ξ is chosen as the Legendre
transform of γ̇ multiplied with a scaling factor, such that h(γ(t), ξ(t)) = E for all t, i.e., we force
the path to lie within an energy shell. The distance between two points is then defined as the
infimum of the length of all paths between them.

The fact that the adapted metric for a Schrödinger operator is euclidian, is strongly related to
the property of the kinetic energy to be of second order in the momentum variable ξ. The symbol
of the kinetic energy in our setting depends exponentially of ξ (see (1.2)). One of the main results
of this chapter is to show that it is nevertheless possible to define an adapted metric and that this
metric turns out to be Finslerian (thus the metric tensor depends not only on the base point on
the manifold, but also on the tangent vector, i.e., the velocity).

The aim of Chapter 5 is to show that the Finsler distance to a fixed well of the potential
energy is actually the correct rate function to describe the exponential decay of the eigenfunctions
of Hε in the neighborhood of this well. In Theorem 5.6 and 5.4 we give estimates for the `2-
norm of the eigenfunctions of a Dirichlet operator at a single well. In particular we show that the
`2-norm of these eigenfunctions multiplied with e−

d(x,xj)
ε is at most of order ε−N0 for some N0 ∈ N.
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In Chapter 6 we return to the original setting of several wells and investigate the interaction
between them. In order to analyze the eigenspace of Hε with respect to a given spectral interval
Iε, we proceed by methods similar to those used in semi-classical analysis.

Let S0 denote the (Finsler) distance between the two closest wells. We start by showing in
Theorem 6.9 that up to an error of order e−

S0
ε , the eigenspace of Hε with respect to Iε can be

approximated by the direct sum of the eigenspaces of Dirichlet operators near the various wells.
Then we refine the analysis of the error term by splitting off a part of quadratic order. We

show in Theorem 6.13 that the Hamilton operator Hε restricted to the eigenspace with respect to
the spectral interval Iε can, with respect to the basis of Dirichlet eigenfunctions, be written as the
sum of a diagonal matrix, an interaction matrix given by the off-diagonal terms, which is of order
e−

S0
ε and error terms of order e−

2S0
ε . The interaction terms describe the tunnelling and can in

first order be interpreted as a current between the wells.
In Theorem 6.33 we estimate the difference between the Dirichlet eigenfunctions and the ap-

proximate ones constructed in Chapter 3, where the phase function is replaced by the Finsler
distance d. In the interaction matrix we then replace the (unknown) Dirichlet eigenfunctions by
the approximate ones, which could be computed up to arbitrary high order in ε. This allows us
to give in Proposition 6.35 and Theorem 6.37 expansions of the elements of the interaction matrix
with respect to ε and to derive in a particular setting in Theorem 6.38 refined estimates for the
order of its magnitude.

1.3. Classification and Motivation

In quantum physics, the effect of tunnelling between two wells separated by a potential barrier
is a well-known quantum phenomenon related to the description of the quantum state as a wave
packet.

Although numerous experimental and technical applications of the tunnelling effect have been
performed a long time ago, sharp theoretical results concerning the eigenvalues and eigenstates of
the multi-well Schrödinger operator where not obtained until the 80’s. In 1980, the one-dimensional
double well potential was analyzed by Harrell [27] with WKB-methods. Subsequently there were
approaches given by Combes-Duclos-Seiler [13] using the Krein-formula to analyze the difference
of the spectra of the original operator with a Dirichlet version and in the case of more dimensions
by Simon ([55],[56]) using large deviations. The finest results where obtained approximately at
the same time by Helffer-Sjöstrand ([33],[34],[35],[36],[29]), where the interaction between several
potential wells of a Schrödinger operator are analyzed in the semi-classical limit by use of WKB-
expansions and pseudo-differential operators. The methods and the main approach of this thesis
are in the spirit of the semi-classical analysis of Schrödinger operators used in these papers. It is
already mentioned there that parts of the analysis remain valid in the case of a general pseudo-
differential operator. Nevertheless, the strong relation between quasi-modes and the weighted norm
estimates is not valid for differential operators of higher order, since the construction of the Finsler
distance is missing.

On the other hand, the results obtained in this thesis can be seen as generalization and re-
finement of the analysis of the tunnelling effect of probabilistic operators on a lattice by means of
probabilistic methods (see Bovier-Eckhoff-Gayrard-Klein [11]). In this paper, the special structure
of probabilistic operators, described in (1.4), which we do not presume here, is a main ingredient
of the analysis.

A treatment of statistical problems with semi-classical techniques is done by Helffer [31], using
the Witten Laplacian or the analysis of transfer operators.

Nevertheless, little is done in the context of this thesis, i.e. of discrete Schrödinger operators
on a lattice, and nothing with the present amount of generality.

From the methodological point of view, the main part of this thesis is inspired by the paper
[33] by J. Sjöstrand and B. Helffer on Schrödinger operators with multiple well potential in the
semi-classical limit (see also [29]). Although the operators we analyze are discrete in the sense that
the kinetic part acts on a scaled lattice as translation operator, our assumptions are made in such
a way that from a microlocal point of view, the multiple well Schrödinger operators analyzed in the
papers mentioned above turn out to be the first order terms of our discrete operators with respect
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to micro-localization at the phase space minima (xj , 0). It should be mentioned that the symbols
associated to lattice operators are defined by use of a Fourier series, which can be seen as Fourier
transform relating the square summable lattice functions `2

(
(εZ)d

)
with the 2π-periodic functions

L
(
Td
)
, where Td denotes the d-dimensional torus. A different approach to pseudo-differential

calculus on the torus is given in [21].
Therefore the interpretation of Hε as first order terms of Schrödinger operators with adapted

potential still needs a transfer between the different kinds of symbols.
Based on these ideas, the first step of this thesis consists in tracing back Hε to a harmonic

oscillator. This point is inspired by the theorem on the quasi-classical limit of the eigenvalues of a
Schrödinger operator proven by B. Simon in [55] (see also [15]).

The method of constructing asymptotic solutions to the eigenvalue problem of a one-well
Dirichlet version ofHε is inspired by a paper of Klein and Schwarz [45], where the FBI-transformation
is avoided.

The following estimate on the decay properties of Dirichlet eigenfunctions are done in the spirit
of the Agmon estimates for Schrödinger operators described in Agmon [3]. The Agmon distance,
determining the rate of decay for Schrödinger eigenfunctions, must in our setting be replaced by a
distance associated to a more general Finsler metric.

An overview on Finsler manifolds and metrics is given in Bao-Chern-Shen [6], Rund [54] and
Abate-Patrizio [1], some applications are described in Asanov [5]. In the context of rate functions, a
Finsler metric is introduced by Tintarev [59] to analyze short time asymptotics of the fundamental
solutions of parabolic equations for a differential operator A of even order m > 2 with real smooth
coefficients. The principal symbol a(x, ξ) of A is assumed to be uniform elliptic, strongly convex
with respect to ξ and ∇ξa(x, ξ) 6= 0 for all ξ ∈ Cd \ {0}. For such an operator, the Finsler
distance can be defined by g(x, v) = m

1
m (ξ · v)m−1

m , where ξ denotes the Legendre transform of
v. Then the Finsler distance is defined via variation of integration over this function along pathes
between two points. Thus for m = 2 this Finsler distance is equal to the usual Agmon distance for
Schrödinger operators. Again in the setting of higher order parabolic equations and heat kernels,
Barbatis [10], [9], gives an equivalent definition of a Finsler metric. Under similar assumptions on
the operator he introduces the set of Lipschitz-functions φ, solving the equation a(x,∇φ(x)) ≤ 1
almost everywhere. Then the Finsler distance between two points x and y is defined to be the
supremum over all such functions φ of the difference φ(x)−φ(y). To the author´s knowledge, more
general cases are not analyzed in the literature by use of a Finsler distance.

The last part of this work, dedicated to the interaction between several wells, is strongly
influenced by the papers [33] of Helffer and Sjöstrand, concerning a Schrödinger operator which
has a potential with a finite number of wells.

In the most general case, the translation operator analyzed in this work is localized only by
means of the exponential decaying factor aγ , thus translations to any point of the lattice are in
principle allowed. In the Schrödinger case, the interaction matrix describing the tunnelling between
two wells depends only on a hypersurface lying between these wells. Due to the non-locality, this
is not the case for the translation operator in our discrete setting. Nevertheless in first order the
values of the interaction matrix are determined by a small neighborhood of such a hypersurface
and it can be interpreted as a physical current, since it is given by the derivative of the kinetic
energy (compare Harrell [27] and Helffer-Sjöstrand [33]).

There are several fields in which the results of this work are applicable.
One motivation lies in problems connected with the theory of Markov chains. Given ε > 0,

the relation between a Markov chain on (εZ)d and a self adjoint operator on `2((εZ)d) is as
follows. Defining a strictly positive probability measure µ on the d-dimensional lattice, we can
consider a Markov chain determined by a probability matrix P = (pxy), where pxy denotes the
transition probability from the state x to y ∈ (εZ)d. If the detailed balance condition holds, i.e. if
µxpxy = µypyx, the matrix P induces a self adjoint diffusion operator on `2((εZ)d;µ), the space of
square summable functions with respect to the measure µ, via

(1− P )u(x) = u(x)−
∑

y∈(εZ)d

pxyu(y) .
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By conjugation with µ1/2, this yields a self adjoint Hamilton operator Hε := µ
1
2 (1 − P )µ−

1
2 on

`2((εZ)d) of the form (1.1), where Vε is assumed to be

Vε(x) = µ−1/2(x)
(
Tεµ

1/2
)

(x) . (1.4)

Thus the probabilistic operators generated by Markov chains or diffusion processes are examples
for the kind of operators considered in this thesis. In particular the associated symbol h̃0 is a
hyper-regular Hamilton function on the cotangent bundle. But contrary to the quite general class
of operators considered in this thesis, they obey the strong additional structure (1.4).

The theory of Markov chains can be applied in several fields of science.
A simple model for a statistical system with discrete scaled state space is the following. Con-

sider a chain s of particles with spin, more precisely N undistinguishable particles in a fixed order,
each of them being in one of two possible states +1 or −1 (“ spin up or down ”).

The probability for a particle to be, for example, in the state +1 depends on the state of the
other particles and on the state of the environment, for example an external magnetic field. To
the different states of the full chain s we can associate macroscopic variables. An easy example is
the magnetization m defined as

m(s) =
1
N

N∑
i=1

si ,

where si denotes the state of the particle at position i, i.e., si ∈ {1,−1}. The minimal change
of m, induced by one “spin flip”, i.e., the change of the state of one chain element, is scaled by
ε := 1

N . It is thus evident, that the space of the possible values of d macroscopic variables can be
modelled by the ε-scaled lattice (εZ)d or a bounded subdomain.

There is a huge number of publications dealing with spin chains.
Further possible applications lie in the field of population dynamics, describing evolution pro-

cesses as reproduction, selection and mutation (see Baake-Baake-Wagner [8], Baake-Baake-Bovier-
Klein [7]).

1.4. Structure of this work

1.4.1. Chapter 2. As already mentioned, Chapter 2 is mainly concerned with the fact, that
the spectrum of the discrete operator Hε on `2((εZ)d) is in the limit ε→ 0 asymptotically given by
the spectrum of an adapted harmonic oscillator on L 2(Rd). This can be considered as a generalized
stability of the spectrum of the harmonic oscillator under a perturbation, since the perturbed and
the unperturbed operator act on different spaces.

Chapter 2 starts with the setting and some basic definitions and notations, introducing the
periodic kinetic energy function, inner product and Fourier transform on `2((εZ)d), which are
used throughout the work. Furthermore the main assumptions for the Hamilton operator Hε are
described in Hypothesis 2.7, postulating that near a phase space minimum x = xj and ξ = 0, the
zero order term in ε should behave like an adapted (slightly generalized) harmonic oscillator H0.

Theorem 2.10 then states that for fixed n ∈ N, the operator Hε has at least n eigenvalues and
the n-th eigenvalue of Hε is in the limit ε→ 0 equal to the n-th eigenvalue of H0.

The proof splits into the two basic inequalities. For the first, we show that the expectation
value of H0 and Hε with respect to the eigenfunctions of H0 and their restriction to the lattice,
respectively, are equal modulo O(ε

6
5 ). Since Hε and H0 are not acting on the same space, we

have to perform the transfer between the different scalar products. In order to use the Rayleigh-
Ritz-principle to get the first n eigenvalues, we employ an analogue of Persson´s Theorem for
the discrete setting with translation operator, which is proven in Section B.5 via the microlocal
calculus introduced in Appendix B.

To prove the other inequality, it is necessary to introduce in Appendix B a symbolic calculus
adapted to the discrete setting. In particular, we introduce a product of symbols which is related
to the composition of the associated operators, give an expansion for this product and proof an
analogue of the Calderon-Vaillancourt Theorem ([12]). Then the idea is to simultaneously localize
Hε in ε

2
5 -scaled neighborhoods of the phase space minima (xj , 0). The difference of the original and

the localized operator can be estimated by determining the symbol class of the double commutator
(in the sense of symbolic multiplication) of t with the scaled cut-off functions. This allows us to
reduce the operator not only to the zero order term in ε, but also to the first term in the Taylor
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expansions at these points, denoted by Hj . By the assumptions on Hε, this is unitarily equivalent
to a slightly generalized harmonic oscillator.

1.4.2. Chapter 3. The third chapter concerns the construction of formal asymptotic solu-
tions of the Schrödinger problem for the “Dirichlet” version of Hε in a neighborhood Ω of one well
x0, i.e. for the operator HΩ

ε := 1ΩHε 1Ω. Here 1Ω denotes the characteristic function on Ω. The
result of Chapter 2 suggests that the leading order term of the Dirichlet eigenfunctions behaves
like the eigenfunctions of the appropriate harmonic oscillator, i.e. like Hermite polynomials in x√

ε
,

multiplied with an exponentially decreasing term. The rate of decrease is determined by a solution
ϕ of a generalized eikonal equation adapted to Hε, which is given by

t(x, i∇ϕ(x)) + V0(x) = 0 . (1.5)

The existence of ϕ in a neighborhood of one well follows from the Stable Manifold Theorem.
In addition to Hypothesis 2.7 in Chapter 2, we have to assume in Hypothesis 3.1 that the symbol
t of the kinetic energy is periodic, even and smooth in ξ. The main aim of this chapter is the
construction of formal WKB-expansions for the eigenfunctions of the operator Ĥε on L 2(Rd),
where Ĥεu(x) is, for any u ∈ L 2(Rd), given by the right hand side of (1.1). To this end, we define
a dilation of Ĥε by means of the unitary transform Uε : L 2(Rd, dx) → L 2

(
Rd, e−2

ϕ(
√
εy)
ε dy

)
defined by (Uε(ϕ)f)(y) = ε

d
4 e

ϕ(
√
εy)
ε f(

√
εy). This means that we conjugate Hε with the expected

exponential decrease factor e−
ϕ
ε to take away the exponential behavior and pass to the variable

y = x√
ε
. Formal expansions with respect to y allow us to treat eigenvalues, which are degenerate

in the harmonic approximation.
The first step is the translation of the spectral problem for Hε into an algebraic problem for

the formal Taylor expansion of Ĝε = 1
εUε(ϕ)HεU

−1
ε (ϕ), acting as symmetric operator on a space of

formal power series in y. Given an eigenvalue E0 of the harmonic part G0, we define the associated
spectral projection Π of G as contour integral of the residue (G−E0)−1 around E0. Then on the
range of Π the spectral problem of G is reduced to the diagonalization of a hermitian matrix over
a field of Laurent series, leading by use of Hermite polynomials to formal asymptotic expansions
for the eigenvalues and eigenfunctions. By a double Borel-procedure with respect both to x and
ε, we finally get approximate eigenfunctions and eigenvalues for Hε, i.e., solutions of the spectral
problem to arbitrary high polynomial order in ε and x.

1.4.3. Chapter 4. In order to analyze the behavior of the Dirichlet eigenfunctions away from
the wells, or more specifically their rate of decrease (which is done in Chapter 5), we have to find
a notion of distance adapted to Hε. This distance takes the role of the Agmon metric in the case
of Schrödinger operators. This is done in Chapter 4.

In the first section of Chapter 4, we give general definitions and properties of a Finsler manifold
and a Finsler metric. Furthermore some properties of Finsler distances are described. The aim
of Section 4.2 is to construct a Finsler distance which is adapted to a hyper-regular Hamilton
function h on R2d in the sense that its minimizing geodesics are the integral curves of the associated
hamiltonian vector field Xh. Thus it describes the distance between two points under consideration
of the energetic landscape determined by h (Proposition 4.15). This is done by assigning a length
to each C 2-curve as curve integral over a slightly adapted version of the canonical pairing between
moments and velocities. To ensure that the curve integral is independent of the parametrization of
the curve, it is necessary to replace the original elements of the tangent bundle by their projection
onto the energy shell for a fixed energy E. The distance between two points is then derived by a
variational process as the infimum of the curve length taken over all C 2-curves joining them.

In Section 4.3, it is shown (Proposition 4.18) that geodesics with respect to this Finsler metric
are base integral curves of the associated hamiltonian vector field and vice versa. Since the phase
space curve is fixed on the energy shell, this corresponds to the variational process leading to the
Maupertuis principle in classical mechanics.

In Section 4.4, we apply the general constructions to the symbol h0 of the zero order term
of Hε. We start with the additional assumptions that aγ ≥ 0 for γ = 0 and aγ ≤ 0 for γ 6= 0.
Furthermore, we assume span{γ ∈ (εZ)d | aγ < 0} = Rd and ‖aγe

C|γ|
ε ‖`2 ≤ C uniformly in x.
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Then the kinetic energy t(x,−iξ) is hyper-convex with respect to ξ, i.e., the second derivative is
bounded from below by a positive constant, and thus hyper-regular (Proposition 4.12 and 4.22).
This allows us to apply the results of the preceding sections to h0 and thus to define a distance
function d adapted to Hε. Then we show that the distance function dj(x) = d(x, xj) to a fixed
potential well xj satisfies the eikonal equation (1.5) in a neighborhood of this well and the eikonal
inequality (4.80) everywhere.

1.4.4. Chapter 5. In Chapter 5 we prove weighted estimates for the `2-norm of the eigen-
functions of a Dirichlet Hamiltonian H

Mj
ε , where Mj is a neighborhood of the well xj , which

includes no other wells of V0. We show, that the Finsler distance to a fixed well is the correct
rate function, describing the exponential decrease of the Dirichlet eigenfunctions of this well. More
precisely we show in Theorem 5.6, that if vj denotes an eigenfunction of the Dirichlet operator
H
Mj
ε , then there exists a number M0 ∈ N such that

‖e d
j

ε vj‖`2(Mj) = O
(
ε−M0

)
.

1.4.5. Chapter 6. Chapter 6 is concerned with the interaction between different wells of the
potential energy. To be able to use the results for Dirichlet operators with one well derived in the
preceding chapters, we consider Dirichlet operators on bounded regions Mj , each including exactly
one well. We denote by S0 the minimal Finsler distance between two wells. Then we show in
Theorem 6.9, that for a fixed spectral interval the distance ~dist(E,F ) between the direct sum of
the Dirichlet eigenspaces E and the exact eigenspace F is for any S < S0 of order e−

S
ε (the non-

symmetric distance between two Hilbert spaces is defined by ~dist(E,F ) = ‖ΠE − ΠEΠF ‖, where
ΠE denotes the orthogonal projection on E). From this estimate it follows that the difference
between associated eigenvalues is of the same order. In the next step we analyze the error term
in more detail for Hε restricted to F , which is with respect to an appropriate orthonormal basis a
finite symmetric matrix. We show in Theorem 6.13 that modulo a term of order e−

2S
ε , it is equal to

a diagonal matrix with the Dirichlet eigenvalues on the diagonal plus the off-diagonal interaction
matrix, which can be interpreted as a physical current, leading to the tunnelling between different
wells. As an example we consider the case where the Dirichlet operators at two wells have exactly
one eigenvalue in the chosen spectral interval.

In Section 6.4, we analyze the spectrum at a single well. At first it is shown that modulo e−
2S
ε ,

the spectrum is independent of the choice of Mj . Then we define the spectrum of the well as the
collection of the spectra with respect to the different choices of Mj . If rj denotes the “sphere of
influence” of the well xj with respect to a given eigenvalue λ of Hε, we show that the distance

between the spectrum of xj and λ is of order e−
2(rj−δ)

ε for any δ > 0.
In Section 6.5 we compare the exact Dirichlet eigenfunctions at the wells with the approximate

eigenfunctions constructed in Chapter 3. It is shown in Theorem 6.33 that in `2-norm the differ-
ence between a Dirichlet eigenfunction at a fixed well and the associated asymptotic expansion
multiplied with the exponential weight e

d
ε is of arbitrary high polynomial order in ε. This allows

us to use the approximating eigenfunctions instead of the exact ones to compute the interaction
matrix (Proposition 6.35). In the setting of only two wells, we give an expansion of the interac-
tion matrix in terms of the Hermite polynomials used to construct the WKB-expansions for the
Dirichlet operator (Theorem 6.37) and to derive an estimate for the leading order term.

1.4.6. Appendix. The appendix splits into part A and B. Appendix A includes some techni-
cal details, remarks and some basics as the notion of valuation. In Appendix B, an adapted version
of the microlocal calculus is introduced and the necessary results are proven. After defining classes
of ε-dependent pseudo-differential operators, the method of stationary phase is used to introduce
the product in the symbolic calculus and to show that it reflects the composition of operators.
This gives rise to some norm estimates for operators by use of estimates on the associated symbols
via an adapted version of the Calderon-Vaillancourt Theorem. The proof follows the one given
by Hwang [28] in the continuous setting. Furthermore a version of the Persson Theorem in the
discrete setting is proven by use of the microlocal calculus. A crucial point is that a multiplication
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operator on the lattice with compact support is compact.

1.5. Open Questions related to this work

We want to mention briefly some fields to which one could proceed.

One point could be to investigate how far it is possible to follow the subsequent papers of
Helffer and Sjöstrand ([34], [35], [36]). In particular, tunnelling through non-resonant wells is an
interesting and difficult subject, which is relevant even in the case of simple probabilistic operators.
It can be seen in the example of a discrete Schrödinger operator described in Section 2.3, that some
of the minima of V0 become saddle points (and thus non-resonant) by means of the first order term
of the potential energy with respect to ε.

Furthermore one might try to find the leading order term of the interaction matrix analyzed
in Section 6.6 in more general situations and in a more explicit form.

An interesting and direct application could be the transfer of the concept of Finsler functions
constructed in this thesis to a broader class of differential operators, for example to elliptic opera-
tors of higher order. Furthermore we could compare these generalizations of our Finsler distance
to the Finsler distance defined by Tintarev and Barbatis for higher order differential operators and
analyze if these concepts lead to equivalent results.

Another interesting point is the applicability of the results obtained in this work to the theory of
transfer operators and Witten-Laplace-operators in the context of statistical mechanics as discussed
for example in Helffer [31].
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CHAPTER 2

Stability of the spectrum

2.1. Notations and Preliminaries

2.1.1. Norm, Scalar product and Fourier transform. For ε > 0, we consider `2
(
(εZ)d

)
,

the space of square summable functions on the ε-scaled lattice, with scalar product

〈u , v〉`2 :=
∑

x∈(εZ)d

ū(x)v(x), u, v ∈ `2
(
(εZ)d

)
. (2.1)

Denoting the d-dimensional 2π-torus by Td := Rd/(2π)Zd, we introduce the scalar product

〈f , g〉T :=
∫

[−π,π]d
f̄(ξ)g(ξ) dξ, f, g ∈ L 2(Td) , (2.2)

where L 2(Td) denotes the space of square integrable functions on Td. We denote the associated
norms by ‖ . ‖`2 and ‖ . ‖T.

The discrete Fourier transform Fε : L 2
(
Td
)
→ `2

(
(εZ)d

)
is defined by

(Fεf)(x) :=
1

√
2π

d

∫
[−π,π]d

e−ix·
ξ
ε f(ξ) dξ , f ∈ L 2(Td) (2.3)

with inverse F−1
ε : `2

(
(εZ)d

)
→ L 2

(
Td
)
,

(F−1
ε v)(ξ) :=

1
√

2π
d

∑
x∈(εZ)d

eix·
ξ
ε v(x), v ∈ `2

(
(εZ)d

)
, (2.4)

where x · y := 〈x , y〉 :=
∑d
j=1 xjyj denotes the usual scalar product in Rd or (εZ)d and we will

often suppress the dot when the meaning is clear from the context.
In other words, the Fourier transform defined in (2.3) and (2.4) satisfies the Fourier inversion

formulae

(FεF
−1
ε u)(x) = u(x) , u ∈ `2

(
(εZ)d

)
(2.5)

(F−1
ε Fεf)(ξ) = f(ξ) , f ∈ L 2(Td) (2.6)

Furthermore Fε is an isometry, i.e.,

〈v , u〉`2 =
〈
F−1
ε v , F−1

ε u
〉

T , u, v ∈ `2
(
(εZ)d

)
(2.7)

〈f , g〉T =〈Fεf , Fεg〉`2 , f, g ∈ L 2(Td) . (2.8)

The equations (2.5), (2.6) and (2.7) are shown in Appendix A.1, equation (2.8) is a direct conse-
quence of (2.6) and (2.7).

We denote by 〈f , g〉L 2 :=
∫

Rd f(ξ)g(ξ) dξ the scalar product on L 2(Rd), the space of square
integrable functions on Rd, and we introduce on L 2(Rd) the ε-scaled Fourier transform

(F−1
ε f)(ξ) := (ε

√
2π)−d

∫
Rd
e
i
ε ξ·xf(x) dx (2.9)

(Fεu)(x) := (
√

2π)−d
∫

Rd
e−

i
ε ξ·xu(ξ) dξ ,

where compared to the usual Fourier transform the roles of x and ξ are interchanged. We notice
that for any f, g ∈ L 2(Rd) 〈

F−1
ε f |F−1

ε g
〉

L 2(Rdξ)
= ε−d 〈f | g〉L 2(Rdx)

(2.10)

We denote the set of the natural numbers with zero by N = {0, 1, 2, . . .} and the set of the natural
numbers without zero by N∗ = {1, 2, . . .}.

11
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Furthermore M(n×m,K) denotes the space of n×m-matrices with elements in K.
The domain of an operator A is denoted by D(A).

2.1.2. Pseudo-differential operators on the lattice (εZ)d. We introduce the notion of
symbol spaces including the small parameter ε ∈ (0, 1], where the symbols are allowed to include ε
not only directly but also as scaling parameter, as described in Dimassi-Sjöstrand [16]. Since the
phase space is given by (εZ)d × Td, the relation between the operators and their symbols is given
by use of the discrete Fourier transformation defined in (2.4),(2.3).

For the general theory of microlocal analysis, we refer to Grigis-Sjöstrand [24], Robert [50]
and Hörmander [41], where symbol spaces and spaces of associated pseudo-differential operators
are introduced.

A symbolic calculus is introduced in Appendix B.

Definition 2.1. (a) A function m : Rd×Td → [0,∞) is called an order function, if there
exist constants C0, N1 > 0, such that

m(x, ξ) ≤ C0〈x− y〉N1m(y, η) , x, y ∈ Rd, ξ, η ∈ Td ,

where we used the notation 〈x〉 :=
√

1 + |x|2.
(b) For an order function m on Rd × Td, the symbol space S(m)

(
Rd × Td

)
consists of all

a ∈ C∞(Rd × Td), for which for all α, β ∈ Nd there is a constant Cα,β such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,βm(x, ξ) , x ∈ Rd, ξ ∈ Td ,

where as usual ∂αx := ∂α1
x1
. . . ∂αdxd . We often write S(m), if the underlying space is clear.

(c) The Fréchet-Semi-Norms of a symbol a ∈ S(m) are defined as

‖a‖α,β := sup
x,ξ

|∂αx ∂
β
ξ a(x, ξ)|

m(x, ξ)
.

(d) If the symbol a(x, ξ; ε) depends on a small parameter ε ∈ (0, 1], a is said to be in S(m), if
a(· ; ε) is uniformly bounded in S(m) for ε varying in (0, 1]. Let Sk(m) := εkS(m) describe
for k ∈ R the space of symbols of the form εka(x, ξ; ε) for a ∈ S(m). For δ ∈ [0, 1], the
space Skδ (m)

(
Rd × Td

)
consists of functions a(x, ξ; ε) on Rd × Td × (0, 1], belonging to

S(m)
(
Rd × Td

)
for every fixed ε and satisfying

|∂αx ∂
β
ξ a(x, ξ; ε)| ≤ Cα,βm(x, ξ)εk−δ(|α|+|β|) , x ∈ Rd, ξ ∈ Td .

(e) Let aj ∈ S
kj
δ (m), kj ↗ ∞, then we write a ∼

∑∞
j=0 aj if a −

∑N
j=0 aj ∈ S

kN+1
δ (m) for

every N ∈ N.
(f) A pseudo-differential operator OpTd

ε (a) : K
(
(εZ)d

)
−→ K′

(
(εZ)d

)
is defined by

OpTd
ε (a) v(x) := (2π)−d

∑
y∈(εZ)d

∫
[−π,π]d

e
i
ε (y−x)ξa(x, ξ; ε)v(y) dξ , (2.11)

where a ∈ Skδ (m)
(
Rd × Td

)
,

K
(
(εZ)d

)
:= {u : (εZ)d → C | u has compact support} (2.12)

and K′
(
(εZ)d

)
denotes its dual with respect to 〈 . , . 〉`2 .

We give two important results concerning symbols and the associated operators, which are
proven in Appendix B. The first (Lemma B.2) tells us, that the operator associated to a symbol
via (2.11) can be extended continuously on a discrete version of a Schwartz-space.

Lemma 2.2. Let a ∈ S0
δ (m)

(
Rd × Td

)
and, for ε > 0,

s
(
(εZ)d

)
:=

u : (εZ)d → (εZ)d
∣∣ ‖u‖α := sup

x∈(εZ)d

d∑
j=1

∣∣xαjj u(x)∣∣ <∞, α ∈ Nd
 .

We consider on s the natural topology τ associated to the family of semi-norms ‖ · ‖α.
Then the operator OpTd

ε (a) associated to a defined in (2.11) is continuous : s
(
(εZ)d

)
−→ s

(
(εZ)d

)
with respect to τ .
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If we consider only symbols, which are bounded (i.e. for which m = 1), we have an adapted
version of the Calderon-Vaillancourt Theorem (Proposition B.8).

Proposition 2.3. Let a ∈ Srδ (1)
(
Rd × Td

)
with 0 ≤ δ ≤ 1

2 . Then there exists a constant

M > 0 such that, for the associated operator OpTd
ε (a) given by (2.11) the estimate

‖OpTd
ε (a)u‖`2((εZ)d) ≤Mεr‖u‖`2((εZ)d)

holds for any u ∈ s
(
(εZ)d

)
and any ε > 0. OpTd

ε (a) can therefore be extended to a continuous oper-

ator: `2
(
(εZ)d

)
−→ `2

(
(εZ)d

)
with ‖OpTd

ε (a)‖∞ ≤Mεr. Moreover one can choose M depending
only on a finite number of Frechet semi-norms of the symbol a.

2.1.3. Generalized Kinetic Energy. As briefly described in the introduction, we assume
the Hamilton operator Hε to consist of a multiplication operator, interpreted as potential energy,
and a translation operator, taking the role of a (generalized) kinetic energy. Usually in classical
mechanics the kinetic energy as phase space function is represented by ξ2, where ξ ∈ Rd denotes
the momentum variable. The associated operator derived by a quantization procedure is then
given by −∆ (or −~2∆ in the case of an ~-scaled quantization).

We will now define what we mean by a (periodic) kinetic energy in a generalized sense.

Definition 2.4. 1. A real valued symbol t ∈ S0
0(m)

(
Rd × Td

)
is called a periodic kinetic

energy function, if:
(a) t(x, ξ) ≥ 0 for all x ∈ Rd and ξ ∈ Td.
(b) t(x, ξ) = 0 if and only if ξ = 0.
(c) At ξ = 0, the function t has for fixed x ∈ Rd an expansion

t(x, ξ) = 〈ξ , B(x)ξ〉+O
(
|ξ|3
)

for |ξ| → 0 , (2.13)

where B : Rd →M(d× d,R) is positive definite and symmetric.
(d) For any ε > 0, the associated operator OpTd

ε (t) on the Hilbert space `2((εZ)d) with
scalar product 〈. , .〉`2 , defined by

K 3 v 7→ OpTd
ε (t)v(x) := (2π)−d

∑
y∈(εZ)d

∫
[−π,π]d

e
i
ε (y−x)ξt(x, ξ)v(y) dξ , (2.14)

is positive and symmetric.
We say that t is the symbol associated to OpTd

ε (t). The operator OpTd
ε (t) is then called a

discrete kinetic energy operator.
2. Let S0

0(m)(R2d) denote the usual symbol space with respect to a small parameter as de-
scribed in Appendix B.4.

A real valued symbol t ∈ S0
0(m)

(
R2d

)
, is called a kinetic energy function, if:

(a) t(x, ξ) ≥ 0 for all x, ξ ∈ Rd.
(b) t(x, ξ) = 0 if and only if ξ = 0.
(c) At ξ = 0, the function t has for fixed x ∈ Rd an expansion

t(x, ξ) = 〈ξ , B(x)ξ〉+O
(
|ξ|3
)

for |ξ| → 0 , (2.15)

where B : Rd →M(d× d,R) is positive definite and symmetric.
(d) For any ε > 0, the associated operator Opε(t) on the Hilbert space L 2(Rd) with the

scalar product 〈. , .〉L 2 , defined by

C∞0 (Rd) 3 v 7→ Opε(t)v(x) := (ε2π)−d
∫

Rd

∫
Rd
e
i
ε (y−x)ξt(x, ξ)v(y) dξ dx , (2.16)

is positive and symmetric.
The operator Opε(t) associated to a kinetic energy function is called a kinetic energy

operator.
3. A pure multiplication operator is called a potential energy operator.

Remark 2.5. (a) Since the periodic kinetic energy function t is a function on Rd × Td,
it can also be considered as a function on R2d, which is 2π-periodic with respect to ξ. We
denote this function also by t.
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For any x ∈ Rd and ε > 0, the function ξ 7→ t(x, ξ) has a Fourier expansion

t(x, ξ) =
∑

γ∈(εZ)d

aγ(x)e−
i
εγ·ξ . (2.17)

There exists a function

ã : Zd × Rd 3 (y, x) 7→ ãy(x) ∈ C , such that aγ(x) = ã γ
ε
(x) . (2.18)

Since t ∈ C∞
(
Rd × Td

)
, it follows from Lemma A.1 in Appendix A.1 that for fixed x ∈ Rd

there exists a constant C > 0 such that for all n ∈ N and for all ε > 0

‖ | . |na.(x)‖`2((εZ)d) ≤ C . (2.19)

Thus (2.17) converges for each fixed x ∈ (εZ)d.
(b) If t ∈ S0

0(1)
(
Rd × Td

)
, i.e., if t is bounded, then the estimate (2.19) holds uniformly with

respect to x. Furthermore it follows from Proposition 2.3 that in this case the associated
operator OpTd

ε (t) is bounded and can therefore be defined on the whole space `2
(
(εZ)d

)
.

(c) The discrete kinetic energy operator acts as a translation operator on u ∈ `2
(
(εZ)d

)
via

OpTd
ε (t) =

∑
γ∈(εZ)d

aγ(x)τγ (2.20)

(see Appendix A.3), where τγu(x) := u(x+ γ).
(d) The comparison of the expansion (2.17) of t(x, ξ) with the assumption (2.13) yields∑

η∈Zd
aεη(x)

(
1− iη · ξ − 1

2
(η · ξ)2 +O

(
|ξ|3
))

= 〈ξ , B(x)ξ〉+ f(x)O
(
|ξ|3
)
,

thus for all x ∈ (εZ)d∑
γ∈(εZ)d

aγ(x) = 0, (2.21)

∑
γ∈(εZ)d

aγ(x)
i

ε
γν = 0, for ν ∈ {1, . . . , d} (2.22)

− 1
2ε2

∑
γ

aγ(x)γνγµ = Bνµ(x) for µ, ν ∈ {1, . . . , d} , (2.23)

where B is symmetric. Since 〈v , B(x)v〉 = −
∑
γ aγ(x)(v · γ)2, the matrix B is moreover

positive definite if aγ ≤ 0 for all γ 6= 0 and span{γ ∈ (εZ)d | aγ < 0} = Rd.

In the next lemma, we will give conditions for aγ which ensure that Tε is positive and sym-
metric.

Lemma 2.6. Let ε > 0 and let Tε = OpTd
ε (t) be the unbounded operator on `2

(
(εZ)d

)
with

domain K((εZ)d), defined by

Tεu(x) :=
∑
γ

aγ(x)u(x+ γ) .

Then
(a) Tε is symmetric if and only if aγ(x) = a−γ(x+ γ).
(b) Tε is positive if it is symmetric and aγ(x) ≤ 0 for γ 6= 0.

Proof:

(a) ⇐=:
By definition Tε is a symmetric operator if 〈Tεu , v〉`2 = 〈u , Tεv〉`2 for any u, v ∈ D(Tε), or
equivalently, ∑

x,γ∈(εZ)d

aγ(x)u(x+ γ)v(x) =
∑

x,γ∈(εZ)d

aγ(x)u(x)v(x+ γ) . (2.24)
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The right-hand side can through substitutions x̃ = x+ γ and γ̃ = −γ be written as∑
x̃,γ̃∈(εZ)d

a−γ̃(x̃+ γ̃)u(x̃+ γ̃)v(x̃) . (2.25)

Since the sum is taken over all x̃ and γ̃, these variables can be renamed to x and γ. If aγ(x) =
a−γ(x+ γ) for all x and γ, we see at once that (2.25) is equal to the left-hand side of (2.24).
=⇒:
If Tε is symmetric, equation (2.24) holds for all u, v ∈ D(Tε), so we can choose u = δỹ and v = δx̃,
where

δx(y) =

{
1 , x = y

0 , otherwise
.

By this choice, (2.24) yields
ax̃−ỹ(ỹ) = aỹ−x̃(x̃)

and thus with γ := ỹ − x̃ we are done.
(b) The operator Tε is positive if for all u ∈ D(Tε)

〈Tεu , u〉`2 =
∑

x,γ∈(εZ)d

aγ(x)u(x+ γ)u(x) ≥ 0 .

The sum can be rewritten as∑
x

a0(x)|u(x)|2 +
∑
γ 6=0

aγ(x)u(x+ γ)u(x)


and by (2.21) this equals ∑

x

∑
γ 6=0

aγ(x)
(
u(x+ γ)u(x)− |u(x)|2

)
.

By (a) and the substitution x̃ and γ̃ as in (2.25), we can transform this sum to

〈Tεu , u〉`2 =
1
2


∑
x
γ 6=0

aγ(x)
(
u(x+ γ)u(x)− |u(x)|2

)
+
∑
x̃
γ̃ 6=0

a−γ̃(x̃+ γ̃)
(
u(x̃)u(x̃+ γ̃)− |u(x̃+ γ̃)|2

)
= −1

2

∑
x
γ 6=0

aγ(x) (u(x)− u(x+ γ))2 .

If aγ(x) ≤ 0 for γ 6= 0, the last term is obviously greater or equal to 0.
2

2.2. Harmonic Approximation of the Spectrum of Hε

In this section we will show that under certain assumptions, outlined below in Hypothesis 2.7,
the eigenvalues of the Hamilton operator Hε introduced in (1.1), acting on `2

(
(εZ)d

)
, are given in

the limit ε→ 0 by the eigenvalues of an adapted harmonic oscillator on L 2
(
Rd
)
.

2.2.1. Hypothesis and Stability Result.

Hypothesis 2.7. Let Hε = Tε + Vε denote a self adjoint operator on `2
(
(εZ)d

)
, where:

(a) Tε is a discrete kinetic energy operator as introduced in Definition 2.4 with the further
condition that the associated symbol t belongs to the symbol class S0

0(1)
(
Rd × Td

)
in the

sense of Definition 2.1.
(b) The potential energy Vε acts as the lattice restriction of a polynomially bounded multipli-

cation operator V̂ε ∈ C∞(Rd) on L 2
(
Rd
)
, which has an expansion

V̂ε(x) = V0(x) + ε V1(x) +R2(x; ε) , (2.26)

where V0, V1 belong to C∞(Rd), R2 ∈ C∞(Rd× (0, ε0]) for some ε0 > 0 and has the prop-
erty that for any compact set K ⊂ Rd there exists a constant CK such that
supx∈K |R2(x; ε)| ≤ CKε

2.
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Furthermore there exist constants R,C > 0 such that Vε(x) > C for all |x| ≥ R and
ε ∈ (0, ε0].

(c) V0 ≥ 0 and it takes the value 0 only at a finite number of points {xj}mj=1, where its Hessian

(Ãjνµ) :=
1
2

(
∂2V0

∂xν∂xµ
(xj)

)
(2.27)

is positive definite (i.e. the absolute minima are non-degenerate). We call the minima
{xj}mj=1 of V0 potential wells.

For t ∈ S0
0(1) it follows from Proposition 2.3, that Tε is bounded, thus Hε is self adjoint on

the maximal domain of Vε, i.e. D(Hε) = {u ∈ `2((εZ)d) |Vεu ∈ `2((εZ)d)}.

Remark 2.8. Any function f ∈ C∞
0 (Rdξ), which is supported in (−π, π)d, admits a unique C∞

periodic continuation to Rd. Thus any such f can be considered as a function on the torus Td. We
shall denote this function on Td by f̃ .

Let k ∈ C∞
0

(
Rd
)

be a cut-off function on Rd such that k(ξ) = 1 for |ξ| ≤ 2 and supp k ⊂
(−π, π)d. Then the truncated quadratic approximation of t given by

tπ,q(x, ξ) := 〈ξ , B(x)ξ〉 k(ξ) , ξ ∈ Rd, x ∈ Rd, (2.28)

can by Remark 2.8 be associated to t̃ ∈ S0
0(1)(Rd × Td). The associated bounded operator on the

lattice (see (2.11)) is denoted by OpTd
ε (t̃π,q) =: Tε,q.

Moreover we define for a critical point xj of V0 in the sense of Hypothesis 2.7

t̃π,q,j(ξ) := t̃π,q(xj , ξ) and Tε,q,j := OpTd
ε (t̃π,q,j) . (2.29)

To compare Hε with an harmonic oscillator on L 2
(
Rd
)
, we associate to the periodic kinetic energy

function t a translation operator T̂ := Opε(t) on C∞0 (Rd) by identifying t ∈ C∞(Rd×Td) with the
associated periodic function t ∈ C∞(R2d). Then T̂ is given by

T̂ := Opε(t) =
∑

γ∈(εZ)d

aγ(x)τγ , x ∈ Rd . (2.30)

Thus T̂ induces the same translations on the square integrable functions on Rd as Tε on the lattice
functions and we define the associated Hamilton operator Ĥε on
D(Ĥε) =

{
u ∈ L 2

(
Rd
)
| V̂εu ∈ L 2

(
Rd
)}

as

Ĥεu(x) :=
∑

γ∈(εZ)d

aγ(x)u(x+ γ) + V̂ε(x)u(x) , u ∈ D(Ĥε) . (2.31)

Contrary to the lattice case, it is possible to determine for the quadratic approximation tq(x, ξ) :=
〈ξ , B(x)ξ〉 of t on Rd × Rd the action of the associated operator on L 2(Rd) by

T̂q := Opε(tq) = −ε2
d∑

ν,µ=1

Bνµ(x)∂ν∂µ . (2.32)

As in the periodic case, we define for fixed a potential well xj ∈ Rd and for all ξ ∈ Rd

tq,j(ξ) := tq(xj , ξ) and Opε(tq,j) =: T̂q,j . (2.33)

Remark 2.9. We denote by Gx0 = (εZ)d + x0 the ε-scaled lattice, which is shifted to the point
x0 ∈ Rd (thus x0 ∈ Gx0 , but it may be that 0 /∈ Gx0).

Then x + γ ∈ Gx0 for any x ∈ Gx0 , x0 ∈ Rd and γ ∈ (εZ)d, thus if 1Gx is defined as the
restriction map to the lattice Gx0 , it follows at once that τγ commutes with 1Gx . Since as a
function of x, the operator Hε was assumed to be the restriction of an operator on Rd, we can
therefore consider Hε in the obvious way as an operator on K(Gx0) and for any u ∈ C∞

0

(
Rd
)
, for

any x0 ∈ Rd and any ε > 0(
1Gx0

Ĥεu
)

(x) =
(
Hε 1Gx0

u
)
(x) , x ∈ Gx0 . (2.34)



2.2. HARMONIC APPROXIMATION OF THE SPECTRUM OF Hε 17

By Hypothesis 2.7, the potential energy V̂ε has at a critical point xj for |x − xj | → 0 the
expansion

V̂ε(x) = V j0 (x) + ε V1(xj) + εO(|x− xj |) +O(|x− xj |3) +R2(x, ε) (2.35)

and we set V jε (x) := V j0 (x) + ε V1(xj) ,

where V j0 (x) :=
〈
(x− xj) , Ãj(x− xj)

〉
and R2 = O(ε2).

Let Hε be an operator satisfying Hypothesis 2.7 and let Aj := B
1
2
DÃ

jB
1
2
D, where Ãj denotes

the Hessian of V0 at a critical point xj and BD is the diagonalization of B(xj) as described in
Appendix A, Section A.2.

The main result of this chapter is the following theorem:

Theorem 2.10. Let

Kj := −∆ +
〈
x , Ajx

〉
+ V1(xj) , j = 1, . . .m

denote self adjoint operators on L 2
(
Rd
)

and K :=
⊕m

j=1Kj denote a self adjoint operator on⊕m
j=1 L 2

(
Rd
)
).

Then for any fixed n ∈ N∗ and ε sufficiently small, Hε has at least n eigenvalues.
Counting multiplicity, we denote for n ∈ N∗ the n-th eigenvalue of K by en and the n-th

eigenvalue of Hε by En(ε). Then in the limit ε→ 0,

Ek(ε) = εek +O
(
ε

6
5

)
. (2.36)

Remark 2.11. The operators Kj are harmonic oscillators with the additional additive constant
V1(xj). Denoting by (ωjν)

2 for ωjν > 0 the eigenvalues of the matrix Aj, the eigenvalues of the
operator Kj are given by

σ(Kj) =

{
eα,j =

d∑
ν=1

(
ωjν(2αν + 1)

)
+ V1(xj)

∣∣∣∣∣ α ∈ Nd
}
. (2.37)

The spectrum σ(K) of K is the union σ(K) =
⋃m
j=1 σ(Kj) of the spectra σ(Kj) for all j, i.e.

for n given as in the setting of Theorem 2.10, the correspondence (α, j) ↔ n is one-to-one. The
normalized eigenfunctions of the operators Kj associated to an eigenvalue eα,j are given by

gα,Kj (x) = hα(x)e−ϕ
j
0(x) , α = (α1, . . . , αd) ∈ Nd0 , (2.38)

where hα(x) = hα1 · hα2 · . . . · hαd and each hαµ denotes a one-dimensional Hermite polynomial

hl(t) =
(−1)l√
2ll!π

1
4
et

2
(
d

dt

)l
e−t

2
(2.39)

with l = αν . We assume hα to be normalized in the sense that the L 2-norm of gα,Kj is equal to
unity. The phase function is given by

ϕj0(x) :=
1
2

d∑
ν=1

ωjν
〈
x , yjν

〉2
, (2.40)

where yjν ∈ Rd, (ν = 1, . . . , d) is an orthonormal basis in Rd of eigenvectors of Aj.

2.2.2. Lemmata concerning the Proof of Theorem 2.10. The strategy of the proof is
to restrict the Hamilton operator Hε to small ε

2
5 -scaled neighborhoods of its critical points in x

and ξ, i.e. to neighborhoods of {(xj , 0)}mj=1 in phase space. Then the restricted discrete operator
can be compared with a corresponding continuous operator acting on L 2(Rd).

We follow in part the ideas of the proof of Theorem 11.1 in Cycon-Froese-Kirsch-Simon [15] on
the quasi-classical eigenvalue limit of a Schrödinger operator. But in contrast to the Schrödinger
setting described in this proof, where the kinetic operator is given by the Laplacian on Rd, the
discrete operator Tε depends on both the position and the momentum and acts on a different space
than the harmonic oscillator. The first point consists in localizing the operator simultaneously with
respect to x and ξ, which is done by use of a version of microlocal calculus adapted to the discrete
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setting as invented in Appendix B. The idea is to “quantize” the symbol of the operator multiplied
with cut-off functions with respect to x and ξ. By Proposition B.8, the uniform estimates for the
symbol can be used to get norm-estimates for the associated operators.

The starting point of the proof lies in the construction of a partition of unity. This is done in
such a way that it permits us to treat separately the neighborhoods of the minima and the region
outside of these neighborhoods.

Let χ be a C∞
0 (Rd)-function with the properties

(a) 0 ≤ χ ≤ 1,
(b) χ(x) = 1 if |x| ≤ 1,
(c) χ(x) = 0 if |x| ≥ 2,
(d)

√
1−χ2 is a C∞(Rd)-function.

We define functions which localize in ε
2
5 -scaled neighborhoods of the minima xj , 1 ≤ j ≤ m, by

χj,ε(x) := χ
(
ε−

2
5 (x− xj)

)
, x ∈ Rd . (2.41)

For ε sufficiently small, suppχj,ε ∩ suppχk = ∅ for k 6= j. Thus by (d), the function

χ0,ε :=

√√√√1−
m∑
j=1

χ2
j,ε(x)

localizing outside of the wells, is an element of C∞(Rd) for ε sufficiently small. Clearly by these
definitions

∑m
l=0 χ

2
l,ε = 1.

Using this partition of unity, we can find an estimate in sup-norm for the error, which arises
by replacing the potential energy operator Vε introduced in (2.26) in an ε-scaled neighborhood of
xj by its quadratic approximation V jε (x) = V j0 (x) + εV1(xj).

For 1 ≤ j ≤ m we get with the notation V j1 (x) := V1(xj)∥∥∥χj,ε ((V0 − V j0

)
+ ε

(
V1 − V j1

))
χj,ε

∥∥∥
∞
≤ sup
x∈supp(χj,ε)

∣∣∣(V0 − V j0

)
(x)
∣∣∣+ ε

∣∣∣(V1 − V j1

)
(x)
∣∣∣

= O
(
ε

6
5

)
, (2.42)

because (V0(x) − V j0 (x)) = O
(
|x− xj |3

)
and (V1 − V j1 )(x) = O(|x − xj |) as x → 0 and since

|x− xj | = O
(
ε

2
5

)
for x ∈ supp(χj,ε). Thus by (2.35) we get the estimate∥∥∥χj,ε (V̂ε − V jε

)
χj,ε

∥∥∥
∞

= O
(
ε

6
5

)
. (2.43)

In this context, we just mention that in the framework of the calculus of pseudo-differential opera-
tors introduced in Appendix B it is possible to consider Tε simultaneously localized in configuration
and momentum space. To this end we define a cut-off function φ0 ∈ C∞

0

(
Rd
)
, using the original

cut-off function χ, by
φ0,ε(ξ) := χ(ε−

2
5 ξ), ξ ∈ Rd (2.44)

and φ1,ε :=
√

1−φ2
0,ε.

To φ0,ε we can associate a function φ̃0,ε ∈ C∞
0 (Td) on the torus (see Remark 2.8). Let

φ̃0,ε(ξ) := φ0,ε(ξ), ξ ∈ [−π, π]d (2.45)

and its periodic continuation for ξ ∈ Rd. Then we set φ̃1,ε(ξ) :=
√

1−φ̃2
0,ε ∈ C∞(Td), which gives

φ̃2
0,ε + φ̃2

1 = 1.
The functions φ̃j,ε can be considered as elements of S0

2
5
(Rd × Td) with associated operator

OpTd
ε (φ̃j,ε). The statement of Proposition B.9 is the estimate∥∥∥χj,ε OpTd

ε (φ̃0,ε) (Tε − Tε,q,j) OpTd
ε (φ̃0,ε)χj,ε

∥∥∥
∞

= O
(
ε

6
5

)
, (2.46)

where ‖.‖∞ denotes the operator norm. The estimate (2.46) suggests the definition

Ĥj := T̂q,j + V j0 + ε V1(xj) (2.47)
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as a model operator on L 2(Rd), which is a good approximation of Ĥε and Hε respectively for small
neighborhoods of ξ = 0 and x = xj , i.e. for a localization in the configuration and momentum
space. As shown in Appendix A.2, Ĥj is unitary equivalent to

Hj := −ε2∆ +
〈
(x− xj) , Aj(x− xj)

〉
+ ε V1(xj) , (2.48)

where Aj is defined as in Theorem 2.10. By scaling, Hj is unitary equivalent to εKj (see Appendix
A.4). Thus the spectrum of Hj is given by ε σ(Kj) and the eigenfunctions are

gαj(x) = ε−
d
4 hα

(
x−xj√

ε

)
e
−ϕj0(

x−xj√
ε

)
. (2.49)

The following lemma gives estimates on the error terms which occur by decomposing Hε with
respect to the partition of unity introduced above into a sum of Dirichlet operators. It is a gen-
eralization of the IMS-localization formula for Schrödinger operators described for example in
Cycon-Froese-Kirsch-Simon [15].

Lemma 2.12. Let Hε = Tε +Vε satisfy Hypothesis 2.7 and denote by V jε the quadratic approx-
imation of Vε defined in (2.35).

Let χj,ε , 0 ≤ j ≤ m and φ̃k,ε , k = 0, 1 be given by (2.41) and (2.45) respectively and denote by
OpTd

ε (φ̃k,ε) the associated operator. Then the following estimates hold in operator norm.
(a)

Hε =
m∑
j=0

χj,εHε χj,ε +O
(
ε

6
5

)
.

(b)

Tε + V jε = OpTd
ε (φ̃0,ε)(Tε + V jε ) OpTd

ε (φ̃0,ε) + OpTd
ε (φ̃1,ε)(Tε + V jε ) OpTd

ε (φ̃1,ε) +O
(
ε

6
5

)
.

The proof of Lemma 2.12 is done by use of the microlocal calculus introduced in Appendix
B, in particular Lemma B.10 and Proposition B.8. But we should mention that at this point, it
would still be possible to give a proof by direct calculation, avoiding the symbolic calculus. This
is shown in Appendix A.6.

Proof of Lemma 2.12:

(a):
Since by definition

∑m
j=0 χ

2
j,ε = 1, we can split Hε in the following way

Hε =
1
2

m∑
j=0

χ2
j,εHε +

1
2
Hε

m∑
j=0

χ2
j,ε =

m∑
j=0

χj,εHε χj,ε +
1
2

m∑
j=0

[χj,ε, [χj,ε,Hε]] . (2.50)

To show the assertion, we thus have to estimate the double commutators. To this end, we first
observe, that t ∈ S0

0(1) and χj ∈ S0
2
5
(1), j = 0, . . .m. Furthermore χj commutes with Vε, thus it

is sufficient to analyze the symbol of the double commutator with t. It follows from Lemma B.10,
that [χj,ε, [χj,ε, t]#]# ∈ S

6
5
2
5
(1). By Proposition B.8, this induces the stated result for the norm of

the corresponding operator.
(b):

The arguments are quite similar to (a), but we need to consider the expansions for the symbolic
double commutator, since the quadratic potential V jε is not bounded, but V jε ∈ S0

0(|x|2). Thus the
general result on the symbol class of the double commutator given in Lemma B.10 is not sufficient.
By Lemma B.10, the double commutator in the symbolic calculus with α, α1, α2 ∈ Nd for k = 0, 1
can be written as

[φ̃k(ξ), [φ̃k(ξ), (t+ V jε )(x, ξ)]#]# =
∑
|α|=2

(iε)|α|
(
∂αx (t+ V jε )

)
(x, ξ)

∑
α1+α2=α

(
∂α1
ξ φ̃k

)(
∂α2
ξ φ̃k

)
(ξ) +R3 .

Now we use that t ∈ S0
0(1) and φ̃k ∈ S0

2
5
(1) and furthermore that the second derivative of the

quadratic term V jε is constant. Thus all the summands are bounded, of order ε2−
4
5 and the ε-order

in lowered by 2
5 with each differentiation. Thus all these terms are elements of S

6
5
2
5
(1). By Lemma
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B.10, the remainder R3 depends linearly on a finite number of derivatives ∂βx (h+V jε ) with |β| ≥ 3

(which is bounded) and
(
∂β1
ξ φ̃k

)(
∂β2
ξ φ̃k

)
with |β1| + |β2| ≥ 3. Thus it is an element of S

9
5
2
5
(1).

We therefore get [φ̃k(ξ), [φ̃k(ξ), (t+ V jε )(x, ξ)]#]# ∈ S
6
5
2
5
(1), yielding by Proposition B.8 the stated

norm estimate for the associated operator.
2

In order to analyze the eigenvalues ofHε, one would usually try to compute the matrix elements
of Hε with respect to the basis of eigenfunctions. Since we do not know the eigenfunctions of Hε,
we work with the harmonic oscillator eigenfunctions gαj introduced in (2.49), and restrict them to
the lattice (εZ)d. We denote these restricted functions, which are elements of `2

(
(εZ)d

)
, by gεαj .

The functions gαj defined in (2.49) are localized near the well xj for j = 1, . . . ,m and decrease
exponentially fast with respect to the phase function ϕj0. Thus the difference between the matrix
element 〈gαj , Hεgβl〉`2 for Hε and the one for the operator localized at the well xj by use of the
cut-off function χj,ε is small. This and similar estimates for the potential and kinetic energy oper-
ators are the subject of the following lemma.

Lemma 2.13. Let Hε and Tε be given as in Hypothesis 2.7, V jε by (2.35). Let χj,ε, 1 ≤ j ≤ m

as well as φ̃0,ε and φ0,ε denote the cut-off functions defined in (2.41), (2.44) and (2.45) respectively.
Let T̂q,j denote the quadratic approximation of T̂ at the point xj as given in (2.33). Let g(ε)

αj denote
the eigenfunctions of the harmonic oscillator defined in (2.49) (or their restriction to the lattice).
Then for ε→ 0:

(a) ∣∣∣〈gεαj , Hεg
ε
βl

〉
`2
−
〈
χj,εg

ε
αj , Hεχj,εg

ε
βl

〉
`2

∣∣∣ = O
(
ε

6
5

)
. (2.51)

(b) There exists a constant c > 0 such that∣∣〈gαj , V jε gβl〉L 2 −
〈
χj,εgαj , V

j
ε χj,εgβl

〉
L 2

∣∣ = O

(
e−cε

− 1
5

)
.

(c)∣∣∣〈χj,εgεαj , Tε χj,εgεβl〉
`2
−
〈
OpTd

ε (φ̃0,ε)χj,εgεαj) , Tε OpTd
ε (φ̃0,ε)χj,εgεβl

〉
`2

∣∣∣ = O
(
ε

6
5

)
. (2.52)

(d) There exists a constant c > 0 such that∣∣∣〈gαj , T̂q,j gβl〉
L 2

−
〈
Opε(φ0,ε)χj,εgαj , T̂q,j Opε(φ0,ε)χj,εgβl

〉
L 2

∣∣∣ = O

(
e−cε

− 1
5

)
.

Proof of Lemma 2.13:

(a):
By Lemma 2.12∣∣∣〈gεαj , Hεg

ε
βj

〉
`2
−
〈
χj,εg

ε
αj , Hεχj,εg

ε
βj

〉
`2

∣∣∣ (2.53)

=

∣∣∣∣∣∣
∑

x∈(εZ)d

∑
k 6=j

χk(x)gεαj(x)(Tε + Vε)χk(x)gεβj(x)

∣∣∣∣∣∣+O
(
e

6
5

)
.

We consider the kinetic and potential term separately, starting with the potential term Vε. By
substituting (1−χ2

j,ε) on its support by 1, we get∣∣∣∣∣∣
∑

x∈(εZ)d

(1−χ2
j,ε)Vε(x)g

ε
αj(x)g

ε
βl(x)

∣∣∣∣∣∣ ≤
∑

x∈(εZ)d

|x−xj |≥ε
2
5

∣∣Vε(x)gεαj(x)gεβl(x)∣∣
≤ Cε−

d
4

∑
x∈(εZ)d

|x−xj |≥ε
2
5

∣∣Vε(x)gεαj(x)∣∣ ,
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for some C > 0, where we used that gβl = O(ε−
d
4 ) for the last step. Setting u = x − xj where

u ∈ Gxj (see Remark 2.9), the right hand side is for some polynomial p bounded from above by

Cε−
d
2

∑
|u|≥ε

2
5

∣∣∣∣Vε(u+ xj)hα
(
u√
ε

)
e−

|u|2
ε

∣∣∣∣ ≤ Cε−
d
2

∑
|u|≥ε

2
5

|p(u)|e−
|u|2
ε ,

since the potential energy was assumed to be bounded by a polynomial in Hypothesis 2.7. This
yields for some c > 0 ∣∣∣∣∣∣

∑
x∈(εZ)d

(1−χ2
j,ε)Vε(x)g

ε
αj(x)g

ε
βl(x)

∣∣∣∣∣∣ = O

(
e−|c|ε

− 1
5

)
. (2.54)

In order to estimate the kinetic term, we use gβl = O(ε−
d
4 ) and the fact that for some C > 0∑

γ |aγ(x)| ≤ C uniform with respect to x. Thus by the substitution u = x− xj we get∣∣∣∣∣∣
∑

x∈(εZ)d

∑
k 6=j

χk(x)gεαj(x)
∑
γ

aγ(x)χk(x+ γ)gεβl(x+ γ)

∣∣∣∣∣∣
≤C ′ε− d

2

∑
|u|≥ε

2
5

∣∣∣∣hα ( u√
ε

)
e−

|u|2
ε

∣∣∣∣ = O

(
e−|c|ε

− 1
5

)
. (2.55)

Inserting (2.54) and (2.55) in (2.53) shows the stated estimate.
(b):

By the definition of the scalar product in L 2
(
Rd
)

and the substitution of 1−χ2
j,ε by 1 on its

support, we get∣∣〈gαj , V jε gβl〉L 2 −
〈
χj,εgαj , V

j
ε χj,εgβl

〉
L 2

∣∣
=
∣∣∣∣∫

Rd

(
V jε (x)− χj,εV

j
ε χj,ε(x)

)
gαj(x)gβl(x) dx

∣∣∣∣ ≤ ∫
|x−xj |≥ε(2/5)

∣∣gαj(x)V jε (x)gβl(x)
∣∣ dx

Using again gβl = O(ε−
d
4 ) together with the substitution u = x− xj and the exponential decay of

gαj , right hand side can for some polynomial p be estimated from above by

cε−
d
2

∫
|u|≥ε

2
5

p(|u|)e−C
|u|2
ε d|u| = O

(
e−

C
2 ε

− 1
5

)
,

which proves the stated result.

(c):
To prove this statement, we sum by parts to increase the order in ε of the error term.

By Lemma 2.12,∣∣∣〈χj,εgεαj , Tε χj,εgεβl〉
`2
−
〈
OpTd

ε (φ̃0,ε)χj,εgεαj , Tε OpTd
ε (φ̃0,ε)χj,εgεβl

〉
`2

∣∣∣ (2.56)

=
∣∣∣〈OpTd

ε (φ̃1,ε)χj,εgεαj , Tε OpTd
ε (φ̃1,ε)χj,εgεβl

〉
`2

∣∣∣+O
(
ε

6
5

)
By equation (2.7) and the definition of the symbol t∣∣∣〈OpTd

ε (φ̃1,ε)χj,εgεαj , Tε OpTd
ε (φ̃1,ε)χj,εgεβl

〉
`2

∣∣∣ = ∣∣∣〈φ̃1,εF−1
ε (χj,εgεαj) , t φ̃1,εF−1

ε (χj,εgεβl)
〉

T

∣∣∣ .
(2.57)

This gives by Definition (2.2)∣∣∣〈φ̃1,εF−1
ε (χj,εgεαj) , t φ̃1,εF−1

ε (χj,εgεβl)
〉

T

∣∣∣
≤

∫
[−π,π]d

∣∣∣φ̃1,ε(ξ) t(x, ξ)φ̃1,ε(ξ) (F−1
ε χj,εgεαj)(ξ)(F

−1
ε χj,εg

ε
βl)(ξ)

∣∣∣ dξ . (2.58)
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Now again by replacing the function φ̃1,ε on its support by 1, we get∫
[−π,π]d

∣∣∣φ̃1,ε(ξ) t(x, ξ)φ̃1,ε(ξ) (F−1
ε χj,εgεαj)(ξ)(F

−1
ε χj,εg

ε
βl)(ξ)

∣∣∣ dξ (2.59)

≤
∫

[−π,π]d

|ξ|≥ε
2
5

∣∣∣t(x, ξ) (F−1
ε χj,εgεαj)(ξ)(F

−1
ε χj,εg

ε
βl)(ξ)

∣∣∣ dξ .
We now estimate the product of the Fourier transforms. By the definition (2.4) of the inverse
Fourier transform,

(F−1
ε χj,εgεαj)(ξ) =

1
√

2π
d

∑
y∈(εZ)d

e−
i
ε ξ·yχj,ε(y)gεαj(y) .

To analyze this series and the complex conjugate with gβl respectively, we use summation by parts,
which allows us to obtain any order in ε by repeating this procedure several times. To this end we
use the discrete Laplace operator ∆ε in `2

(
(εZ)d

)
(see equation (2.125) and Appendix A.3)

(∆εf)(x) :=

(
d∑
ν=1

(τεeν + τ−εeν )− 2d

)
f(x) . (2.60)

The operator ∆ε is symmetric in `2((εZ)d), i.e.,

〈f , ∆εh〉`2 = 〈∆εf , h〉`2 , f, h ∈ `2((εZ)d) . (2.61)

In order to use (2.61) to obtain an estimate for (2.59), we have to find a function h ∈ `2((εZ)d)
such that e±

i
εx·ξ = ∆εh(x). Since

∆εe
± i
εx·ξ = −

(
2d− 2

d∑
ν=1

cos (ξν)

)
e±

i
εx·ξ ,

we have the representation

e±
i
εx·ξ = −

(
2d− 2

d∑
ν=1

cos (ξν)

)−1

∆εe
± i
εx·ξ . (2.62)

From (2.62) and (2.61) it follows that

∑
x∈(εZ)d

χj,ε(x)gεαj(x)e
± i
εx·ξ = −

(
2d− 2

d∑
ν=1

cos (ξν)

)−1 ∑
x∈(εZ)d

(∆εχj,εg
ε
αj)(x)e

± i
εx·ξ . (2.63)

We estimate the first factor on the right hand side of (2.63) in the region ξ ∈ [−π, π]d with |ξ| ≥ ε
2
5 .

From the inequality π2(1− cos ξν) ≥ ξ2ν for |ξν | ≤ π it follows that

1∑d
ν=1(2− 2 cos(ξν))

≤ π2

2
∑d
ν=1 ξ

2
ν

=
π2

2|ξ|2
.

Since we have to estimate in (2.59) the product of two Fourier transforms, we estimate the square
of this factor. We thus have for |ξ| ≥ ε

2
5 and |ξν | ≤ π , ν ∈ {1, . . . , d}(

1∑d
ν=1(2− 2 cos(ξν))

)2

≤
(
π2

2ε
4
5

)2

=
π4

2
ε−

8
5 . (2.64)

To find an estimate for the remaining series on the right hand side of (2.63), we use the differen-
tiability of the functions χj,εgαj and their Taylor expansion, setting y := x√

ε
and z := ε−

2
5x and

gαj(x) = ε−
d
4 g̃αj(ε−

1
2x) and χj,ε(x) = χ̃j(ε−

2
5x) , (2.65)

since gαj is scaled by ε−
1
2 and χj is scaled by ε−

2
5 . This yields

∂xν (χj,εgαj) (x) = ε−
d
4

(
ε−

1
2

[
χj,ε(x) (∂yν g̃αj) (ε−

1
2x)
]

+ ε−
2
5

[
g̃αj(ε−

1
2x) (∂zν χ̃j,ε) (ε−

2
5x)
])
(2.66)
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We thus have

|χj,εgαj(x± εeν)− χj,εgαj(x)| ≤ ε−
d
4

∣∣∣±{ε 1
2

[
χj,ε(x) (∂yν g̃αj) (ε−

1
2x)
]

+ ε
3
5

[
(∂zν χ̃j,ε) (ε−

2
5x)g̃αj(ε−

1
2x)
]}

+ sup
t∈[0,1]

ε

2

[
χj,ε(x± tεeν)

(
∂2
yν g̃αj

)
(ε−

1
2 (x± tεeν))

]
+

1
2
ε

11
10

[
(∂zν χ̃j,ε) (ε−

2
5 (x± tεeν)) (∂yν g̃αj) (ε−

1
2 (x± tεeν))

]
+

1
2
ε

6
5

[(
∂2
zν χ̃j,ε

)
(ε−

2
5 (x± tεeν))g̃αj(ε−

1
2 (x± tεeν))

]∣∣∣∣ .
Since the first derivatives cancel, the term ∆εχj,εg

ε
αj(x) can thus by (2.66) be estimated as follows:

∣∣∆εχj,εg
ε
αj(x)

∣∣ = ∣∣∣∣∣
d∑
ν=1

(χj,εgαj(x+ ε eν)− χj,εgαj(x)) + (χj,εgαj(x− ε eν)− χj,εgαj(x))

∣∣∣∣∣
= ε−

d
4
ε

2

d∑
ν=1

{
sup
t∈[0,1]

∣∣∣χj,ε(x+ ε eν)
(
∂2
yν g̃αj

)
(ε−

1
2 (x+ ε eν))

∣∣∣
+
∣∣∣ε 1

10 (∂zν χ̃j,ε) (ε−
2
5 (x+ ε eν)) (∂yν g̃αj) (ε−

1
2 (x+ ε eν))

∣∣∣
+
∣∣∣ε 1

5
(
∂2
zν χ̃j,ε

)
(ε−

2
5 (x+ ε eν))g̃αj)(ε−

1
2 (x+ ηεeν))

∣∣∣
+
∣∣∣χj,ε(x− ε eν)

(
∂2
yν g̃αj

)
(ε−

1
2 (x− ε eν))

∣∣∣
+
∣∣∣ε 1

10 (∂zν χ̃j,ε) (ε−
2
5 (x− ε eν)) (∂yν g̃αj) (ε−

1
2 (x− ε eν))

∣∣∣
+
∣∣∣ε 1

5
(
∂2
zν χ̃j,ε

)
(ε−

2
5 (x− ε eν))g̃αj(ε−

1
2 (x− ηεeν))

∣∣∣} (2.67)

The cut-off functions and the eigenfunctions gαj of the harmonic oscillator are together with all
their derivatives summable. Thus the series on the right hand side of (2.63) is bounded and by
(2.67) of order ε1−

d
4 . Since all the estimates were independent of the choice of (αj), we get by

(2.64) for some C > 0 ∣∣∣(F−1
ε χj,εgεαj)(ξ)(F

−1
ε χj,εg

ε
βl)(ξ)

∣∣∣ = O
(
ε

2
5−

d
2

)
(2.68)

Thus with one summation by parts, we gain a factor ε
2
5 . Iteration this procedure N times and

estimating the derivatives of gαj and χj,ε by the supremum over the intervals IνN = [x−Nεeν , x+
Nεeν ], which is bounded and summable with respect to x, we gain the factor ε

2N
5 . The integration

in (2.59) yields bounded terms, thus∫
[−π,π]d

|ξ|≥ε
2
5

t(z, ξ)
1

(2π)d

∣∣∣(F−1
ε χj,εgεαj)(ξ)(F

−1
ε χj,εg

ε
βl)(ξ)

∣∣∣ dξ = O
(
ε

2N
5 − d

2

)
, N ∈ N

and by the equations (2.56), (2.57) and (2.58), we have the stated result.
(d):
We split this estimate in two steps. At first, similar to the proof of point (a), we estimate∣∣∣〈gαj , Opε(φ0,ε)T̂q,j Opε(φ0,ε) gβl

〉
L 2

−
〈
gαj , χj,ε Opε(φ0,ε)T̂q,j Opε(φ0,ε)χj,ε gβl

〉
L 2

∣∣∣
≤
∫
|x−xj |≥ε−

2
5

∣∣∣gαj(x)(Opε(φ0,ε)T̂q,j Opε(φ0,ε)
)
gβl(x)

∣∣∣ ≤ Ce−cε
− 1

5 .

Here we used that the derivatives of the eigenfunctions are bounded and that the eigenfunctions
are exponentially decreasing.
As second step we analyze the difference∣∣∣〈gαj , T̂q,j gβl〉

L 2
−
〈
gαj , Opε(φ0,ε)T̂q,j Opε(φ0,ε) gβl

〉
L 2

∣∣∣ = ∣∣∣〈gαj , Opε(φ1,ε)2T̂q,j gβl
〉

L 2

∣∣∣ .
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Similarly to (2.57), by using Parseval‘s equation we estimate the last term,∣∣∣〈gαj , Opε(φ1,ε)2T̂q,j gβl
〉

L 2

∣∣∣ = ∣∣∣〈F−1
ε gαj , φ

2
1,εT̂q,j F

−1
ε gβl

〉
L 2

∣∣∣
≤
∫
|ξ|≥ε

2
5

∣∣(F−1
ε gαj

)
(ξ)tqj(ξ)

(
F−1
ε gβl

)
(ξ)
∣∣ dξ ≤ Cecε

− 1
5 ,

where in the last step we used that the Fourier transform of the Gauss function is again a Gauss
function, and thus the Fourier transforms of the eigenfunctions and its derivatives are exponentially
decreasing and bounded as the eigenfunctions are.

2

Since Theorem 2.10 compares the eigenvalues of a self adjoint unbounded operator on `2
(
(εZ)d

)
with the eigenvalues of the harmonic oscillator, which is an unbounded self adjoint operator on
L 2

(
Rd
)
, we have to compare some matrix elements with respect to the scalar product 〈. , .〉`2

with those with respect to 〈. , .〉L 2 . How this can be done is shown in the next lemma, giving an
estimate for the difference of these terms.

Lemma 2.14. Let Tε,q,j and T̂q,j be defined in (2.29) and (2.33) respectively and let V jε be
given by (2.35). Let f, g ∈ L 2

(
Rd
)

denote normalized eigenfunctions of the harmonic oscillator
given in (2.48) (of the form (2.49)) and fε, gε ∈ `2

(
(εZ)d

)
their restrictions to the lattice. Let

χj,ε, 1 ≤ j ≤ m, φ̃0,ε and φ0 be the cut-off functions defined in (2.41), (2.45) and (2.44). Then
for ε sufficiently small

(a)〈
χj,εf

ε , OpTd
ε (φ̃0,ε)Tε,q,j OpTd

ε (φ̃0,ε)χj,εgε
〉
`2

= ε−d
(〈
χj,εf , Opε(φ0)T̂q,j Opε(φ0)χj,εg

〉
L 2

+O
(
ε

6
5

))
.

(b) 〈
fε , χj,εV

j
ε χj,ε g

ε
〉
`2

= ε−d
(〈
f , χj,εV

j
ε χj,ε g

〉
L 2 +O

(
ε

13
10

))
.

Proof of Lemma 2.14:

(a):
By use of the isometry of the Fourier transform (2.7) and the symbol tπ,q,j associated to Tε,q,j , we
get〈

χj,εf
ε , OpTd

ε (φ̃0,ε)Tε,q,j OpTd
ε (φ̃0,ε)χj,εgε

〉
`2

=
〈
F−1
ε (χj,εfε) , φ̃0,εtπ,q,j φ̃0,ε F−1

ε (χj,εgε)
〉

T

=
∫

[−π,π]d
φ̃0,ε(F−1

ε χj,εfε)(ξ)tπ,q,j(ξ)
(
φ̃0,ε (F−1

ε χj,εg
ε)
)

(ξ) dξ . (2.69)

Since for ε small enough φ̃0,ε|[−π,π]d = φ0|[−π,π]d and φ0(x) = 0 for x ∈ Rd \ [−π, π]d, we can within
the integral replace φ̃0,ε by φ0 and extend then the range of the integral to Rd. Furthermore for ε
small enough we can identify tπ,q,j and tq,j on the support of φ0, thus∫

[−π,π]d
φ̃0,ε(F−1

ε χj,εfε)(ξ)tπ,q,j(ξ)
(
φ̃0,ε (F−1

ε χj,εg
ε)
)

(ξ) dξ

=
∫

Rd
φ0(ξ)(F−1

ε χj,εfε)(ξ)tq,j(ξ)φ0(ξ) (F−1
ε χj,εg

ε)(ξ) dξ . (2.70)

The right hand side of (2.70) can, by addition of a− a with

a := φ0(ξ)(F−1
ε χj,εf)(ξ)tq,j(ξ)φ0(ξ)

(
(F−1

ε χj,εg
ε)(ξ) + (F−1

ε χj,εg)(ξ)
)
,
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be decomposed to the sum∫
Rd
φ0(ξ)

(
(F−1

ε χj,εfε)(ξ)− (F−1
ε χj,εf)(ξ)

)
tq,j(ξ)φ0(ξ) (F−1

ε χj,εg
ε)(ξ) dξ

+
∫

Rd
φ0(ξ)(F−1

ε χj,εf)(ξ)) tq,j(ξ)φ0(ξ) ((F−1
ε χj,εg

ε)(ξ)− (F−1χj,εg)(ξ)) dξ

+
∫

Rd
φ0(ξ)(F−1

ε χj,εf)(ξ)) tq,j(ξ)φ0(ξ) (F−1
ε χj,εg)(ξ) dξ . (2.71)

The last summand in (2.71) can be understood as a scalar product in L 2(Rdξ) and is, by the
“Parseval” relation (2.10) for the quantized Fourier transform (2.9), equal to the remaining term
on the right hand side of (a).
We therefore have to estimate the first two terms on the right hand side of (2.71), where we
separately treat the factors in the integral. Using the identity εd =

∫
[x,x+ε[d

dy and the definitions
(2.9) of F−1

ε and (2.4) of F−1
ε , we rewrite the first factor in the first summand. Thus the identity

of fε and gε with f and g respectively on the points of the lattice yields

φ0(ξ)
(
(F−1

ε χj,εfε)(ξ)− (F−1
ε χj,εf)(ξ)

)
= φ0(ξ)

(
ε
√

2π
)−d ∑

x∈(εZ)d

∫
[x,x+ε[d

(
e
i
εx·ξχj,εf(x)− e

i
εy·ξχj,εf(y)

)
dy

= φ0(ξ)
(
ε
√

2π
)−d ∑

x∈(εZ)d

∫
[x,x+ε[d

(
(e

i
εx·ξ − e

i
εy·ξ)χj,εf(x)− e

i
εy·ξ(χj,εf(y)− χj,εf(x))

)
dy .

(2.72)

For the first summand in (2.72), we use that |ξ| ≤ 2ε
2
5 on suppφ0, thus with Qx = [x, x+ ε]d∣∣∣e iεxξ − e

i
εyξ
∣∣∣ ≤ sup

y∈Qx

∣∣ 1
ε (x− y) · ξ

∣∣ = O
(
ε

2
5

)
.

Since the resulting term is independent of y, we use again 1 = ε−d
∫
[x,x+ε]d

dy to get

φ0(ξ)
(
ε
√

2π
)−d ∣∣∣∣∣∣

∑
x∈(εZ)d

∫
[x,x+ε[d

(e
i
εx·ξ − e

i
εy·ξ)χj,εf(x) dy

∣∣∣∣∣∣
≤ φ0(ξ)

√
2π

−d
ε

2
5C

∑
x∈(εZ)d

χj,ε|f(x)| . (2.73)

Since f was supposed to be a normalized eigenfunction of the harmonic oscillator, i.e. scaled with
ε−

1
2 and normalized with a factor ε−

d
4 , the last sum can be estimated with the substitution x = εv

and
f(x) = ε−

d
4 f̃(x/

√
ε) (2.74)

as ∑
x∈(εZ)d

χj,ε|f(x)| ≤ ε−
d
4

∑
v∈Zd

|f̃(
√
εv)| = ε−

3d
4

ε d2 ∑
v∈Zd

|f̃(
√
εv)|

 (2.75)

Now we notice, that by the definition of the Riemannian integral

lim
ε→0

ε d2 ∑
v∈Zd

|f̃(
√
εv)|

 =
∫

Rd
|f̃(u)| du , (2.76)

which is a constant independent of ε.
By inserting (2.76) into (2.75), we get the estimate∑

x∈(εZ)d

χj,ε|f(x)| = O
(
ε−

3d
4

)
. (2.77)
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Inserted in (2.73), this yields

φ0(ξ)
(
ε
√

2π
)−d ∣∣∣∣∣∣

∑
x∈(εZ)d

∫
[x,x+ε[d

(e
i
εx·ξ − e

i
εy·ξ)χj,εf(x) dy

∣∣∣∣∣∣ ≤ φ0(ξ)Cε
2
5−

3d
4 . (2.78)

To estimate the second summand on the right hand side of (2.72), we use |xk−yk| ≤ ε for all k. In
order to take the scaling of f and χj with respect to ε into account, we set u := x√

ε
and z := xε−

2
5 .

This yields for f̃ and χ̃j as defined in (2.74) and (2.75) respectively with Iν(x) = [x, x+ εeν [

|χj,εf(y)−χj,εf(x)| ≤ ε−
d
4 d
√
ε

d∑
ν=1

sup
w∈Iν

∣∣∣χj,ε(w)
(
∂uν f̃

)
(ε−

1
2w) + ε

1
10

(
∂zν χ̃j(ε

− 2
5w))

)
f̃(ε−

1
2w)

∣∣∣ .
(2.79)

Again the resulting term does not depend on y, therefore by (2.79)∣∣∣∣∣∣φ0(ξ)
(
ε
√

2π
)−d ∑

x∈(εZ)d

∫
[x,x+ε[d

e
i
εy·ξ(χj,εf(y)− χj,εf(x)) dy

∣∣∣∣∣∣
≤ φ0(ξ)

√
2π

−d
ε−

d
4 d
√
εC

×
∑

x∈(εZ)d

d∑
ν=1

sup
w∈[x,x+εeν ]

∣∣∣χj,ε(w)
(
∂uν f̃

)
(ε−

1
2w) + ε

1
10

(
∂zν χ̃j(ε

− 2
5w)

)
f̃(ε−

1
2w)

∣∣∣ (2.80)

Since the derivative of f is of the same structure as f itself, we have by the arguments leading to
(2.75)

ε−
d
4

∑
x∈(εZ)d

d∑
ν=1

sup
w∈[x,x+εeν ]

∣∣∣χj,ε(w)
(
∂uν f̃

)
(ε−

1
2w) +

(
∂zν χ̃j(ε

− 2
5w)

)
f̃(ε−

1
2w)

∣∣∣
≤ Cε−

3d
4 ε

d
2

d∑
ν=1

∑
y∈Zd

sup
w∈[y,y+eν ]

{∣∣∣(∂uν f̃)∣∣∣+ ∣∣∣f̃ ∣∣∣} (ε
1
2w)

≤ Cε−
3d
4

d∑
ν=1

ε d2 ∑
y∈Zd

sup
w∈[y,y+1]d

∣∣∣∂uν f̃ ∣∣∣ (ε 1
2w) + ε

d
2

∑
y∈Zd

sup
w∈[y,y+1]d

∣∣∣f̃ ∣∣∣ (ε 1
2w)

 (2.81)

It follows by (2.76) (see the construction of the Riemannian integral) that both summands on the
right hand side of (2.81) tend to a finite limit and are therefore bounded by constants independent
of ε, thus

ε−
d
4

∑
x∈(εZ)d

d∑
ν=1

sup
w∈[x,x+εeν ]

∣∣∣χj,ε(w)
(
∂uν f̃

)
(ε−

1
2w) + ε

1
10

(
∂zν χ̃j(ε

− 2
5w)

)
f̃(ε−

1
2w)

∣∣∣ = O
(
ε−

3d
4

)
(2.82)

Inserted in (2.80), this leads for some C > 0 to∣∣∣∣∣∣φ0(ξ)
(
ε
√

2π
)−d ∑

x∈(εZ)d

∫
[x,x+ε[d

e
i
εy·ξ(χj,εf(y)− χj,εf(x)) dy

∣∣∣∣∣∣ ≤ Cφ0(ξ)ε
1
2−

3d
4 (2.83)

Inserting (2.83) and (2.78) into (2.72) yields

φ0(ξ)
∣∣∣(F−1

ε χj,εfε)(ξ)− (F−1
ε χj,εf)(ξ)

∣∣∣ = O
(
ε

2
5−

3d
4

)
. (2.84)

For the first summand in (2.71), we use the estimate supξ φ0(ξ)tq,j(ξ) ≤ cε
4
5 , which follows from

the fact that tq,j is quadratic with respect to ξ together with the scaling of the support of φ0. This
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yields together with (2.84)∣∣∣∣∫
Rd
φ0(ξ)

(
(F−1

ε χj,εfε)(ξ)− (F−1
ε χj,εf)(ξ)

)
tq,j(ξ)φ0(ξ) (F−1

ε χj,εg
ε)(ξ) dξ

∣∣∣∣
≤ Cε

2
5−

3d
4

∫
Rd
|φ0(ξ)tq,j(ξ)|

∣∣φ0(ξ)(F−1
ε χj,εg

ε)(ξ)
∣∣ dξ

≤ Cε
6
5−

3d
4

∫
Rd

∣∣φ0(ξ)(F−1
ε χj,εg

ε)(ξ)
∣∣ dξ = O

(
ε

6
5−d
)
.

In the last step, we used that g and its Fourier transform are of order ε−
d
4 .

The second summand in (2.71) can be treated using the same arguments, so∫
Rd
φ0(ξ)(F−1

ε χj,εf)(ξ)) tq,j(ξ)φ0(ξ) ((F−1
ε χj,εg

ε)(ξ)− (F−1
ε χj,εg)(ξ)) dξ = O

(
ε

6
5−d
)
, (2.85)

which by (2.71) proves (a) of Lemma 2.14.

(b):
Writing the scalar product similarly to equation (2.71) using the identity εd =

∫
[x,x+ε[d

dy, we get〈
fε , χj,εV

j
ε χj,ε g

ε
〉
`2

=
∑

x∈(εZ)d

fε(x) (χj,εV jε χj,ε g
ε)(x) = (2.86)

=
1
εd

∑
x∈(εZ)d

∫
[x,x+ε[d

{
(f(x)− f(y)) (χj,εV jε χj,ε g)(x)+

+ f(y)
(
(χj,εV jε χj,εg)(x)− (χj,εV jε χj,εg)(y)

)
+ f(y)χj,εV jε χj,ε g(y)

}
dy .

The functions arising in the last summand are all defined on Rd, the sum of integrals on the lattice
cells can therefore be combined to an integral on Rd, which by definition is equal to the scalar
product in L 2(Rd) multiplied by the factor ε−d. Similar to the proof of (a) it remains to estimate
the first two terms.

In order to estimate the second factor in the first summand on the right hand side of (2.86),
we observe in (2.35) that V jε is of second order in x − xj and that the term constant in x is of
order ε. Since we have |x− xj |2 ≤ 4ε

4
5 for all x ∈ supp(χ), this gives for some C > 0 the estimate

supx∈Rd
∣∣χjV jε χj(x)∣∣ ≤ Cε

4
5 for the cut potential, thus

ε−d

∣∣∣∣∣∣
∑

x∈(εZ)d

∫
[x,x+ε)d

(f(x)− f(y))χj,εV jε χj,ε g(x) dy

∣∣∣∣∣∣
≤ ε

4
5−dC

∑
x∈(εZ)d

∫
[x,x+ε)d

|f(x)− f(y)| |g(x)| dy

Setting u = x√
ε

and Iν(u) = [u, u +
√
εeν [, a Taylor expansion at the point x yields for f̃ defined

in (2.74)

|f(x)− f(y)| ≤ ε
1
2−

d
4

d∑
ν=1

sup
z∈Iν(u)

|(∂uν f̃)(z)| . (2.87)

Thus by (2.87) and with g̃ defined similar to f̃

ε−d
∑

x∈(εZ)d

∫
[x,x+ε)d

|f(x)− f(y)| |g(x)| dy

≤ Cε
1
2−

d
2

d∑
ν=1

∑
x∈(εZ)d

sup
z∈[x,x+ε[d

|∂uν f̃ |(ε−
1
2 z)|g̃|(ε− 1

2x) ε−d
∫

[x,x+ε[d
dy

≤ Cε
1
2−d

d∑
ν=1

ε
d
2

∑
v∈Zd

sup
z∈[v,v+1[d

|∂uν f̃ ||g̃|(ε
1
2 z) , (2.88)
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where in the last step we used the substitution v = εx. By (2.76), the sum is bounded by a
constant independent of ε, thus we get

ε−d
∑

x∈(εZ)d

∫
[x,x+ε)d

|f(x)− f(y)| |g(x)| dy = O
(
ε

1
2−d
)
. (2.89)

Inserting (2.89) in (2.87) yields

ε−d

∣∣∣∣∣∣
∑

x∈(εZ)d

∫
[x,x+ε)d

(f(x)− f(y))χj,εV jε χj,ε g(x) dy

∣∣∣∣∣∣ = O
(
ε

13
10−d

)
. (2.90)

The second term in equation (2.86) can be shown by similar arguments to be of the same order
with respect to ε, which completes the proof of the second part of the lemma. 2

There is now still one estimate needed for the proof of Theorem 2.10. It concerns the error,
which is made by replacing the x-dependent quadratic approximation T̂q of the kinetic energy by
the operator fixed at the well (and thus constant with respect to x).

Lemma 2.15. Let T̂q and T̂q,j be given by (2.32) and (2.33) respectively for 1 ≤ j ≤ m. Let χj,ε
be the cut-off function defined in (2.41) and f, g denote normalized eigenfunctions of the harmonic
oscillator given in (2.48), then∣∣∣〈f , χj,ε T̂q χj,ε g〉

L 2
−
〈
f , χj,ε T̂q,j χj,ε g

〉
L 2

∣∣∣ = O
(
ε

7
5

)
.

Proof:
By the definitions of the operators∣∣∣〈f , χj,ε (T̂q − T̂q,j)χj,ε g

〉
L 2

∣∣∣ = ∣∣∣〈f , χj,ε ε2∑ν,µ(Bνµ(x)−Bνµ(xj))∂ν∂µ χj,ε g
〉

L 2

∣∣∣ .
As g is scaled by x√

ε
,

‖ε2∂ν∂µχj,εg‖L 2 = O(ε) .

Since |x| ≤ 2ε
2
5 in the support of χj,ε, we have Bνµ(x)−Bνµ(xj) = O

(
ε

2
5

)
, which together with

the preceding estimate proves the lemma by the Schwarz inequality. 2

2.2.3. Proof of Theorem 2.10. We split the proof of the theorem in two parts by estimating
the term En(ε)

ε in the limit ε→ 0 from above (2.91) and from below (2.101) by en, which together
give the equality (2.36).

Estimate from above:
En(ε)
ε

≤ en +O
(
ε

1
5

)
for ε→ 0 . (2.91)

The statement (2.91) can be shown using the preceding Lemmata and estimates.
At first we use the points (a) and (c) in Lemma 2.13, leading to the estimate〈
gεαj , Hε g

ε
βl

〉
`2

=
〈
gεαj , χj,εHεχj,ε g

ε
βl

〉
`2

+O
(
ε

6
5

)
(2.92)

=
〈
gεαj , χj,ε OpTd

ε (φ̃0,ε)Tε OpTd
ε (φ̃0,ε)χj,ε gεβl)

〉
`2

+
〈
gεαj , χj,εVεχj,ε g

ε
βl

〉
`2

+O
(
ε

6
5

)
.

By Proposition B.9 in Appendix B, localized at the critical points with respect to x and ξ simulta-
neously, Tε can (modulo terms of order ε

6
5 ) be replaced by its quadratic approximation Tε,q,j at the

point xj . Furthermore by (2.43) we can replace Vε localized at xj by the quadratic approximation
V jε given in (2.35). Thus〈
gεαj , Hε g

ε
βl

〉
`2

=
〈
gεαj , χj,ε OpTd

ε (φ̃0,ε)Tε,q,j OpTd
ε (φ̃0,ε)χj,εgεβl

〉
`2

+
〈
gεαj , χj,εV

j
ε χj,ε g

ε
βl

〉
`2

+O
(
ε

6
5

)
= ε−d

(〈
gαj , χj,ε Opε(φ0,ε)T̂q,j Opε(φ0,ε)χj,εgβl

〉
L 2

+
〈
gαj , χj,εV

j
ε χj,ε gβl

〉
L 2 +O

(
ε

6
5

))
,
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where for the second step, the transition from (functions and scalar product in) `2
(
(εZ)d

)
to

L 2
(
Rd
)
, we used Lemma 2.14,(a) and (b).

Point (d) and (e) of Lemma 2.13 yield〈
gαj , χj,ε Opε(φ0,ε)T̂q,j Opε(φ0,ε)χj,ε gβl)

〉
L 2

+
〈
gαj , χj,εV

j
ε χj,ε gβl

〉
L 2 (2.93)

=
〈
gαj , T̂q,j gβl

〉
L 2

+
〈
gαj , V

j
ε gβl

〉
L 2 +O

(
ε

6
5

)
.

By use of Appendix A.2, we can perform a coordinate transformation to pass over from Ĥj given
by (2.47) to the diagonalized Hj given by (2.48), therefore〈

gαj , T̂q,j gβl

〉
L 2

+
〈
gαj , V

j
ε gβl

〉
L 2 =

〈
gαj , Ĥ

j gβl

〉
L 2

=
〈
gαj , H

j gβl
〉

L 2 . (2.94)

Since Hjgαj = εen(α,j)gαj , the estimates (2.92) to (2.94) can be combined to give〈
gεαj , Hε g

ε
βl

〉
`2

= ε−d
(
ε em(α,j)δm(α,j),n(β,l) +O

(
ε

6
5

))
, (2.95)

where m(α, j) and n(β, l) are the numbers of the eigenvalues corresponding to the pairs (α, j)
and (β, l). The estimate (2.91) follows from (2.95), if we use the Min-Max-formula for a fixed,
sufficiently small ε. Choose (n − 1) linear independent elements ζ1, . . . ζn−1 of the domain of Hε

and define

Q(ζ1, . . . ζn−1) := inf
{
〈ψ , Hε ψ〉`2 | ψ ∈ D(Hε), ‖ψ‖ = 1, ψ ∈ [ζ1, . . . ζn−1]⊥

}
(2.96)

and
En(ε) := sup

ζ1,...ζn−1

Q(ζ1, . . . ζn−1) . (2.97)

By Theorem B.12 in Appendix B.5, which is an analog of Persson’s Theorem on the infimum of the
essential spectrum in the discrete setting, Hypothesis 2.7 ensures that inf σess(Hε) ≥ c > 0. Since
En(ε) is by (2.95) of order ε, it belongs for ε small enough to the discrete spectrum. Thus the
Min-Max principle shows that E1(ε) ≤ E2(ε) ≤ . . . ≤ En(ε) are the first (ordered by magnitude)
n eigenvalues of Hε.

For λ > 0 we can choose ζ1, . . . ζn−1, such that

En(ε) ≤ Q(ζ1, . . . ζn−1) + λ . (2.98)

To deal with the factor ε−d in (2.95), we use the estimate〈
gεαj , g

ε
βl

〉
`2

= ε−d
(
〈gαj , gβl〉L 2 +O(

√
ε)
)
, (2.99)

which follows from the following considerations. Similar to the proof of Lemma 2.14, we use the
identity εd =

∫
[x,x+ε[d

dy, to write

〈fε , gε〉`2 =
∑

x∈(εZ)d

fε(x) gε(x)

=
1
εd

∑
x∈(εZ)d

∫
[x,x+ε[d

{(f(x)− f(y)) g(x) + f(y) (g(x)− g(y)) + f(y)g(y)} dy .

The last summand is equal to the scalar product in L 2(Rd) multiplied by the factor ε−d. By
(2.89), the first two summands in the integral are of order ε

1
2−d, thus (2.99) is shown.

It follows from (2.99) that for ε > 0 sufficiently small, the functions gεαj ∈ `2
(
(εZ)d

)
are linearly

independent. Thus the functions associated to the first n eigenvalues of Hj span an n-dimensional
space, which we denote by Mn. Then N := Mn ∩ [ζ1, . . . ζn−1]⊥ is at least one dimensional. Thus
there exists a function ψ ∈ N with ‖ψ‖ = 1 and it follows from (2.95) and (2.96) that

Q(ζ1, . . . ζn−1) ≤ 〈ψ , Hε ψ〉`2 ≤ ε en +O
(
ε

6
5

)
(2.100)

Since λ is arbitrary, we have by (2.97) and (2.100)

En(ε) ≤ ε en +O
(
ε

6
5

)
proving (2.91).
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Estimate from below:
En(ε)
ε

≥ en +O
(
ε

1
5

)
for ε→ 0 (2.101)

As in the first part of the proof, we will use the cut-off functions χj,ε and φ̃k defined in (2.41)
and (2.45) (which are scaled by ε−

2
5 ) and the corresponding function φk on Rd.

Let l ≤ n − 1 such that en = en−1 = . . . = el+1 > el, where er denotes the r-th eigenvalue
of K for r ∈ N∗ and e0 := −∞. Let e ∈ (el, en), particularly e 6∈ σ(

⊕
j Kj). Then we claim that

there exists a constant C > 0 such that

〈ψ , Hε ψ〉`2 ≥ ε e〈ψ , ψ〉`2 + 〈ψ , Rl ψ〉`2 − C‖ψ‖2`2ε
6
5 , ψ ∈ D(Hε) , (2.102)

for some symmetric operator Rl with rankRl ≤ l. This implies (2.101). To see this implication,
let ψ ∈ Mn with ‖ψ‖ = 1. From the Mini-Max-formula it follows

En(ε) ≥ 〈ψ , Hε ψ〉`2 . (2.103)

On the other hand there exists a ψ ∈ Mn ∩ kerRl, since dim ker (Rl|Mn
) ≥ 1. For this ψ the

inequality (2.102) yields

〈ψ , Hε ψ〉`2 ≥ ε e+O
(
ε

6
5

)
. (2.104)

which together with (2.103) gives (2.101). It therefore suffices to show (2.102).
By Lemma 2.12, Hε splits as

Hε =
m∑
j=1

χj,εHεχj,ε + χ0,εHεχ0,ε +O
(
ε

6
5

)
, (2.105)

where the estimate on the error term in the following estimates is understood with respect to
operator norm. χ0,ε is supported in the region outside of the wells, thus |x−xj | > ε

2
5 for 1 ≤ j ≤ m

and x ∈ suppχ0,ε. Since the potential is of second order in x or of order ε, we have for ε sufficiently
small and e < en

χ0,εHεχ0,ε ≥ χ0,εVεχ0,ε ≥ ε e χ2
0,ε . (2.106)

In the neighborhoods of the wells, (2.43) allows to approximate the potential by the quadratic
term, therefore (2.43) and (2.106) give

Hε ≥
m∑
j=1

χj,ε(Tε + V jε )χj,ε + ε e χ2
0,ε +O

(
ε

6
5

)
. (2.107)

In the first summand we introduce the partition of unity (2.45) in momentum space and get by
Lemma 2.12

m∑
j=1

χj,ε(Tε + V jε )χj,ε =
m∑
j=1

χj,ε(x)OpTd
ε (φ̃0)(Tε + V jε )OpTd

ε (φ̃0)χj,ε(x)+

+
m∑
j=1

χj,ε(x) OpTd
ε (φ̃1)(Tε + V jε ) OpTd

ε (φ̃1)χj,ε(x) +O
(
ε

6
5

)
. (2.108)

By use of the norm estimates for the operator localized simultaneously with respect to x and ξ

given in Proposition B.9 (Appendix B), it is modulo terms of order O
(
ε

6
5

)
possible to replace Tε

by Tε,q,j in the region localized at ξ = 0 and x = xj . The function φ̃1 is supported in the exterior
region with |ξ| > ε

2
5 , thus we have by arguments similar to those leading to (2.106)

OpTd
ε (φ̃1)(Tε + V jε ) OpTd

ε (φ̃1) ≥ ε e OpTd
ε (φ̃1)2 . (2.109)

Substituting (2.109) in (2.108), replacing Tε by Tε,q,j in the first summand of (2.108) and substi-
tuting the resulting equation in (2.107) yields

Hε ≥
m∑
j=1

χj,ε(x) OpTd
ε (φ̃0) (Tε,q,j + V jε ) OpTd

ε (φ̃0)χj,ε(x) (2.110)

+ε e
m∑
j=1

χj,ε(x)
(
OpTd

ε (φ̃1)
)2

χj,ε(x) + ε eχ2
0,ε +O

(
ε

6
5

)
.
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By the isometry of the Fourier transform the expectation value of the first summand of (2.110)
can be written as

m∑
j=1

〈
OpTd

ε (φ̃0)χj,ε(x)ψ , (Tε,q,j + V jε ) OpTd
ε (φ̃0)χj,ε(x)ψ

〉
`2

(2.111)

=
m∑
j=1

〈
φ̃0F−1

ε (χj,εψ) , (tπ,q,j + F−1
ε V jε Fε) φ̃0F−1

ε (χj,εψ)
〉

T
.

The cut-off function φ̃0 restricts the integration from the torus to the neighborhood of the origin
scaled by ε−

2
5 . For ε sufficiently small we therefore can pass from the scalar product in L 2

(
Td
)

defined in (2.2) to the scalar product in L 2
(
Rd
)
, if we simultaneously replace φ̃0 by φ0 and tπ,q,j

by tq,j . This follows from the fact, that the range of the integral is in both cases restricted to the
support of φ0. Changing variables as described in Appendix A.2, we can pass from Ĥj to Hj .
Moreover F−1

ε V jε Fε = F−1
ε V jε Fε and Fε〈ξ , ξ〉F−1

ε = −ε2∆, thus we get, for j = 0, . . .m,〈
φ̃0F−1

ε (χj,εψ) , (tπqj + F−1
ε V jε Fε) φ̃0F−1

ε (χj,εψ)
〉

T
(2.112)

=
〈
φ0F−1

ε (χj,εψ) , (F−1
ε HjFε)φ0F−1

ε (χj,εψ)
〉

L 2 .

We introduce the spectral decomposition of F−1
ε HjFε and denote by lj the number of eigenvalues

of Hj below e. Thus elj ≤ el < e for all j and
∑m
j=1 lj = l. By replacing all eigenvalues ekj > e of

Hj by e we get

(F−1
ε HjFε) = ε

∑
kj

ekjΠ
j
kj
≥ ε

∑
kj≤lj

ekj Πj
kj

+ ε e (1−
∑
kj≤lj

Πj
kj

) , (2.113)

where Πj
kj

denotes the projection on the eigenspace to the kj-th eigenvalue of Hj . Inserting
(2.113) into the right hand side of (2.112) and going back to the scalar product on L 2

(
Td
)

again
by replacing φ0 by φ̃0 yields

m∑
j=1

〈
OpTd

ε (φ̃0)χj,ε(x)ψ , (Tε,q,j + V jε ) OpTd
ε (φ̃0)χj,ε(x)ψ

〉
`2

≥
m∑
j=1

{〈
φ̃0F−1

ε (χj,εψ) , ε
∑
kj

(ekj − e)Πj
kj
φ̃0Fε

−1(χj,εψ)
〉

T

+ε e
〈
φ̃0F−1

ε (χj,εψ) , φ̃0F−1
ε (χj,εψ)

〉
T

}
(2.114)

Thus by (2.114) together with (2.110) there exists a constant C > 0 such that

〈ψ , Hε ψ〉`2 ≥ ε e
m∑
j=1

〈
φ̃0F−1

ε (χj,εψ) , φ̃0Fε
−1(χj,εψ)

〉
T

(2.115)

+
m∑
j=1

〈
φ̃0F−1

ε (χj,εψ) , (ε
∑
k≤lj (ek − e)Πj

k) φ̃0Fep
−1(χj,εψ)

〉
T

+ε e
m∑
j=1

〈
φ̃1F−1

ε (χj,εψ) , φ̃1F−1
ε (χj,εψ)

〉
T

+ε e
〈
(F−1

ε χ0,εψ) , (φ̃2
0 + φ̃2

1)(Fε
−1χ0,εψ)

〉
T
− Cε

6
5 ‖ψ‖2`2 .

The introduction of φ̃2
0 + φ̃2

1 = 1 in the last summand allows us to combine this term with the first
and third summand. Since rank(A+B) ≤ rankA+ rankB and rankΠj

kj
= 1, the operators in the

scalar products contributing to the second summand has rank lj . The restriction by the cut-off
functions does not increase the rank and moreover

∑m
j=1 lj = l, thus the rank of the operator

defined by

Rl :=
m∑
j=1

(Fε
−1χj,εFε)φ̃0

∑
k≤lj

(ε(ek − e)Πj
k)φ̃0(F−1

ε χj,εFε)
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is at most equal to l. The right hand side of equation (2.115) can therefore for some C > 0 be
written as

ε e
m∑
j=0

〈
φ̃0(F−1

ε χj,εψ) , φ̃0(F−1
ε χj,εψ)

〉
T

+
〈
F−1
ε ψ , Rl (Fε

−1ψ)
〉

T

+ ε e
m∑
j=0

〈
φ̃1,ε(F−1

ε χj,εψ) , φ̃1,ε(Fε
−1χj,εψ)

〉
T
− Cε

6
5 ‖ψ‖2`2 . (2.116)

Again the first and third summand can be combined so that the cut-off functions in both spaces
add up to 1. We thus get by (2.115) and (2.116) that for some C > 0

〈ψ , Hε ψ〉`2 ≥ ε e〈ψ , ψ〉`2 + 〈ψ , Alψ〉`2 − Cε
6
5 ‖ψ‖2`2 , (2.117)

where Al := Fε
−1RlFε is again an operator of at least rank l, because the rank of an operator

is not changed by taking the Fourier transform. Thus it is shown that (2.102) holds and by the
considerations at the beginning of the second part of the proof, the assertion (2.101) follows. Com-
bined with (2.91), this completes the proof of Theorem 2.10.

2

2.3. Probabilistic Operator

Returning to the situation described in the introduction, we will show the applicability of
Theorem 2.10 to Hamilton operators appearing in the discussion of questions connected to the
thermodynamic limit of the dynamics in metastable mean field spin chains.

To this end we have to check wether the operators induced by a Markov chain, which we call
probabilistic operators, satisfy the conditions described in Hypothesis 2.7.

First we describe a general notion of a probabilistic operator, then we give an example and
analyze it more precisely.

Let us consider a family {µε}ε∈(0,ε0] such that the function µε : (εZ)d → (0, 1] denotes a prob-
ability measure on the lattice (εZ)d. Then a Markov chain is described by means of a ”transition
matrix” Pε : (εZ)d×(εZ)d → [0, 1], where Pε(x, y) is interpreted as the probability of the transition
from x ∈ (εZ)d to y ∈ (εZ)d. Pε is a stochastic matrix, thus∑

y∈(εZ)d

Pε(x, y) = 1 , x ∈ (εZ)d . (2.118)

We assume that Pε satisfies the detailed balance condition, i.e.

µε(x)Pε(x, y) = µε(y)Pε(y, x) . (2.119)

Then (1− Pε) defines a self adjoint diffusion operator on `2
(
(εZ)d, µε

)
via

(1− Pε)u(x) = u(x)−
∑

y∈(εZ)d

Pε(x, y)u(y) .

In fact Pε is a bounded operator on `2((εZ)d, µε) with ‖Pε‖ = 1. To see this, we first notice that
by (2.118)

|Pεu(x)|2 =

 ∑
y∈(εZ)d

Pε(x, y)

(∑
γ

Pε(x, y)|u(y)|2
)

=
∑
γ

Pε(x, y)|u(y)|2 .
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This yields by (2.119), the Fubini-Theorem and again (2.118)

‖Pεu‖2`2((εZ)d,µε)
=

∑
x∈(εZ)d

µε(x)|Pεu(x)|2 =
∑
x

µε(x)
∑
y

Pε(x, y)|u(y)|2

=
∑
y

(∑
x

Pε(y, x)

)
µε(y)|u(y)|2

= ‖u‖2`2((εZ)d,µε)
.

The symmetry follows from (2.119), since for u, v ∈ `2((εZ)d, µε)

〈u , Pεv〉`2((εZ)d,µε) =
∑

x∈(εZ)d

µε(x)u(x)
∑

y∈(εZ)d

Pε(x, y)v(y)

=
∑
y

∑
x

µε(y)Pε(y, x)u(x)v(y) = 〈Pεu , v〉`2((εZ)d,µε)

Conjugation with respect to the measure µε induces a bounded self adjoint operator Hε := µ
1
2
ε (1−

Pε)µ
− 1

2
ε on `2

(
(εZ)d

)
, whose restriction to K((εZ)d) is given by

Hεu(x) = u(x)− µ
1
2
ε (x)

∑
γ

Pε(x, x+ γ)µ−
1
2

ε (x+ γ)u(x+ γ) , u ∈ K((εZ)d) (2.120)

Note that K((εZ)d) is dense in `2((εZ)d) and Hε is linear continuous and is therefore completely
determined by (2.120). In the following we will supress the mention to the ε-dependance of µε by
writing simply µ.

To get the standard form Hε = Tε + Vε, where Tε is a discrete kinetic operator in the
sense of Definition 2.4 and Vε is a potential energy, we use (2.118) and add a − a with a :=∑
γ 6=0 µ

1
2 (x)Pε(x, x+ γ)µ−

1
2 (x+ γ)u(x) to get

Hεu(x) =
∑
γ 6=0

µ
1
2 (x)Pε(x, x+ γ)µ−

1
2 (x)u(x)−

∑
γ 6=0

µ
1
2 (x)Pε(x, x+ γ)µ−

1
2 (x+ γ)u(x)

+
∑
γ 6=0

µ
1
2 (x)Pε(x, x+ γ)µ−

1
2 (x+ γ)u(x)−

∑
γ 6=0

µ
1
2 (x)Pε(x, x+ γ)µ−

1
2u(x+ γ)

=
∑
γ 6=0

µ
1
2 (x)Pε(x, x+ γ)µ−

1
2 (x+ γ)(u(x)− u(x+ γ))

+
∑
γ 6=0

µ
1
2 (x)Pε(x, x+ γ)

(
µ−

1
2 (x)− µ−

1
2 (x+ γ)

)
u(x) .

Then Hε = Tε + Vε, where

Tε(x) :=
∑
γ 6=0

µ
1
2 (x)Pε(x, x+ γ)µ−

1
2 (x+ γ)(1−τγ)

Vε(x) :=
∑
γ 6=0

µ
1
2 (x)Pε(x, x+ γ)

(
µ−

1
2 (x)− µ−

1
2 (x+ γ)

)
.

Comparing Tε with the Fourier expansion (2.20) for a general discrete kinetic energy operator, the
Fourier coefficients are given by

a0(x) =
∑
γ 6=0

µ
1
2 (x)Pε(x, x+ γ)µ−

1
2 (x+ γ) ≥ 0 (2.121)

aγ(x) = −µ 1
2 (x)Pε(x, x+ γ)µ−

1
2 (x+ γ) , γ 6= 0 . (2.122)

Thus we see that in the case of probabilistic operators, the condition aγ ≤ 0 for γ 6= 0, which by
Lemma 2.6, (b) insures the positivity of Tε, is always fulfilled. The detailed balance condition for
Pε ensures the symmetry of Tε as follows. By (2.119)

µ
1
2 (x)aγ(x) = −µ(x)Pε(x, x+ γ)µ−

1
2 (x+ γ) =

= −µ(x+ γ)Pε(x+ γ, x)µ−
1
2 (x+ γ) =

= −µ 1
2 (x+ γ)Pε(x+ γ, x) .
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On the other hand,

µ
1
2 (x)a−γ(x+ γ) = −µ 1

2 (x)µ
1
2 (x+ γ)Pε(x+ γ, x)µ−

1
2 (x) =

= −µ 1
2 (x+ γ)Pε(x+ γ, x) ,

thus aγ(x) = a−γ(x + γ) and by Lemma 2.6,(a) the operator Tε is symmetric. Therefore Tε is a
discrete kinetic energy operator in the sense of Definition 2.4, if the first three conditions on the
associated phase space function t are fulfilled. Writing t(x, ξ) in the form (2.17), these conditions
follow from the fact that

a0 −
∑
γ 6=0

aγ = 0 (2.123)

for a0, aγ given by (2.121) and (2.122) respectively. (2.123) gives at once, that t(x, 0) = 0 and by
the sign of aγ

t(x, ξ) = a0 +
∑
γ 6=0

aγe
− i
εγ·ξ ≥ a0 −

∑
γ 6=0

|aγ(x)||e−
i
εγ·ξ| ≥

≥ a0 −
∑
γ 6=0

|aγ(x)| =
∑

γ∈(εZ)d

aγ = 0

Since on the other hand for each ξ 6= 0 there exist γ 6= 0 such that e−
i
εγ·ξ 6= 1, the function t

is strictly positive for ξ 6= 0. As discussed in Remark 2.5, (d), the matrix B is symmetric and
since for γ 6= 0 all aγ are smaller or equal to zero, it is positive definite. Thus the kinetic energy
operator of a probabilistic operator is a discrete kinetic energy in the sense of Definition 2.4, if the
stochastic terms µ and Pε can be interpreted as lattice restrictions of functions in C∞ (Rd).

By acting with Tε on µ
1
2 and multiplying with µ−

1
2 , we get

µ−
1
2 (x)

(
Tεµ

1
2

)
(x) = µ−

1
2 (x)

∑
γ 6=0

µ
1
2 (x)Pε(x, x+ γ)µ−

1
2 (x+ γ)

(
µ

1
2 (x)− µ

1
2 (x+ γ)

)
=

=
∑
γ 6=0

µ
1
2 (x)Pε(x, x+ γ)

(
µ−

1
2 (x+ γ)− µ−

1
2 (x)

)
,

and thus for a general probabilistic operator, the potential energy can be written in terms of the
kinetic energy and the measure µε as

Vε(x) = −µ−
1
2

ε (x)
(
Tεµ

1
2
ε

)
(x) . (2.124)

The assumptions on V0 given in Hypothesis 2.7 must be reflected in the form of the measure µ and
the transition matrix Pε. In the following, we will analyze an example, where µε is the Boltzmann
measure induced by terms of a free energy functional F .

We assume that we can associate an smooth energy functional F : Rd −→ R to the config-
uration space, the ”free energy” of the system, having only non-degenerate critical points. Then
we can associate to each lattice point x ∈ (εZ)d the Boltzmann measure µε(x) := Z−1

ε e−
F (x)
ε with

the state sum Zε =
∑
x e

−F (x)
ε as normalizing factor. We define a transition matrix Pε on (εZ)d,

where the only transitions which are allowed, are those to neighboring lattice points, by

Pε(x, x+ γ) :=


√
µ(x+γ)√
µ(x)

, |γ| = ε

0 , |γ| > ε

1−
∑
γ>0

√
µ(x+γ)√
µ(x)

, γ = 0.

As described in the general case, kinetic and potential energy of the induced Hamilton operator
Hε = Tε + Vε are given by

Tε := 2d−
d∑
ν=1

(τεeν + τ−εeν ) = −∆ε (2.125)

equal to the discrete Laplacian defined in (2.60) and

Vε =
∑
|γ|=ε

µ−
1
2 (τγµ

1
2 )− 2d = −µ− 1

2 (Tεµ
1
2 ) .
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By Appendix A.3 the symbol associated to (2.125) is

t(ξ) = 2d− 2
d∑
ν=1

cos(ξν) , ξ ∈ Td ,

therefore the Taylor expansion of t at ξ = 0 is

t(ξ) = 2d− 2
d∑
ν=1

(
1− ξ2ν

2
+
ξ4ν
4!

+O
(
|ξ|6
))

and thus has the form assumed in Definition 2.4.
The potential energy can be computed as

Vε(x) = −e
F (x)
2ε (Tε e−

F (x)
2ε ) (2.126)

= −2d+
d∑
ν=1

e
F (x)
2ε

(
e−

F (x+εeν )
2ε + e−

F (x−εeν )
2ε

)
.

To verify equations (2.26) and (2.35) for this potential, we make a Taylor expansion of F (x± εeν)
at x to get

Vε = −2d+
d∑
ν=1

(
e−

1
2ε (∂νF (x)ε+ 1

2∂
2
νF (x)ε2+O(ε3)) + e−

1
2ε (−∂νF (x)ε+ 1

2∂
2
νF (x)ε2+O(ε3))

)
= −2d+

d∑
ν=1

(
e−

1
2∂νF (x) + e

1
2∂νF (x)

)
e−

1
4∂

2
νF (x)ε+O(ε2) . (2.127)

Expanding the second factor at zero, this yields

Vε = −2d+
d∑
ν=1

(
e−

1
2∂νF (x) + e

1
2∂νF (x)

) (
1− 1

4∂
2
νF (x)ε+O(ε2)

)
.

Using the equality of the first bracket to the term 2 cosh
(

1
2∂νF (x)

)
, we get

Vε = −2d+ 2
d∑
ν=1

(
cosh

(
1
2∂νF (x)

)
− 1

4∂
2
νF (x)ε cosh

(
1
2∂νF (x)

)
+O(ε2)

)
.

From cosh(2x) = 1 + 2 sinh2(x) for the first summand and ∂ν(sinh(f(x))) = ∂ν(f(x)) cosh(f(x))
for the second it follows that

Vε =
d∑
ν=1

(
4 sinh2

(
1
4∂νF (x)

)
− ε ∂ν

(
sinh

(
1
2∂νF (x)

))
+O(ε2)

)
=: V0(x) + ε V1(x) +O(ε2)

with

V0(x) =
d∑
ν=1

4 sinh2
(

1
4∂νF (x)

)
}

V1(x) = −
d∑
ν=1

∂ν
(
sinh

(
1
2∂νF (x)

))
.

Thus the potential can be written in the form (2.26). By an expansion at the potential wells, which
are the extremals of the free energy, up to the order ε2, we get

Vε(x− xj) =
d∑

ν,µ=1

(
2

d∑
η=1

(∂ν∂η(F (xj))∂µ∂η(F (xj)))(x− xj)ν(x− xj)µ

)
+

+ p3(|x− xj |)− ε
d∑
η=1

∂2
ηF (xj) +O(ε2) ,

therefore by setting (Ajνµ) := 2
∑d
η=1(∂ν∂η(F (xj))∂µ∂η(F (xj))), the quadratic approximation of

Vε takes the form (2.35), if the critical points of the free energy are non-degenerate. The absolute
minima of the potential energy correspond to the minima of the free energy while the saddle points
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of the free energy induce minima of Vε, which are higher by a term of order ε. If we assume, that F
tends to ∞ at least as |x|2 for |x| → ∞, then Vε is bounded from below and strictly positive for |x|
large enough as follows from (2.126). Therefore Hamilton operator under consideration therefore
fulfills the assumptions of Theorem 2.10.

Thus the spectrum of Hε converges in the limit of infinitely many elements of the spin chain
to the spectrum of the direct sum of the associated harmonic oscillators Hj

os at the wells xj , where

Hj
osu(x) = −∆u(x) +

(
2

d∑
η=1

(〈∇∂η(F (xj)) , (x− xj)〉)2 − ε
d∑
η=1

∂2
ηF (xj)

)
.



CHAPTER 3

Construction of asymptotic expansions

This chapter is mainly concerned with the analysis of Ĥε, the Hamilton operator on L 2
(
Rd
)

associated to the discrete Hamiltonian Hε. We construct asymptotic expansions of WKB-type for
the eigenfunctions and eigenvalues of Ĥε in the neighborhood of one fixed potential well. The
restriction of these quasi-modes to any ε-scaled lattice Gx = (εZ)d + x as described in Remark 2.9
are then quasi-modes for the discrete Hamiltonian Hε for the same eigenvalues.

3.1. Hypothesis and motivation

Motivated by the form of the eigenfunctions of the harmonic oscillator, we will make the ansatz,
that the eigenfunctions in the classically forbidden regions are exponentially decreasing. In Section
3.2 this approach results in the eikonal equation as leading order of the eigenvalue problem. We
can associate to the eikonal equation an energy function. It turns out to be −t(x, iξ)− V0(x).
To obtain these improvements of the stability result proved in Chapter 2, it is necessary to refine
the assumptions for the Hamilton operator Hε and thus Ĥε.

Hypothesis 3.1. 1. Let Hε = Tε + Vε be a self adjoint operator on `2
(
(εZ)d

)
with

associated phase space symbol hε(x, ξ; ε) := t(x, ξ) + V̂ε, such that:
(a) t ∈ S0

0(1)
(
Rd × Td

)
is a periodic kinetic energy function in the sense of Definition

2.4. Regarding t as a function on Rd × Rd, which is periodic with respect to ξ, we
assume furthermore that the function Rd 3 ξ 7→ t(x, ξ) is even and has an analytic
continuation to Cd.

(b) The potential energy Vε is the lattice restriction of a function V̂ε ∈ C∞(Rd), which
has an expansion

V̂ε(x) =
N∑
l=0

εlVl(x) +RN+1(x; ε) , (3.1)

where V` ∈ C∞(Rd). In addition RN+1 ∈ C∞(Rd × (0, ε0]) and for any compact set
K ⊂ Rd there exists a constant CK such that supx∈K |RN+1(x; ε)| ≤ CKε

N+1.
c) We assume that there exist constants R,C > 0 such that Vε(x) > C for all |x| ≥ R

and ε ∈ (0, ε0]. Furthermore V0(x) has exactly one, strictly non-degenerate, mini-
mum at x1 = 0 with the value V0(0) = 0.

2. Let Opε(hε) =: Ĥε = T̂+V̂ε denote a self adjoint operator on L 2(Rd), where we identified
the symbol hε on Rd × Td with the periodic symbol on Rd × Rd.

Remark 3.2. (a) It follows from the Hypothesis, that V0 expands at x = 0 as

V0(x) = 〈x , Ax〉+
N∑
k≥3

Wk(x) +O
(
|x|N+1

)
= V 1

0 (x) + Vs(x) where (3.2)

V 1
0 (x) := 〈x , Ax〉 ,

Wk denotes a homogeneous polynomial of order k and A is symmetric. V 1
0 (x) denotes the

harmonic oscillator potential described in Chapter 2 with critical point x1 = 0.
(b) If the value of V0 at the minimum x1 = 0 is E0, the potential can be replaced by V0 − E0

to fulfill the hypothesis.
(c) Since the constructions in this chapter are all done on Rd, the particular choice x1 = 0 is

arbitrary. This choice is done only to simplify the notation and may be changed just by
translation to any other point.

37
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(d) We will use the notation h0(x, ξ) := t(x, ξ) + V0(x) for the symbol of the zero order part
of Hε with respect to ε.

(e) Since the periodic function ξ 7→ t(x, ξ) is assumed to be even with respect to ξ 7→ −ξ, it
has the representation

t(x, ξ) =
∑

γ∈(εZ)d

aγ(x) cos
(

1
εγ · ξ

)
, x ∈ Rd, ξ ∈ Rd . (3.3)

This leads to the fact, that its Taylor expansion at the point ξ = 0 is even, i.e. we have

t(x, ξ) = 〈ξ , B(x)ξ〉+
∑

|α|=2n
n≥2

Bα(x)ξα , ξ ∈ Td , x ∈ Rd (3.4)

where ξα := ξα1
1 . . . ξαdd , α ∈ Nd0 and Bα are real valued functions on Rd.

(f) The assumption on the analytic continuation on Rd × Cd implies that the Fourier trans-
forms aγ decay exponentially with respect to γ, more precisely it follows from Propo-
sition A.3 in Appendix A.1, that for any c > 0 there exists a constant C such that
‖ e

c|.|
ε a.(x)‖`2((εZ)d) ≤ C uniformly with respect to x ∈ Rd.

Remark 3.3. We will reduce the discussion to the case where the quadratic terms in the po-
tential and kinetic energy are diagonalized simultaneously at the point x1 as described in Appendix
A.2. We thus choose coordinates, such that for the symbol t the quadratic term in ξ at x1 is the
scalar product and V 1

0 (x) =
∑d
ν=1 λ

2
νx

2
ν with λν > 0 for 0 ≤ ν ≤ d.

As described in Section 2.2.2, the associated harmonic oscillator

H1(x, εD) := −ε2∆ + V 1
0 (x) + εV1(0) , x ∈ Rd ,

as defined in (2.48) for j = 1, approximates Hε and Ĥε near the well x1 = 0 in the limit ε → 0.
The eigenfunctions of H1 are given by (2.49) with

ϕ0(x) := ϕ1
0(x) =

d∑
ν=1

λν
2
x2
ν , x ∈ Rd , (3.5)

which solves the harmonic eikonal equation |∇ϕ0(x)|2 = V 1
0 (x).

This suggests looking for a formal symbol a(x, ε) and a real valued continuous function ϕ(x) such
that

u(x, ε) = a(x, ε)e−
ϕ(x)
ε

is a formal eigenfunction for Hε.
The aim of this chapter is to show that we can find a positive C∞-function ϕ(x) on Rd, asymptotic
sums

Ẽj(ε) ∼
∑
k∈N/2

εkEjk , j = 1, . . . ,m

where εEj0 is an eigenvalue of H1 with multiplicity m, and corresponding asymptotic sums

aj(x, ε) ∼
∑
k∈Z/2
k≥−M

εkajk(x), ajk ∈ C∞(Rd) , (3.6)

such that in a neighborhood Ø′ of 0

(Ĥε − εẼj(ε))
(
aj(x, ε)e−

ϕ(x)
ε

)
= O (ε∞) e−

ϕ(x)
ε . (3.7)

for ε → 0. Then from (2.34) it follows that the restriction of these quasi-modes to any ε-scaled
lattice Gx0 , x0 ∈ Rd satisfy the same equation with Ĥε replaced by the discrete operator Hε acting
on `2

(
(εZ)d

)
.



3.2. SOLUTION OF THE EIKONAL EQUATION 39

3.2. Solution of the Eikonal Equation

If we formally compute the left hand side of (3.7) and expand the coefficients of e−
ϕ(x)
ε in

powers of ε, the equation of order zero determines the function ϕ. The order zero term of the
conjugated potential energy is V0, since V̂ε commutes with e

ϕ(x)
ε . The conjugated kinetic term is

for u ∈ L 2
(
Rd
)

given by

e
ϕ
ε T̂ e−

ϕ
ε u(x) = e

ϕ(x)
ε

∑
γ∈(εZ)d

aγ(x)e−
ϕ(x+γ)

ε u(x+ γ)

=
∑

γ∈(εZ)d

aγ(x)e
1
ε (ϕ(x)−ϕ(x+γ))u(x+ γ) .

If in addition u ∈ C 1
(
Rd
)

and ϕ ∈ C 2
(
Rd
)
, using the Taylor expansion of ϕ(x+ γ) and u(x+ γ)

at x, the last sum is equal to

∑
γ∈(εZ)d

aγ(x)e
1
ε (−γ·∇ϕ(x)−

P
νµ γνγµ

R 1
0 ∂µ∂ν(ϕ(x+tγ))(1−t) dt

(
u(x) +

∫ 1

0

∇u(x+ tγ) · γ dt
)

=
∑
y∈Zd

ãy(x)e−y·∇ϕ(x)e−ε
P
νµ yνyµ

R 1
0 ∂µ∂ν(ϕ(x+tεy))(1−t) dt

(
u(x) + ε

∫ 1

0

∇u(x+ tεy) · y dt
)

(3.8)

for ãy defined in (2.18). The term of order zero in ε can therefore by the assumption on the analytic
extension of t to Dc be understood as∑

γ∈(εZ)d

aγ(x)e−
1
εγ·∇ϕ(x)u(x) = t(x,−i∇ϕ(x)) . (3.9)

Since t(x, ξ) was assumed to be even with respect to ξ 7→ −ξ, we have t(x,−i∇ϕ(x)) = t(x, i∇ϕ(x))
and therefore t(x, iξ) is real valued. In particular we have by (3.3) the representation

t(x, iξ) =
∑

γ∈(εZ)d

aγ(x) cosh
γ · ξ
ε

, x, ξ ∈ Rd .

The resulting order zero part of (3.7) is given by

t(x, i∇ϕ(x)) + V0(x) = 0 . (3.10)

We call (3.10) the eikonal equation (it is the generalization of the harmonic eikonal equation
mentioned above).
By this procedure we have derived a new energy function

h̃0(x, ξ) := −h0(x, iξ) = −t(x, iξ)− V0(x) , (3.11)

where the sign is chosen in such a way that the kinetic energy function −t(x, iξ) is positive.
We shall prove that there exists a unique positive C∞-function ϕ defined in a neighborhood Ω of
0, solving (3.10), such that ϕ has an expansion as asymptotic series

ϕ(x) ∼ ϕ0(x) +
∑
k≥1

ϕk(x) , x ∈ Ω , (3.12)

where ϕ0 is given by (3.5) and each ϕk is an homogeneous polynomial of order k + 2, (i.e.
ϕ(x)− ϕ0(x) = O(|x|3) for |x| → 0).
Following Helffer ([29]), the idea of the proof is to determine ϕ as generating function of a la-
grangian manifold Λ+ = {(x,∇ϕ(x)) | (x, ξ) ∈ N } lying in the ”energy shell” h̃−1

0 (0), where N is
a neighborhood of (0, 0). By Hypothesis 3.1, h̃0 expands in a neighborhood of (0, 0) in T ∗Rd as

h̃0(x, ξ) = 〈ξ , B(x)ξ〉 −
d∑
ν=1

λ2
νx

2
ν +O

(
|ξ|3 + |x|3

)
. (3.13)
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Thus by the symmetry of the matrix B, the Hamiltonian vector field of h̃0 in a neighborhood
of (0, 0) expands as

Xh̃0
= 2

d∑
ν=1

(
d∑

µ=1

Bνµ(x)ξµ
∂

∂xν
+

(
λ2
νxν +

d∑
µ,η=1

∂Bµη
∂xν

(x)ξµξη

)
∂

∂ξν

)
+O

(
|ξ|2 + |x|2

)
=

= 2
d∑
ν=1

(
d∑

µ=1

Bνµ(x)ξµ
∂

∂xν
+ λ2

νxν
∂

∂ξν

)
+O

(
|ξ|2 + |x|2

)
. (3.14)

We assume B(0) = 1 as in Remark 3.3, thus the linearization of Xh̃0
at the critical point (0, 0)

yields the fundamental matrix

L := DXh̃0
(0, 0) = 2


0

1 0
. . .

0 1
λ2

1 0
. . .

0 λ2
d

0


. (3.15)

L has the eigenvalues ±2λν , ν = 1, . . . d.
An eigenvector (x, ξ) with respect to ±λν fulfills ξν = ±λνxν . By Λ0

± we denote the positive (resp.
negative) eigenspace of L. Λ0

± can be characterized as the phase space subsets, which consist of
all points (x, ξ) such that e−tL(x, ξ) → 0 for t→ ±∞. Moreover, Λ0

± are Lagrangian subspaces of
T(0,0)(T ∗Rd) of the form ξ = ±∇ϕ0(x) with ϕ0 defined in (3.5).

Denote by Ft the flow of the hamiltonian vector field Xh̃0
. Then the Local Stable Mani-

fold Theorem ([2]) tells us, that there is an open neighborhood N of (0, 0), such that the two
submanifolds

Λ±
(
Xh̃0

, (0, 0)
)

:=
{

(x, ξ) ∈ T ∗Rd
∣∣ Ft(x, ξ) → (0, 0) for t→ ∓∞

}
(3.16)

exist and are unique in N . They are called stable (Λ−) and unstable (Λ+) manifold of Xh̃0

of the critical point (0, 0). Moreover they are of dimension d and tangent to Λ0
± at (0, 0) (i.e.

T(0,0)(Λ±) = Λ0
±). Λ+ and Λ− are contained in h̃−1

0 (0), because h̃0(Ft(x, ξ)) = h̃0(x, ξ).
In order to show that the tangent spaces at each point (x, ξ) ∈ Λ± are Lagrangian linear

subspaces of T(x,ξ)(T ∗Rd) (in which case we call Λ± Lagrangian manifolds in T ∗Rd), we have to
show, that the canonical symplectic form ω =

∑d
j=1 dξj ∧ dxj vanishes for all u, v ∈ T(x,ξ)(Λ±).

The Hamiltonian flow leaves the symplectic form invariant, we therefore find for (u, v) ∈ T(x,ξ)(Λ+)

ω(x,ξ)(u, v) = ωFt(x,ξ)((DFt)u, (DFt)v) .

In the limit t→ −∞, the elements of T(x,ξ)(Λ+) lie in the lagrangian plane Λ0
+, where the symplectic

form vanishes, thus ω(x,ξ)(u, v) = 0 for all (u, v) ∈ T(x,ξ)(Λ+).
The projection (x, ξ) 7→ x defines a diffeomorphism of N ∩Λ+ onto a sufficiently small neigh-

borhood Ω of 0 in Rd. Therefore we can parameterize Λ+ as the set of points (x1, . . . xd,Ψ1(x), . . .Ψd(x))
with Ψν ∈ C∞(Ω). Since Λ+ is Lagrangian, we can deduce ∂Ψν

∂xµ
= ∂Ψµ

∂xν
and there exists a function

ϕ ∈ C∞(Ω) with

∇ϕ(x) = Ψ(x) and ϕ(0) = 0 .

Since T(0,0)(Λ±) = Λ0
±, the leading order term of this function ϕ is equal to ϕ0, thus ϕ can be

written as (3.12). Furthermore ϕ solves the eikonal equation (3.10), because Λ+ ⊂ h̃−1
0 (0).

Remark 3.4. With the ansatz (3.12), we have a constructive procedure to iteratively find the
terms ϕk.
The coefficients of the eikonal equation (3.10) of the lowest order in x vanish and the coefficients
belonging to higher orders in x iteratively fix the ϕk.
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To this end, we expand B(x) and Bα(x) at x = 0 as

B(x) = 1+

(
d∑
ν=1

∂Bµη
∂xν

(0)xν

)
+O

(
|x|2
)

=: 1+(DB)(0) x+O
(
|x|2
)

(3.17)

Bα(x) = Bα(0) +
d∑
ν=1

∂Bα
∂xν

(0)xν +O
(
|x|2
)

=: Bα(0) + (DBα)(0) x+O
(
|x|2
)
. (3.18)

The third order equation

−〈∇ϕ0 , (DB(0) x)∇ϕ0〉 − 2
d∑
ν=0

λνxν
∂ϕ1
∂xν

(x) +W3(x) = 0 , x ∈ Ω

fixes ϕ1 for a given W3, the fourth order

−2〈∇ϕ0 , ((DB)(0) x)∇ϕ1〉+
∑
|α|=4

Bα(∇ϕ0)α − 2
d∑
ν=0

λνxν
∂ϕ2
∂xν

(x)−
d∑
ν=0

(
∂ϕ1
∂xν

)2

+W4(x) = 0

is an equation for ϕ2 and the higher orders in ϕ are inductively given by the higher order parts of
the eikonal equation, which all take the form(

d∑
ν=1

λνxν
∂
∂xν

)
ϕk(x) = vk+2(x) , x ∈ Ω ,

with vk = O(|x|k) for |x| → 0.

3.3. Transformation of the variable and formal symbol spaces

In order to find WKB-expansions there are, as in the setting of usual Schrödinger operators, two
possible strategies to deal with the degeneracy of eigenvalues in the harmonic approximation. The
first is an FBI-transformation of the eigenfunctions as described for example in Helffer-Sjöstrand
[33]. The second method, which we are going to use, is the conjugation of the eigenfunctions
with the exponential weight e−

ϕ(x)
ε and the coordinate change y = x√

ε
. This procedure is used for

example in Klein-Schwarz [45].

Definition 3.5. Let ψ denote any real valued function on Rd.
We introduce an ε-dependent unitary map

Uε(ψ) : L 2
(
Rd, dx

)
→ L 2

(
Rd, e−2

ψ(
√
εy)
ε dy

)
=: Hψ

by

(Uε(ψ)f)(y) = ε
d
4 e

ψ(
√
εy)
ε f(

√
εy) . (3.19)

Then, for Ĥε as described in Hypothesis 3.1,

Ĝε,ψ :=
1
ε
Uε(ψ)ĤεU

−1
ε (ψ) (3.20)

defines a self adjoint operator on Hψ, whose domain contains the set of all polynomials, if ψ ≥ C|x|
for some C > 0 and for all large x.

We are going to apply the dilation defined in (3.20) to a function ϕ̃ ∈ C∞(Rd), which is
constructed as follows.

Hypothesis 3.6. Let Ø̃ denote a neighborhood of 0 such that the function ϕ ∈ C∞(Ø̃) con-
structed in the previous section fulfills the eikonal equation inside of Ø̃ and such that for any δ > 0
and for some C > 0 the estimate |∇ϕ(x)| ≥ C holds for x ∈ Ø̃ \ {|x| ≤ δ}.

We consider some set Ø such that Ø ⊂ Ø̃ and define a smooth cut-off function χ supported in
Ø̃ such that χ(x) = 1 for any x ∈ Ø.

Then we set for any δ > 0

ϕ̃(x) := χϕ(x) + δ(1− χ)|x| .
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Henceforth we write Ĝε := Ĝε,ϕ.
We will now give an expansion of Ĝε with respect to

√
ε. To this end, we consider the Taylor ex-

pansion T0hε of hε at the point (0, 0) ∈ R2d. To this Taylor expansion, we can associate an operator
T0Ĥε := Opε(T0hε). We shall obtain a formal series G := T0Ĝε by expanding 1

εUε(ϕ̃)T0ĤεU
−1
ε (ϕ̃)

as amplified below.

Proposition 3.7. The Taylor expansion at the phase space point (0, 0) of Ĝε defined in (3.20)
is given by

T0Ĝε =
∑
k∈N

2

εkGk , (3.21)

where

Gk = bk,0(y) +
2k+2∑
|γ|=1

bk,γ(y)∂γy . (3.22)

Here bk,0 is a polynomial of degree m ≤ 2k and bk,γ for |γ| 6= 0 are polynomials of degree
m ≤ 2k + 2− |γ|. They are even (odd) with respect to y 7→ −y for even (odd) m.

Before we prove Proposition 3.7, we introduce the following formal symbol spaces, to give an
algebraic sense to the expansion (3.21).
Let for n ∈ N∗

K 1
n

:=

µ =
∑
j∈ Z

n

µjε
j

∣∣∣∣∣∣ µj ∈ C and cµ := inf{j |µj 6= 0} > −∞

 (3.23)

V :=

p =
∑
j∈ Z

2

pjε
j

∣∣∣∣∣∣ pj ∈ C[y] and cp := inf{j | pj 6= 0} > −∞

 . (3.24)

Defining componentwise addition and multiplication by the Cauchy product, i.e,

µ1 · µ2 =

∑
k∈ Z

n

akε
k

 ·

∑
l∈ Z
n

blε
l

 =
∑
m∈ Z

n

∑
k+l=m

(akbl)εm = µ3 , µ1, µ2, µ3 ∈ K 1
n
,

K 1
n

becomes a field of formal Laurent series with final principal part and V is a vector space over

K 1
2
. We can associate to Ĝε a well defined operator G on V by setting for V 3 p =

∑
j≥k
j∈ Z

2

εjpj ,

Gp(y) =
∑
j≥k

εjT0Ĝεpj(y) =
∑
j≥k

εj
∑
r∈ N

2

εrGrpj(y) =
∑

j+r=l≥k

εlGrpj(y) ∈ V . (3.25)

Remark 3.8. (a) As a map on C[y] (the polynomial ring over C), Gk raises the degree of
a polynomial by 2k and preserves (or changes) the parity with respect to y 7→ −y according
to the sign (−1)2k. This follows at once from the degree and parity of the polynomials bk,0
and bk,γ in the representation of Gk.

(b) The term of order zero is given more precisely by

G0 = ∆yϕ̃0(y) +
d∑
ν=1

(2(∂yν ϕ̃0(y))∂yν )−∆y + V1(0) (3.26)

This will be shown after the proof of Proposition 3.7.

Proof of Proposition 3.7:

Step 1:

To show equation (3.21), we start by analyzing the terms arising from the potential energy V̂ε. We
have

1
ε
Uε(ϕ̃)V̂εU−1

ε (ϕ̃)f(y) =
1
ε
V̂ε(
√
εy)f(y)
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and expanding Vi(
√
εy), i ∈ N, at y = 0, we get

T0V0(
√
εy) = ε

d∑
j=1

λ2
jy

2
j +

∑
k≥3

ε
k
2Wk(y) (3.27)

εlT0Vl(
√
εy) = εlVl(0) + εl+

1
2DxVl|x=0y +

∑
k≥2

ε
k+2l

2 ql,k(y) , l ∈ N ,

where ql,k are monomials in y of order k ∈ N. The formal power series T0V̂ε is defined by the
formal sum of terms given in (3.27). Thus if ql,k denotes for each l ∈ N a monomial of order k in
y for k ≥ 2 and zero otherwise and W2(y) :=

∑d
ν=1 λ

2
νy

2
ν , we have

1
ε
T0V̂ε(

√
εy) =

∑
j∈N

εj
W2j+2(y) +

∑
1≤l≤j−1

(ql,(2j−2l)(y)) + Vj+1(0)

+

+ ε
2j+1

2

W2j+3(y) +
∑

1≤lj− 1
2

(ql,(2j+1−2l)(y)) +DxVj+1|x=0y

 =
∑
k∈N

2

εkpk(y) (3.28)

where pk denotes a polynomial of degree 2k+2. Each power k of ε can be written as a sum k = l+m
with k, l ∈ N

2 and m ∈ N. Here l arises as (εy2)l by the transformation of variables and m describes
the power in ε belonging to Vm. Thus any combination of l and m with l +m = k results in one
of the summands in the coefficient of εk and is a monomial in y of order 2l. Since m ∈ N, we have
2k+2 = 2l mod 2 and thus all summands in the polynomial pk have the same parity, i.e. pk is even
(odd) if 2k+2 is even (odd) (this is equivalent to the statement, that k is an integer (half-integer)).

Step 2:

Now we investigate the coefficients in the expansion of the kinetic energy T̂ after conjugation with
Uε(ϕ̃).

We start by analyzing a differential operator (ε∂)α conjugated with the exponential weight
e
ϕ̃
ε . By the Leibnitz formula, each derivative ∂α acting on the product of e−

ϕ̃
ε and g splits into a

derivative ∂β acting on the exponential and a derivative ∂γ with γ = α−β acting on g. In general,
we have the formula

e
ϕ̃(x)
ε ε|α|∂αx e

− ϕ̃(x)
ε g

(
x√
ε

)
= ε|α|

(
1√
ε
∂y −

1
ε
∇ϕ̃(

√
ε . )
)α

g( . )
∣∣∣∣
y= x√

ε

. (3.29)

For the exponential term, we get with β, kj ∈ Nd

∂βx

(
e−

ϕ̃(x)
ε

)
= e−

ϕ̃(x)
ε

|β|∑
n=1

ε−n(−1)n
∑

β=k1+...+kn

n∏
j=1

∂kjx ϕ̃(x) . (3.30)

To get the resulting lowest order in ε for fixed n after the transformation of the variable x to
y = x√

ε
, we have to find the lowest order of ϕ̃ in x. Since ϕ̃ can by (3.12) be written as asymptotic

series, where the first term is quadratic in x, each factor in the product on the right hand side of
(3.30) with a first derivative of ϕ̃, i.e. with |kj | = 1, which starts linear in x, leads to one positive
order

√
ε. Higher derivatives of ϕ̃ start with a constant term, thus the variable transformation of

these factors has no effect on the lowest order in ε of the resulting product.
Introducing for a fixed n and decomposition β = k1 + . . . + kn the notation mp := #{kj ∈

Nd | |kj | = p}, where 1 ≤ p ≤ |β|, we get −n+ m1
2 as resulting order in ε. The integer mp denotes

the number of factors which are derivatives of ϕ̃ of order p. Thus for β, γ, kj ∈ Nd the left hand
side of (3.29) is equal to∑

β+γ=α

∂γy g(y)
|β|∑
n=1

∑
β=

P
kj

ε|α|−
|γ|
2 −n+

m1
2

n∏
j=1

(
∂kjy ϕ̃

)
(y) . (3.31)

To get the lowest ε-order, we have to analyze the possible combinations of n and m1, which depends
of (k1, . . . , kn).
It follows from the definition of mp, that n =

∑|β|
p=1mp and in addition

∑n
j=1 |kj | =

∑|β|
p=1 pmp =



44 3. CONSTRUCTION OF ASYMPTOTIC EXPANSIONS

|β|.
By the discussion above, the leading terms of the right hand side of (3.29) after the transformation
from x to

√
εy and multiplication with ε−1 (which occurs in the transformation from Ĥε to Ĝε)

are of order
ε|α|−1− |γ|

2 −n+
m1
2 . (3.32)

Let n = |β| − l for 1 ≤ l < |β|, then the possible values for m1 are

(n− l)+ ≤ m1 ≤ n− 1 , where (n− l)+ := max{n− l, 0} . (3.33)

For n = |β| it follows at once that m1 = n. If l < |β|
2 , then at least n− 1 factors on the right hand

side of (3.30) must be first derivatives of ϕ̃. If n ≤ |β|
2 , then it is possible that the number m1 of

first order derivatives is zero. By (3.33) and with n = |β| − l, we can estimate the term −n+ m1
2

as follows

−n+
m1

2
≥ −n+

(n− l)+
2

≥

{
−|β|+ l + 1

2 (|β| − l − l) = − |β|
2 for 0 ≤ l < |β|

2

−|β|+ l ≥ − |β|
2 for |β|

2 ≤ l < |β|
. (3.34)

The full exponent of ε can therefore be estimated by

|α| − 1− |γ|
2
− |β|

2
=
|α|
2
− 1 . (3.35)

The lowest order in ε resulting from a differential operator (εD)α is thus ε
|α|
2 −1. Since the kinetic

energy starts with a second order derivative, we see that no negative orders in ε occur and we start
with ε0.
From the preceding discussion, we get

1
ε
Uε(ϕ̃) (Bα(x)(εDx)α)Uε(ϕ̃)−1 =

= Bα(
√
εy)

∑
γ+β=α

|β|∑
n=1

∑
P
kj=β

ε|α|−1−n− |γ|
2

n∏
j=1

(
∂kjx ϕ̃

)
(
√
εy)∂γy .

Since the lowest order of ϕ̃ in x is two (see Section 3.2), we have for fixed n and decomposition
[k] := (k1, . . . , kn) with

∑
j kj = β, as already mentioned above,

T0

n∏
j=1

∂kjx ϕ̃(
√
εy) = am1(y)ε

m1
2 +

∑
l∈N∗

am1+l(y)ε
m1+l

2 ,

where ak denotes a homogeneous polynomial of order k. By use of the Taylor expansion of Bα
given in (3.17) and (3.18), this leads to

T0Bα(
√
εy)

n∏
j=1

∂kjx ϕ̃(
√
εy) =

∑
l∈N

∑
|β|=l

∂βkBα(0)ε
l
2 yβ

(am1(y)ε
m1
2 +

∑
l∈N∗

am1+l(y)ε
m1+l

2

)
=

=
∑
l∈N

ε
m1+l

2 bm1+l(y) ,

where bk denotes a homogeneous polynomial in y of order k. By (3.33), it follows with l = |β| − n
that (n− l)+ = (2n− |β|)+, thus we can conclude denoting by (n− 1, n) = n− 1 for n < |β| and
(n− 1, n) = n for n = |β|

T0
1
ε
Uε(ϕ̃) (Bα(x)(εDx)α)Uε(ϕ̃)−1 =

∑
γ+β=α

|β|∑
n=1

(n−1,n)∑
m1=(2n−|β|)+

∑
l∈N

ε|α|−1−n+
m1+l−|γ|

2 bm1+l(y)∂
γ
y

and therefore

T0
1
ε
Uε(ϕ̃)

(
T0T̂ (x, εD)

)
Uε(ϕ̃)−1 =

∑
|α|=2n
n≥1

∑
γ+β=α

|β|∑
n=1

(n−1,n)∑
m1=(2n−|β|)+

∑
l∈N

ε|α|−1−n+
m1+l−|γ|

2 bm1+l(y)∂
γ
y .

(3.36)
Step 3:

In the last step we are going to combine the terms resulting from the kinetic and potential energy.
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In equation (3.36), the term with |γ| = 0 and n = |β| is given by t(x, i∇ϕ̃) as described in the
beginning of Section 3.2. Thus by the eikonal equation (3.10) it follows that in a neighborhood
of x = 0 this term cancels with the potential term ε−1V0(

√
εy) leading to the summands Wk in

(3.28). Thus the remaining potential term is given by

T0
1
ε
(V̂ε − V0)(

√
εy) = V1(0) + εV2(0) +

∑
j≥2

εj
Vj+1(0) +

∑
1≤l≤j−1

ql,(2j−2l)(y)


+ ε

2j+1
2

〈∇Vj+1(0) , y〉+
∑

1≤l≤j− 1
2

ql,(2j+1−2l)(y)


=

∑
k∈ N

2

εkpk(y) , (3.37)

where pk denotes a polynomial of order (2k − 2)+.
The combination of the transformed potential and kinetic energy described in (3.37) and (3.36)

therefore yields

T0Ĝε = T0
1
ε
Uε(ϕ̃)(φ)T0ĤεUε(ϕ̃)−1

=
∑
m∈N

ε
m
2 pm−2(y) +

∑
|α|=2n
n≥1

∑
γ+β=α

min{|β|,|α|−1}∑
n=1

(n−1,n)∑
m1=(2n−|β|)+

∑
l∈N

ε|α|−1−n+
m1+l−|γ|

2 bm1+l(y)∂
γ
y

=:
∑
r∈ N

2

εrGr(y, ∂y) ,

where pk is even (odd) with respect to y 7→ −y, if k is even (odd).
In order to get the stated result, we collect the terms with the fixed order r in ε. For these

terms the kinetic part must satisfy

r = |α| − 1− n+
m1 + l + |γ|

2
, (3.38)

which is coupled with bm1+l and a differential operator ∂γy . Equation (3.38) yields

m1 + l = 2r + 2(1 + n− |α|) + |γ| .

Thus for fixed |γ| the polynomial has fixed parity, since 1+n−|α| ∈ Z and therefore 2(1+n−|α|)
is even for all possible combinations of |α| and n. The maximal order for the polynomials results
for n = min{|β|, |α| − 1} = min{|α| − |γ|, |α| − 1} in

m =

{
2r + 2(1 + |α| − |γ| − |α|) + |γ| = 2r + 2− |γ| , |γ| > 0
2r + 2(1 + |α| − 1− |α|) = 2r , |γ| = 0

.

For |γ| ≥ 0, the coefficient of ∂γy is therefore a polynomial of order 2r+ 2− |γ| which is even (odd)
with respect to y 7→ −y, if 2r+2−|γ| is even (odd). For |γ| = 0, the polynomial is even. For fixed
order εr, the maximal degree |γ|max of differentiation occurs for m1 + l = 0 (the coefficient is then
constant), since |γ| = 2r + 2− (m1 + l) and therefore |γ|max = 2r + 2.
The resulting term of the transformation of the kinetic energy can therefore be written as

T0
1
ε
Uε(ϕ̃)

(
T0T̂ (x, εD)

)
Uε(ϕ̃)−1 − t(x,−i∇φ) =

∑
r∈ N

2

εr

a2r(y) +
2r+2∑
|γ|=1

a2r+2−|γ|(y)∂γy

 , (3.39)

where ak(y) denotes a polynomial of degree k which is even (odd) with respect to y 7→ −y, if k is
even (odd).
The term for the potential energy given in (3.37) can be included into the term for |γ| = 0, since
the polynomials pk are of order 2k − 2 in y for k ≥ 2 and of order zero otherwise and obey the
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same parity properties as the polynomials a2r, as discussed below (3.28). Thus

T0Ĝε =
∑
r∈ N

2

εrpr(y) +
∑
r∈ N

2

εr

a2r +
2r+2∑
|γ|=1

a2r+2−|γ|(y)∂γy


=

∑
r∈ N

2

εr

b2r(y) +
2r+2∑
|γ|=1

b2r+2−|γ|(y)∂γy

 =:
∑
r∈ N

2

εrGr

with

Gr = b2r(y) +
2r+2∑
|γ|=1

b2r+2−|γ|(y)∂γy ,

as stated in the proposition.
2

Proof of Remark 3.8,(b):
From equations (3.35) and (3.27) it follows that the term of order ε0 results only from the trans-
formation of the quadratic part of the kinetic energy evaluated at x = 0 (the lowest order term in
the ε-expansion of B(x)), the quadratic part of the potential energy and the the constant V1(0).
Again by use of the eikonal equation (3.10) the terms V 1

0 (x) and |∇ϕ̃0(x)|2 cancel. As remarked
we chose coordinates such that B(0) = 1, these terms can therefore be calculated directly, which
by the chain and product rule or with (3.29) leads to (3.26).

2

We shall define a sesqui-linear form on V with values in K 1
2

(where complex conjugation is
understood componentwise), which is formally given by

〈p , q〉V =

f∫
Rd

p(ε, y)q(ε, y)
[
e−2

ϕ̃(
√
εy)
ε

]
f
dy , (3.40)

where
[
e−2

ϕ̃(
√
εy)
ε

]
f

respectively
∫ f indicates, that we are dealing with formal expansions with

respect to powers in ε. To this end, using (3.12), we define real polynomials øk ∈ R[y] by ø0 := 1
and [

e−2
ϕ̃(
√
εy)
ε

]
f

=: e−
Pd
ν=1 λνy

2
ν

1 +
∑
k∈N∗

2

εkøk(y)

 . (3.41)

Then

øj(y) =
2j∑
l=1

∑
k1+...+kl=j

ki∈
N∗
2

(−2)l

l!
ϕ̃2k1(y) . . . ϕ̃2kl(y) , (3.42)

which is a sum of homogeneous polynomials of degree 2j + 2l with parity (−1)2j .
By the expansion (3.41) and the special structure of the elements of V, we can now give a definition
of the sesqui-linear form in V.

Definition 3.9. For p =
∑
j∈ Z

2
pjε

j and q =
∑
j∈ Z

2
qjε

j in V we define the sesqui-linear form
〈. , .〉V : V × V → K 1

2
by

〈p , q〉V :=
∑
i∈ Z

2

εi
∑

j+k+l=i

∫
Rd

pj(y)qk(y)øl(y)e−
Pd
ν=1 λνy

2
ν dy . (3.43)

Note that 〈p , q〉V depends only on the Taylor expansion of ϕ at 0.

Lemma 3.10. The sesqui-linear form defined in (3.43) is non-degenerate, i.e,

〈p , q〉V = 0 for all p ∈ V implies q = 0 . (3.44)
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Proof:
We have to show that for every q 6= 0 there exists a p such that the sesqui-linear form does not
vanish.
If q 6= 0 we have q =

∑
j≥k qjε

j , k, j ∈ Z
2 for some k. Defining p := εkqk (we could also choose

p = q to get the stated result), the lowest order occurring in the sesqui-linear form is 2k, and the
coefficient to this order is given by∫

Rd
|qk|2e−

Pd
ν=1 λνy

2
ν dy > 0 .

Since all other combinations lead to higher orders in ε, this term can not be cancelled.
2

We shall show that G is a symmetric operator with respect to 〈. , .〉V .

Proposition 3.11. Let G be the operator (3.25) on V induced by Ĝε defined in (3.20) and let
〈. , .〉V be the non-degenerate sesqui-linear form introduced in Definition 3.9.
Then for all p, q ∈ V

〈p , Gq〉V = 〈Gp , q〉V .

Proof:
We will denote by Y = C[y] the set of all polynomials in y, considered as a subset of the form
domain of Ĝε for ε > 0. This can canonically be identified with the subset Y of all polynomials in
V.
By the linearity of the sesqui-linear form, it is sufficient to prove the proposition for p, q ∈ Y.
We need the following lemma:

Lemma 3.12. Let p, q ∈ Y . Then the following holds.

(a) For all y ∈ Rd and for ε0 sufficiently small, the function
√
ε 7→ F (y,

√
ε) := p(y)(Ĝεq)(y)e−

2ϕ̃(
√
εy)

ε (3.45)

is well defined as a C∞-function of
√
ε ∈ [0,

√
ε0].

(b) For all z ∈ Rd and N ∈ N the function defined in (3.45) satisfies

lim
ε→0

∂N√εF (y,
√
ε) =

N∑
j=0

(
N

j

)
p(y)(G j

2
q)(y)øN−j

2
(y)e−

Pd
ν=1 λνy

2
ν (3.46)

=: ∂N√ε=0F (y,
√
ε) .

(c)

J(
√
ε) :=

∫
Rd
F (y,

√
ε) dy (3.47)

defines a function in C∞([0, ε0)), for which

J (N)(0) =
∫

Rd
∂N√ε=0F (y,

√
ε) dy, N ∈ N . (3.48)

Proof of Lemma 3.12:
(a): This follows from the Definition (3.20) of Ĝε and the fact that the solution of the eikonal
equation ϕ̃(x) is C∞ in some neighborhood Ø of 0.

(b): We use the Taylor expansion (3.41) for the exponential factor and the expansion of Ĝε
given by (3.21) and (3.22). These combined with the Leibnitz rule give directly the term in (3.46).

(c): By use of Definition (3.20) and y = x√
ε

one has

J(
√
ε) =

1
ε

∫
Rd
p(y)(Uε(ϕ̃)ĤεUε(ϕ̃)−1q)(y)e−

2ϕ̃(
√
εy)

ε dy =

=
1
ε

∫
Rd
p
(
x√
ε

)
e−

ϕ̃(x)
ε Ĥε

(
q
(
x√
ε

)
e−

ϕ̃(x)
ε

)
dx , (3.49)
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thus J ∈ C∞(R \ {0}). In order to show (3.48) we split the region of integration by introducing
cut-off functions ζ0, ζ1 such that ζ0 ∈ C∞

0 (Rd), ζ0(x) = 1 for |x| ≤ η and ζ0 + ζ1 = 1. Here η is
chosen such that {|x| ≤ η} ⊂ Ø for Ø as introduced in Hypothesis 3.6 We get

J(
√
ε) =

(∫
Rd
ζ0(
√
εy)p(y)(Ĝεq)(y)e−

2ϕ̃(
√
εy)

ε ) dx+

+
1
ε

∫
Rd
ζ1(x)p

(
x√
ε

)
e−

ϕ̃(x)
ε Ĥε

(
q
(
x√
ε

)
e−

ϕ̃(x)
ε

)
dx

)
. (3.50)

To find an estimate for the second term, we notice that by Hypothesis 3.1 we have Ĥε = T̂ + V̂ε,
where T̂ is bounded and V̂ε is a multiplication operator, which is polynomially bounded. Thus
Ĥε

(
q
(
x√
ε

)
e−

ϕ̃(x)
ε

)
=: uε(x) is an element of L 2(Rd) and ‖uε‖L 2 is at most of order ε−k for

some finite k ≥ 0 depending on the dimension d.
By the assumptions on ϕ̃ we have ϕ̃(x) ≥ C|x| on the support of ζ1, thus by the Cauchy-

Schwarz inequality∣∣∣∣∫
Rd
ζ1(x)p

(
x√
ε

)
e−

ϕ̃(x)
ε Ĥε

(
q
(
x√
ε

)
e−

ϕ̃(x)
ε

)
dx

∣∣∣∣ ≤ ∫
|x|≥η

e−
ϕ̃(x)
ε |p( x√

ε
)||uε(x)| dx

≤ ‖uε‖L 2

(∫
|x|≥η

e−
2̃ϕ(x)
ε |p( x√

ε
)|2 dx

) 1
2

= O
(
e−

η
2ε

)
(3.51)

We shall now prove the assertion (3.48) by induction in N .
For N = 0 we have to analyze the limit ε → 0 of J(

√
ε) as given in (3.50). In order to show

(3.48), it remains by (3.51) to show, that we can interchange integration and limε→0 in the first
term on the right hand side of (3.50). This can be done by use of the Dominated convergence
theorem, since there exist constants C,D > 0 such that for any ε ∈ [0, ε0] the integrand is bounded
as ∣∣∣ζ0(x)p(y)(Ĝεq)(y)e− 2ϕ̃(

√
εy)

ε

∣∣∣ ≤ Ce−
|y|2
D . (3.52)

In order to see this, we write Ĝε by use of Ĥε as described above and use the Taylor expansion of
e
ϕ
ε T̂ e−

ϕ
ε u given in (3.8) and the expansion of Vε. By (3.9) and the eikonal equation (3.10), the

term of order ε−1 on the left hand side of (3.52) vanishes on the support of ζ0. The remaining
potential term ζ0(Vε − V0) is by assumption polynomially bounded, thus (3.52) is obvious for this
term. In order to analyze the remaining kinetic term, we use that it can by (3.8) be written as

ζ0(x)
∑
η∈Zd

ãη(x)e−η·∇ϕ(x)e−ε
P
νµ ηνηµ

R 1
0 ∂µ∂ν(ϕ(x+tεη))(1−t) dt

∫ 1

0

∇u(x+ tεη) · η dt (3.53)

for ãη defined in (2.18). The idea is to split the sum on the right hand side of (3.53) for some
R > 0 in the part with |η| ≤ R, which is bounded by some constant depending on R, and the
part with |η| > R. For the second part, we use that by Hypothesis 3.6 and (3.12), the second
derivative of ϕ̃ is positive definite inside of Ø and homogeneous of order −1 outside of Ø̃. Thus by
the exponential decay of aγ , this part of the sum is bounded as well. This yields (3.52).

We therefore can deduce that J ∈ C 0(R) and that it satisfies (3.48) for N = 0, i.e.,

J(0) = lim
ε→0

J(
√
ε) =

∫
Rd

lim
ε→ 0

F (y,
√
ε) dy .

It remains to show that for arbitrary N the assumption (3.48) for N − 1 and J ∈ CN−1(R) imply

J (N)(0) =
∫

Rd
∂N√ε=0F (y,

√
ε) dy = lim

ε→0
J (N)(

√
ε) (3.54)

The second equality then gives J ∈ CN (R). We have by (3.51)

J (N−1)(
√
ε) = ∂N−1√

ε

∫
|y|≤ η√

ε

F (y,
√
ε) dy +O

(
e−

η
ε

)
=
∫
|y|≤ η√

ε

∂N−1√
ε
F (y,

√
ε) dy +O

(
e−

η
2ε

)
.

(3.55)
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and by the induction hypothesis, we have (3.55) also for
√
ε = 0. Thus

lim
ε→0

1√
ε

(
J (N−1)(

√
ε)− J (N−1)(0)

)
=

lim
ε→0

1√
ε

∫
|y|≤ η√

ε

(∂N−1√
ε
F (y,

√
ε)− ∂N−1√

ε=0
F (y,

√
ε)) dy +O

(
e−

η
2ε

)
. (3.56)

Using (3.46) and the fact that each Gk maps polynomials to polynomials, we find as above an
integrable upper bound for the integrand, which is independent of ε. Thus again by the Dominated
convergence theorem, the right hand side of (3.56) is equal to∫

|y|≤ η√
ε

∂N√ε=0F (y,
√
ε) dy +O

(
e−

η
2ε

)
=
∫

Rd
∂N√ε=0F (y,

√
ε) dy .

This gives the first equality in (3.54).
In order to obtain the second equality, we use (3.55) with N − 1 replaced by N and again the
Dominated convergence theorem. 2

We come back to the proof of Proposition 3.11.
In order to use the symmetry of Ĝε on Hϕ̃, we define a function on R+ by〈

p , Ĝq
〉

Hϕ̃

(
√
ε) :=

〈
p , Ĝεq

〉
Hϕ̃

, p, q ∈ Y . (3.57)

By Lemma 3.12, the function defined in (3.57) is C∞([0, ε0]). If we denote the set of such functions
by F , (3.57) yields a well defined map〈

. , Ĝ .
〉

Hϕ̃

: Y × Y → F .

Denoting by T : F → K 1
2

the map which assigns to each f ∈ F its Taylor expansion in
√
ε, it follows

from Lemma 3.12 and from the definitions of G and of the sesqui-linear form in V, that the diagram

Y × Y

〈
. , Ĝ.

〉
Hϕ̃−−−−−−−−→ Fy yT

Y × Y
〈. , G.〉V−−−−−−→ K 1

2

is commutative. Since for
〈
Ĝ . , .

〉
Hϕ̃

and 〈G . , .〉V we have the analogous diagram, the proposition

is traced back to the symmetry of Ĝ on Hϕ̃. 2

3.4. Construction of asymptotic expansions

In this section we construct formal asymptotic expansions for the eigenfunctions and eigenval-
ues of Ĥε, solving the spectral problem to arbitrary high order in ε.
First we recall that the operator εG0 on Hϕ, given in (3.26), is unitary equivalent to the harmonic
oscillator

H0(ε) = −ε2∆ +
d∑
ν=1

λ2
νx

2
ν + V1(0) , (3.58)

where the unitary transformation Uε(ϕ0) is defined in (3.19). Therefore the spectrum of G0 is
given by (2.37) with ωjν replaced by λν .
The eigenfunctions of H0(ε) are the functions gα,0 defined in (2.49) with ϕ0 introduced in (3.5),
thus the Hε-normalized eigenfunctions of εG0 are given by

(Uε(ϕ0)gα,0) (y) = hα(y) , (3.59)

where hα denotes as in Remark 2.11 the product of Hermite polynomials hαν ∈ R[yν ]. Since
hk(−x) = (−1)khk(x), it follows that hα is even (respectively odd), if |α| is even (resp. odd).
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In order to get an expression for the resolvent of the full operator G on V, we notice that for
z /∈ σ(G0) the resolvent R0(z) = (G0 − z)−1 is well defined on polynomials and hence on V.

Lemma 3.13. Let z /∈ σ(G0) and p, q ∈ V. Then
(a) the inverse of (G− z) : V → V is given by the formal von Neumann series

R(z) :=
∞∑
k=0

−R0(z)
∑
j∈N∗

2

εjGj


k

R0(z) = −
∑
j∈N

2

εjrj(z) with (3.60)

rj :=
∑
k+l=j

k∈N,l∈ N∗
2

(−R0Gl)
k
R0 .

(b)
〈p , R(z)q〉V = 〈R(z̄)p , q〉V . (3.61)

(c) For rj defined in (3.60)

〈p , rj(z)q〉V = 〈rj(z̄)p , q〉V , j ∈ N
2 . (3.62)

Proof:

(a): R0(z) and Gj map polynomials to polynomials and raise the degree only by a finite order
depending on j (see Remark 3.8). Thus they are linear operators in V and the same is true for
each summand in the von Neumann expansion. For each j ∈ N

2 the operator rj is a finite sum of
compositions of R0 and Gk, where the order of Gk is at most equal to j. Thus rj is a bounded
operator in V.

In order to show that the series is well defined we have to show that with the notation G+ :=∑
j∈N∗

2

εjGj the partial sums

Sn =
n∑
k=0

[−R0(z)G+]k =
1− (−R0G+)n+1

1 +R0(z)G+

converge. Using the metric M and the norm ‖ . ‖V on V respectively defined in Appendix A.7
by means of an ε-adic valuation, we will show that {Sn}n∈N is a Cauchy sequence. Let n >
m, n,m, k ∈ N and u ∈ V fixed with ‖u‖V = εk. Then by the properties of the ε-adic valuation
on K 1

2

M

((
−(−R0G+)n+1

1 +R0(z)G+

)
u,

(
−(−R0G+)m+1

1 +R0(z)G+

)
u

)
≤

≤ max
j∈{n,m}

{(
vε

(〈
(−R0(z)G+)j+1

1+R0(z)G+
u , (−R0(z)G+)j+1

1+R0(z)G+
u
〉
V

)) 1
2
}

=

= ε
2k+n+1−1

2 = ‖u‖V ε
n
2 ,

because R0(z)G+ raises the order in ε by 1
2 . Thus in this formal sense of expansions with respect

to ε
1
2 , the mentioned sequence is Cauchy in the given metric and the series converges to (1 +

R0(z)G+)−1.
In order to verify that R(z) = (G− z)−1, we analyze

R(z)(G− z) =
∞∑
k=0

[−R0(z)G+]kR0(z)(G0 +G+ − z) . (3.63)

The right hand side of equation (3.63) is equal to

(1 +R0(z)G+)−1R0(z)(G0 − z) + (1 +R0(z)G+)−1R0(z)G+ =

= (1 +R0(z)G+)−1(1 +R0(z)G+) = 1

and thus R(z) is the left inverse of G− z. Applying (G− z) from the left to R(z), we get

(G− z)R(z) = (G0 − z +G+)(R0(z)−R0(z)G+R0(z) + . . .) =

= 1−G+R0(z) +G+R0(z)G+R0(z)− . . .+G+R0(z)−G+R0(z)G+R0(z) + . . . = 1 .
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and therefore R(z) is the inverse of (G− z).
(b): By use of R(z)(G− z) = 1 = (G− z)R(z) and Proposition 3.11, we can write

〈p , q〉V = 〈p , (G− z)R(z)q〉V = 〈(G− z̄)p , R(z)q〉V
and

〈p , q〉V = 〈R(z̄)(G− z̄)p , q〉V .
This proves the second statement.

(c): This follows directly from the expansion (3.60).
2

In the following we will use the resolvent operator R(z) to define a spectral projection for G asso-
ciated to an eigenvalue of the harmonic oscillator, i.e. of G0.

By (3.60) R(z) is determined on the polynomials and hence on V by the action of the operators
rj(z) : V → V on the Hermite polynomials, which form a basis in Y and thus in V.

It follows from Proposition 3.7, that Gj raises the degree of each polynomial by 2j, thus there
exist real numbers cjαβ such that for all α, β ∈ Nd0, j ∈ N

2 we have

Gjhα =
∑

|β|≤|α|+2j

cjαβhβ (3.64)

and from (3.64) together with (3.60) we can conclude, that there exist rational functions djαβ(z)
with poles at most at the elements of the spectrum of G0 for which

rj(z)hα =
∑

|β|≤|α|+2j

djαβ(z)hβ . (3.65)

Let E be an eigenvalue of G0 with multiplicity m and let Γ(E) be a circle in the complex plane
around E, oriented counterclockwise, such that all other eigenvalues of G0 lie outside of it.
Then since rj(z) is for each j ∈ N

2 well defined on V and depends meromorphically of z, we can
define for p =

∑
k≥M εkpk ∈ V

ΠEp :=
∑

k+l=j∈N
2

εj
1

2πi

∮
Γ(E)

rl(z)pk dz . (3.66)

We denote this operator by

ΠE = − 1
2πi

∮
Γ(E)

(G− z)−1 dz .

In the Schrödinger setting, such an operator describes the projection to the eigenspaces of all
eigenvalues of G inside of Γ.

Proposition 3.14. Let E ∈ σ(G0) with multiplicity m.
Then the operator ΠE defined in (3.66) is a symmetric projection in V of dimension m, which
commutes with G.

Proof:
Symmetry:

The symmetry of ΠE is a consequence of (3.62):〈
p ,
∮
Γ(E)

rj(z) dzq
〉
V

= −
〈∮

Γ(E)
rj(z) dzp , q

〉
V
,

where the negative sign results from the conjugation of z. Since we defined ΠE with an additional i,
the sign will not change and with linearity of the scalar product the symmetry of ΠE follows at once.

Π2
E = ΠE :

Let z̃ /∈ Int Γ(E), where Int Γ(E) denotes the interior of Γ(E). Then

(G− z̃)−1ΠE = −(G− z̃)−1 1
2πi

∮
Γ(E)

(G− z)−1 dz = − 1
2πi

∮
Γ(E)

(G− z̃)−1(G− z)−1 dz (3.67)
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and using the resolvent equation
(
(G− z̃)−1 − (G− z)−1

)
= (z̃ − z)(G − z̃)−1(G − z)−1 the last

term is equal to

− 1
2πi

∮
Γ(E)

1
z̃ − z

(
(G− z̃)−1 − (G− z)−1

)
dz =

= −(G− z̃)−1 1
2πi

∮
Γ(E)

1
z̃ − z

dz +
1

2πi

∮
Γ(E)

1
z̃ − z

(G− z)−1 dz =

= − 1
2πi

∮
Γ(E)

1
z − z̃

(G− z)−1 dz . (3.68)

To get the last equality we used the fact, that z̃ lies outside of Γ(E) and thus the first integral term
vanishes. Now let Γ̃(E) be another circle around E, which lies in the exterior of Γ(E), such that in
the interior of Γ̃(E) are no other eigenvalues of G0 too. Choosing z̃ /∈ Int Γ(E) with z̃ ∈ Int Γ̃(E)
and using (3.67), (3.68) we get

Π2
E =

1
4π2

∮
Γ̃(E)

(G− z̃)−1 dz̃

∮
Γ(E)

(G− z)−1 dz =

=
1

4π2

∮
Γ(E)

(G− z)−1

∮
Γ̃(E)

1
z − z̃

dz̃ dz = − 1
2πi

∮
Γ(E)

(G− z)−1 dz = ΠE .

rank ΠE = m:
We introduce the set

IE :=
{
α ∈ Nd

∣∣ G0hα = Ehα
}

=: {α1, . . . , αm} (3.69)

numbering the m Hermite polynomials with eigenvalue (energy) E for G0. As a consequence of the
representation (3.60) (recall r0(z) = R0(z)) and of the definition (3.66), we can write for α ∈ IE

ΠEhα = hα +
∑
j∈N∗

2

εjpj (3.70)

for some polynomials pj ∈ C[y] of degree less than or equal to |α| + 2j (this follows from (3.65)).
Since the Hermite polynomials form a basis, (3.70) implies that the functions ΠEhαk , k = 1, . . .m,
are linearly independent over K 1

2
. Thus their span has dimension m. It remains to show that

this span coincides with the range of ΠE , i.e., we have to show that for all β ∈ Nd0 there exist
µα ∈ K 1

2
, α ∈ IE , such that

ΠEhβ =
∑
α∈IE

µαhα . (3.71)

The case β ∈ IE is trivial, so let β /∈ IE , then

ΠEhβ =
∑
j∈N∗

2

εjpj (3.72)

for some pj ∈ C[y]. Since the Hermite polynomials form a basis in C[y], the polynomial p 1
2

expands
to

p 1
2

=
∑
α∈IE

cαhα +
∑
γ /∈IE

cγhγ . (3.73)

Applying ΠE on both sides of (3.72) and using Π2
E = ΠE , (3.73) and again (3.72) for the second

equality, we get

ΠEhβ = ε
1
2

∑
α∈IE

cαΠEhα + ε
1
2

∑
γ /∈IE

cγΠEhγ +
∑
j≥1

j∈
N∗
2

εjΠEpj = ε
1
2

∑
α∈IE

cαΠEhα +
∑
j≥1

j∈
N∗
2

εj p̃j

for p̃j ∈ C[y]. Thus by expanding the terms of the next order we gain the order ε
1
2 in the remaining

term and inductively obtain µα ∈ K 1
2

satisfying equation (3.71).
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ΠEG = GΠE :
This follows from the fact that G commutes with R(z) together with the definition (3.66).

2

The aim of the following construction is to find an orthonormal basis in RanΠE , such that G|Ran ΠE

is represented by a symmetric m×m-Matrix M = (Mij) with Mij ∈ K 1
2
.

To this end, we rename the spectral projections of the eigenfunctions belonging to the eigenvalue
E by fj := ΠEhαj , α

j ∈ IE . Then equation (3.70) and Definition 3.9 for the sesqui-linear form in
V imply

〈fi , fj〉V = δij +
∑
k∈N∗

2

εkγk, 1 ≤ i, j ≤ m, γk ∈ R , (3.74)

since the Hermite polynomials are orthogonal and the gαj ,0 are normalized in the L 2-norm. Defin-
ing F = (Fij) := (〈fi , fj〉V), F is symmetric, because the fk are real functions. The symmetric
matrix B := F−

1
2 is given by a binomial series (using the Taylor series for (1+x)−

1
2 at 0, which is

convergent for x < 1) and if all matrix elements Fij are in K 1
n
, the same is true for all Bij . Then

e := (e1, . . . , em) := (f1, . . . , fm)B =: fB (3.75)

defines an orthonormal basis {e1, . . . em} of RanΠE (the orthonormalization of
{f1, . . . , fm}), because

(fB)t(fB) = Bf tfB = F−
1
2FF−

1
2 = 1 .

In this basis, the matrix M = (Mij) of G|Ran ΠE is given by

M = etGe = Bf tGfB = BFGB , (3.76)

where FGkl := 〈fk , Gfl〉V ∈ K 1
2
. Thus M is a finite symmetric matrix with entries in K 1

2
. Using

the Propositions 3.7 and 3.14, the equations (3.64) and (3.74) and the fact, that ε
d
4 hαj , α

j ∈ IE ,
are the eigenfunctions of G0 for the eigenvalue E, we can conclude

FGij = Eδij +
∑
k∈N∗

2

εkµk µk ∈ R . (3.77)

It is shown in [45], that K :=
⋃
n∈NK 1

n
is algebraically closed, thus any m×m-matrix with entries

in K possesses m eigenvalues in K, counted with their algebraic multiplicity. By the following
theorem, which is proven in the appendix of [45], it actually follows that the eigenvalues of matrices
with entries in the ring K 1

n
also lie in K 1

n
.

Theorem 3.15. Let M be a hermitian m ×m-matrix with elements in K 1
n

for some n ∈ N.
Then the eigenvalues E1, . . . Em are in K 1

n
with real coefficients, and the highest negative power

occurring in their expansion is bounded by the highest negative power in the expansions of Mij.
Furthermore the associated eigenvectors uj ∈ (K 1

n
)m can be chosen to be orthonormal in the natural

inner product.

We can conclude from Theorem 3.15 and the special form of the elements of M defined in
(3.76) that this matrix possesses m (not necessarily distinct) eigenvalues in K 1

2
of the form

Ej(ε) = E +
∑
k∈N∗

2

εkEjk =
∑
k∈N

2

εkEjk , j = 1, . . .m (3.78)

where Ej0 = E and the corresponding eigenfunctions are

ψj(ε) =
∑
k∈N

2

εkψjk . (3.79)

From (3.70) and the fact that every eigenfunction can be written as linear combination

ψ =
∑
α∈IE

λαΠEhα (3.80)

with coefficients λα without negative powers in
√
ε, it follows that the maximal degree of ψjk ∈ C[y]

is given by maxα∈IE (|α|+ 2k).
Using the several parity results in the preceding propositions, we can prove the next proposition

about the absence of half integer terms in the energy expansion.
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Proposition 3.16. Let all α ∈ IE have the same parity (i.e., |α| is either even for all α ∈ IE
or odd for all α ∈ IE), where IE is defined in (3.69). Let M denote the matrix specified in equation
(3.76) and Ej(ε) its eigenvalues given in (3.78). Then Mij ∈ K1 and Ej(ε) ∈ K1 for 1 ≤ i, j ≤ m.

Proof:
By Theorem 3.15 we know that if Mij ∈ K1, the same is true for the eigenvalues Ej(ε), so it suffices

to prove the proposition for Mij . By equation (3.76), M = BFGB where B =
(
〈fi , fj〉V

)− 1
2 and

FG = (〈fk , Gfl〉V).
In order to distinguish between the indices arising in the expansions and those numbering different
eigenfunctions, we will change the notation during this proof to fα = ε

d
4 ΠEhα and FGαβ for α, β ∈

IE .
We start by proving that 〈fα , fβ〉V ∈ K1. By definition (3.66) the coefficients in the power series
of fα are given by

fαj =
1

2πi

∮
Γ

rj(z)hα dz . (3.81)

The rj(z) are determined by Gj and R0(z), and since Gj changes the parity of a polynomial in
C[y] by the factor (−1)2j , j ∈ N∗

2 (see Remark 3.8), we can conclude by the definition of R0(z)
that rj(z) changes the parity by (−1)2j as well. Using that the parity of hα is given by (−1)|α|,
we obtain (−1)|α|+2j as parity of fαj . By Definition 3.9 we have

〈fα , fβ〉V =
∑
n∈ Z

2

εn
∑

j,k,l∈ Z
2

j+k+l=n

∫
Rd
fαj(y)fβk(y)øl(y)e−

Pd
ν=1 λνy

2
ν dy .

We shall show that for 2n odd (and thus for n half-integer), each summand vanishes. For fixed
j, k, l the integral will vanish if the entire integrand is odd. According to (3.42) the parity of øl is
(−1)2l, the scalar product therefore vanishes if (|α|+2j+ |β|+2k+2l) is odd. Since by assumption
α and β have the same parity, |α|+ |β| is even and so 2(j+k+ l) = 2n has to be odd, which occurs
if n is half-integer. This shows that 〈fα , fβ〉V ∈ K1 and the same is true for Bαβ by definition.
It remains to show the same result for FGαβ given by

〈fα , Gfβ〉V =
∑
n∈ Z

2

εn
∑

j,k,l,r∈ Z
2

j+k+l+r=n

∫
Rd
fαj(y)Grfβk(y)øl(y)e−

Pd
ν=1 λνy

2
ν dy .

The operator Gr changes the parity by (−1)2r as already mentioned, so as before the integral
vanishes if j + k + l + r = n is half integer.

2

3.5. Construction of Asymptotic Expansions in x and ε

In this section we will construct formal asymptotic expansions in our original variable x and
associate C∞-functions to them by use of a Borel-procedure.

3.5.1. Expansion with respect to the original variable. We will now return to our
original variable x =

√
εy. Substituting it in equation (3.79) and rearranging with respect to

powers in
√
ε yields

ψj(y, ε) =
∑
k∈N

2

εkψjk(y) =
∑
k∈N

2

εkψjk

(
x√
ε

)
=:

∑
l∈ Z

2
l≥−N

εlâjl(x) (3.82)

and we set

âj(x, ε) := ψj

(
x√
ε
, ε

)
=
∑
l∈ Z

2
l≥−N

εlâjl(x) . (3.83)

The order of ψjk as a polynomial in y is M = maxα∈IE (|α| + 2k), giving rise the order −M
2 in

ε after the substitution x =
√
εy. Thus the order of εkψjk is −N = k − M

2 = −maxα∈IE
|α|
2

independent of k. It is then clear that N = 1 if E denotes the lowest eigenvalue.
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In general, âjl is a formal power series in x, because for every fixed l there exists a smallest h,
such that only ψjk with k ≥ h contribute (for example âj,−N consists of the highest power terms
of all ψjk respectively).

The lowest order in x of âjl is determined by the order in y of the first contributing function
ψjh, which results in the power εl (looking again at our example, we see that for âj,−N the lowest
order in x is 2N = maxα∈IE |α|, for âj,−N+1 the lowest order is 2N − 1 and for âjl with l ≥ 0, the
lowest order is given by the lowest order term of ψjl, which is zero). We denote by A the set of
formal symbols âj given by a power series as in (3.83) with arbitrary N . Then A is a vector space
over K 1

2
, on which

e
ϕ̃(x)
ε Ĥεe

− ϕ̃(x)
ε

acts as an operator with eigenfunctions âj , where Ĥε fulfills Hypothesis 3.1 and ϕ̃ is constructed
in Hypothesis 3.6. The following theorem will summarize these results and give a condition on the
absence of half integer terms in the expansion.

Theorem 3.17. Let E be an eigenvalue with multiplicity m of the harmonic approximation
G0 of Ĝε given in (3.26). Let Ĥε be a Hamilton operator satisfying Hypothesis 3.1 and ϕ̃ be the
real function described in Hypothesis 3.5.

(a) Then the operator e
ϕ̃(x)
ε Ĥεe

− ϕ̃(x)
ε has an orthonormal system of m eigenfunctions âj

of the form (3.83) in A, where the lowest order monomial in âjl ∈ C[[x]] is of degree
max{−2l, 0}.
The associated eigenvalues are

εEj(ε) = ε

E +
∑
k∈N∗

2

εkEjk

 .

(b) If |α| is even (resp. odd) for all α ∈ IE, then all half integer (resp. integer) terms in the
expansion (3.83) of the eigenfunctions with respect to x vanish.

Proof:

(a): This point is already shown in the discussion succeeding equation (3.83).
(b): By equation (3.80) and Proposition 3.16 together with Theorem 3.15 we can write any

eigenfunction ψ as a linear combination of ΠEhα with coefficients in K1, thus we get explicitly

ψ

(
x√
ε

)
=
∑
α∈IE

∑
j∈N0

k∈
N
2

εj+kλαjfαk

(
x√
ε

)
.

As discussed below (3.81), the polynomials fαk are of degree (|α| + 2k) in y, thus they have the
order ε−(k+

|α|
2 ) and the parity of |α|+ 2k, since they consist of monomials of order |α|+ 2k − 2l,

0 ≤ 2l ≤ |α|+ 2k, l ∈ N. If we combine the powers in ε arising in the sum, we get εj+l−
|α|
2 , where

j and l are both integer. If |α| is even, the whole exponent is integer, if it is odd the exponent
is half integer. So if one of these assumptions is true for all α ∈ IE , there remain no half integer
respectively integer terms. Since the transition to âj is just a reordering, this is also true for âj .

2

3.5.2. Approximate Eigenfunctions. As a first step, to analyze the spectrum of Hε as an
operator on `2

(
(εZ)d

)
, we construct quasi-modes, i.e., C∞-functions ajl and real numbers Ẽjl,

such that asymptotic sums of them solve (3.7) to arbitrary high polynomial order in x and ε in a
sufficiently small neighborhood Ø′ of 0 (independent of ε).
For âj given by (3.83), we can use the Theorem of Borel (see for example Grigis, Sjöstrand [24])
with respect to x, to find C∞-functions ˜̂ajl possessing âjl as Taylor series at zero and to define a
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formal asymptotic series in a neighborhood Ø′ of 0 by

˜̂aj(x, ε) :=
∑
l∈ Z

2
l≥−N

εl˜̂ajl(x) .

Then

e
ϕ̃(x)
ε (Hε − εEj(ε))e−

ϕ̃(x)
ε ˜̂aj(x, ε) = bj(x, ε) , (3.84)

where bj(x, ε) =
∑

l∈ Z
2

l≥−N

εlbjl(x) has the property, that each bjl vanishes to infinite order at x = 0.

It remains to show that it is possible to modify the functions ˜̂ajl by uniquely determined functions
b̃jl vanishing at zero to infinite order, such that for the resulting functions ãjl := ˜̂ajl − b̃jl, the
formal series

ãj(x, ε) :=
∑
l≥−N
l∈Z/2

εlãjl(x) (3.85)

solves for x ∈ Ø′ the equation

e
ϕ̃(x)
ε (Hε − εEj(ε))e−

ϕ̃(x)
ε ãj(x, ε) = 0 .

To this end, we have to show that the equation

e
ϕ̃(x)
ε (Hε − εEj(ε))e−

ϕ̃(x)
ε b̃j(x, ε) = bj(x, ε) .

has a unique formal power solution b̃j(x, ε) ∼
∑
εlb̃jl(x) with coefficients b̃jl ∈ C∞(Ø′) vanishing

to infinite order at x = 0. The equation of order zero is the eikonal equation already mentioned in
Section 3.2, vanishing identically in Ø′ for the appropriate choice of ϕ̃. All higher order equations
are called transport equations and determine for given initial conditions order by order the functions
b̃jl. We must show that they have unique solutions and that the solutions are C∞. By the definition
of Tε and the assumptions in Hypothesis 3.1, we have

e
ϕ̃(x)
ε

Tε + Vε − ε

E +
∑
k∈N/2

εkEjk

 e− ϕ̃(x)
ε

∑
l≥−N
l∈Z/2

εlb̃jl(x) =

=
∑
l≥−N
l∈Z/2

εl

 ∑
γ∈(εZ)d

[
aγ(x)e

1
ε (ϕ̃(x)−ϕ̃(x+γ))b̃jl(x+ γ, ε)

]
+

∑
k∈N0/2

εk (Vk(x)− εEjk) b̃jl(x, ε)

 .

To get the different orders in ε of the kinetic term, we expand ϕ̃ and b̃jl at x and set η := γ
ε ∈ Zd.

For appropriate t, t′ ∈ [0, 1]

1
ε

(ϕ̃(x)− ϕ̃(x+ εη)) = −∇ϕ̃(x) · η − ε

2

d∑
ν,µ=1

ηνηµ∂ν∂µϕ̃(x)− ε2

6

d∑
α,ν,µ=1

ηαηνηµ∂α∂ν∂µϕ̃(x+ tεη)

and

b̃jl(x+ εη) = b̃jl(x) + εη · ∇b̃jl(x) + ε2
d∑

ν,µ=1

ηνηµ∂ν∂µb̃jl(x+ t′εη) .

In addition, we use the expansion of the exponential function at zero to get

e
1
ε (ϕ̃(x)−ϕ̃(x+γ)) = e−∇ϕ̃(x)·η

1− ε

2

d∑
ν,µ=1

ηνηµ∂ν∂µϕ̃(x) +
ε2

4

(
d∑

ν,µ=1

ηνηµ∂ν∂µϕ̃(x)

)2

−O
(
ε4
)×

×

(
1− ε2

6

d∑
α,ν,µ=1

ηαηνηµ∂α∂ν∂µϕ̃(x+ tεη) +O
(
ε4
)) (

1 +O
(
ε3
))

.

The lowest order equation is that of order −N . By the eikonal equation, the left hand side vanishes
and the same argument applies for the −N + 1

2 order equation. The first non-vanishing term arises
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from the action of the first order part of the conjugated operator on the function b̃j,−N (x),which
is for ã defined in (2.18)∑

η∈Zd
ãη(x)e−∇ϕ̃(x)·η

(
η · ∇ − 1

2

d∑
ν,µ=1

ηνηµ∂ν∂µϕ̃(x)

)
+ V1(x)− E

 b̃j,−N (x) = bj,−N . (3.86)

This equation takes the form

(P(x, ∂x) + f(x))u(x) = v(x) (3.87)

for the differential operator

P(x, ∂x) :=
∑
η∈Zd

ãη(x)e−∇ϕ̃(x)·ηη · ∇ , (3.88)

which is well defined by the polynomial decrease of aγ (see Remark 3.2). The next and all higher
order equations result from the action of the first order part of the conjugated operator given
in (3.86) on the respective highest order part of b̃j , which for the k-th order is the term b̃j,k−1.
Additionally to the first order equation, a term is produced by the action of higher orders of the
conjugated operator on lower order parts of b̃j . Since these lower order terms are already deter-
mined by the preceding transport equations, this additional part can be treated as an additional
inhomogeneity of (3.87). Thus all transport equation take the form

(P(x, ∂x) + f(x))u(x) = v(x) (3.89)

with f, v ∈ C∞ (Ø′) and v vanishing to infinite order at x = 0 by the construction of the formal
series (3.83). The differential operator P defined in (3.88) is of the form 〈Z , ∇〉 for the vector field
Z(x) = (z1(x), . . . , zd(x)) given by

zν(x) =
∑
η∈Zd

ãη(x)e−∇ϕ̃(x)·ηην .

Using (2.22) we see that x = 0 is a critical point of the vector field Z. In order to linearize at zero,
we compute

∂xµzν(0) =
∑
η∈Zd

[
(∂xµ ãη)(0)e−∇ϕ̃(0)·ηην − ãη(0)e−∇ϕ̃(0)·η∂xµ(〈∇ϕ̃ , η〉)(0)ην

]
.

Since for x ∈ Ø the phase function ϕ̃ is given by (3.12), we get∇ϕ̃(0) = 0 and ∂xµ(∇ϕ̃η)(0) = λµηµ.
In Hypothesis 3.1 we assumed the kinetic energy to vary at least quadratic in x, thus the first
derivative of aεη vanishes and

∂xµzν(0) = −
∑
η∈Zd

ãη(0)λµηµην .

By (2.23) and since we chose coordinates such that B(0) = 1 as described in Remark 3.3, we get

−
∑
η∈Zd

ãη(0)ηµηνλµ =
{
λµ > 0 for ν = µ

0 for ν 6= µ .

Therefore the linearization of Z at 0 is Z0 := (z10, . . . , zd0) with zν0(x) = λνxν and the corre-
sponding differential operator is given by

P0(x, ∂x) =
d∑
ν=1

λνxν∂xν

with λν > 0 for ν = 1, . . . , d. Now we are in the state to use the results in Dimassi-Sjöstrand [16]
(Proposition 3.5) and Helffer [29] (Proposition 2.3.7), which tell us, that under the given assump-
tions the differential equation (3.89) has a unique C∞-solution in a sufficiently small neighborhood
Ø′ of suitable shape (star-shaped in the notion of Dimassi-Sjöstrand [16]) vanishing to infinite
order at x = 0. We briefly recall the proof for the existence and uniqueness of solutions of the
partial differential equation (3.89) using the method of integrating along the characteristics of the
vector field Z. We denote by ]−∞, 0] 3 t 7→ γ(t) the integral curve of Z, i.e.,

γ̇(t) = Z(γ(t)) , with γ(0) = x0 ∈ Ø′ , (3.90)
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for some x0 ∈ Ø′ \ {0}. Formally this integral curve is given by γ(t) = etZ(x0), t ≤ 0. By (3.90)
we get

u̇(γ(t)) = 〈γ̇(t) , ∇u(γ(t))〉 = 〈Z , ∇u〉(γ(t)) = P(x, ∂x)u(γ(t)) = v(γ(t))− fa(γ(t))

Since all eigenvalues of the linearized vector field Z0 are strictly positive, it follows by the theory
of ordinary differential equations, that γ(t) approaches 0 exponentially fast for t → −∞, i.e.,
|γ(t)| ≤ Ce−

|t|
C |x0| for arbitrary small suitable Ø′. The inhomogeneity v is a C∞-function vanishing

at 0 to infinite order, thus by the preceding estimate v(γ(t)) = O
(
e−C|t|

)
for every C > 0 and we

have a unique C∞-solution u of (3.89) with u = O (|x|∞). Thus the formal power series ãj(x, ε)
defined in (3.85) solves in Ø′ the equation

(Ĥε − εẼj(ε))
(
ãj(x, ε)e−

ϕ̃(x)
ε

)
= 0 , Ẽj(ε) = E +

∑
k∈ N∗

2

εkEjk .

Again by a Borel procedure, but now with respect to ε, we can find a function a′j ∈ C∞ (Ø′ × [0,∞))
representing the asymptotic sum ãj(x, ε) given in (3.85), which we denote by

a′j(x, ε) ∼
∑
l∈ Z

2
l≥−N

εlãjl(x) . (3.91)

In order to get a function, which is defined on Rd × [0,∞), we multiply with a cut-off function
k ∈ C∞

0 (Rd), with supp k ⊂ Ø′ and such that for some Ø̃, Ø̃ ⊂ Ø′ we have k(x) = 1 for x ∈ Ø̃. We
denote the resulting function aj ∈ C∞

0

(
Rd × [0,∞)

)
by

aj(x, ε) := k(x)a′j(x, ε) ∼ k(x)
∑
l∈ Z

2
l≥−N

εlãjl(x) . (3.92)

Analogously we define a real number Ej(ε) as an asymptotic sum

Ej(ε) ∼ E +
∑
k∈ N∗

2

εkEjk . (3.93)

We have therefore proven the main part of the following theorem.

Theorem 3.18. Let, for ε > 0, Ĥε and Hε respectively be an Hamilton operator satisfying
Hypothesis 3.1. As described in Hypothesis 3.6, we choose a real function ϕ̃ and a star shaped
neighborhood Ø′ of 0.

Let εE be an eigenvalue of the harmonic approximation H0 of Hε given in (3.58) with mul-
tiplicity m and for j = 1, . . . ,m let the functions aj ∈ C∞

0

(
Rd × [0,∞)

)
be as defined in (3.92),

where the cut-off function k is supported in Ø′ and k(x) = 1 for x ∈ Ø̃ for some neighborhood Ø of
0 with Ø̃ ⊂ Ø′. Then the functions aj and the real numbers Ej defined in (3.93) solve the equation

(Ĥε − εEj(ε))
(
aj(x, ε)e−

ϕ̃(x)
ε

)
= O (ε∞) e−

ϕ̃(x)
ε , (x ∈ Ø̃, ε→ 0) . (3.94)

For any x0 ∈ Rd, the restriction 1Gx0
aj(x, ε)e−

ϕ̃(x)
ε of the approximate eigenfunctions to the

lattice Gx0 = (εZ)d + x0 are approximate eigenfunctions for the operator Hε with respect to the
same approximate eigenvalues, i.e.,

(Hε − εEj(ε))1Gx0

(
aj(x, ε)e−

ϕ̃(x)
ε

)
= 1Gx0

O (ε∞) e−
ϕ̃(x)
ε , (x ∈ Ø̃ ∩ Gx0 , ε→ 0) . (3.95)

Proof:

To make the step from Ĥε acting on C∞
0

(
Rd
)

to the operator Hε acting on lattice functions
K
(
(εZ)d

)
, we use that Gx0 , the lattice shifted to any point x0 ∈ Rd in the sense that x0 ∈ Gx0 , is

invariant under the action of Ĥε as discussed in Remark 2.9. Thus the restriction to the lattice
commutes with Ĥε and the action of the restriction operator 1Gx0

to (3.94) yields (3.95) by use of
(2.34).
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Remark 3.19. It follows from the construction given in (3.83) that the constant N denot-
ing the lowest order in ε in the expansion (3.92) is given by N = maxα∈IE

|α|
2 . Here IE :={

α ∈ Nd
∣∣ G0hα = Ehα

}
, where E denotes an eigenvalue (energy) of the harmonic oscillator G0,

giving the zero order term in the expansion (3.93). Furthermore, hα denote the associated eigen-
functions, which were shown to be products of the hermite polynomials introduced in (2.39).
It follows at once that in the case of the bottom of the spectrum, i.e., if E = 1, the associated
eigenfunctions are the constant function h0 and therefore N = 0 in this case.





CHAPTER 4

Finsler Distance associated to Hε

In this chapter, we define the notion of a metric and distance function adapted to the Hamilton
operator Hε, which describes the decay rate of the eigenfunctions of a Dirichlet operator associated
to Hε and extends the solution of the eikonal equation outside of a neighborhood Ω of one well.
Analog to the construction of Agmon [3] for Schrödinger operators, the idea is to find a metric,
such that the geodesics with respect to this metric are equal to the base integral curves of the
Hamilton vector field, but since Tε is a translation operator we have to use the notion of a Finsler
metric instead of a Jacobi metric.
In Chapter 6, we will use this distance function on Rd, to replace the locally defined quasi modes
of Hε constructed in Chapter 3 by globally defined functions.

In the following definitions we introduce the general notion of a Finsler manifold, where the
distance is defined via variation over the length of curves as in the Riemannian setting. For the
theory of Finsler manifolds we refer to the detailed description for example in Bao-Chern-Shen
[6] (from which we adopt the notation), Asanov [5] Abate-Patrizio [1] and Giaquinta-Hildebrandt
[22].

For a manifold M we denote by TxM the tangent space at the base point x ∈M and by TM
the tangent bundle of M . We denote an element of TM by (x, v) where x ∈M and v ∈ TxM such
that the projection π : TM → M is given by π(x, v) = x. The cotangent space T ∗xM at x ∈ M is
the dual space of TxM , the cotangent bundle is denoted by T ∗M and analog to the tangent bundle
its elements are written as (x, ξ). The projection π∗ : T ∗M → M is then given by π∗(x, ξ) = x.
Sometimes the tangent space TxM = π−1(x) and the cotangent space T ∗xM = (π∗)−1 (x) are called
fibre over x.

The canonical pairing between an element v ∈ TxM and ξ ∈ T ∗xM is written as v · ξ.
For a local coordinate system (x1, . . . , xd) : U → Rd, where U ∈ M open, the induced coor-

dinate bases of TM and T ∗M are given by ∂xν and dxν , ν = 1, . . . d respectively. An element
(x, v) ∈ π−1(U) ⊂ TM can then be written in local coordinates (x1, . . . , xd, v1, . . . , vd), where
v =

∑d
ν=1 vν∂xν and analogously an element (x, ξ) of the cotangent bundle can be written as

(x1, . . . , xd, ξ1, . . . , ξd) for ξ =
∑
ν ξνdxν . If f is a function on M or TM , then we use the same

letter for the associated function in Rd with respect to local coordinates.

4.1. Definition and Properties of Finsler Manifold and Finsler Metric

Definition 4.1. Let M denote a d-dimensional C∞-manifold, TM its tangent bundle and
TM \ {0} := {(x, v) ∈ TM | v 6= 0} the slit tangent bundle.

(a) A (Lagrange)-function F : TM → [0,∞) is called a Finsler function on M , if:
1) F is of class C∞(TM \ {0}).
2) It satisfies the homogeneity condition F (x, λv) = λF (x, v) for λ > 0, i.e. F is

positive homogeneous of order 1 in each fibre TxM .
3) F (x, v) > 0 for v 6= 0.

(b) A Finsler function F is said to be absolutely homogeneous, if
4) it satisfies the condition F (x, λv) = |λ|F (x, v) for all λ ∈ R,

i.e. if it is absolute homogeneous of order 1 with respect to the fibre variable.
(c) A manifold together with a Finsler function, (M,F ), is called Finsler manifold.

In our setting, only absolutely homogeneous Finsler functions arise.
A Finsler function induces a curve length on M as follows.

Definition 4.2. (a) A curve γ : [a, b] → M, t 7→ γ(t) on M is called regular, if it is
C 2 and the velocity γ̇(t) 6= 0 for all t ∈ [a, b], where γ̇(t) := d

dtγ(t) ∈ Tγ(t)M .
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(b) We denote by Γa,b(x1, x2) the collection of all regular curves γ on M which are parame-
terized over [a, b] and satisfy γ(a) = x1 and γ(b) = x2. Then Γa,b(x1, x2) is a Banach-
manifold (for the notion of manifolds of maps and the construction of coordinate charts
see for example Klingenberg [46] or Hamilton [26]).

(c) For any Finsler function F on M , the curve length sF : Γa,b(x1, x2) → R associated to F
is defined as

sF (γ) :=
∫ b

a

F (γ(t),
d

dt
γ(t)) dt .

(d) For any δ > 0, a regular variation of γ ∈ Γa,b(x1, x2) is a C 2-map γδ : [a, b]×(−δ, δ) →M ,
such that γδ(t, 0) = γ(t) for all t ∈ [a, b] and γδ(., u) is regular for each u ∈ (−δ, δ).

A regular variation of γ with fixed endpoints (i.e. with γδ(a, u) = x1 and γδ(b, u) = x2

for all u ∈ (−δ, δ)) can be considered as a map γδ : (−δ, δ) → Γa,b(x1, x2), i.e. as a C 2-
curve in Γa,b(x1, x2) passing the point γ for the parameter value u = 0.

Therefore the tangent space of Γa,b(x1, x2) at a point η is given by

TηΓa,b(x1, x2) = {∂uηδ|u=0 | ηδ is a regular variation of η with fixed endpoints} . (4.1)

(e) The tangential of the curve length sF with respect to a Finsler function F at a point
η is a mapping dsF |η : TηΓa,b(x1, x2) → TsF (η)R, which is given by dsF |η(∂uηδ|u=0) =
∂usF (ηδ)|u=0.

dsF is called the first variation of curve length in Finsler geometry.
(f) A regular curve γ ∈ Γa,b(x1, x2) is called a geodesic with respect to the Finsler function

F (or a Finsler geodesic), if dsF |γ = 0, i.e. if ∂usF (γδ)|u=0 = 0 for all regular variations
γδ of γ with fixed endpoints.

Remark 4.3. (a) The curve length sF (γ) of γ is well defined, because by condition 2) for
F (the positive homogeneity with respect to v, Def.4.1,(a)2)) the integral is independent
of the parametrization of the curve.

(b) In the book of Agmon [3], the curve length in Finsler geometry is defined with respect to the
wider class of absolutely continuous curves. ( A complex curve γ on the interval [a, b] is
absolute continuous, if for all ε > 0 there exists a δ > 0 such that

∑n
j=1 |γ(βj)−γ(αj)| < ε

for all n ∈ N and disjoint segments (α1, β1), . . . (αn, βn) which satisfy
∑n
j=1 |βj−αj | < δ.)

These curves are not differentiable in the usual sense, but it is shown in Rudin [52],
Thm.7.18, that if γ is absolutely continuous, then it is differentiable almost everywhere
on [a, b], γ̇ ∈ L 1 and γ(t)− γ(a) =

∫ t
a
γ̇(s) ds.

The restriction to the class of C 2-curves is adapted to the definition given by Abate-
Patrizio [1], allowing to use the results given there.

(c) Since the point η ∈ Γa,b(x1, x2) is a curve on M , any tangent vector ∂uηδ|u=0 ∈ TηΓa,b(x1, x2)
at η can be considered as a vector field ∂uηδ|u=0(.) along η(.) ⊂ M , i.e. as a function
∂uηδ|u=0 : [a, b] → TM such that ∂uηδ|u=0(t) ∈ Tη(t)M . Since the variation ηδ was
assumed to have fixed endpoints, it follows that ∂uηδ|u=0(a) = ∂uηδ|u=0(b) = 0.

If the manifold M is connected, the notion of the integral length of a curve suggests to define
the distance between two points as the infimum of the distance over all regular curves joining these
points.

Definition 4.4. Let (M,F ) denote a Finsler manifold.

(a) The Finsler distance dF (x1, x2) : M ×M → [0,∞] between the points x1 and x2 is defined
by

dF (x1, x2) := inf
γ∈Γ0,1(x1,x2)

sF (γ) .

If Γ0,1(x1, x2) is empty, the distance is defined to be infinity.
(b) A geodesic γ between two points x1 and x2 is called minimal, if sF (γ) = d(x1, x2).

In Lemma 4.8 we will show, that in the case of an absolutely homogeneous Finsler function,
this distance is actually a metric on M .
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Remark 4.5. A function g ∈ C∞ (TM,R) is called a Riemannian metric if for each x ∈ M
its restriction gx : TxM → R to the fibre over x is a positive definite quadratic form and therefore
induces a scalar product. Defining gij(x) := gx(∂xi , ∂xj ), in local coordinates the Riemannian metric
is therefore given by a covariant two-tensor

ds2 = g =
d∑

i,j=1

gij(x)dxi ⊗ dxj with gij(x) = gji(x) . (4.2)

Each Riemannian metric g induces a Finsler function via Fg(x, v) :=
√
gx(v, v), thus each Rie-

mannian manifold is a Finsler manifold. In local coordinates Fg is determined by

F 2
g (x1, . . . , xd, v1, . . . , vd) =

∑
i,j

gij(x)vivj (4.3)

and thus

g =
∑
i,j

∂2
vivj

(
1
2
F 2
g

)
dxi ⊗ dxj . (4.4)

Then for any regular curve γ : [0, 1] → M , the curve length with respect to F = Fg defined in
Definition 4.2 is equal to the Riemannian curve length, i.e. sFg (γ) =

∫
|γ̇(t)| dt, with |γ̇(t)|2 :=

gγ(t)(γ̇(t), γ̇(t)) and the Finsler distance dFg given in Definition 4.4 is thus equal to the Riemannian
distance.

In a weak sense there is an inverse of this connection between Riemannian and Finsler man-
ifolds. For a given Finsler function F , equation (4.4) with F instead of Fg defines a symmetric
covariant 2-tensor gF . The elements of the matrix (gij(x, v)) determined by (4.3) again with a
general Finsler function at the place of Fg, are then depending not only on the base variable x but
also on the tangent vector v. In local coordinates, gij can for a general Finsler function be defined
as

gij :=
∂2

∂vi∂vj

(
1
2
F 2

)
= F

∂2F

∂vi∂vj
+
∂F

∂vi

∂F

∂vj
. (4.5)

Definition 4.6. We denote by SM := TM/ ∼S the sphere bundle, where

(x, v) ∼S (y, w) , if x = y and v = λw for any λ > 0 .

By PTM we denote the projective bundle of TM , i.e. PTM = TM/ ∼P , where

(x, v) ∼P (y, w) , if x = y and v = λw for any λ 6= 0 .

Since F is positive (or absolutely) homogeneous of degree one in v, the functions gij are homo-
geneous of degree zero in v and are thus functions on the sphere (or projective) bundle respectively.

Remark 4.7. In the literature, the definition of the Finsler function is sometimes slightly
different concerning the positivity (Definition 4.1,a)3)). Instead of positivity of F , strong convexity
of F is required, i.e. the matrix (gij(x, v)) defined in (4.5) is assumed to be positive definite. By use
of the homogeneity condition, this follows from the positivity of F as can be seen by the following
considerations.

A function F which is homogeneous of order 1, fulfills by the Euler Theorem the relations
d∑
i=1

vi
∂F

∂vi
= F and

d∑
i=1

vi
∂2F

∂vi∂vj
= 0 . (4.6)

The second equation follows from the first by differentiation. To verify the positive definiteness of
g, we have to analyze the term

d∑
i,j=1

gijvivj =
d∑

i,j=1

(
F

∂2F

∂vi∂vj
vivj +

∂F

∂vi

∂F

∂vj
vivj

)
.

By (4.6), the first summand on the right hand side vanishes and the second is again by the Euler
theorem equal to F 2. Thus by the positiveness of the Finsler function except for v = 0, the matrix
g is positive definite. Since by definition F ≥ 0, the two assumptions are equivalent.
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It is shown in Bao-Chern-Shen [6], that additional properties of a Finsler function are

F (x, v + ṽ) ≤ F (x, v) + F (x, ṽ) , (x, v), (x, ṽ) ∈ TM Triangle inequality (4.7)
d∑
i=1

wi
∂F

∂vi
(v) ≤ F (w) , w, v ∈ TxM, v 6= 0 Fundamental inequality (4.8)

In (4.8) equality holds if and only if w = αv for some α ≥ 0.

In the next lemma some elementary properties of the Finsler distance are described. For a
detailed proof of (b) we again refer to Bao-Chern-Shen [6], Lemma 6.2.1.

Lemma 4.8. Let (M,F ) be a Finsler Manifold and dF the Finsler distance as defined in
Definition 4.4.

(a) dF obeys the following two properties of a metric space.
i) dF (x1, x2) ≥ 0, where equality holds if and only if x1 = x2.
ii) dF (x1, x3) ≤ dF (x1, x2) + dF (x2, x3)

If in addition the Finsler function F is absolutely homogeneous, then
iii) dF (x1, x2) = dF (x2, x1).

For an absolutely homogeneous Finsler function, (M,dF ) is thus a metric space.
(b) At every point x ∈M there exists a local coordinate system φ : U → Rd, with the following

properties for some c > 1:
i) The closure of U is compact, φ(x) = 0 and φ maps U diffeomorphically onto an open

ball of Rd.
ii) For all v =

∑
i vi∂xi ∈ TxM and x ∈ U

|v|
c
≤ F (x, v) ≤ c|v| and F (x,−v) ≤ c2F (x, v) ,

where |v| =
√∑

i v
2
i .

iii) Given any x0, x1 ∈ U , we have

1
c
|φ(x1)− φ(x0)| ≤ dF (x0, x1) ≤ c|φ(x1)− φ(x0)| .

iv) For every pair of points x0, x1 ∈ U , we have

1
c2
dF (x1, x0) ≤ dF (x0, x1) ≤ c2dF (x1, x0) .

Proof:

(a) i) follows directly from the strict positivity of F .
ii) The right-hand side is given by the minimum over all curves joining x1 and x3 and
hitting x2 while on the left-hand side the minimum is taken over all curves from x1 to x3.
Thus on the right-hand side we take the minimum over a smaller set and the inequality
follows.
iii) The absolute homogeneity of F yields F (x, v) = F (x,−v). Therefore the original
integral is equal to the reversed one from the end point to the starting point which proves
the given statement.

(b) This part is identical to Bao-Chern-Shen [6], Lemma 6.2.1, and we refer to the proof given
there.

2

4.2. Finsler Function adapted to a hyperregular Hamiltonian

To define a Finsler distance, which is adapted to the given physical context, we introduce a Le-
gendre transformation with respect to a Hamilton function h on the cotangent bundle T ∗M , which
allows to pass from covectors (momentum variables), denoted by ξ, to vectors (velocity variables)
denoted by v and vice versa. To this end, we need the notion of fibre derivatives, hyperconvexity
and hyperregularity of h. It is shown in Proposition 4.12, that hyperconvexity of h is a sufficient
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condition for hyperregularity.

Definition 4.9. (a) Let M be a manifold and f ∈ C∞ (T ∗M,R). Denote by fx the
restriction f |T∗xM of f to the fibre T ∗xM over x. Then the map DF f : T ∗M → TM
defined by DF f(x, ξ) := Dfx(ξ), is called the fibre derivative of f .

We sometimes use the notation DF f(x, ξ) = Dξf(x, ξ).
(b) Along the same lines the fibre derivative of a function g ∈ C∞ (TM,R) is defined as

DF g : TM → T ∗M , DF g(x, v) := Dgx(v).
(c) Let Gx : T ∗xM × TxM → R denote the canonical pairing Gx(ξ, v) := ξ · v(= ξ(v)). We

denote by G the function on M , that associates to each x ∈M the function Gx.
(d) A function f : SM → TM is called strictly fibre preserving, if f([(x, u)]) ∈ [(x, u)] (i.e.

if for each [(x, u)] := {(x, v) | v = λu, λ > 0} ∈ SM there exists a λ > 0 such that
f([(x, u)]) = (x, λu)).

(e) A smooth function h : T ∗M → R (or L : TM → R) is said to be hyperregular, if its fibre
derivative DFh : T ∗M → TM (or DFL : TM → T ∗M) is a diffeomorphism.

Remark 4.10. (a) The derivative Dfx(ξ) maps Tξ (T ∗xM) linearly to Tfx(ξ)R. Since
T ∗xM and R are vector spaces, they are isomorphic to their tangent spaces Tξ (T ∗xM)
and Tfx(ξ)R respectively. Thus Dfx(ξ) can be considered as bounded linear functional on
T ∗xM , i.e. as an element of TxM . It follows immediately from Definition 4.9, that DF f is
a fibre preserving smooth mapping. For h ∈ C∞ (T ∗M,R) we will in the following often
use the notation

ξh(x, v) := (DFh)−1 (x, v) and vh(x, ξ) := DFh(x, ξ) . (4.9)

(b) In local coordinates (x1, . . . , xd) the canonical pairing Gx is given by

Gx(ξ1, . . . , vd) =
d∑
ν=1

ξνvν .

Definition 4.11. Let V be a normed vectorspace and L a real valued function on V .
(a) L is called convex, if for all v1, v2 ∈ V and λ ∈ [0, 1]

L(λv1 + (1− λ)v2) ≤ λL(v1) + (1− λ)L(v2) . (4.10)

(b) If furthermore L ∈ C 2(V ), it is called strictly convex, if D2L|v0(v, v) > 0 for all v0, v ∈ V ,
i.e. if the bilinear map D2L|v0 on V is positive definite.

(c) We call L ∈ C 2(V ) hyperconvex, if there exists a constant α > 0 such that

D2L|v0(v, v) ≥ α‖v‖2 for all v0, v ∈ V .
As in the case of functions on Rn, convexity of L implies that the bilinear map D2L|v0 is non-

negative. This can be seen as follows. Define for any fixed v1, v2 ∈ V the function f : [0, 1] → R
by setting f(t) := L(tv1 + (1− t)v2). Then f is convex, since for any λ, s, t ∈ [0, 1]

f(λt+ (1− λ)s) = L((λt+ (1− λ)s)v1 + (1− (λt+ (1− λ)s))t)
= L(λ(tv1 + (1− t)v2) + (1− λ)(sv1 + (1− s)v2))
≤ λL(tv1 + (1− t)v2) + (1− λ)L(sv1 + (1− s)v2)
= λf(t) + (1− λ)f(s) .

Thus f ′ is increasing,
f(t)− f(s) ≥ f ′(s)(t− s) (4.11)

and therefore
(t− s)(f ′(t)− f ′(s)) ≥ 0 and f ′′(t) ≥ 0 , s, t ∈ [0, 1] (4.12)

By the definition of f , from (4.11) follows

L(tv1 + (1− t)v2)− L(sv1 + (1− s)v2) ≥ DL(sv1 + (1− s)v2)(v1 − v2)(t− s)

and in particular by setting t = 1 and s = 0

L(v1)− L(v2) ≥ DL(v2)(v1 − v2) . (4.13)

The second estimate in (4.12) yields

f ′′(t) = D2L|(tv1+(1−t)v2)[(v1 − v2), (v1 − v2)] ≥ 0 . (4.14)



66 4. FINSLER DISTANCE ASSOCIATED TO Hε

Furthermore, if L is strictly convex, the inequality in (4.10) and (4.12) is strict. Thus again by the
definition of f it follows from (4.12) that

(t− s) (DL(tv1 + (1− t)v2)(v1 − v2)−DL(sv1 + (1− s)v2)(v1 − v2)) > 0 .

In particular, setting t = 1 and s = 0, we have

(DL(v1)−DL(v2)) (v1 − v2) > 0 (4.15)

The following Proposition gives a connection between hyperconvexity and hyperregularity.

Proposition 4.12. If a real valued function h ∈ C∞ (T ∗M) is hyperconvex in each fibre T ∗xM ,
it is hyperregular.

Proof:

The fibre derivative DFh : T ∗M → TM is a global diffeomorphism, if it is a local diffeomor-
phism and bijective.

By definition, DFh is fibre preserving, thus with respect to local coordinates at (x0, ξ0), its
derivative is given by the 2d× 2d-matrix

DDFh|(x0,ξ0) =
(

1 0
∗ M

)
, where M = D2

ξh|(x0,ξ0) . (4.16)

Since h was assumed to be hyperconvex in each fibre, M is positive definite and thus it follows
from (4.16), that DFh is a local diffeomorphism (Inverse Function Theorem).

Since DFh is by definition fibre preserving, i.e. it is the identity map with respect to the base
point x ∈ M , it is sufficient to show the bijectivity of the function Dhx : T ∗xM → TxM for all
x ∈M .

Thus we fix any x ∈ M and analyze Dhx. Since hx is strictly convex for each x ∈ M , the
inequality

(ξ − η) (Dhx(ξ)−Dhx(η)) > 0 , ξ, η ∈ T ∗xM, η 6= ξ

holds by (4.15). Thus ξ 6= η implies Dhx(ξ) 6= Dhx(η), and therefore DFh(x, .) = Dhx is injective.
To show the surjectivity, we first consider for any v0 ∈ TxM the solution v : [0, 1] → TxM of

the initial value problem
v̇(t) = v0 , v(0) = 0 , (4.17)

which obviously fulfills v(t) = tv0 and v(1) = v0. The idea is now to show, that there exists a
curve ξ : [0, 1] → T ∗xM , such that ξ(1) is the pre-image of v0 with respect to Dhx, i.e. such that
Dhh(ξ(1)) = v0.

If we can establish, that the initial value problem

v0 =
d

dt
Dhx(ξ(t)) = D2hx(ξ(t)) · ξ̇(t) , ξ(0) = 0 . (4.18)

has a solution ξ(t) for all t ∈ [0, 1], then

v0 =
∫ 1

0

D2hx(ξ(t)) · ξ̇(t) dt = Dhx(ξ(1))−Dhx(ξ(0)) = Dhx(ξ(1)) .

Thus the existence of a solution of (4.18) for any v0 ∈ TxM and all t ∈ [0, 1] implies the surjectivity
of Dhx.

Since from the hyperconvexity it follows that D2hx|ξ(t) > 0, there exists at each point ξ(t) of
the curve the inverse

(
D2hx|ξ(t)

)−1 of the linearization of Dhx at ξ(t), thus (4.18) can be rewritten
as

ξ̇(t) =
(
D2hx|ξ(t)

)−1 · v0 , ξ(0) = 0 . (4.19)

The differential equation is thus of the form ξ̇ = F (ξ) for the vector field F on T ∗xM given by
F (ξ) =

(
D2hx|ξ

)−1 · v0. Since h ∈ C∞ (T ∗M), the vector field F is locally Lipschitz for all
ξ ∈ T ∗xM , thus it follows from the Picard-Lindelöf Theorem (see for example Walter [61], page 61,
Theorem 7), that the initial value problem (4.19) has for any v0 ∈ TxM a solution, which either
exists for all t ≥ 0 or becomes infinity for a finite value of t.

In order to exclude, that the curve ξ reaches infinity for some t < 1, which means that the
curve does not exist on the whole interval [0, 1], we need the hyperconvexity of h. We choose a
norm ‖.‖T∗xM on T ∗xM and denote by ‖.‖TxM the norm on TxM , which is induced by duality. Since
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for fixed η ∈ T ∗xM = Tξ(T ∗xM) the second derivative D2hx|ξ(η) can be seen as linear form on
T ∗xM , i.e. as an element of TxM , it follows by the hyperconvexity of h, that there exists a constant
α > 0 such that for all ξ ∈ T ∗xM

‖D2hx|ξ(η)‖TxM = sup
µ∈T∗xM

|D2hx|ξ(η, µ)|
‖µ‖T∗xM

≥ |D2hx|ξ(η, η)|
‖η‖T∗xM

≥ α‖η‖T∗xM , η ∈ Tξ(T ∗xM) (4.20)

and therefore

‖v‖TxM = ‖D2hx|ξ
(
D2hx|ξ

)−1
(v)‖TxM ≥ α‖

(
D2hx|ξ

)−1
(v)‖T∗xM , v ∈ TxM . (4.21)

(4.19) together with (4.21) yields

‖ξ̇(t)‖T∗xM = ‖
(
D2hx|ξ(t)

)−1
(v0)‖T∗xM ≤ 1

α
‖v0‖ , (4.22)

i.e. the velocity of the curve ξ is bounded. Therefore ‖ξ(t)‖ < ∞ for t < ∞, i.e. the curve exists
for all t ∈ [0, 1] and DFh(ξ(1)) = v0.
Thus for any v0 ∈ TxM there exists a pre-image with respect to DFh(x, .) = Dhx, given by ξ(1),
where ξ : [0, 1] → T ∗xM is the solution of (4.19). This shows the surjectivity of Dhx.

Together with the injectivity of Dhx and the fact that DFh is a local diffeomorphism, it follows
that DFh is a global diffeomorphism.

2

Remark 4.13. We define for any hyperregular Hamiltonian h ∈ C∞ (T ∗M) the energy func-
tion Eh on TM by

Eh(x, v) := h ◦ (DFh)−1 (x, v)(= h(x, ξh(x, v)) (4.23)

and the action

Ah : TM → R , Ah(x, v) := Gx

(
(DFh)−1 (x, v), v

)
(= ξh(x, v) · v) , (4.24)

where the fibre derivative DFh and the canonical pairing Gx are introduced in Definition 4.9. Then
it is shown in Abraham-Marsden [2], Prop.3.6.7, that the Lagrange function

Lh : TM → R defined by Lh(x, v) = Ah(x, v)− Eh(x, v) (4.25)

(the Legendre transform of h) is hyperregular on TM and

DFLh(x, v) = DvAh(x, v)−DvEh(x, v) (4.26)
= Dvξh(x, v) · v + ξh(x, v)−Dξh(x, ξh(x, v)) ·Dvξh(x, v)
= Dvξh(x, v) · v + ξh(x, v)− v ·Dvξh(x, v)

= ξh(x, v) = (DFh)−1 (x, v)

In fact [2], Theorem 3.6.9 states, that the hyperregular Lagrangians on TM and the hyperregular
Hamiltonians on T ∗M are in bijection.

Later on we will use, that in particular by (4.24) and (4.26)

Ah(x, v) = DFLh(x, v) · v . (4.27)

We recall some standard facts of classical mechanics, which are proven for example in Abraham-
Marsden [2].

Let h be a hyperregular Hamilton function. Then (γ(t), ξ(t)) ∈ T ∗M is an integral curve of the
hamiltonian vector field Xh in T ∗M if and only if it satisfies Hamilton’s equations

dγ

dt
(t) = Dξh(γ(t), ξ(t))(= DFh(γ(t), ξ(t)) (4.28)

dξ

dt
(t) = Dγh(γ(t), ξ(t)) .

If Lh is the associated Lagrange function defined by (4.25), then (γ(t), γ̇(t)) = (γ(t),DFh(γ(t), ξ(t)))
on the tangent bundle is an integral curve of the Lagrangian vector field XL in TM and satisfies
Lagrange’s equation

DγLh(γ(t), γ̇(t)) =
d

dt
Dγ̇Lh(γ(t), γ̇(t)) . (4.29)
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On the other hand if a curve (γ, γ̇) in TM satisfies Lagrange’s equation (4.29), then the associated
curve (γ,DFLh(γ(t), γ̇(t))) on the cotangent bundle T ∗M is an integral curve of the hamiltonian
vector field Xh.

Definition 4.14. For a smooth manifold M , a C∞-function h : T ∗M → R and E0 ∈ R, we
define the set of singular points Sh(E0) by

Sh(E0) := {x ∈M | h(x, 0) = E0 } .

Since Sh(E0) is the level set of a smooth function h(., 0) on M , it is closed. Thus M̃ := M \Sh(E0)
is again a smooth manifold.

Let πs : TM → SM denote the projection πs(x, v) = [x, v], where [x, v] := {(y, u) ∈ TM | ∃λ >
0 : (y, u) = (x, λv)}.

Proposition 4.15. Let M be a d-dimensional smooth manifold and h ∈ C∞ (T ∗M) be even,
hyperregular and strictly convex in each fibre T ∗xM .

Furthermore we assume that h(., 0) : M → R is bounded from above and we set E0 ≥
maxx∈M h(x, 0) and Sh(E0), M̃ as described in Definition 4.14.

i) Then there exists a strictly fibre preserving C∞-function τE0 : SM̃ → TM̃ , which is
uniquely determined by the condition

h ◦ (DFh)−1 ◦ τE0 = E0 . (4.30)

ii) Let τ̃E0 := τE0 ◦ πS : TM̃ → TM̃ and let `h,E0 : TM̃ → R be defined by

`h,E0(x, v) := Gx

(
(DFh)−1 ◦ τ̃E0(x, v), v

)
.

Then `h,E0 is an absolutely homogeneous Finsler function on M̃ .
iii) For any regular curve γ : [a, b] → M̃ , there exists a C 1-function λ : [a, b] → R+, such that

τ̃E0(γ(t), γ̇(t)) = (γ(t), λ(t)γ̇(t)) .

Remark 4.16. (a) Since by Proposition 4.15 the Finsler function `h,E0 is defined only
on M̃ = M \ S(E0), we call (M, `h,E0) a Finsler manifold with singularities.

(b) It is possible to analyze an arbitrary energy value E0 (i.e. which not necessarily fulfills
the condition E0 ≥ maxh(x, 0)), by changing the definition of M̃ to M̃n := M \ {x ∈
M |E0 ≤ h(x, 0)}.

(c) If we extend `h,E0 continuously from M̃ to M by setting `h,E0(x, v) = 0 for x ∈ S(E0),
the associated distance dl is well defined on all of M . Nevertheless contrary to the case
of a Finsler manifold without singularities (as described for example in Bao-Chern-Shen
[6]), the geodesic curves with respect to `h,E0 may have kinks at the singular points.

(d) Geometrically, the function τ̃E0 projects an element (x, v) of the tangent bundle TM̃ to
an element (x, λv) (for λ > 0 suitable) in the (2d−1)-dimensional submanifold E of TM ,
which is determined by the condition Eh|E = E0, i.e.

τ̃E0(x, v) ∈ E := E−1
h (E0) . (4.31)

Therefore physically E can be interpreted as energy shell of the system for a given fixed
energy E0.
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(e) Schematically the functions occurring in Lemma 4.15 are illustrated in the following dia-
gram.

R

TxM̃ E × TxM̃ h−1(E0)× TxM̃

SxM̃ × TxM̃

v (ṽ, v) (ξh(ṽ), v)

''
''

''
''

''
''

''
'')
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u
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w w

u

Gx

[
[
[
[
[
[]

τE0×1

w
τ̃E0×1

w
(DFh)−1×1

(f) With the notation (4.9) it follows from the definition of Gx (Def. 4.9), that `h,E0(x, v)
can be written as

`h,E0(x, v) = ξh(x, ṽ) · v where (x, ṽ) = τ̃E0(x, v) ∈ E . (4.32)

(g) In the special case of a Schrödinger operator, i.e. if h(x, ξ) = 1
2ξ

2 + V (x), the fibre
derivative is given by v := Dξh(x, ξ) = ξ and thus `h,E0(x, v) = ṽ · v.

To prove Proposition 4.15, we need the following lemma on the strict monotonicity of the
energy function Eh with respect to the modulus of the velocity.

Lemma 4.17. In the setting of Proposition 4.15 fix x ∈ M̃ and u ∈ TxM̃ with u 6= 0. Then for
Eh : TM → R defined by (4.23), the function

Eu : [0,∞) → R , Eu(λ) := Eh(x, λu)

is strictly increasing. Furthermore Eu(0) ≤ E0 and limλ→∞Eu(λ) = ∞.

Proof of Lemma 4.17:

Since Dhx(0) = 0 for all x ∈M , it is clear that vh(x, 0) = 0 and vice versa, thus

Eu(0) = Eh(x, 0) = h(x, 0) ≤ max
x∈M

h(x, 0) ≤ E0 , (x ∈ M̃ = M \ S(E0)) .

To show that Eu is strictly increasing, we will analyze the derivative of Eu for λ > 0.
Since for fixed x ∈M by definition DFh(x, ξ) = Dhx(ξ), we have by the chain rule

dEu
dλ

|λ = Dhx|(Dhx)−1(λu) ·D (Dhx)
−1 |λu(u) . (4.33)

We use the notation ξh(x, v) = (Dhx)
−1 (v) (see Remark 4.10) and notice that Dhx|ξh(x,v) maps

the tangent space TξhT
∗
xM linearly to Th(x,ξh)R, and these spaces are isomorphic to T ∗xM and R

respectively as described in Remark 4.10. Thus Dhx|ξh(x,v) can be interpreted as an element of
TxM . Since the fibre derivative of h at the point ξ is by definition given by DFh(x, ξ) = Dhx(ξ) ∈
TxM it follows that

Dhx|ξh(x,v) = DFh
[
(DFh)−1 (x, v)

]
= v . (4.34)

To analyze the second term on the right hand side of (4.33), we use that the Lagrange function
Lh : TM → R associated to h as defined in Remark 4.13 is strictly convex in each fibre and
DFLh(x, v) = (DFh)−1 (x, v). Together with (4.34) this yields

dEu
dλ

|λ = λu ·DvDFLh|(x,λu)(u) = λD2Lh,x|λu(u, u) , (4.35)
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where we used for the second equality, that the derivative of DFLh|(x,v) with respect to v (which
by definition is given by D2Lh,x|v) is on the one hand a linear map from TxM to T ∗xM and on the
other hand by the duality of TxM and T ∗xM a bilinear form on TxM .

It follows immediately from (4.35) together with the strict convexity of Lh, that the the first
derivative of Eu is strictly positive for λ ∈ (0,∞) and thus Eu is strictly increasing.
The fact that Eu is unbounded, i.e. that limλ→∞Eu(λ) = ∞, can be seen as follows. From
the convexity of h and since h(x, ξ) ≥ h(x, 0) = −V0(x) for all ξ ∈ T ∗M , it follows that
lim|ξ|→∞ h(x, ξ) = ∞. Since h is hyperregular, the mapping DFh(x, .) = Dhx : TxM → T ∗xM
is a global diffeomorphism. Thus for any norm ‖.‖TxM on TxM and the induced norm ‖.‖T∗xM on
T ∗xM , we have ‖Dhx(vn)‖T∗xM →∞ for any sequence (vn) in TxM satisfying ‖vn‖TxM →∞.

In fact if this would not be the case, there would exist a sequence (vn) in TxM with ‖vn‖TxM →
∞, but at least for a subsequence (vnk) there exists a constant R > 0 such that ‖Dhx(vnk)‖T∗xM ≤
R. Setting vnk = (Dhx)

−1 (ξnk), this would lead to ‖ξnk‖T∗xM ≤ R, but ‖ (Dhx)
−1 (ξnk)‖TxM →∞,

which is a contradiction to ‖ (Dhx)
−1 (ξnk)‖TxM ≤ max‖ξ‖T∗xM≤R ‖ (Dhx)

−1 (ξnk)‖TxM =: M <∞.
Thus

lim
λ→∞

Eu(λ) = lim
λ→∞

h(x, ξh(x, λu)) = lim
‖ξ‖→∞

h(x, ξ) = ∞ .

2

Proof of Proposition 4.15:

i) From Lemma 4.17 it follows that for fixed x ∈ M̃ , each ray [(x, u)] = {(x, v) | v = λu, λ >

0} ∈ SM̃ intersects the hypersurface Ex := E−1
h (E0) ∩ TxM̃ in exactly one point. In fact since

Eu(λ) = Eh(x, λu) is strictly increasing, it is injective and thus there exists at most one λ such
that Eu(λ) = E0.

On the other hand, since Eu(0) ≤ E0 and limλ→∞Eu(λ) = ∞, there is by the Intermediate
Value Theorem at least on value λ with Eu(λ) = E0.

Thus for each ray [(x, u)] there is exactly one point (x, λu) ∈ TxM̃ such that Eh(x, λu) = E0.
Since for each v ∈ TxM there is exactly on ray [x, u] ∈ SxM , it is therefore clear that for each
x ∈ M̃ the mapping τE0,x : SxM̃ → Ex, given by τE0,x([(x, u)]) = (x, λu) is a bijection and thus
τE0 : SM̃ → TM̃ is in fact a parametrization of Ẽ = E−1

h (E0) ∩ TM̃ by SM̃ . Furthermore it
follows immediately from the construction of τE0 , that τE0 [(x, u)] = (x, λu) for some λ > 0, i.e.
τE0 is strictly fibre preserving.

To analyze the regularity of τE0 , we will use the Implicit Function Theorem (on subsets of
R2d). First we choose at any point [x0, u0] ∈ SM̃ and (x0, v0) ∈ TM̃ local coordinates. There
exist open neighborhoods U([x0, u0]) ⊂ SM̃ and O(x0, v0) ⊂ TM̃ and open sets V ⊂ R2d−1 and
I ⊂ R+, such that the coordinate maps

φ : U([x0, u0]) → V , φ([x, u]) =: s

and
ψ : O(x0, v0) → V × I , ψ(x, v) = (s, λ)

are diffeomorphisms. Then we define the functions

τ̂E0 := ψ ◦ τE0 ◦ φ−1 : V → V × I and Êh := Eh ◦ ψ−1 : V × I → R .

It follows at once from the regularity of h and DFh, that Êh is a C∞- function and by the
considerations above, there is for each s0 ∈ V exactly one point (s0, λ0) ∈ V × R+ such that

Êh(s0, λ0) = E0 . (4.36)

Furthermore d bEh
dλ (s0, λ0) > 0 for all (s0, λ0) ∈ V × R+ by Lemma 4.17. Thus by the Implicit

Function Theorem there exists for each s0 ∈ V a neighborhood N (s0) ⊂ V and a C∞-function
λ̂ : N (s0) → R+, such that Êh(s, λ̂(s)) = E0 for all s ∈ N (s0).

Since by construction τ̂E0(s) = (s, λ̂(s)), i.e. τ̂E0 = 1V ×λ̂, it follows at once that τ̂E0 and the
associated map τE0 are C∞-functions.

iii) Since the function λ̂ constructed above by use of the Implicit Function Theorem is C∞, it
follows at once, that

λ : [a, b] → R+ , λ(t) := λ̂ ◦ φt ◦ πS(γ(t), γ̇(t)))
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is C 1, if γ is regular. The function φt denotes the coordinate system associated to the point
[γ(t), γ̇(t)].

ii) To show that `h,E0 : TM̃ → R is a Finsler function on M̃ , we check the defining properties.

1) The regularity `h,E0 ∈ C∞(TM̃ \ {0}) follows from the fact that h is hyperregular (then
DFh is a diffeomorphism), the function τ̃E0 is C∞ and the definition of Gx as pairing.

2) To show the positive homogeneity of `h,E0 , i.e. that `h,E0(x, λv) = λ`h,E0(x, v) holds for
all λ > 0, we notice that by construction τ̃E0(x, λv) = τ̃E0(x, v) for any λ > 0. Thus
(DFh)−1 ◦ τ̃E0 is homogeneous of order zero in each fibre. Since Gx(ξ, v) = ξ ·v is bilinear,
it follows that

`h,E0(x, λv) = Gx

(
(DFh)−1 ◦ τ̃E0(x, λv), λv

)
= λGx

(
(DFh)−1 ◦ τ̃E0(x, v), v

)
= λ`h,E0(x, v)

and thus l is positive homogeneous of order one in each fibre.
3) To show the strict positivity of `h,E0 for v 6= 0, we define

ah = Ah ◦ DFh : T ∗M → R , ah(x, ξ) = ξ · vh(x, ξ) = ξ · DFh(x, ξ) .
Since h was assumed to be strictly convex in each fibre, the associated fibre derivative
DFh(x, ξ) = Dhx(ξ) fulfills by (4.15) for ξ, η ∈ T ∗xM with η 6= ξ the relation

(ξ − η) · (DFh(x, ξ)−DFh(x, η)) > 0 .

Therefore choosing ξ = −η and using that h is even in each fibre (and thus DFh is odd),
yields

2ξ · (DFh(x, ξ)−DFh(x,−ξ)) = 4ξ · DFh(x, ξ) = 4ah(x, ξ) > 0 , for ξ 6= 0 .

Since h is even and strictly convex, it takes its absolute minimum at ξ = 0 (see Remark
4.21) and thus DFh(x, 0) = 0. Since furthermore DFh is a global diffeomorphism, we get
(DFh)−1 (x, v) 6= 0 for v 6= 0 and therefore

Ah(x, v) = ah(x, (DFh)−1 (x, v)) > 0 (4.37)

Setting τ̃E0(x, v) = (x, ṽ), it follows from the fact that τE0 is strictly fibre preserving, that
there exists a λ > 0 such that v = λṽ. Thus it follows from (4.37) and the linearity of Gx
with respect to each variable, that for v 6= 0

`h,E0(x, v) = Gx

(
(DFh)−1 (x, ṽ), v

)
= Gx

(
(DFh)−1 (x, ṽ), λṽ

)
= λGx

(
(DFh)−1 (x, ṽ), ṽ

)
= λAh(x, ṽ) > 0 .

and it is obvious by the definition of Gx that `h,E0(x, v) = 0 if v = 0.
4) It remains to show that `h,E0 is not only positive, but absolute homogeneous of order one.

Since τE0 was assumed to be strictly fibre preserving, τ̃E0(x, v) = (x, λv) where λ > 0.
Since h is even in each fibre, the derivative DFh is odd and the same is true for the inverse
(DFh)−1. Thus for (x, v) ∈ Ex

h ◦ (DFh)−1 (x,−v) = h ◦ (−DFh)−1 (x, v) = h ◦ (DFh)−1 (x, v) = E0 , (4.38)

where the second equality follows from the fact that h is even. From (4.38) it follows that
(x,−v) ∈ E if (x, v) ∈ E , i.e. each fibre Ex of the energy shell is symmetric around v = 0.
Thus if λv ∈ Ex for λ > 0 suitable and x ∈ M̃ fixed, then

τ̃E0(−v) = λ(−v) = −λv = −τ̃E0(v) . (4.39)

By the fact that (DFh)−1 is odd, the bilinearity of Gx and (4.39) we can conclude for any
fixed x ∈ M̃

`h,E0(−v) = Gx

(
(DFh)−1 ◦ τ̃E0(−v), (−v)

)
= −Gx

(
(DFh)−1 (−τ̃E0(v)), v

)
= −Gx

(
(− (DFh)−1 ◦ τ̃E0(v)), v

)
= Gx

(
(DFh)−1 ◦ τ̃E0(v), v

)
= `h,E0(v) . (4.40)

From (4.40) it follows that `h,E0 is even in each fibre and thus the absolute homogeneity
follows from the positive homogeneity: for any λ ∈ R

`h,E0(x, λv) = `h,E0(x, |λ|v) = |λ|`h,E0(x, v) .
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2

4.3. Finsler Geodesics as base integral curves of the associated vector field

By Proposition 4.15 each hyperregular Hamilton function on the cotangent bundle, which is
strictly convex and even in each fibre and is bounded from above for ξ = 0, induces a metric
structure on the base manifold.

The following proposition establishes the connection between geodesics with respect to the
Finsler function `h,E0 for a given hyperregular Hamiltonian h and the integral curves of the as-
sociated hamiltonian vector field Xh. Our proof will use the Euler-Maupertuis principle (at least
implicitly). This part of the proof below is adapted from Abraham-Marsden [2].

Proposition 4.18. For a hyperregular hamiltonian h ∈ C∞(T ∗M) and E0 as in Proposition
4.15, let `h(:= `h,E0) denote the corresponding Finsler function on M̃ as constructed in Proposition
4.15. Let γ0 : [a, b] → M̃ be a base integral curve of the associated hamiltonian vector field Xh with
energy E0 (i.e. Eh(γ0(t), γ̇0(t)) = E0 for all t ∈ [a, b]).
Then γ0 is a geodesic on M̃ with respect to `h.
Conversely if γ0 is a geodesic on M̃ with respect to `h and energy E0, then γ0 is a base integral
curve of Xh (i.e. (γ0, γ̇0) is a solution of Lagrange´s equation (4.29)).

Proof:
We denote the endpoints of γ0 by γ0(a) = x1 and γ0(b) = x2 and by Γa,b(x1, x2) as introduced in
Definition 4.2 the Banach manifold of all regular curves joining x1 and x2, which are parameterized
over the interval [a, b]. We set

Γ(x1, x2, [a, b], E0) := {(γ, α) | α : [a, b] → R is C 2,
d

dt
α > 0 , α(a) = 0 ,

γ ∈ Γ0,α(b)(x1, x2) such that Eh(γ(α(t)), γ̇(α(t)) = E0 for all t ∈ [a, b] } , (4.41)

thus Γ(x1, x2, [a, b], E0) is the set of all pairs (γ, α), where γ is a regular curve on M̃ joining the
points x1 and x2 and α is a change of parameter. This change of parameter ensures, that the curve
(γ ◦α, γ̇ ◦α) ∈ TM (which is not equal to the lifted curve (γ ◦α, ddt (γ ◦α))) lies on the energy shell
E = E−1

h (E0).
As Γa,b(x1, x2), the space Γ(x1, x2, [a, b], E0) is a Banach manifold. In fact, by setting A :=

{α : [a, b] → R | ddtα > 0 and α(a) = 0}, it is a subspace of Γa,b(x1, x2)× A as pre-image of E0

with respect to the map

f : Γa,b(x1, x2)×A→ C 1([a, b],R) defined by f(γ, α) := Eh(γ ◦ α, γ̇ ◦ α) ,

thus we consider E0 ∈ R as the constant function E0(t) = E0. Since Eh = h ◦ (DFh)
−1,

where DFh is a diffeomorphism with DFh(x, 0) = (x, 0), it follows from the assumption that
E0 > max

x∈fM Eh(x, 0). Since furthermore h is strictly convex, it is clear that DEh(x, v) 6= 0 for
v 6= 0. Thus from the regularity of the elements of γ ∈ Γa,b(x1, x2), i.e. since γ̇(t) 6= 0 for all
t ∈ [a, b] it follows that E0 is a regular value of Eh and by the definition of f it is regular value
of f . Thus the pre-image f−1(E0) = Γ(x1, x2, [a, b], E0) is a submanifold of Γa,b(x1, x2)×A. This
follows by the fact, that the Inverse Function Theorem holds in Banach spaces (see Hamilton [26]).

Step 1:
We start the proof of Proposition 4.18 by constructing a diffeomorphism between Γa,b(x1, x2) and
Γ(x1, x2, [a, b], E0).

By Proposition 4.15, there exists for any η ∈ Γa,b(x1, x2) a unique C 1-function λ : [a, b] → R+,
such that

Eh ◦ τ̃E0(η(t), η̇(t)) = Eh(η(t), λ(t)η̇(t)) = E0 .

Set

α(t) :=
∫ t

a

1
λ(s)

ds and γ = η ◦ α−1 : [α(a), α(b)] → M̃ ,
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then α : [a, b] → R with α̇ > 0 , α(a) = 0 and from

η̇(t) =
d

dt
γ(α(t)) = γ̇(α(t)) · α̇(t) ,

it follows that

Eh(γ(α(t)), γ̇(α(t))) = Eh(η(t), η̇(t)(α̇(t))−1) = Eh(η(t), λtη̇(t)) = E0 , (4.42)

i.e. (γ, α) ∈ Γ(η(a), η(b), [a, b], E0). Thus it follows that to each curve η ∈ Γa,b(x1, x2) on M̃ there
exists a pair (γ, α) ∈ Γ(η(a), η(b), [a, b], E0), where η = γ◦α. The choice of the change of parameter
α (and thus the choice of the pair (γ, α)) is unique by the condition α(a) = 0.

On the other hand, if we start with a pair (γ, α) ∈ Γ(x1, x2, [a, b], E0), then by definition
Eh(γ(s), γ̇(s)) = E0 with s = α(t). If we set η := γ ◦ α : [a, b] → M̃ it follows from (4.42), that

τ̃E0(η(t), η̇(t)) = (η(t), (α̇(t))−1η̇(t)) and thus λt = (α̇(t))−1 . (4.43)

We can conclude that there is a bijection

bE0 : Γa,b(x1, x2) → Γ(x1, x2, [a, b], E0)

between the Banach manifolds given by

bE0(η) = (η ◦ α−1, α) with α(t) :=
∫ t

a

(λ(s))−1
ds for τ̃E0(η, η̇) = (η, λη̇) . (4.44)

As described in Definition 4.2, the tangent space of Γa,b(x1, x2) at a point η can be constructed
using the notion of regular variations of η with fixed endpoints as

TηΓa,b(x1, x2) = {∂uηδ|u=0 | ηδ is a regular variation of η with fixed endpoints} .
Along the same lines we construct the tangent space of Γ(x1, x2, [a, b], E0) at a point (γ, α). We
define a regular variation of (γ, α) as a C 2-mapping (γ, α)δ : (−δ, δ) → Γ(x1, x2, [a, b], E0) passing
the point (γ, α) for u = 0, therefore

T(γ,α)Γ(x1, x2, [a, b], E0) = {∂u(γ, α)δ|u=0 | (γ, α)δ : (−δ, δ) → Γ(x1, x2, [a, b], E0)

is C 2 with (γ, α)δ(0) = (γ, α)} .
The points in Γa,b(x1, x2) and Γ(x1, x2, [a, b], E0) are curves on M and M×R respectively and vari-
ations of the curves on M and M×R are curves on Γa,b(x1, x2) and Γ(x1, x2, [a, b], E0) respectively,
in particular the variation (γ, α)δ can be considered as a mapping

(γ, α)δ : [a, b]× (−δ, δ) →M × R , (γ, α)δ(t, u) := (γδ(αδ(t, u), u), αδ(t, u)) .

Therefore as described in Remark 4.3 the tangent vectors at the points η and (γ, α) respectively can
be considered as vector fields along the curves in M and M × R. Thus ∂uηδ|u=0 ∈ TηΓa,b(x1, x2)
can be identified with the mapping ∂uηδ|u=0 : [a, b] → TM and ∂u(γ, α)δ|u=0 ∈ Γ(x1, x2, [a, b], E0)
can be considered as mapping ∂u(γ, α)δ|u=0 : [a, b] → T (M × R), given by

∂u(γ, α)δ|u=0(t) =
(
d

du
γδ(αδ(t, u), u), ∂uαδ(t, u)

)∣∣∣∣
u=0

(4.45)

=
(
d

dt
γδ(αδ(t, u), u)∂uαδ(t, u) + ∂uγδ(αδ(t, u), u)|u=0, ∂uαδ(t, u)|u=0

)
.

Since the values of a variation (γ, α)δ =: (γδ, αδ) are assumed to be elements of Γ(x1, x2, [a, b], E0),
it follows that αδ(a, u) = 0 for all u ∈ (−δ, δ) and the variation γδ (which is not a regular variation
in the sense of Definition 4.2, since the domain depends on the value of the variation αδ) has fixed
endpoints, i.e. γδ(αδ(a, u), u) = γδ(0, u) = x1 and γδ(αδ(b, u), u) = x2 for all u ∈ (−δ, δ). This
leads to

d

du
γδ(0, u) = ∂uγδ(0, u) + ∂tγδ(0, u) · ∂uαδ(a, u) = 0 (4.46)

d

du
γδ(αδ(b, u), u) = ∂uγδ(αδ(b, u), u) + ∂tγδ(αδ(b, u), u) · ∂uαδ(b, u) = 0 .

The bijection bE0 defined in (4.44) is a diffeomorphism, if for all η ∈ Γa,b(x1, x2) its differential at
the point η

dbE0 |η : TηΓa,b(x1, x2) → TbE0 (η)Γ(x1, x2, [a, b], E0)

has no critical points, i.e. if dbE0 |η(w) 6= (0, 0) for w 6= 0.
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By definition

dbE0 |η(∂uηδ|u=0) = ∂ubE0(ηδ)|u=0 = ∂u(η ◦ α−1, α)δ|u=0 (4.47)

and by the identification (4.45) of tangent vectors with vector fields along curves, we get using
that by definition α−1

δ (αδ(t, u), u) = t for all u ∈ (−δ, δ)

dbE0 |η(∂uηδ|u=0(t)) =
(
∂u(η ◦ α−1)δ|u=0, ∂uαδ|u=0

)
(t) (4.48)

=
(
d

du
ηδ(α−1

δ (αδ(t, u), u), u)|u=0, ∂uαδ(t, u)|u=0

)
= (∂uηδ|u=0, ∂uαδ|u=0) (t) .

Since this equality holds for all t ∈ [a, b] it follows immediately, that

dbE0 |η(∂uηδ|u=0) = (0, 0) ⇒ ∂uηδ|u=0 = 0 ,

which proves (by contraposition) that the bijection bE0 is a diffeomorphism.

Step 2:
We show that the critical points of the length functional s`h(γ) defined in Definition 4.2 are in
bijection with the critical points of the action integral

I : Γ(x1, x2, [a, b], E0) → R , I(γ, α) :=
∫ α(b)

α(a)

Ah(γ(s), γ̇(s)) ds , (4.49)

where Ah denotes the action with respect to h defined in (4.24). By use of the substitution s = α(t)
and with the notation ξh(x, v) = (DFh)−1 (x, v), we get∫ α(b)

α(a)

Ah(γ(s), γ̇(s)) ds =
∫ α(b)

α(a)

ξh(γ(s), γ̇(s)) · γ̇(s) ds

=
∫ b

a

ξh(γ(α(t)), γ̇(α(t))) · γ̇(α(t))α̇(t) dt . (4.50)

By (4.43) and the definition of `h given in Proposition 4.15, the right hand side of (4.50) is by the
substitution η(t) = γ(α(t)) equal to∫ b

a

ξh(η(t), η̇(t)(α̇(t))−1)·η̇(t) dt =
∫ b

a

ξh◦ τ̃E0(η(t), η̇(t))·η̇(t) dt =
∫ b

a

`h,E0(η(t), η̇(t)) dt = s`h(η) ,

and thus I(γ, α) = s`h(γ ◦ α) for α̇ = λ−1. Since γ ◦ α = b−1
E0

(γ, α), it follows that

s`h = I ◦ bE0 and thus ds`h |η = dI|bE0 (η) ◦ dbE0 |η (4.51)

(the last equation follows from the fact that the chain rule is valid on Banach manifolds). Since
bE0 is a diffeomorphism (and thus dbE0 |η 6= 0 for all η ∈ Γa,b(x1, x2)), it follows at once from (4.51)
that the critical points of the length functional s`h (i.e. the geodesics with respect to the Finsler
function `h) are mapped by bE0 bijectively to the critical points of the action integral I,

ds`h |η = 0 ⇐⇒ dI|bE0 (η) = 0 . (4.52)

Step 3:
If γ0 is a base integral curve of the hamiltonian vector fieldXh with energy E0, then Eh(γ0(t), γ̇0(t)) =
E0 for all t ∈ [a, b] and thus it follows immediately, that bE0(γ0) = (γ0,1), where 1 : [a, b] → [a, b]
is defined by 1(t) = t.

Thus by (4.52) it remains to show, that for any base integral curve γ0 ∈ Γa,b(x1, x2) of the
hamiltonian vector field Xh with energy E0, the pair (γ0,1) ∈ Γ(x1, x2, [a, b], E0) is a critical point
of the action integral I (and thus a geodesic). If on the other hand (γ0,1) ∈ Γ(x1, x2, [a, b], E0)
(which implies Eh(γ0(t), γ̇0(t)) = E0) is a critical point of I, then (γ0, γ̇0) solves Langrange’s
equation and thus γ0 is a base integral curve of Xh.

We start analyzing the tangential of the action integral dI|(γ,α) at a point (γ, α) in the manifold
Γ(x1, x2, [a, b], E0).

Since Ah = Lh + Eh by the definition (4.25) of the Lagrange function Lh, it follows from the
definition (4.41) of Γ(x1, x2, [a, b], E0), that

Ah(γδ(αδ(t, u), u), γ̇δ(αδ(t, u), u)) = Lh(γδ(αδ(t, u), u), γ̇δ(αδ(t, u), u)) + E0 , (4.53)
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thus the definition (4.49) of I and (4.53) yield

dI|(γ,α) (∂u(γ, α)δ|u=0) = ∂uI ((γδ, αδ)) |u=0

=
d

du

∫ αδ(b,u)

αδ(a,u)

(Lh(γδ(s, u), γ̇δ(s, u)) + E0) ds

∣∣∣∣∣
u=0

. (4.54)

Since both the integrand and the interval, over which we integrate, depend on the variational
parameter u, we get using γδ(t, 0) = γ(t) and αδ(t, 0) = α(t)

d

du

∫ αδ(b,u)

αδ(a,u)

(Lh(γδ(s, u), γ̇δ(s, u)) + E0) ds

∣∣∣∣∣
u=0

= [(Lh(γ(α(t)), γ̇(α(t))) + E0) · ∂uαδ|u=0(t)]
b
a

+
∫ α(b)

α(a)

d

du
Lh(γδ(s, u), γ̇δ(s, u))

∣∣∣∣
u=0

ds . (4.55)

For the remaining integrand on the right hand side of (4.55) we get

d

du
Lh(γδ(s, u), γ̇δ(s, u))

∣∣∣∣
u=0

= DγLh(γ(s), γ̇(s)) · ∂uγδ|u=0(s)

+Dγ̇Lh(γ(s), γ̇(s))∂uγ̇δ|u=0(s) , (4.56)

where we used again γδ(t, 0) = γ(t). Since

∂uγ̇δ|u=0(s) = ∂s∂uγδ|u=0(s) ,

we get by partial integration with respect to the second summand on the right hand side of (4.56)
and since α(a) = 0∫ α(b)

α(a)

d

du
Lh(γδ(s, u), γ̇δ(s, u))

∣∣∣∣
u=0

ds = [Dγ̇Lh(γ(s), γ̇(s)) · ∂uγδ(s, u)|u=0]
α(b)
0

−
∫ α(b)

0

(
DγLh(γ(s), γ̇(s)) +

d

ds
Dγ̇Lh(γ(s), γ̇(s))

)
· ∂uγδ|u=0(s) ds . (4.57)

It follows from (4.46) that

[Dγ̇Lh(γ(α(t)), γ̇(α(t)))∂uγδ(α(t), u)|u=0]
b
a = − [Dγ̇Lh(γ(α(t)), γ̇(α(t))) · γ̇(α(t))∂uαδ|u=0(t)]

b
a .

(4.58)
Since by (4.27) we have Ah(γ, γ̇) = Dγ̇Lh(γ, γ̇) · γ̇, we get by (4.53)

− [Dγ̇Lh(γ(α(t)), γ̇(α(t))) · γ̇(α(t))∂uαδ|u=0(t)]
b
a = − [(Lh(γ(α(t)), γ̇(α(t))) + E0) · ∂uαδ|u=0(t)]

b
a .

(4.59)
Thus the first summand on the right hand side of (4.55) and the first summand on the right hand
side of (4.56) (i.e. the boundary terms) cancel and we get by inserting (4.58) in (4.57) and the
resulting terms in (4.54)

dI|(γ,α) (∂u(γ, α)δ|u=0)

=
∫ α(b)

0

(
DγLh(γ(s), γ̇(s))−

d

ds
Dγ̇Lh(γ(s), γ̇(s))

)
· ∂uγδ|u=0(s) ds . (4.60)

For (γ, α) = (γ0,1), the integrand is zero since (γ0, γ̇0) solves Lagrange´s equation and thus

dI|(γ0,1) = 0 and ds`h |γ0 = 0 .

Therefore a base integral curve of Xh with energy E0 is a geodesic with respect to `h.
On the other hand, if γ0 is a Finslerian geodesic with energy E0, the integral (4.60) is by

definition zero for each tangent vector ∂uγ0,δ|u=0. As described in Remark 4.3, each tangent
vector ∂uγ0,δ|u=0 ∈ Tγ0Γa,b(x1, x2) can be considered as a mapping ∂uγ0,δ|u=0 : [a, b] → TM such
that ∂uγ0,δ|u=0(t) ∈ Tγ0(t)M and ∂uγ0,δ|u=0(a) = ∂uγ0,δ|u=0(b) = 0.

Thus we are in the situation, that for a given continuous function f , the integral
∫ b
a
f(t)g(t) dt =

0 for all C 2-functions g with g(a) = g(b) = 0. Then by standard arguments (for example contra-
position) it follows that f = 0.
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Thus it follows from the fact, that the integral on the right hand side of (4.60) is equal to zero
for all choices of the function ∂uγ0,δ|u=0, that the other factor in the integral must vanish and thus
(γ0, γ̇0) solves Lagrange´s equation.

2

Remark 4.19. In the setting of Proposition 4.15, we use for a curve γ : [0, T ] → M the
following notations for the associated curves in the tangent and cotangent bundle:

γ̌(t) := Tγ(t)γ(t) = (γ(t), γ̇(t)) ∈ TM
čγ(t) := τ̃E0 γ̌(t) ∈ E ⊂ TM

γ̂(t) := (DFh)−1
γ̌(t) ∈ T ∗M

cγ(t) := (DFh)−1
čγ(t) ∈ h−1(E0) ⊂ T ∗M

The construction of the phase space curve cγ lying in the energy shell h−1(E0) ⊂ T ∗M is schemat-
ically shown in the following diagram.

h−1(E0)

[0, 1] TM E

t γ̌(t) := (γ(t), γ̇(t)) čγ(t)

��
��

��
��

��
��

���
cγ(t)

w
Tγ(t)γ(t)

w
τ̃E0

u

(DFh)−1

w w

In particular, for fixed E0 each parameterized curve γ on the manifold M determines a unique
curve cγ in the energy shell h−1(E0) ⊂ T ∗M . Thus the lift cγ is uniquely determined by the base
curve and the assumption of energy conservation . By Remark 4.16 the Finsler function `h,E0 can
be written as `h,E0(x, v) = ξh(x, ṽ) · v, thus∫ 1

0

`h,E0(γ̌(t)) dt =
∫
cγ

ξ dx .

4.4. Application to Hε and the Eikonal (in)-equality

Now we are going to use the general constructions and definitions given up to this point for
the special case of a discrete Hamilton operator Hε satisfying Hypothesis 4.20.

In particular Definition 4.1, Lemma 4.8 and Proposition 4.15 allow to define a metric adapted
to the Hamilton operator Hε as follows.

Hypothesis 4.20. Let Hε = Tε + Vε be a self adjoint operator on `2
(
(εZ)d

)
with associated

phase space symbol hε(x, ξ; ε) := t(x, ξ) + V̂ε with the following properties:
(a) t ∈ S0

0(1)
(
Rd × Td

)
is a periodic kinetic energy function in the sense of Definition 2.4.

Regarding t as a function on Rd × Rd, which is periodic with respect to ξ, we assume
furthermore that the function Rd 3 ξ 7→ t(x, ξ) is even and has an analytic continuation
to Cd. In addition we assume that for all x ∈ Rd the Fourier coefficients aγ(x) defined in
(2.20) satisfy the condition

aγ(x)
{
≤ 0 for γ 6= 0
≥ 0 for γ = 0 and span{γ ∈ (εZ)d | aγ(x) < 0} = Rd . (4.61)

(b) The potential energy Vε is the lattice restriction of a function V̂ε ∈ C∞(Rd), which has
an expansion

V̂ε(x) =
N∑
l=0

εlVl(x) +RN+1(x; ε) ,

where V` ∈ C∞(Rd). Furthermore RN+1 ∈ C∞(Rd × (0, ε0]) and for any compact set
K ⊂ Rd there exists a constant CK such that supx∈K |RN+1(x; ε)| ≤ CKε

N+1.
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(c) We assume that there exist constants R,C > 0 such that Vε(x) > C for all |x| ≥ R and
ε ∈ (0, ε0]. In addition V0(x) has exactly one, strictly non-degenerate, minimum at x1 = 0
with the value V0(0) = 0.

We denote by h̃0(x, ξ) := t̃(x, ξ) − V0(x) : R2d → R the phase function of order zero in ε,
corresponding to the kinetic energy

t̃(x, ξ) := −t(x, iξ) = −
∑
γ

aγ(x) cosh
(

1
ε
γ · ξ

)
occurring in the eikonal equation (3.10).

Remark 4.21. (a) The assumption on the analytic continuation on Rd × (Td + iRd) im-
plies that the Fourier transforms aγ decay exponentially with respect to γ; more precisely
it follows from Proposition A.3 in Appendix A.1, that there exists a constant C such that
‖ e−

c|.|
ε a.(x)‖`2((εZ)d) ≤ C for any c > 0 uniformly with respect to x ∈ (εZ)d.

(b) By the assumption (4.61), the kinetic energy t̃x := t̃(x, . ) : Rdξ → R is strictly convex with
respect to ξ. This can be seen as follows.

In order to be strictly convex, the Hessian D of t̃x, which is given by

D := (Dik) :=
(
∂ξi∂ξk t̃(x, ξ)

)
= −ε−2

 ∑
γ∈(εZ)d

aγ(x) cosh
(γ
ε
· ξ
)

(γiγk)

 ,

has to be positive definite. The strict convexity therefore requires

〈v , Dv〉 = −ε−2
∑
γ

aγ(x) cosh
(
γ · ξ
ε

)
(γ · v)2 > 0 , for all v ∈ (εZ)d, v 6= 0, (4.62)

what is surely fulfilled by (4.61) (see the proof of Proposition 4.22 for details) .
This corresponds for ξ = 0 to the positive definiteness of the matrix B(x) introduced

in the Definition 2.4 of a periodic kinetic energy (see (2.23)).
Since t̃x is strictly convex and even, it follows at once that it has its absolute minimum

at the point ξ = 0 and t̃x(ξ) > t̃x(0) = 0 for all ξ 6= 0 and x ∈ Rd. In fact for all x ∈ Rd

t̃x(0) = t̃x

(
1
2
ξ +

1
2
(−ξ)

)
≤ 1

2
t̃x(ξ) +

1
2
t̃x(−ξ) = t̃x(ξ) .

By the strict convexity, the point ξ = 0 is the only minimum of t̃x.
(c) For the wide class of probabilistic operators introduced in Section 2.3, the assumption

(4.61) on the sign of aγ is always fulfilled. In this context, the assumption on the span of
the γ with aγ < 0 is an additional requirement on the transition matrix.

Proposition 4.22. The Hamilton function h̃0 : R2d → R defined in Hypothesis 4.20 is hyper-
regular.

Proof:

By Proposition 4.12, it is enough to show that h̃0 is hyperconvex in each fibre (i.e. with respect
to ξ for each fixed x ∈ Rd). Thus we have to show that there exists a constant α > 0 such that〈

v , D2
ξ h̃0(x, ξ)v

〉
≥ α‖v‖2 for all x, ξ, v ∈ Rd . (4.63)

In the following considerations, we will skip the x-dependence of h̃0, since we use only properties
of h̃0 holding for all x ∈ Rd.

By Remark 4.21 we have〈
v , D2

ξ h̃0(ξ)v
〉

= −ε−2
∑

γ∈(εZ)d

aγ cosh
(
γ · ξ
ε

)
(γ · v)2 , ξ, v ∈ Rd . (4.64)

By Hypothesis 4.20, for each x ∈ Rd, the set of γ ∈ (εZ)d with aγ(x) < 0 span Rd, thus we can
choose a basis {γ̃1, . . . , γ̃d} of Rd with aγ̃i < 0. Since by assumption −aγ ≥ 0 for all γ 6= 0, each
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summand in (4.64) has positive sign and therefore〈
v , D2

ξ h̃0(ξ)v
〉
≥ −

d∑
k=1

aγ̃k cosh
(
γ̃k

ε
· ξ
)(

γ̃k

ε
· v
)2

, ξ, v ∈ Rd . (4.65)

We use the notion of ã γ
ε

defined in (2.18) and set ηi := 1
ε γ̃

i (thus ηi ∈ Zd) and C = mink
(
−ãηk

)
(then C > 0 by the above considerations). Since cosh

(
ηk · ξ

)
≥ 1 for all ξ ∈ Rd, equation (4.65)

yields 〈
v , D2

ξ h̃0(ξ)v
〉
≥ C

d∑
k=1

(ηk · v)2 ≥ 0 .

The sum can take the value 0 only if v is orthogonal to ηk for all k = 1, . . . d. Since the vectors
ηi, i = 1, . . . d are a basis, this is only the case for v = 0 (the matrix M =

(
C
∑
k η

k
i η

k
j

)
has

maximal rank). Thus there exists a constant α > 0 (the lowest eigenvalue of M), such that〈
v , D2

ξ h̃0(ξ)v
〉
≥ α‖v‖2 .

2

Definition 4.23. In the setting of Proposition 4.15, we choose M = Rd, E0 = 0 and h =
h̃0 = t̃ − V0 (the energy phase function given in Hypothesis 4.20), which by Proposition 4.22 is
hyperregular.

Recall that by Hypothesis 4.20, the set of singular points with respect to the energy E0 = 0 is
given by S(0) = {0}. We define

`(x, v) :=

{
`h̃0,0

(x, v) , x ∈ M̃ := Rd \ {0}
0 x = 0 .

Then ` : R2d → R is continuous, since limx→0 τ̃0(x, v) = (0, 0).
The associated Finsler metric d` : Rd × Rd → [0,∞) is given by

d`(x0, x1) = inf
γ∈Γ0,1(x0,x1)

∫ 1

0

`(γ(t), γ̇(t)) dt . (4.66)

The following proposition permits to extend the solution ϕ of the eikonal equation (3.10)
constructed in Section 3.2 by the distance d`(0, x), satisfying the eikonal inequality

t(x, i∇ϕ(x)) + V0(x) ≥ 0 . (4.67)

outside of Ω. To this end, we first notice that if d` is locally Lipschitz continuous, it is differentiable
almost everywhere in both arguments. This follows from the Rademacher Theorem (see [20]). In
fact restricted to a bounded domain Σ, the gradient ∇d` is well defined in L∞(Σ) as almost
everywhere limit of ∇(ζε ∗ d`) when ε → ∞, where ζε(x) = ε−dζ(xε ) ∈ C∞

0 (B(0, ε)) is a standard
mollifier. This construction is described for example in Helffer-Sjöstrand [33].

Proposition 4.24. Let ϕ denote the solution of the eikonal equation (3.10) in a neighborhood
Ω of 0 constructed in Section 3.2. Then in the setting of Definition 4.23

d0(x) := d`(0, x) = ϕ(x) , x ∈ Ω . (4.68)

In addition for all x ∈ Rd and R > 0 there exists a C > 0 such that for all γ ∈ (εZ)d with |γ| < R
and for all ε ∈ (0, ε0]

|d`(x, x+ γ)| ≤ |γ|C . (4.69)

Thus d` is locally Lipschitz continuous. At the points x ∈ Rd, where d0 is differentiable, the eikonal
inequality

h̃0(x,∇d0(x)) ≤ 0 (4.70)

holds.
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Proof:

Proof of (4.69) and (4.70) (eikonal inequality):
By the triangle inequality and the definition of d`(x, y), we have for any v ∈ Rd with |v| = 1 and
δ > 0

d0(x+ δv)− d0(x) ≤ d0(x) + d`(x, x+ δv)− d0(x) = d`(x, x+ δv) (4.71)

= inf
γ∈Γ(x,x+δv)

∫ 1

0

`(γ̃(t)) dt ≤
∫ 1

0

`(γ̃0(t)) dt ,

where γ0(t) = x+ tδv. For this special curve we get by the homogeneity of the Finsler function `
the estimate ∫ 1

0

`(γ̃0(t)) dt ≤ sup
t∈[0,1]

`(x+ tδv, δv) = δ sup
t∈[0,1]

`(x+ tδv, v) . (4.72)

Thus (4.71) together with (4.72) prove (4.69) and d` is locally Lipschitz continuous.
By (4.71) and (4.72)

∂vd
0(x) = lim

δ→0

d0(x+ δv)− d0(x)
δ

≤ lim
δ→0

sup
t∈[0,1]

`(x+ tδv, v)

and thus we get for all v ∈ Rd with |v| = 1 the inequality ∂vd
0(x) = ∇d0(x) · v ≤ `(x, v). Since

both sides are positive homogeneous of order one with respect to v, we can extend the inequality
to all v ∈ Rd by multiplication of both sides with |v|, thus

∇d0(x) · v ≤ `(x, v) , v ∈ Rd . (4.73)

As described in Remark 4.16, the Finsler function ` can be written as `(x, v) = ξh̃0
(x, ṽ) · v, where

we used the notation ξh̃0
(x, ṽ) =

(
Df h̃0

)−1

(x, ṽ) and (x, ṽ) = τ̃0(x, v) (i.e. (x, ṽ) ∈ E). It follows
from (4.73), that

∇d0(x) · v ≤ ξh̃0
(x, ṽ) · v , for all (x, v) ∈ TM ,

yielding (
ξh̃0

(x, ṽ)−∇d0(x)
)
· v ≥ 0 , (x, v) ∈ TM . (4.74)

Since h̃0(x, ξ) is differentiable, real valued and convex in each fibre (i.e. with respect to ξ for fixed
x), by (4.13) the inequality

h̃0(x, ξ) ≥ h̃0(x, η) +Dηh̃0(x, η) · (ξ − η)

holds for all x, ξ, η ∈ Rd. Thus by setting ξ = ξh̃0
(x, ṽ) and η = ∇d0(x), we get for all (x, v) ∈ TM

the estimate

h̃0(x, ξh̃0
(x, ṽ)) ≥ h̃0(x,∇d0(x)) +Dξh̃0(x,∇d0(x)) · (ξh̃0

(x, ṽ)−∇d0(x)) . (4.75)

The left hand side of (4.75) is by the definition of ṽ equal to zero. From the definition of the fibre
derivative and with the notation introduced in Remark 4.10, it follows that

Dξh̃0(x,∇d0(x)) = DF h̃0(x,∇d0(x)) = vh̃0
(x,∇d0(x)) ∈ Rd .

Choosing (x, v) := (x, vh̃0
(x,∇d0(x)) in equation (4.75) yields

0 ≥ h̃0(x,∇d0(x)) + v · (ξh̃0
(x, ṽ)−∇d0(x))

Thus from (4.74) the eikonal inequality (4.70) follows.

Proof of (4.68) (eikonal equality):
By the construction of ϕ in Section 3.2, the outgoing manifold can be parameterized as Λ+ =
{(x,∇ϕ(x)) |x ∈ Ω}. Thus for a given x ∈ Ω there exists a bicharacteristic curve γ̂0 = (γ0,∇ϕ(γ0)) ⊂
Λ+ of the hamiltonian vector field Xh̃0

, parameterized by [−∞, 0], such that γ̂0(0) = (x,∇ϕ(x))
and limt→−∞ γ̂0(t) = (0, 0). Since γ̂0 is an integral curve of Xh̃0

, it follows from Hamilton’s
equations (4.28) that

γ̇0 = Dξh̃0 (γ0,∇ϕ(γ0)) = DF h̃0 (γ0,∇ϕ(γ0))
and therefore

ξh̃0
(γ0, γ̇0) =

(
DF h̃0

)−1

(γ0, γ̇0) = ∇ϕ(γ0) .
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Thus
d

dt
ϕ(γ0) = ∇ϕ · γ̇0 =

(
DF h̃0

)−1

(γ0, γ̇0) · γ̇0 . (4.76)

Since γ̂0 is an integral curve, (γ0(t), γ̇0(t)) lies on the energy shell E . Therefore τ̃0(γ0, γ̇0) = (γ0, γ̇0)
and it follows at once from (4.76) and the definition of the Finsler function ` (see Definition 4.23
and Proposition 4.15) that

d

dt
ϕ(γ0) = `(γ0, γ̇0) (4.77)

The point x = 0 is a singular point of the Finsler manifold (Rd, `) (since h̃0(0, 0) = 0), thus the
base integral curve γ0 : [−∞, 0] → Ω 3 0 of Xh̃0

is not a regular curve on a Finsler manifold in
the sense of Definition 4.2. To avoid this difficulty, we restrict the curve γ0 to [−T, 0] and set
yT := γ0(−T ). Then for each T ∈ R+ the points yT and x can be joined by the integral curve
γ0|[−T,0] of Xh̃0

and therefore by (4.77)

ϕ(x)− ϕ(yT ) =
∫ 0

−T
`(γ0(t), γ̇0(t)) dt (4.78)

By Proposition 4.18 the integral curve γ0 of Xh̃0
is a geodesic with respect to the associated Finsler

function ` (i.e., the integral
∫ 0

−T `(γ, γ̇) dt is extremal for γ = γ0). Thus it remains to show, that
γ0 is minimal geodesic with respect to `, i.e., the right hand side of (4.78) is minimal for variations
over all curves in Γ−T,0(yT , x). Then the length of γ0 is by Definition equal to the distance d`(yt, x).

To show that the geodesic γ0 is minimal, we use Abate-Patrizio [1], Theorem 1.6.6 (see also
Bao-Chern-Shen [6], Thm. 6.3.1). One of the conclusions of this Theorem is, that geodesics,
which are short enough, actually minimize the curve length among all C∞-curves with the same
endpoints. Thus the length of any short geodesic joining x and y is equal to the Finsler distance
d`(x, y).

The main ingredients of the proof of this theorem are the Euler equations (4.6), the Fundamen-
tal inequality (4.8) and the Gauss-Lemma on the orthogonality of radial geodesics and geodesic
spheres with respect to the metric g.

For Ø small enough (with respect to d0 and thus by Lemma 4.8 with respect to Euclidean
distance) it follows from [1], Thm.1.6.6, that

ϕ(x)− ϕ(yT ) =
∫ 0

T

`(γ0(t), γ̇0(t)) = inf
γ∈Γ−T,0(yT ,x)

∫ 0

−T
`(γ(t), γ̇(t)) dt = d`(yT , x) . (4.79)

Since ` and ϕ can be continuously extended to the point 0, it follows that

lim
T→∞

(ϕ(x)− ϕ(yT )) = lim
T→∞

d`(yT , x) ,

leading to the result
ϕ(x) = d`(0, x) = d0(x) .

2

Remark 4.25. The eikonal inequality (4.70) is valid not only for d`(x, 0), but in general for
d`(x, y), where y is fixed. In fact we have

d`(x+ δv, y)− d`(x, y) ≤ d`(x, y) + d`(x, x+ δv)− d`(x, y) ≤ d`(x, x+ δv) ,

which can be inserted in (4.71) to give by the same considerations as above ∇xd`(x, y) · v ≤ `(x, v).
This leads to the inequality (ξh̃0

(x, ṽ−∇xd`(x, y)) · v ≥ 0 and thus almost everywhere for any fixed
y ∈ Rd to the eikonal inequality

h̃0(x,∇xd`(x, y)) ≤ 0 . (4.80)



CHAPTER 5

Weighted estimates for Dirichlet eigenfunctions

The aim of this chapter is to find estimates for the weighted `2-norm of eigenfunctions of the
Dirichlet operator associated to Hε with respect to a neighborhood of one potential well.

These estimates show the exponential decay of the eigenfunctions of the low lying spectrum
of Hε with a rate controlled by the Finsler distance constructed in Chapter 4. To analyze eigen-
functions concentrated at the potential minimum x1 = 0, we introduce a bounded region Σ ⊂ Rd
including x1 and its lattice restriction Σε := Σ ∩ (εZ)d.

Definition 5.1. Any function u ∈ `2(Σε) can by zero extension, i.e. via u(x) = 0 for x /∈ Σε,
be embedded in `2((εZ)d). If we denote this embedding by iΣε , we can define the space `2Σε :=
iΣε
(
`2(Σε)

)
⊂ `2((εZ)d) and the Dirichlet operator

HΣ
ε := 1Σε Hε|`2Σε : `2Σε → `2Σε . (5.1)

We think of HΣ
ε as having Dirichlet boundary conditions on the boundary ∂Σ.

5.1. Preliminary Results

The first step to weighted estimates for eigenfunctions of HΣ
ε is contained in the following

lemma, which gives a useful expression for the scalar product of Hε conjugated with an exponen-
tial weight e

ϕ
ε .

Lemma 5.2. Let Hε be an operator on `2
(
(εZ)d

)
satisfying Hypothesis 4.20. and let ϕ be a real

valued function on (εZ)d, which is constant outside some bounded set. Then for any real valued
v ∈ D(Hε)〈(

e
ϕ
εHεe

−ϕ
ε

)
v , v

〉
`2

= 〈(Vε + V ϕε ) v , v〉`2

−1
2

∑
x,γ∈(εZ)d

aγ(x) cosh
(
ϕ(x)− ϕ(x+ γ)

ε

)
(v(x)− v(x+ γ))2 ,

where

V ϕε (x) :=
∑

γ∈(εZ)d

aγ(x) cosh
(

1
ε
(ϕ(x)− ϕ(x+ γ))

)
. (5.2)

Proof:
By use of the symmetry of Tε and since v and ϕ are assumed to be real valued and e±

ϕ
ε v ∈ D(Hε),

we have〈(
e
ϕ
ε Tεe

−ϕ
ε

)
v , v

〉
`2

=
1
2
[〈
Tεe

−ϕ
ε v , e

ϕ
ε v
〉
`2

+
〈
e−

ϕ
ε v , Tεe

ϕ
ε v
〉
`2

]
=

1
2

∑
x,γ∈(εZ)d

aγ(x)
(
e

1
ε (ϕ(x)−ϕ(x+γ)) + e−

1
ε (ϕ(x)−ϕ(x+γ))

)
v(x+ γ)v(x)

=
∑

x,γ∈(εZ)d

aγ(x) cosh
(

1
ε (ϕ(x)− ϕ(x+ γ))

)
v(x+ γ)v(x) .

81
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Since v(x+ γ)v(x) = v(x)(v(x+ γ)− v(x)) + v2(x) it follows from the definition and symmetry of
V ϕε that〈(

e
ϕ
ε Tεe

−ϕ
ε

)
v , v

〉
`2

=
∑

x,γ∈(εZ)d

aγ(x) cosh
(

1
ε (ϕ(x)− ϕ(x+ γ))

)
v(x)(v(x+ γ)− v(x))

+
∑

x,γ∈(εZ)d

aγ(x) cosh
(

1
ε (ϕ(x)− ϕ(x+ γ))

)
v(x)2 (5.3)

= −1
2

∑
x,γ∈(εZ)d

aγ(x) cosh
(

1
ε (ϕ(x)− ϕ(x+ γ))

)
(2v(x)2 − 2v(x)v(x+ γ)) + 〈V ϕε v , v〉`2

Again by the symmetry of Tε, which yields aγ(x) = a−γ(x + γ), together with the fact that cosh
is even, we have by use of the substitutions x′ = x+ γ and γ′ = −γ∑

x,γ∈(εZ)d

aγ(x) cosh
(

1
ε (ϕ(x)− ϕ(x+ γ))

)
v(x)2

=
∑

x′,γ′∈(εZ)d

a−γ′(x′ + γ′) cosh
(

1
ε (ϕ(x′ + γ′)− ϕ(x′))

)
v(x′ + γ′)2

=
∑

x′,γ′∈(εZ)d

aγ′(x′) cosh
(

1
ε (ϕ(x′)− ϕ(x′ + γ′))

)
v(x′ + γ′)2

Thus by use of this transformation for one of the two terms multiplied with v(x)2 on the right
hand side of (5.3) we get〈(

e
ϕ
ε Tεe

−ϕ
ε

)
v , v

〉
`2

=

− 1
2

∑
x,γ∈(εZ)d

aγ(x) cosh
(

1
ε (ϕ(x)− ϕ(x+ γ))

) (
v(x)2 − 2v(x)v(x+ γ) + v(x+ γ)2

)
+ 〈V ϕε v , v〉`2

= −1
2

∑
x,γ∈(εZ)d

aγ(x) cosh
(

1
ε (ϕ(x)− ϕ(x+ γ))

)
(v(x)− v(x+ γ))2 + 〈V ϕε v , v〉`2 .

Since Vε commutes with e−
ϕ
ε , the lemma follows.

2

For the Dirichlet operator HΣ
ε conjugated with the weight function e

ϕ
ε , where ϕ denotes a real

valued phase function, Lemma 5.2 leads to the following norm estimate, which will be used later
on to prove the main theorem.

Lemma 5.3. Let Σ ⊂ Rd denote a bounded region (or Σ = Rd respectively) and let for any fixed
ε ∈ (0, ε0] denote by Σε = Σ ∩ (εZ)d the restriction of Σ to the ε-lattice. Let HΣ

ε be the associated
Dirichlet operator on `2Σε as defined in (5.1), where Hε satisfies Hypothesis 4.20. Denote by V ϕε
the multiplication operator on `2((εZ)d) defined by (5.2) and, for E ≥ 0 fixed, let F± : Σ → [0,∞)
be a pair of functions such that F (x) := F+(x) + F−(x) > 0 and

F 2
+(x)− F 2

−(x) = V̂ε(x) + V ϕε (x)− E , x ∈ Σ . (5.4)

Then for a function ϕ on Σ and v ∈ `2Σε (or v ∈ D(Hε) and ϕ constant outside some bounded set
respectively), both real valued, the estimate

‖Fv‖2`2 ≤ 4
∥∥∥ 1
F

(
e
ϕ
ε (HΣ

ε − E)e−
ϕ
ε

)
v
∥∥∥2

`2
+ 8‖F−v‖2`2 , (5.5)

holds.

Proof:
First we state the algebraic inequality

‖Fv‖2`2 ≤ 2
(
‖F+v‖2`2 + ‖F−v‖2`2

)
= 2

(
‖F+v‖2`2 − ‖F−v‖2`2

)
+ 4‖F−v‖2`2 (5.6)

and that by the construction of F+ and F−

‖F+v‖2`2 − ‖F−v‖2`2 = 〈(Vε + V ϕ − E)v , v〉`2 . (5.7)
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Since the non-positivity of the coefficients aγ for γ 6= 0 assumed in Hypothesis 4.20 yields

−1
2

∑
x,γ∈(εZ)d

aγ(x) cosh
(

1
ε
(ϕ(x)− ϕ(x+ γ))

)
(v(x)− v(x+ γ))2 ≥ 0 (5.8)

and
〈(
e
ϕ
ε (Hε − E)e−

ϕ
ε

)
v , v

〉
`2

=
〈(
e
ϕ
ε (HΣ

ε − E)e−
ϕ
ε

)
v , v

〉
`2

for v ∈ `2Σε (or for v ∈ D(Hε)
respectively), it follows from Lemma 5.2 that

〈(Vε + V ϕε − E)v , v〉`2 ≤
〈(
e
ϕ
ε (HΣ

ε − E)e−
ϕ
ε

)
v , v

〉
`2
, (5.9)

(5.7) together with (5.9) yield by use of the Cauchy-Schwarz inequality

2
(
‖F+v‖2`2 − ‖F−v‖2`2

)
≤ 2

〈(
e
ϕ
ε (HΣ

ε − E)e−
ϕ
ε

)
v , v

〉
`2

(5.10)

≤ 2
√

2
∥∥∥ 1
F

(
e
ϕ
ε (HΣ

ε − E)e−
ϕ
ε

)
v
∥∥∥
`2

1√
2
‖Fv‖`2

≤ 2
∥∥∥ 1
F

(
e
ϕ
ε (HΣ

ε − E)e−
ϕ
ε

)
v
∥∥∥2

`2
+

1
2
‖Fv‖2`2 .

By inserting (5.10) in (5.6) we get

‖Fv‖2`2 ≤ 2
∥∥∥ 1
F

(
e
ϕ
ε (HΣ

ε − E)e−
ϕ
ε

)
v
∥∥∥2

`2
+

1
2
‖Fv‖2`2 + 4‖F−v‖2`2

and therefore

‖Fv‖2`2 ≤ 4
∥∥∥ 1
F

(
e
ϕ
ε (HΣ

ε − E)e−
ϕ
ε

)
v
∥∥∥2

`2
+ 8‖F−v‖2`2 .

2

5.2. Weighted Estimates

We are now in a position to give estimates for the `2-norm of weighted eigenfunctions of the
Dirichlet operator HΣ

ε . We will show, that semiclassically they decay exponentially at a rate con-
trolled by the Finsler distance d0(x) of x to the well at the origin.

Theorem 5.4. Let Σ ⊂ Rd be a bounded region including the point 0 such that d0 ∈ C 2(Σ),
where d0(x) := d`(0, x) denotes the Finsler distance to the origin defined by (4.66) and denote for
any ε ∈ (0, ε0] by Σε = Σ ∩ (εZ)d the restriction of Σ to the lattice.

Let E ∈ [0, εR0] for R0 fixed, assume Hypothesis 4.20 and let HΣ
ε denote a Dirichlet operator

as introduced in (5.1).
Then there exist constants ε0, B, C > 0, such that for all ε ∈ (0, ε0] and u ∈ `2Σε real valued∥∥∥∥(1 + d0

ε

)−B
e
d0
ε u

∥∥∥∥
`2
≤ C

[
ε−1

∥∥∥∥(1 + d0

ε

)−B
e
d0
ε

(
HΣ
ε − E

)
u

∥∥∥∥
`2

+ ‖u‖`2
]
. (5.11)

Proof:

We partly follow the ideas in the proof of Proposition 5.5 in Helffer-Sjöstrand [33].
First we notice that the symbol tΣ defined by

Σ× Td 3 (x, ξ) 7→ tΣ(x, ξ) =
∑

γ∈(εZ)d
x+γ∈Σ

aγ(x)e−
i
εγξ (5.12)

is associated to the kinetic part TΣ
ε of the Dirichlet operator HΣ

ε in the sense that

TΣ
ε u(x) = OpTd

ε (tΣ)u(x) for any u ∈ `2Σε .

In the following we write for simplicity d(x) := d0(x).
Let χ ∈ C∞(R+, [0, 1]), such that χ(r) = 0 for r ≤ 1

2 and χ(r) = 1 for r ≥ 1. In addition
we assume that 0 ≤ χ′(r) < 2, 3 (this is possible, because by construction χ′(r) ≥ 2 + δ for δ > 0
arbitrary small).

We define g on Σ by:

g(x) := χ

(
d(x)
Bε

)
, x ∈ Σ , (5.13)
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where B will be chosen later. Then g(x) = 1 for d(x) ≥ Bε and g(x) = 0 for d(x) ≤ Bε
2 . Let

Φ(x) := d(x)− Bε

2
log
(
B

2

)
− g(x)

Bε

2
log
(

2d(x)
Bε

)
. (5.14)

For any B we choose ε < εB small enough, such that

V0(x) + t(x, i∇d(x)) = 0 , x ∈ Σ ∩ d−1([0, Bε)) = {y ∈ Σ | d(y) < Bε} , (5.15)

i.e. {y ∈ Σ | d(y) < Bε} ⊂ Ω, where Ø denotes the region, where the eikonal equation (3.10) holds.
By the definition of g

∇Φ(x) = ∇d(x)
{

1− Bε

2d(x)
χ

(
d(x)
Bε

)
− 1

2
χ′
(
d(x)
Bε

)
log
(

2d(x)
Bε

)}
. (5.16)

Step 1:
We will analyze the term V0(x) + t(x, i∇Φ) in the different regions.

Case 1: d(x) ≤ Bε
2

Since χ(x) = χ′(x) = 0 and the eikonal equation (3.10) holds, we get

V0(x) + t(x, i∇Φ(x)) = V0(x) + t(x, i∇d(x)) = 0 , x ∈ Σ ∩ d−1([0, Bε2 ]) . (5.17)

Case 2: d(x) ≥ Bε
Since χ′(x) = 0 in this region, we have by (5.16)

∇Φ(x) = ∇d(x)
(

1− Bε

2d(x)

)
and thus

V0(x) + t(x, i∇Φ(x)) = V0(x) + t

(
x, i∇d(x)

(
1− Bε

2d(x)

))
. (5.18)

From the convexity of t̃ with respect to ξ for fixed x it follows that t(x, iξ) = −t̃(x, ξ) is concave
and therefore for all ξ, η ∈ Rd

t(x, λiξ + (1− λ)iη) ≥ λt(x, iξ) + (1− λ)t(x, iη) for 0 ≤ λ ≤ 1 . (5.19)

In the mentioned region, 0 ≤ (1 − Bε
2d(x) ) ≤ 1, thus with the choice λ = (1 − Bε

2d(x) ) and η = 0 in
(5.19) and since t(x, 0) = 0 for all x ∈ (εZ)d we get by (5.18) the estimate

V0(x) + t(x, i∇Φ(x)) ≥ V0(x) +
(

1− Bε

2d(x)

)
t(x, i∇d(x)) ≥

≥ V0(x)
(

1−
(

1− Bε

2d(x)

))
=

= V0(x)
Bε

2d(x)
,

where for the second estimate we used that by Proposition 4.24 the eikonal inequality t(x, i∇d(x)) ≥
−V0(x) holds. It follows from the expansions (3.2) of V0 and (3.12) of ϕ at zero (which equals d in
a neighborhood of zero), that d(x) = O(|x|2) and V0(x) = O(|x|2) for |x| → 0. Since the region Σ
was assumed to be bounded, it thus follows that there exists a constant C0 > 0 such that

C−1
0 ≤ V0(x)

2d(x)
≤ C0 , x ∈ Σ ∩ d−1([Bε,∞))

and we finally get

V0(x) + t(x, i∇Φ(x)) ≥ B

C0
ε , x ∈ Σ ∩ d−1([Bε,∞)) . (5.20)

Case 3: Bε
2 < d(x) < Bε

We define

f1(x) :=
Bε

2d(x)
χ

(
d(x)
Bε

)
and f2(x) :=

1
2
χ′
(
d(x)
Bε

)
log
(

2d(x)
Bε

)
,

such that by (5.16)
∇Φ(x) = ∇d(x)(1− f1(x)− f2(x)) . (5.21)
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Since 1 < 2d(x)
Bε < 2, both functions are non-negative and therefore 1−f1(x)−f2(x) ≤ 1. In addition

it follows that 0 ≤ f1(x) ≤ 1 and by the assumption χ′(r) ≤ 2, 3 we get 0 ≤ f2(x) ≤ 1, 15 log 2.
Therefore 0 ≤ f1(x) + f2(x) ≤ 1, 15 log 2 + 1 ≤ 2 and thus the estimate

|1− f1(x)− f2(x)| ≤ 1 (5.22)

holds. Setting

λ(x) := 1− f1(x)− f2(x) =
{

1− Bε

2d(x)

(
χ

(
d(x)
Bε

))
− 1

2

(
χ′
(
d(x)
Bε

))
log
(

2d(x)
Bε

)}
,

it follows from (5.21) and (5.22), that

∇Φ(x) = λ(x)∇d(x) with |λ(x)| ≤ 1 x ∈ Rd . (5.23)

Thus again from (5.19) (the concavity of t) together with (5.23) and the fact that t is even with
respect to iξ it follows that

V0(x) + t(x, i∇Φ(x)) = V0(x) + t(x, iλ(x)∇d(x)) ≥ V0(x) + |λ(x)|t(x, i∇d(x)) . (5.24)

Since by assumption the eikonal equation (5.15) holds for d(x) < Bε, the positivity of V0 and
(5.24) yield

V0(x) + t(x, i∇Φ(x)) ≥ V0(1− |λ(x)|) ≥ 0 , x ∈ Σ ∩ d−1((Bε2 , Bε) . (5.25)

Step 2:

In the second step, we analyze the operator V̂ε + V Φ
ε , where V Φ := V Φ

ε denotes the multipli-
cation operator defined in Lemma 5.2.
To use Lemma 5.3, we have to find estimates not only for the zero order term V0 + t(x, i∇Φ), that
we analyzed up to this point, but for the complete sum V̂ε + V Φ. The idea is, to write

V̂ε(x) + V Φ(x) =
(
V̂ε(x)− V0(x)

)
+
(
V Φ(x)− t(x, i∇Φ(x))

)
+ (V0(x) + t(x, i∇Φ(x))) (5.26)

and to find estimates for the differences in the first two brackets on the right hand side. By
Hypothesis 4.20 and since Σ is bounded, there exists a constant C1 > 0 such that

V̂ε(x)− V0(x) ≥ −C1ε , x ∈ Σ . (5.27)

The aim is now to show, that the difference between t(x, i∇Φ(x)) and V Φ is at least of order ε.
In the following considerations, we will use

Lemma 5.5. Let g : Σ → [0, 1] be defined by (5.13). Let k ∈ N and d ∈ C k. Then there exists
a constant C > 0, such that for all ε ∈ (0, ε0) and for any α = (α1, . . . , αd) ∈ Nd, |α| ≤ k

|∂αg(x)| ≤ Cε−
|α|
2 , x ∈ Σ .

Proof:
For |α| = 0, this follows directly from the definition. Thus we assume |α| ≥ 1. Then the derivative
is by the definition of the cut-off function supported in the region Bε

2 < d(x) < Bε and by the
Leibnitz and chain rule

∂αg(x) =
∑
β,γ∈Nd

|β|≥1,β+γ=α

Cγβ
1

(Bε)|β|
χ(|β|)

(
d(x)
Bε

)
∂γ (∇d(x))β . (5.28)

Since on the support of ∇g the eikonal equation holds, it follows from Proposition 4.24 that
d(x) = ϕ(x). Therefore by the expansion (3.12) of ϕ it follows that d(x) = 〈x , Ax〉 + O(|x|3)
for some d × d-matrix A and x → 0 and therefore ∇d(x) = O(|x|). Thus in the region with
Bε
2 < d(x) < Bε (on the support of ∇g), we have |x| = O(

√
ε), yielding ∇d(x) = O(

√
ε). The

higher derivatives of d are by (3.12) bounded by a constant. Therefore the summands on the right
hand side of (5.28) are of order εk with k = −|β|+ 1

2 max{0, |β|− |γ|}. Thus for |β| ≥ |γ| it follows
that k = −|β| + |β|−(|α|−|β|)

2 = − |α|
2 and for |β < |γ| we have k = −|β| > − |α|

2 . Thus the leading

terms are of order ε−
|α|
2 . 2
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In the next step, we estimate the difference between V Φ and tΣ(x, i∇Φ) defined by (5.12).
Since t is an even function with respect to ξ, we analyze the modulus

∣∣V Φ(x)− tΣ(x,−i∇Φ)
∣∣ =

∣∣∣∣∣∣∣
∑

γ∈(εZ)d
x+γ∈Σε

aγ(x)
{

cosh
(

1
ε
(Φ(x)− Φ(x+ γ))

)
− cosh

(
−1
ε
γ∇Φ(x)

)}∣∣∣∣∣∣∣
≤

∑
γ∈Σ′ε(x)

|aγ(x)|
∣∣∣∣cosh

(
1
ε
(Φ(x)− Φ(x+ γ))

)
− cosh

(
−1
ε
γ∇Φ(x)

)∣∣∣∣ , x ∈ Σ , (5.29)

where Σ′ε(x) := {γ ∈ (εZ)d |x+ γ ∈ Σ}. By the mean value theorem for the function cosh z with
z0 = − 1

εγ∇Φ(x) and z1 = 1
ε (Φ(x)− Φ(x+ γ)), we get from | sinhx| ≤ e|x|∣∣∣∣cosh

(
1
ε
(Φ(x)− Φ(x+ γ))

)
− cosh

(
−1
ε
γ∇Φ(x)

)∣∣∣∣
≤ sup
t∈[0,1]

e|
1
ε{(Φ(x)−Φ(x+γ))t−γ∇Φ(x)(1−t)}|

∣∣∣∣1ε{(Φ(x)− Φ(x+ γ)) + γ∇Φ(x)}
∣∣∣∣ . (5.30)

By Proposition 4.24, (4.69) and the definition (5.14) of Φ there exist constants c1, c2 > 0 such that

|Φ(x)− Φ(x+ γ)| ≤ c1|γ| and |γ∇Φ(x)| ≤ c2|γ| , x ∈ Σ, γ ∈ Σ′ε(x) .

Since t ∈ [0, 1] in (5.30), there exists therefore a constant D > 0, such that the exponential term
on the right hand side of (5.30) can be estimated as∣∣∣e 1

ε{(Φ(x)−Φ(x+γ))t+γ∇Φ(x)(1−t)}
∣∣∣ ≤ e

D
ε |γ| . (5.31)

By second order Taylor-expansion, the remaining factor on the right hand side of (5.30) can be
estimated as

1
ε
|(Φ(x)− Φ(x+ γ)) + γ∇Φ(x)| ≤ sup

t∈[0,1]

1
ε

d∑
ν,µ=1

|γνγµ∂ν∂µΦ(x+ tγ)| . (5.32)

By the definition (5.14) of Φ we have

∂ν∂µΦ(x) = ∂ν∂µd(x)− ∂ν∂µ

(
g(x)

Bε

2
log
(

2d(x)
Bε

))
= ∂ν∂µd(x) (5.33)

−
{

(∂ν∂µg) (x)
Bε

2
log
(

2d(x)
Bε

)
+ (∂νg)(x)

Bε

2d(x)
(∂µd)(x) + (∂µg)(x)

Bε

2d(x)
(∂νd)(x)

−g(x) Bε

2d(x)

(
(∂νd)(x)(∂µd)(x)

d(x)
+ (∂ν∂µd)(x)

)}
We will show, that this term is bounded uniformly in ε. To analyze the different summands, we
introduce a constant δ > 0 such that {x ∈ Σ | d(x) < δ} ⊂ Ω and δ ≥ ε0B.

Since Σ is bounded, all derivatives of d are at least bounded by a constant independent of ε,
thus the first summand is bounded.

The next three summands include a derivative of g and are therefore supported in the region
Bε
2 < d(x) < Bε. Thus 1 < 2d(x)

Bε < 2 and from the expansion (3.12) of the solution of the eikonal
equation ϕ, it follows that ∂νd(x) = O(

√
ε) as described in the proof of Lemma 5.5. Together with

Lemma 5.5, this yields the boundedness of these three terms.
For the last term, we analyze the regions d(x) < δ and d(x) ≥ δ separately.
Case 1: d(x) < δ:

By Proposition 4.24, d coincides with the solution ϕ of the eikonal equation, thus by the expansion
(3.12) of ϕ, we have d(x) = 〈x , Ax〉 + O(|x|3) for some d × d-matrix A and x → 0 and thus
∂νd(x) = O(|x|) and ∂ν∂µd(x) = O(1). Thus that there exists a constant M > 0 such that∑

ν,µ

∣∣∣∣ (∂νd)(x)(∂µd)(x)d(x)

∣∣∣∣+ |(∂ν∂µd)(x)| < M for δ small enough.

Since in addition the for d(x) > Bε
2 (on the support of g), the term Bε

2d is bounded by 1, the
summand is bounded by a constant independent of ε.
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Case 2: d(x) ≥ δ:
In this region, we use that the derivatives of d are bounded on Σ and that d−1(x) ≤ δ−1.

Thus we have shown, that there exists a constant C > 0 such that for all ε ∈ (0, ε0]

|∂ν∂µΦ(x)| ≤ C .

Therefore by (5.32) there exists a constant C3 > 0 independent of the choice of B such that for all
ε ∈ (0, ε0]

1
ε
|(Φ(x)− Φ(x+ γ)) + γ∇Φ(x)| ≤ C3

ε
|γ|2 . (5.34)

By Hypothesis 4.20, the coefficients aγ decay exponentially fast in γ, i.e. e
|γ|A
ε aγ(x) ∈ `2

(
(εZ)dγ

)
for any A <∞ with respect to summation over γ. We therefore can conclude by (5.29),(5.31) and
(5.34) ∣∣V Φ(x)− t(x,−i∇Φ)

∣∣ ≤ ∑
γ∈Σ′ε(x)

e−
A
ε |γ|e

D
ε |γ|

C3

ε
|γ|2 .

Thus for A big enough A−D = D′ > 0 and we get with y = γ
ε ∈ Zd the estimate∣∣V Φ(x)− t(x,−i∇Φ(x))

∣∣ ≤ ∑
γ∈Σ′ε(x)

e−
D′
ε |γ|

C3

ε
|γ|2 ≤ ε

∑
y∈Zd

e−|y|D
′
C3|y|2 ≤ εC4 . (5.35)

By (5.27) and (5.35) we get for all x ∈ Σ

V̂ε(x)− V0(x) + V Φ(x)− t(x, i∇Φ(x)) ≥ −C1ε− C4ε = −C5ε (5.36)

with C5 independent of B.
Inserting (5.36) in (5.26), we get by (5.17) and (5.25)

V̂ε(x) + V Φ(x) ≥ −C5 ε for d(x) < Bε (5.37)

and by (5.20)

V̂ε(x) + V Φ(x) ≥
(
B

C0
− C5

)
ε for d(x) ≥ Bε . (5.38)

Step 3:
Now we are in the position to use Lemma 5.3 to get the stated estimates.

We require (
B

C0
− C5

)
ε− E ≥ ε , E ∈ [0, εR0] , (5.39)

thus we set B such that it fulfills the condition B ≥ C0(1+R0 +C5), i.e. B depends on the choice
of the upper bound for E (in particular B increases with increasing R0).

Let
Ø− := {x ∈ Σ | V̂ε(x) + V Φ(x)− E < 0} and Ø+ := Σ \Ø− , (5.40)

then from (5.39) it follows that Ø− ⊂ {d(x) < εB} and by (5.37) together with the definition of
Ø−

|V̂ε(x) + V Φ(x)| ≤ ε max{C5, R0} for all x ∈ Ø− . (5.41)
We define the functions F± : Σ → [0,∞) by

F+(x) :=
√
ε1{d(x)<Bε}(x) + (V̂ε(x) + V Φ(x)− E)1Ø+(x) (5.42)

and
F−(x) :=

√
ε1{d(x)<Bε}(x) + (E − V̂ε(x)− V Φ(x))1Ø−(x) . (5.43)

Then F± are well defined and furthermore there exists a constant C > 0 such that

F := F+ + F− ≥ C
√
ε > 0 , F− = O(

√
ε) and F 2

+ − F 2
− = V̂ε + V Φ − E . (5.44)

With the choice v = e
Φ
ε u, Lemma 5.3 thus yields the estimate∥∥∥FeΦ

ε u
∥∥∥2

`2
≤ 4

∥∥∥ 1
F e

Φ
ε

(
HΣ
ε − E

)
u
∥∥∥2

`2
+ 8

∥∥∥F−eΦ
ε u
∥∥∥2

`2
. (5.45)

The weight function e
Φ
ε is by definition given by

e
Φ(x)
ε = e

d(x)
ε

(
B

2

)−B
2
(

2d(x)
Bε

)−B
2 g(x)

. (5.46)
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By the construction of the cut-off function g there are constants C, C̃, C̃ ′, C ′ > 0, such that

C

(
1 +

d(x)
ε

)−B
2

≤


(
B
2

)−B
2 , d(x) < Bε(

d(x)
ε

)−B
2
, d(x) ≥ Bε

 ≤ C̃

(
B

2

)−B
2
(

2d(x)
Bε

)−B
2 g(x)

and

C̃ ′
(
B

2

)−B
2
(

2d(x)
Bε

)−B
2 g(x)

≤


(
B
2

)−B
2 , d(x) ≤ Bε

2(
d(x)
ε

)−B
2
, d(x) > Bε

2

 ≤ C ′
(

1 +
d(x)
ε

)−B
2

.

Thus by (5.46) we have the estimate

e
d(x)
ε C

(
1 +

d(x)
ε

)−B
2

≤ e
Φ(x)
ε ≤ e

d(x)
ε C ′

(
1 +

d(x)
ε

)−B
2

. (5.47)

By (5.47) and (5.44) the left hand side of (5.45) is bounded from below by∥∥∥FeΦ
ε u
∥∥∥2

`2
≥ Cε

∥∥∥(1 + d
ε

)−B
2 e

d
ε u
∥∥∥2

`2
(5.48)

and the first summand on the right hand side of (5.45) is bounded from above by∥∥∥ 1
F e

Φ
ε

(
HΣ
ε − E

)
u
∥∥∥2

`2
≤ Cε−1

∥∥∥(1 + d
ε

)−B
2 e

d
ε

(
HΣ
ε − E

)
u
∥∥∥2

`2
. (5.49)

Since Ø− ⊂ {d(x) < Bε} it follows from the definition of F− that d(x)
ε ≤ C on its support.

Therefore by (5.47) and (5.44) there exists a constant C > 0 such that the second summand on
the right hand side of (5.45) is bounded from above by∥∥∥F−eΦ

ε u
∥∥∥2

`2
≤ Cε ‖u‖2`2 . (5.50)

Inserting (5.48), (5.49) and (5.50) in equation (5.45), yields with B̃ := B
2

C̃ε

∥∥∥∥(1 + d
ε

)−B̃
e
d
ε u

∥∥∥∥2

`2
≤ ε−1

∥∥∥∥(1 + d
ε

)−B̃
e
d
ε

(
HΣ
ε − E

)
u

∥∥∥∥2

`2
+ ε ‖u‖2`2 .

This proves the theorem. 2

A direct consequence of Theorem 5.4 is the following result about the decay of the eigenfunc-
tions of HΣ

ε .

Theorem 5.6. Let u ∈ `2Σε be a normalized eigenfunction of the Dirichlet operator HΣ
ε defined

in (5.1) with respect to the eigenvalue E ∈ [0, εR0]. Then there exist constants B,C > 0, such that
for all ε ∈ (0, ε0] ∥∥∥∥∥

(
1 +

d0

ε

)−B
e
d0
ε u

∥∥∥∥∥
`2

≤ C .

Proof:

Using the normalization of u for the second term on the right hand side of (5.11) and the fact
that for the eigenfunction with eigenvalue E, the first term on the right hand side vanishes, the
stated result follows at once from Theorem 5.4. 2

It follows immediately that there exists a constant M0 ∈ N which can be chosen depending
only on the upper bound R0 for the eigenvalue E (see (5.39)), such that∥∥∥e d0ε u∥∥∥

`2
= O

(
ε−M0

)
. (5.51)

This estimate will be used in Chapter 6 to compare the WKB-expansions computed in Chapter 3
with the exact eigenfunctions in the case of several wells.



CHAPTER 6

Interaction between multiple wells

In the situation described in Chapter 2, where the potential energy is allowed to have a finite
number of wells, we are now going to analyze the interaction between different wells and the
tunnelling effect.

For a fixed spectral interval we will show that the difference between the exact spectrum and
the spectra of Dirichlet realizations of the Hamilton operator at the different wells is exponentially
small and determined by the Finsler distance between the two nearest neighboring wells.

6.1. Setting

In order to use the results given in the previous chapters, we have to combine the setting of
Chapter 2, where the potential energy may have not only one but a finite number of wells, with
some of the additional assumptions, which we made in Chapter 3 and 4.

For the WKB-expansion of the eigenfunctions and the weighted norm-estimates for the Dirich-
let eigenfunctions, it was essential, that there was only one singular point of the potential V0. Thus
it will furthermore be necessary to define regions around the wells, which exclude all other wells.
Then the associated Dirichlet operator fulfills the assumptions in the preceding chapters.

Hypothesis 6.1. Let Hε = Tε + Vε be a self adjoint operator on `2
(
(εZ)d

)
with associated

phase space symbol hε(x, ξ; ε) := t(x, ξ) + V̂ε with the following properties:
(a) t ∈ S0

0(1)
(
Rd × Td

)
is a periodic kinetic energy function in the sense of Definition 2.4.

Regarding t as a function on Rd × Rd, which is periodic with respect to ξ, we assume
furthermore that the function Rd 3 ξ 7→ t(x, ξ) is even and has an analytic continuation
to Cd. In addition we assume that for all x ∈ Rd the Fourier coefficients aγ(x) defined in
(2.20) satisfy the condition

aγ(x)
{
≤ 0 for γ 6= 0
≥ 0 for γ = 0 and span{γ ∈ (εZ)d | aγ(x) < 0} = Rd . (6.1)

(b) The potential energy Vε is the lattice restriction of a function V̂ε ∈ C∞(Rd), which has
an expansion

V̂ε(x) =
N∑
l=0

εlVl(x) +RN+1(x; ε) ,

where V` ∈ C∞(Rd). Furthermore RN+1 ∈ C∞(Rd × (0, ε0]) and for any compact set
K ⊂ Rd there exists a constant CK such that supx∈K |RN+1(x; ε)| ≤ CKε

N+1.
(c) We assume that there exist constants R,C > 0 such that Vε(x) > C for all |x| ≥ R and

ε ∈ (0, ε0]. In addition V0 ≥ 0 and it takes the value V0(x) = 0 only at a finite number of
strictly non-degenerate minima {xk}mk=1.

(d) Let d` denote the Finsler distance associated to h̃0 introduced in Chapter 4, Definition
4.23. Then we assume that there exists an η > 0 and a constant C > 0 such that for all
x ∈ (εZ)d we have ‖a.(x)e

d`(x,x+ . )
ε | . |(d+η)/2‖`2((εZ)dγ) ≤ C.

Remark 6.2. (a) As already discussed in the previous chapters, the analyticity of t with
respect to ξ implies for its Fourier coefficients aγ , that for all B > 0 there exists a constant
C such that for all x ∈ Rd

‖ e−
B|.|
ε a.(x)‖`2((εZ)d) ≤ C . (6.2)

89
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This leads to an estimate of the sup-norm of aγ , since we get that for all B > 0 there
exists a constant C > 0 such that for all x ∈ Rd∑

γ

|aγ(x)| e
B|γ|
ε ≤ C .

This yields in particular

sup
x∈Rd

|aγ(x)| ≤ Ce−
B|γ|
ε (6.3)

and by use of (4.69) it follows that for any B > 0 and any bounded region Σ ⊂ Rd there
exists a constant C > 0 such that∑

|γ|<B

‖aγ(.)e
d(.,.+γ)

ε ‖l∞(Σ) ≤ C . (6.4)

6.1.1. Definitions and Notations. In order to analyze the problem of multiple wells and
tunneling, we have to introduce several notations and some further hypotheses.

We denote by

h̃0(x, ξ) := t̃(x, ξ)− V0(x) : R2d → R (6.5)

the phase function of order zero in ε, corresponding to the kinetic energy

t̃(x, ξ) := −t(x, iξ) = −
∑
γ

aγ(x) cosh
(

1
ε
γ · ξ

)
(6.6)

occurring in the eikonal equation (3.10).

Let C := {1, 2, . . .m} denote the set of numbers of the wells of V0. For each critical point
xj , j ∈ C, we denote by pj(ε) a lattice point such that V0(pj) ≤ V0(p) for all lattice points p in a
small neighborhood of xj . Then |xj − pj(ε)| ≤

√
d

2 ε.
We suppose ε0 to be small enough to ensure, that pj(ε) 6= pk(ε) for k, j ∈ C, k 6= j and for all

ε ∈ (0, ε0]. By Hypothesis 6.1 it is clear that V0(pj) ≥ 0 and since the minima were assumed to be
non-degenerate, it follows that |V0(pj)| = O(ε2).

We write d` =: d, where d` is the Finsler distance defined in Chapter 4, Definition 4.23 and
for each well xj ∈ Rd, j ∈ C, we define dj(x) := d(x, xj).

Let S0 := minj 6=k d`(xj , xk) denote the minimum over all Finsler distances between two differ-
ent wells and let η > 0 be small. Then for a fixed S ∈]0, S0 − η[, for each j ∈ C the S-spheres at
xj

B(xj , S) := {x ∈ Rd | d`(x, xj) < S} (6.7)

satisfy xk 6= B(xj , S) for k 6= j.
In the following we give additional assumptions on the choice of Mj and Iε.

Hypothesis 6.3. (a) For B(xj , S) defined in (6.7), we choose a compact manifold Mj ⊂
Rd with C 2-boundary such that B(xj , S) ⊂

◦
Mj and xk /∈ Mj for k 6= j. Furthermore we

assume S to be chosen such that dj ∈ C 2(Mj).
We denote by HMj

ε the Dirichlet realization of Hε on Mj,ε as defined in Chapter 5,
(5.1).

(b) Let Iε = [α(ε), β(ε)] be an interval, such that α(ε), β(ε) → 0 for ε→ 0. Furthermore there
exists a function a(ε) > 0 with the property | log a(ε)| = o

(
1
ε

)
, ε → 0, such that none of

the operators Hε,H
M1
ε , . . . HMm

ε has spectrum in [α(ε)−2a(ε), α(ε)[ or ]β(ε), β(ε)+2a(ε)].

Thus there should be no spectrum exponentially close to the spectral interval Iε. It will be
seen later, that this assumption on the spectral interval can always be fulfilled by a small shift of
the ends of Iε.

The lattice subset associated to Mj is denoted by Mj,ε := Mj ∩ (εZ)d. For ε sufficiently small
we can assume that pk(ε) /∈Mj,ε for k 6= j.
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Let

spec(Hε) ∩ Iε = {λ1, . . . , λN} , u1, . . . , uN ∈ `2
(
(εZ)d

)
(6.8)

F := span{u1, . . . uN}
spec

(
HMj
ε

)
∩ Iε = {µj,1, . . . , µj,nj} , vj,1, . . . , vj,nj ∈ `2 (Mj,ε) , j ∈ C

Ej := span{vj,1, . . . , vj,nj} , E :=
⊕

Ej

denote the eigenvalues of Hε and of the Dirichlet operators HMj
ε in Iε and the corresponding

orthonormal systems of eigenfunctions. F denotes the eigenspace spanned by the uk and Ej the
eigenspaces spanned by vj,k.

We denote by V :=
(
〈vi,k , vj,l〉`2

)
the matrix given by the scalar products of the Dirichlet-

eigenfunctions.

6.1.2. Decay estimates for the Dirichlet eigenfunctions. Theorem 5.6 yields for Σ = Mj

and dj instead of d0

Corollary 6.4. Under the assumptions of Hypothesis 6.1 and 6.3 there exists a number
N0 ∈ N, such that for all j ∈ C and 1 ≤ k ≤ nj and for all ε ∈ (0, ε0]

‖e d
j

ε vj,k‖`2 = O
(
ε−N0

)
.

In the following we will in addition need an estimate for the `2-norm of weighted eigenfunctions
uk of Hε on the whole lattice (εZ)d instead estimates only for the Dirichlet eigenfunctions as in
Theorem 5.6. Therefore we introduce a new distance function d̃ by replacing the Finsler distance
d in a C 1 way by a constant outside of some balls around the several wells.

Define for j ∈ C and C0 > 0

Bj :=
{
x ∈ Rd | dj(x) ≤ π

4C0

}
(6.9)

Rj :=
{
x ∈ Rd | π4C0 < dj(x) ≤ π

2C0

}
B0 := Rd \

⋃
j∈C

(Bj ∪Rj) . (6.10)

where C0 is chosen such that dj ∈ C 2(Bj ∪Rj) and dj(x) = mink∈C dk(x) for x ∈ Bj ∪Rj .
We define

d̃(x) :=


dj(x) , x ∈ Bj , j ∈ C

C0

[
π
4 −

1
2 cos

(
2dj(x)
C0

)]
, x ∈ Rj , j ∈ C

C0

(
π
4 + 1

2

)
, x ∈ B0

. (6.11)

Then d̃ ∈ C 1(Rd),
d̃(x) ≤ dj(x) for all x ∈ Rd, j ∈ C (6.12)

and

∇d̃(x) =


∇dj(x) , x ∈ Bj , j ∈ C

∇dj(x) sin
(

2dj

C0

)
, x ∈ Rj , j ∈ C

0 , x ∈ B0

.

Thus ∇d̃ is Lipschitz continuous and for all x ∈ Rd and j ∈ C, there is a λx ∈ [0, 1] such that

∇d̃(x) = λx∇dj(x) . (6.13)

Furthermore we can define the second derivative of d̃ almost everywhere by use of the Rademacher
Theorem (see Evans-Gariepy [20]) and it is bounded. Thus we can show the following result about
the decay of the eigenfunctions of Hε.

Proposition 6.5. Let u ∈ `2
(
(εZ)d

)
be a normalized eigenfunction of an operator Hε satis-

fying Hypothesis 6.1 with corresponding eigenvalue E ∈ [0, εR0] and let d̃ be defined by (6.11).
Then for any 0 < δ ≤ 1 there exists an ε0 > 0 such that for all ε ∈ (0, ε0]

‖e d̃ε u‖`2 = O
(
e
δ
ε

)
. (6.14)
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Proof:

Since Lemma 5.3 is also valid in the case Σ = Rd, we may follow the proof of Theorem 5.4.
Fix δ > 0 and let Φ := (1− δ)d̃, then by (6.13)

|∇xΦ(x)| ≤ (1− δ)
∣∣∣∣∇(min

k∈C
dk
)

(x)
∣∣∣∣ , a.e. , (6.15)

where the gradient of mink∈C dk(x) is understood in the sense of the Rademacher Theorem for
Lipschitz-continuous functions.

Since t(x, iξ) is concave and even with respect to ξ with absolute maximum zero at ξ = 0 and
0 ≤ (1− δ) ≤ 1, it follows from (6.15) that

t(x, i∇Φ(x)) ≥ (1− δ)t(x, i∇min
k∈C

dk(x)) .

Since the eikonal inequality (Lemma 4.24) is valid for each dj , j ∈ C, we therefore get

V0(x) + t(x, i∇Φ(x)) ≥ V0(x) + (1− δ)t
(
x, i∇

(
min
k∈C

dk
)

(x)
)

≥ V0(x)− (1− δ)V0(x) = δV0(x) . (6.16)

Thus with
Bδ := {x ∈ Rd | d̃(x) ≤ δ} . (6.17)

it follows from (6.16) and Hypothesis 6.1, that there exists a constant C > 0 such that

V0(x) + t(x, i∇Φ(x)) ≥ δC , x /∈ Bδ . (6.18)

To use Lemma 5.3, we have to analyze the term V̂ε + V Φ − E.

We analyze separately the regions |x| < R and |x| ≥ R, where R is chosen such that V̂ε(x) > C
for some C > 0 and |x| ≥ R. Furthermore we assume that {x ∈ Rd | |x| ≥ R} ⊂ B0.

Case 1: |x| < R:
We write

V̂ε(x) + V Φ(x) =
(
V̂ε(x)− V0(x)

)
+
(
V Φ(x)− t(x, i∇Φ(x))

)
+ (V0(x) + t(x, i∇Φ(x))) (6.19)

and give estimates for the differences in the first two brackets on the right hand side of (6.19). To
show positivity of V̂ε +V Φ outside of Bδ, it is by (6.18) sufficient to show, that their negative part
is at least of order ε.

This is obvious for the potential term (the first brackets), since by Hypothesis 6.1,(a4) there
exists a constant C1 such that

V̂ε(x)− V0(x) ≥ −C1ε , x ∈ Rd, |x| < R . (6.20)

The modulus of the difference inside the second brackets on the right hand side of (6.19) (the term
generated by the translation operator) is given by

∣∣V Φ(x)− t(x,−i∇Φ)
∣∣ =

∣∣∣∣∣∣
∑

γ∈(εZ)d

aγ(x)
{

cosh
(

1
ε
(Φ(x)− Φ(x+ γ))

)
− cosh

(
1
ε
γ∇Φ(x)

)}∣∣∣∣∣∣
≤

∑
γ∈(εZ)d

|aγ(x)|
∣∣∣∣cosh

(
1
ε
(Φ(x)− Φ(x+ γ))

)
− cosh

(
1
ε
γ∇Φ(x)

)∣∣∣∣ , (6.21)

As in the proof of Theorem 5.4, we use the Mean Value Theorem to get that for all x and γ∣∣∣∣cosh
(

1
ε
(Φ(x)− Φ(x+ γ))

)
− cosh

(
−1
ε
γ∇Φ(x)

)∣∣∣∣
≤ sup
t∈[0,1]

e|
1
ε{(Φ(x)−Φ(x+γ))t−γ∇Φ(x)(1−t)}|

∣∣∣∣1ε{(Φ(x)− Φ(x+ γ)) + γ∇Φ(x)}
∣∣∣∣ . (6.22)

By the definition of d̃ it is clear that there exist C1, C2 > 0, such that

|d̃(x)− d̃(x+ γ)| ≤ |γ|C1 and |γ∇d̃(x)| ≤ |γ|C2 x ∈ Rd, γ ∈ (εZ)d . (6.23)
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Since on the other hand by (6.2) we can deduce that for all x ∈ Rd and for any B > 0

|aγ(x)| e
1
ε{(Φ(x)−Φ(x+γ))t+γ∇Φ(x)(1−t)} ≤ e−

B
ε |γ| . (6.24)

Second order Taylor-expansion yields for some s1 ∈ [0, 1]

1
ε
{(Φ(x)− Φ(x+ γ)) + γ∇Φ(x)} =

1− δ

ε

d∑
ν,µ=1

γνγµ∂ν∂µd̃(x+ s1γ) , (6.25)

where ∂µ∂ν d̃ is understood in the sense of Rademacher.
The second derivative of d̃ is bounded on Bj ∪ Rj for all j ∈ C and is zero for x ∈ B0. By

rescaling with y = γ
ε , we therefore can conclude by inserting (6.24) and (6.25) into (6.21) that for

all ε ∈ (0, ε0]∣∣V Φ(x)− t(x,−i∇Φ)
∣∣ ≤ ∑

γ∈(εZ)d

e−
B
ε |γ|

C3

ε
|γ|2 ≤ ε

∑
y∈Zd

e−|y|BC3|y|2 ≤ εC4 x ∈ Rd, |x| < R .

(6.26)
Case 2: |x| ≥ R:

In this region we have ∇Φ(x) = 0 and V̂ε(x) ≥ C. Thus to show that V̂ε + V Φ is positive, it is
enough to show that |V Φ(x)| = O(ε). Since Φ is constant in B0, the difference Φ(x) − Φ(x + γ)
vanishes if |γ| ≤ r for some r > 0, thus we have

|V Φ(x)| =

∣∣∣∣∣∣
∑

γ∈(εZ)d

aγ(x) cosh
(

1
ε
(Φ(x)− Φ(x+ γ))

)∣∣∣∣∣∣ ≤
∑

γ∈(εZ)d
|γ|>r

|aγ(x)|e
1
ε |Φ(x)−Φ(x+γ)| .

Since Φ is bounded and |γ| > r implies |aγ(x)| ≤ e−
B
ε for any B > 0 and for all x ∈ Rd (see (6.3)),

we have for some C > 0

|V Φ(x)| = O
(
e−

C
ε

)
, x ∈ Rd, |x| ≥ R .

Thus by the positivity of Vε, this yields

V̂ε(x) + VΦ(x) > C , x ∈ Rd, |x| ≥ R . (6.27)

Thus by (6.16), (6.20), (6.26) and (6.27), there exist constants C1, C2 > 0 such that

V̂ε + V Φ − E ≥ δV0 − C1ε− E . (6.28)

and thus for ε small enough it follows from (6.18) that

V̂ε + V Φ − E ≥ C2δ , x /∈ Bδ . (6.29)

We define functions F± : Rd → R by

F+(x) :=
√

1Bδ(x) + 1{bVε+V Φ−E≥0}(x)(V̂ε(x) + V Φ(x)− E)

and
F−(x) :=

√
1Bδ(x) + 1{bVε+V Φ−E<0}(x)(−V̂ε − V Φ + E) .

Then F+ is strictly positive for ε small enough, F := F+ + F− > 0 and F 2
+ − F 2

− = V̂ε + V Φ − E.
Thus it follows from (6.29) that there exist constants C, C̃ > 0 such that for Bδ,ε := Bδ ∩ (εZ)d

‖FeΦ
ε u‖2`2 ≥ ‖F+e

Φ
ε u‖2`2 ≥

∑
x∈Bδ,ε

e
2Φ(x)
ε |u(x)|2 +

∑
x/∈Bδ,ε

[Vε(x) + V Φ(x)− E]e
2Φ(x)
ε |u(x)|2 ≥

≥ ‖eΦ
ε u‖2`2(Bδ,ε) + δC‖eΦ

ε u‖2`2(Σ\Bδ,ε) ≥ C̃‖eΦ
ε u‖2 . (6.30)

Since F− is by (6.29) supported in Bδ

‖F−e
Φ
ε u‖2`2 = ‖F−e

(1−δ)d̃
ε u‖2`2(Bδ,ε) ≤ (6.31)

≤ e
2(δ−δ2)

ε ‖F−u‖2`2(Bδ,ε) ≤ Ce
2δ
ε .

By Lemma 5.3, we get by (6.30) and (6.31) with v = e
Φ
ε u, that, for any δ ∈ (0, 1]

‖e
(1−δ)d̃
ε u‖`2 = O

(
e
δ
ε

)
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for eigenfunctions u of Hε.
Since d̃(x) ≤ C0

π+2
4 := C̃, we get for some C > 0

Ce
δ
ε ≥ ‖e

(1−δ)d̃
ε u‖`2 ≥ e−

C̃δ
ε ‖e d̃ε u‖`2 ,

proving (6.14) for δ̃ := δ(1 + C̃).
2

6.2. Distance of the Eigenspaces

To analyze the difference between the eigenfunctions of the operator Hε acting on the whole
lattice and those of the several Dirichlet operators (with respect to a given spectral interval Iε), we
have to compare F and E introduced in equation (6.8). For this reason, we introduce a distance
function ~dist between closed subspaces of a Hilbert space H .

Definition 6.6. Let H be a Hilbert space with closed subspaces E and F and denote by ΠE
and ΠF the orthogonal projections on E and F respectively. Then we define the nonsymmetric
distance ~dist(E ,F) between E and F by

~dist(E ,F) := ‖ΠE −ΠFΠE‖ .

Then ~dist(E ,F) = 0 if and only if E ⊆ F . In order to get estimates on the distance of the
eigenspace of Hε and the direct sum of the eigenspaces of HMj

ε , j ∈ C, we use the following two
propositions, which are proven in Helffer-Sjöstrand [33] (Prop. 1.4. and Thm 2.4).

Proposition 6.7. Let ~dist(E ,F) be the distance between closed subspaces E and F of a Hilbert
space H as introduced in Definition 6.6. If ~dist(E ,F) < 1 and ~dist(F , E) < 1, then the projections
ΠE |F : F → E and ΠF |E : E → F are bijective with bounded inverse and ~dist(E ,F) = ~dist(F , E).

Proposition 6.8. Let A be a self adjoint operator in a Hilbert space H and I ⊆ R denote a
compact interval. Let µ1, . . . , µN ∈ I and ψ1, . . . ψN ∈ H be linearly independent satisfying

Aψj = µjψj + rj

where ‖rj‖ ≤ δ.
Let a > 0 and assume that spec(A)∩((I +B(0, 2a)) \ I) = ∅. Denoting by E the space spanned

by ψ1, . . . ψN and by F the eigenspace of A associated to spec(A) ∩ I, then we have

~dist(E ,F) ≤
√
Nδ

a
√
λmin

Ψ

, (6.32)

where λmin
Ψ denotes the minimal eigenvalue of the Gram-matrix Ψ = (〈ψj , ψk〉H ).

Thus if the spectrum of A in I is discrete of finite multiplicity and the right hand side of (6.32)
is strictly smaller than 1, the operator A has at least N eigenvalues in I.

Based on these rather general facts, we now return to the special case of E and F given in (6.8).

Theorem 6.9. Let Hε, H
Mj
ε , F , E and S be as described in Hypotheses 6.1 and 6.3 and

in equation (6.8). Let ~dist denote the distance between two subspaces of `2
(
(εZ)d

)
introduced in

Definition 6.6. Then for every σ < S and for all ε ∈ (0, ε0]

~dist(F , E) = ~dist(E ,F) = O
(
e−

σ
ε

)
.

Moreover there is a bijection

b : spec(Hε) ∩ Iε →
m⋃
j=1

(
spec(HMj

ε ) ∩ Iε
)
,

such that
b(λ)− λ = O

(
e−

σ
ε

)
.



6.2. DISTANCE OF THE EIGENSPACES 95

Proof:

Step 1:
We start proving the estimate

~dist(E ,F) = O
(
e−

σ
ε

)
. (6.33)

In order to use Proposition 6.8, we have to estimate the remainder rj,k for the approximate spectral
problem

Hεvj,k = µj,kvj,k + rj,k ,

where vj,k are the eigenfunctions of the Dirichlet operator HMj
ε as defined (6.8). Therefore, we

decompose the Hamilton operator Hε into its Dirichlet realization H
Mj
ε = 1Mj,ε Hε 1Mj,ε and a

remaining part. Since vj,k is supported in Mj,ε

Hεvj,k(x) =
∑

γ∈(εZ)d

aγ(x)vj,k(x+ γ) + Vε(x)vj,k(x)

=
∑

γ∈(εZ)d
x+γ∈Mj,ε, x∈Mj,ε

aγ(x)vj,k(x+ γ) +
∑

γ∈(εZ)d
x+γ∈Mj,ε, x/∈Mj,ε

aγ(x)vj,k(x+ γ) + Vε(x)vj,k(x)

= HMj
ε vj,k(x) +

∑
γ∈(εZ)d

x+γ∈Mj,ε, x/∈Mj,ε

aγ(x)vj,k(x+ γ)

=: µj,kvj,k(x) + rj,k(x) . (6.34)

More general we can write

Hε|E = Hε 1Mj,ε
|E = 1Mj,ε

Hε|E + [Hε,1Mj,ε
]|E . (6.35)

Thus the remainder is given by

rj,k(x) = [Hε,1Mj,ε
]vj,k(x) =

∑
γ∈(εZ)d

x+γ∈Mj,ε, x/∈Mj,ε

aγ(x) vj,k(x+ γ) , (6.36)

with the `2-norm

‖rj,k‖2`2((εZ)d) =
∑

x/∈Mj,ε

∣∣∣∣∣∣∣∣
∑

γ∈(εZ)d
x+γ∈Mj,ε

aγ(x)vj,k(x+ γ)

∣∣∣∣∣∣∣∣
2

≤
∑

x/∈Mj,ε

 ∑
γ∈(εZ)d
x+γ∈Mj,ε

|aγ(x)vj,k(x+ γ)|


2

.

To estimate this term, we use the fact, that by the definition of Mj,ε there exists a constant
S1 ∈ (S, S0) such that for all x /∈Mj,ε we have dj(x) ≥ S1. Therefore for x /∈Mj,ε∑

γ∈(εZ)d
x+γ∈Mj,ε

|aγ(x)vj,k(x+ γ)| =
∑

γ∈(εZ)d
x+γ∈Mj,ε

∣∣∣∣aγ(x)e− dj(x)
ε e

dj(x)
ε vj,k(x+ γ)

∣∣∣∣ ≤ e−
S1
ε A(x) , (6.37)

where

A(x) :=
∑

γ∈(εZ)d
x+γ∈Mj,ε

∣∣∣∣aγ(x)e dj(x)ε vj,k(x+ γ)
∣∣∣∣ , x /∈Mj,ε .

By the triangle inequality dj(x) ≤ dj(x+ γ) + d(x, x+ γ), thus using the notation

〈γ〉ε :=
√
ε2 + |γ|2 (6.38)

we get for all x /∈Mj,ε

A(x) ≤
∑

γ∈(εZ)d
x+γ∈Mj,ε

∣∣∣∣aγ(x)e d(x,x+γ)ε 〈γ〉
d+η
2 〈γ〉−

d+η
2 e

dj(x+γ)
ε vj,k(x+ γ)

∣∣∣∣
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for any η > 0. The last sum can be understood as `1-norm with respect to γ, thus by the Cauchy-
Schwarz inequality

A(x) ≤

 ∑
γ∈(εZ)d
x+γ∈Mj,ε

∣∣∣aγ(x)e d(x,x+γ)ε 〈γ〉
d+η
2

∣∣∣2


1
2
 ∑

γ∈(εZ)d
x+γ∈Mj,ε

∣∣∣∣〈γ〉− d+η
2 e

dj(x+γ)
ε vj,k(x+ γ)

∣∣∣∣2


1
2

≤ C

 ∑
γ∈(εZ)d
x+γ∈Mj,ε

∣∣∣∣〈γ〉− d+η
2 e

dj(x+γ)
ε vj,k(x+ γ)

∣∣∣∣2


1
2

, x /∈Mj,ε (6.39)

where in the second step we choose η according to Hypothesis 6.1,(d), such that the `2-norm of
aγ(x)e

d(x,x+γ)
ε 〈γ〉(d+η)/2 with respect to γ is bounded by a constant C uniformly with respect to x.

Combining (6.37) and (6.39) and changing the order of summation yields for the `2-norm of rj,k

‖rj,k‖2`2((εZ)d) ≤ e−
2S1
ε C̃

∑
x/∈Mj,ε

∑
γ∈(εZ)d
x+γ∈Mj,ε

〈γ〉−(d+η)

∣∣∣∣e dj(x+γ)ε vj,k(x+ γ)
∣∣∣∣2

≤ e−
2S1
ε C̃

∑
γ∈(εZ)d

〈γ〉−(d+η)
∑

x+γ∈Mj,ε

∣∣∣∣e dj(x+γ)ε vj,k(x+ γ)
∣∣∣∣2

≤ e−
2S1
ε C̃‖e d

j

ε vj,k‖`2
M
j
ε

∑
γ∈(εZ)d

〈γ〉−(d+η) .

Calculating the last sum explicitly, we get by Corollary 6.4 for some Ñ ∈ N and all σ ≤ S < S1

‖rj,k‖`2((εZ)d) = ‖[Hε,1Mj,ε ]vj,k‖`2((εZ)d) ≤ e−
S1
ε Cε−(Ñ+d) = O

(
e−

σ
ε

)
. (6.40)

Proposition 6.8 therefore yields

~dist(E ,F) ≤
√
N

a(ε)
√
λmin
V

Ce−
σ
ε , (6.41)

where a(ε) has the properties described in Hypothesis 6.3. Furthermore λmin
V denotes the smallest

eigenvalue of the matrix V =
(
〈vα , vβ〉`2

)
with α, β ∈ J := {(j, k) | j ∈ C, 1 ≤ k ≤ nj} and

N :=
m∑
j=1

nj with nj := #{µj1, . . . , µjnj} . (6.42)

Using the notation j(α) = j for α = (j, k), we get 〈vα , vβ〉`2 = δα,β if j(α) = j(β), because the
systems of Dirichlet eigenfunctions associated to a single well were supposed to be orthonormal.

If the eigenfunctions vα and vβ belong to different wells, i.e. if j(α) 6= j(β), then at each
point x ∈ (εZ)d at least one of the functions vα, vβ is exponential small, because they decrease
exponentially (Corollary 6.4).

In fact we use the triangle inequality for the Finsler distance (Lemma 4.8) to get

dj(α)(x) + dj(β)(x) = d(xj(α), x) + d(x, xj(β)) ≥ d(xj(α), xj(β)) ≥ S0

and therefore

∣∣〈vα , vβ〉`2∣∣ =

∣∣∣∣∣∣
∑

x∈(εZ)d

vα(x)vβ(x)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

x∈(εZ)d

e−
dj(α)(x)

ε e
dj(α)(x)

ε vα(x)e−
dj(β)(x)

ε e
dj(β)(x)

ε vβ(x)

∣∣∣∣∣∣
≤ e−

S0
ε

∑
x∈(εZ)d

∣∣∣∣e dj(α)(x)
ε vα(x)e

dj(β)(x)
ε vβ(x)

∣∣∣∣ .
By the Schwarz inequality and Corollary 6.4 this yields for general α, β ∈ J and any S1 < S0

〈vα , vβ〉`2 = δα,β +O
(
e−

S1
ε

)
. (6.43)
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We now claim that there exists a N0 ∈ N such that for all j ∈ C

nj := #{µj1, . . . , µjnj} = O
(
ε−N0

)
. (6.44)

Then (6.43) implies that for each σ < S

‖V − 1 ‖ = O
(
nje

−S1
ε

)
= O

(
e−

σ
ε

)
and in particular

λmin
V = 1 +O

(
e−

σ
ε

)
. (6.45)

We prove (6.44) by a comparison argument as described in Reed-Simon [49], vol.4 and Helffer
[29]. We compare HMj

ε for j ∈ C with the associated cut translation operator TKε on a cube
Kε = [−N,N ]d ∩ (εZ)d, which is chosen such that Mj,ε ⊂ Kε. Then K includes

(
N
ε

)d
lattice

points and any translation operator on Kε can be written as a
(
N
ε

)d × (Nε )d-matrix. Thus TKε
can have at most

(
N
ε

)d
eigenvalues. Since TKε ≤ H

Mj
ε , the number of eigenvalues of HMj

ε must be
smaller or equal to that of TKε . Thus for a suitable number N0 ∈ N, the number of eigenvalues µj
is of order ε−N0 .

Inserting (6.45) and (6.44) in (6.41) and taking into account the assumption on a(ε) given in
Hypothesis 6.3 yields (6.33) for each σ ≤ S.

It follows from this estimate, that Hε has at least as many eigenvalues in Iε as the Dirichlet
operators HMj

ε for j ∈ C, i.e.

#{λ1, . . . , λn} := n ≥
∑
j∈C

nj . (6.46)

Step 2:
In the second step we prove the estimate

~dist(F , E) = O
(
e−

σ
ε

)
. (6.47)

By Proposition 6.7 and (6.33) shown in step 1 it suffices to show ~dist(F , E) < 1.
Let B+

0 := B0 ∪
⋃
j∈C Rj with Bj , Rj and B0 defined in (6.9) and (6.10) and u ∈ F with

‖u‖ ≤ 1. Then there exists a constant C > 0, such that

1B+
0
u = O

(
e−

C
ε

)
in `2

(
(εZ)d

)
(6.48)

and for all j ∈ C
Hε 1Bj u = λ1Bj u+O

(
e−

C
ε

)
in `2

(
(εZ)d

)
, (6.49)

where λ denotes the eigenvalue of u.
In fact it follows from Proposition 6.5 and the definition of B+

0 , that

‖1B+
0
u‖2`2 =

∑
x∈B+

0,ε

|u(x)|2 =
∑

x∈B+
0,ε

|e−
d̃(x)
ε e

d̃(x)
ε u(x)|2

≤ e−
πC0
2ε ‖e d̃ε u‖2`2

≤ e−
C1
ε ,

proving (6.48) for any C ≤ C1.
To see equation (6.49), we write

Hε 1Bj u = 1Bj Hεu+ [Hε,1Bj ]u = λ1Bj u+ [Hε,1Bj ]u

where

[Hε,1Bj ]u(x) = [Tε,1Bj ]u(x) =
∑

γ∈(εZ)d

aγ(x)
[
1Bj (x+ γ)− 1Bj (x)

]
u(x+ γ) , (6.50)

vanishing for x and x + γ both inside or outside of Bj . We divide the space into the regions Bj ,
Rj and Rd \ (Bj ∪Rj) to get

‖[Hε,1Bj ]u‖`2 = ‖[Hε,1Bj ]u‖`2(Rj,ε)+‖[Hε,1Bj ]u‖`2(Bj,ε)+‖[Hε,1Bj ]u‖`2((εZ)d\(Bj,ε∪Rj,ε)) (6.51)
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and analyze the three summands separately. For x ∈ (εZ)d \ (Bj ∪ Rj), the commutator is non-
vanishing only if x + γ ∈ Bj and thus if the modulus of γ in (6.50) is at least C0π/4(= C2),
yielding

∥∥[Hε,1Bj ]u
∥∥
`2((εZ)d\(Bj,ε∪Rj,ε))

=

∥∥∥∥∥∥
∑

γ∈(εZ)d

aγ( . )
[
1Bj ( . + γ)− 1Bj ( . )

]
u( . + γ)

∥∥∥∥∥∥
`2((εZ)d\(Bj,ε∪Rj,ε))

≤

 ∑
|γ|≥C2

‖aγ( . )‖l∞((εZ)d\(Bj,ε∪Rj,ε))

 ‖u‖`2 .

Thus by (6.3) and since u was assumed to be bounded

‖[Hε,1Bj ]u‖`2((εZ)d\(Bj,ε∪Rj,ε)) = O
(
e
−C3
ε

)
(6.52)

for any C3 > 0. To estimate the `2-norm inside the region Rj (the first summand on the right
hand side of (6.51)), we use that dj(x) ≥ πC0

4 for x ∈ Rj . In addition |γ| ≤ B for some B > 0,
since for x ∈ Rj , the difference of the characteristic functions (see (6.50)) vanishes, if x+ γ /∈ Bj .
Thus

‖[Hε,1Bj ]u‖`2(Rj,ε) =

∥∥∥∥∥∥
∑

γ∈(εZ)d

aγ( . )
[
1Bj ( . + γ)− 1Bj ( . )

]
u( . + γ)

∥∥∥∥∥∥
`2(Rj,ε)

≤

 ∑
γ

|γ|≤B

∥∥∥∥aγ( . )e− dj(.)
ε e

d(x,x+γ)
ε

∥∥∥∥
l∞(Rj,ε)

∥∥∥e djε u∥∥∥`2(Bj,ε)
≤ e−

πC0
4ε

∑
γ≤B

‖aγ( . )e
d(x,x+γ)

ε ‖l∞(Rj,ε)Ce
− δ
ε ≤ Ce−

C4
ε , (6.53)

where we used (6.4) and Proposition 6.5. To analyze the `2-norm inside of Bj (the second summand
on the right hand side of (6.51)), we divide the sum over γ to get

‖[Hε,1Bj ]u‖`2(Bj,ε) ≤

∥∥∥∥∥∥∥∥
∑

γ∈(εZ)d
x+γ∈Rj

aγ( . )u( . + γ)

∥∥∥∥∥∥∥∥
`2(Bj,ε)

+

∥∥∥∥∥∥∥∥
∑

γ∈(εZ)d

x+γ∈(εZ)d\(Bj∪Rj)

aγ( . )u( . + γ)

∥∥∥∥∥∥∥∥
`2(Bj,ε)

=: A1 +A2

Then by Proposition 6.5 and since Rj is a bounded region

A1 =

∥∥∥∥∥∥∥∥
∑

γ∈(εZ)d
x+γ∈Rj

aγ( . )e
d̃(x+γ)

ε e−
d̃(x+γ)

ε u( . + γ)

∥∥∥∥∥∥∥∥
`2(Bj,ε)

≤ e−
πC0
2ε

∑
|γ|<C

‖aγ(.)‖`∞(Rj,ε)‖e
d̃
ε u‖`2

≤ e−
πC0
2ε Ce

δ
ε ≤ e−

C4
ε . (6.54)

By the same arguments which lead to (6.52), we get

A2 ≤
∑

|γ|≥C2

‖aγ‖l∞(Bj,ε)‖u‖`2 = O
(
e
−C5
ε

)
. (6.55)

Thus inserting (6.52), (6.53), (6.54) and (6.55) into (6.51) shows (6.49) for all C < C̃, choose for
example C = min{C1, C4, C5}.

Now the idea is to estimate the distance between multiples of 1Bj u and the eigenspace Ej of
H
Mj
ε by use of Proposition 6.8. By (6.49) and since Bj,ε ⊂Mj,ε, we have

HMj
ε 1Bj u = 1Mj,ε Hε 1Bj,ε u = λ1Bj,ε u+O

(
e−

C
ε

)
.
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In the notation of Proposition 6.8 the remaining term is rj = O
(
e−

C
ε

)
and thus

~dist(R1Bj u, Ej) =
1

a‖1Bj u‖
O
(
e−

C
ε

)
. (6.56)

We now claim that for some C̃ (
1−ΠEj

)
1Bj u = O

(
e−

C̃
ε

)
. (6.57)

(6.57) can be shown as follows:
If ‖1Bj u‖ ≤ e−

C
2ε , then (6.57) is trivially fulfilled. If on the other hand ‖1Bj u‖ > e−

C
2ε , the

estimate (6.56) yields

~dist(R1Bj u, Ej) ≤
1
a
e−

C
ε e

C
2ε = O

(
e−

C̃
ε

)
,

where in the last step we used Hypothesis 6.3.
Thus (6.57) follows by the definition of the distance.
Since ΠE =

∑m
k=1 ΠEk we have

‖ΠE 1Bj u‖`2 ≤ ‖ΠEj 1Bj u‖`2 +
∑
k 6=j

‖ΠEk 1Bj u‖`2 . (6.58)

By the construction of Bj it follows that dk(x) ≥ C0π
2 for x ∈ Bj ∪Rj and k 6= j, thus by Corollary

6.4 for some N0 ∈ N and C̃ > 0

‖ΠEk 1Bj u‖`2 = ‖
∑
l

clvkle
− dk

ε e
dk

ε 1Bj u‖`2 (6.59)

≤ e−
C0π
2ε ‖e d

k

ε v‖`2Mk,ε‖u‖`2 ≤ Ce−
C0π
2ε εN0 = O

(
e
−C̃
ε

)
.

Thus inserting (6.59) into (6.58) yields

ΠE 1Bj u = ΠEj 1Bj u+O
(
e
−C̃
ε

)
(6.60)

with respect to `2-norm. Therefore we get by (6.57), (6.48) and (6.60)

ΠEu = ΠE

1B+
0
u+

m∑
j=1

1Bj u

 =
m∑
j=1

ΠEj 1Bj u+O
(
e−

C
ε

)

= 1B+
0
u+

m∑
j=1

1Bj u+O
(
e−

C̃
ε

)
= u+O

(
e−

C̃
ε

)
, (6.61)

thus (1−ΠE)u = 0 modulo O
(
e
−C̃
ε

)
and by choosing u = ΠFv for ‖v‖ = 1, we get by (6.61)

~dist(F , E) = ‖ΠF −ΠEΠF‖∞ = sup
v∈H ,‖v‖=1

‖(1−ΠE)ΠFv‖

≤ sup
u∈F,‖u‖≤1

‖(1−ΠE)u‖ = O
(
e−

C̃
2ε

)
,

because u was an arbitrary element of F . Therefore ~dist(F , E) < 1 for ε small enough and by
Proposition 6.7

~dist(E ,F) = ~dist(F , E) = O
(
e−

σ
ε

)
(6.62)

and
#{λ1, . . . , λn} =: n =

∑
j∈C

nj , (6.63)

i.e. the number of eigenvalues of Hε with respect to Iε equals the number of eigenvalues of the
several Dirichlet operators with respect to this spectral interval.

Step 3:
In the last step we show the existence of a bijection b between both spectra such that

b(λ)− λ = O
(
e
σ
ε

)
.



100 6. INTERACTION BETWEEN MULTIPLE WELLS

For σ < σ′ < S we set ã := e−
σ′
ε and consider disjoint intervals Kl, such that Iε ⊂

⋃
l∈LKl, where

Kl =]αl, βl] with βl − αl = 2ã. Let L̃ ⊆ L be such that l ∈ L̃ implies that Kl includes at least one
eigenvalue of Hε or HMj

ε , j ∈ C.
Then by combining intervals Kl,Kl+1 with l, l + 1 ∈ L̃, there are intervals I1, . . . IÑ ⊆ Iε

covering the eigenvalues λ1, . . . λN , µ1,1, . . . , µm,nm , such that the distance between two different
intervals is at least 2ã and by (6.44) and (6.63) there exists a constant M0 such that |Ik| =
O
(
ε−M0a

)
. By Proposition 6.7 and an adapted version of (6.62) with Iε replaced by Il it follows

that in each interval Il, the number of λ´s and µ´s is equal.
Let b : spec(Hε) ∩ Iε →

⋃m
j=1

(
spec(HMj

ε ) ∩ Iε
)

be a bijection, such that λ ∈ Ij 7→ b(λ) ∈ Ij ,
then

b(λ)− λ = O
(
ε−M0e−

σ′
ε

)
= O

(
e−

σ
ε

)
.

2

6.3. The Interaction Matrix

In the next two sections, we are going to improve the result given in Theorem 6.8 by explicitly
analyzing the error term up to order O

(
e
−2σ
ε

)
for any σ < S, where S < S0 as introduced in

Hypothesis 6.3. To this end we will analyze the Hamilton operator Hε, restricted to its eigenspace
F associated to a spectral interval Iε.

6.3.1. Construction of the Interaction Matrix. Modulo terms of order O
(
e
−2σ
ε

)
, we

will determine the diagonal and non-diagonal part of the matrix representing Hε|F with respect
to a fixed basis in F . The non-diagonal part describes the interaction between the different wells.

Definition 6.10. For E and F defined in (6.8), let Π0 denote the projection onto E along F⊥
in `2((εZ)d).

Then

‖Π0 −ΠE‖ = O
(
e−

σ
ε

)
(6.64)

for every σ < S and ε small enough, where S < S0 as introduced in Hypothesis 6.3. This can be
shown along the lines of Helffer-Sjöstrand [33], Lemma 2.8:

For ε small enough, we can write F = {x+Ax |x ∈ E} where A : E → E⊥ and by Theorem 6.9
it is clear that ‖A‖ = O

(
e
−σ
ε

)
for all σ < S. Then A∗ : E⊥ → E and F⊥ = {y − A∗y | y ∈ E⊥},

because for all x ∈ E and y ∈ E⊥ we have Ax ∈ E⊥ and A∗y ∈ E and thus we get

〈(1 +A)x , (1−A∗)y〉`2 = 〈x , y〉`2 + 〈Ax , y〉`2 − 〈x , A∗y〉`2 − 〈Ax , A∗y〉`2 = 0 .

Let z = x+ y for x ∈ E , y ∈ E⊥, then ΠEz = x and Π0z = x̃ with x̃ ∈ E such that x̃− z ∈ F⊥ by
the definition of Π0. Thus for some ỹ ∈ E⊥ we can write x̃− z = x̃− (x+ y) = −ỹ + A∗ỹ, giving
the two equations x̃ − x = A∗ỹ and y = ỹ. Thus it follows from the estimate on the norm of A
that ‖x̃− x‖ = O

(
e−

σ
ε ‖y‖

)
, which shows (6.64).

Moreover Π0 = Π0ΠF and the inverse of Π0|F : F → E is given by ΠF |E : E → F . Since F
and F⊥ are stable under the action of Hε, we have

Π0HεΠFv = Π0Hεv for all v ∈ E . (6.65)

By the identification of E and F via Π0|F and ΠF |E respectively, the operator Hε|F corresponds
to the operator Π0Hε|E .

Proposition 6.11. Let Hε, E , S and vj,k, j ∈ C, k = 1, . . . nj be as in the setting of Hypotheses
6.1 and 6.3 and in (6.8). Let Π0 denote the projection introduced in Definition 6.10. We write
α := (j, k) and j(α) = j.



6.3. THE INTERACTION MATRIX 101

Then the matrix of Π0Hε|E in the basis {v1,1, . . . , vm,nm} of E is for every σ < S and for all
ε ∈ (0, ε0] given by 

µ1,1

.
0

0
.
µm,nm

+ (wα,β) +O
(
e−

2σ
ε

)
,

where
wα,β = 〈vα , rβ〉`2 = O

(
e−

σ
ε

)
(6.66)

with rβ defined as in (6.36) by

rβ(x) = [Hε,1Mj(β) ]vβ(x) = (1−1Mj(β))Tεvβ =
∑

γ∈(εZ)d
x+γ∈Mj(β), x/∈Mj(β)

aγ(x) vβ(x+ γ) . (6.67)

Furthermore wα,β = 0 for j(α) = j(β).

Proof:

The eigenfunctions vα are a basis of E , which is not orthonormal for different wells (i.e. for
j(α) 6= j(β)), thus for any function u ∈ `2((εZ)d),we have a representation

ΠEu =
∑
α,β

cα,β〈vβ , u〉`2vα , (6.68)

where ∑
α,β

cα,β〈vβ , vγ〉`2vα = vγ , i.e.
∑
β

cα,β〈vγ , vβ〉`2 = δαγ .

For V =
(
〈vα , vβ〉`2

)
we thus have C := (cα,β) = (V−1)T . It was shown in (6.43) that V =

1+O
(
e
−S
ε

)
for any S < S0 and therefore

C = 1+O
(
e
−S
ε

)
. (6.69)

Defining
τu :=

∑
α

〈u , vα〉`2vα (6.70)

we get by straightforward calculation, using (6.69) and dim E = O(ε−N0) for some N0 (see (6.44))

‖τ −ΠE‖ = O
(
e
−S
ε

)
, ‖τ −Π0‖ = O

(
e
−σ
ε

)
, (6.71)

where σ < S and we used (6.64) for the second estimate.
By (6.34) and (6.40) we have for σ < S and rβ as in (6.67)

Hεvβ(x) = µβvβ(x) + rβ , ‖rβ‖`2((εZ)d) = O
(
e
−σ
ε

)
. (6.72)

Thus
Π0Hεvβ = Π0(µβvβ) + Π0rβ = µβvβ + τrβ + (Π0 − τ)rβ . (6.73)

and by (6.71) and (6.72) this yields in `2-norm

Π0Hεvβ = µβvβ + τrβ +O
(
e
−2σ
ε

)
.

By the definition of τ in (6.70) and of wαβ in (6.66) we get

Π0Hεvβ = µβvβ +
∑
α

〈vα , rβ〉`2vα +O
(
e
−2σ
ε

)
= µβvβ +

∑
α

wαβvα +O
(
e
−2σ
ε

)
.

This shows the matrix representation of Π0Hε|E with respect to the basis of Dirichlet eigenfunctions
vα modulo terms of order O

(
e
−2σ
ε

)
, where the interaction matrix is defined by (6.66). The fact

that wαβ = 0, if the eigenfunctions vα and vβ are supported near the same well, follows directly
from the representation of rβ by use of sums as given in (6.67), since in this case x /∈Mj(β) = Mj(α)

and thus vα(x) = 0.
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2

Defining the matrix

M = (mαβ) := (µαδαβ + wαβ) (6.74)

it follows from Proposition 6.11, that modulo O
(
e
−2σ
ε

)
(which we will denote by ≡)

〈vα , Π0Hεvβ〉`2 ≡
〈
vα ,

∑
γmγβvγ

〉
`2

= (VM)αβ (6.75)

Comparing the operator Π0Hε|E with the self adjoint operator ΠEHε|E , we get

Π0Hε|E −ΠEHε|E = O
(
e
−2σ
ε

)
(6.76)

for σ < S1, since by (6.72) and (6.64)

(Π0 −ΠE)Hεvα = (Π0 −ΠE)µαvα + (Π0 −ΠE)rα = 0 +O
(
e
−2σ
ε

)
. (6.77)

Although this shows that Π0Hε|E is nearly self adjoint (i.e. self adjoint modulo terms of order
O
(
e
−2σ
ε

)
), its matrix representation moduloO

(
e
−2σ
ε

)
is not symmetric, since the basis of Dirichlet

eigenfunctions is not orthonormal (only the Dirichlet eigenfunctions belonging to the same well
were assumed to be orthogonal).

We will now replace the basis of eigenfunctions by its orthonormalization and expect the matrix
representing the “nearly self adjoint” operator Π0Hε|E to be “nearly symmetric” with respect to
the new basis (“nearly” means modulo terms of order O

(
e
−2σ
ε

)
).

If we denote the basis of eigenfunctions in E by ~v := (v1,1, . . . , vm,nm), its orthonormalization

is given by ~e := ~vV− 1
2 , where V = (〈vα , vβ〉`2) =: 1+L with L = (lαβ) = O

(
e
−σ
ε

)
. Thus ~e forms

an orthonormal basis in E .
Since by (6.72) rβ = (Hε−µβ)vβ , the “lack of symmetry” wαβ −wβα can by (6.66) and (6.67)

be computed as

wαβ − wβα = 〈rβ , vα〉`2 − 〈rα , vβ〉`2
= 〈Hεvβ , vα〉`2 − 〈µβvβ , vα〉`2 − 〈Hεvα , vα〉`2 + 〈µαvα , vβ〉`2
= (µα − µβ)〈vα , vβ〉`2 = (µα − µβ) lαβ , (6.78)

since the eigenfunctions vγ where chosen to be real and Hε is self adjoint. Since by (6.74) and
(6.75) we have

~vTΠ0Hε|E~v = VM ,

the matrix of Π0Hε|E in the basis ~e is modulo e−
2σ
ε given by(

〈eα , Π0Hε|Eeβ〉`2
)

=
(
~eTΠ0Hε|E~e

)
=
(
V− 1

2~vTΠ0Hε|E~vV−
1
2

)
≡ V− 1

2VMV− 1
2 = (1+L)

1
2M(1+L)−

1
2

≡ (1+
1
2
L)M(1−1

2
L) ≡ ((µαδαβ) + (wαβ)) +

1
2
[L, (µαδαβ)]

≡ (µαδαβ) +
(
wαβ +

1
2
lαβ(µβ − µα)

)
.

By (6.78) we can write

w̃αβ := wαβ +
1
2
lαβ(µα − µβ) = wαβ +

1
2
(wαβ − wβα) =

1
2
(wαβ + wβα) . (6.79)

Since T is symmetric, the same is true for (w̃αβ) and we have

Proposition 6.12. In the setting of Proposition 6.11 let V := (〈vα , vβ〉`2) and denote by
~e := ~vV− 1

2 the orthonormalization of ~v.
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Then for σ < S and for ε ∈ (0, ε0], the matrix of Π0Hε|E with respect to ~e is given by
µ1,1

.
0

0
.
µm,nm

+ (w̃α,β) +O
(
e−

2σ
ε

)
,

where
w̃α,β =

1
2
(wαβ + wβα) = O

(
e−

σ
ε

)
.

and w̃α,β = 0 for j(α) = j(β).

Thus in the orthonormal basis, the nearly symmetric operator corresponds to a nearly sym-
metric matrix. The next theorem concerns the matrix representation of Hε restricted to the space
F , spanned by the eigenfunctions {u1, . . . , uN}, with respect to an orthonormal basis of F . We will
see, that it is identical to the matrix of Π0Hε|E with respect to ~e modulo terms of order O

(
e
−2σ
ε

)
.

We denote by ~f the orthogonal projection of ~e to F , i.e. fα = ΠFeα. Then the orthonormalization
~g of ~f is given by ~g := ~fF−

1
2 where F :=

(
〈fα , fβ〉`2

)
denotes the Gram-matrix of ~f . With respect

to the basis ~g, the self adjoint operator Hε|F is represented by a symmetric matrix.

Theorem 6.13. In the setting of Hypotheses 6.1 and 6.3, let {v1,1, . . . , vm,nm} denote the
Dirichlet eigenvectors of Hε with respect to the spectral interval Iε and denote by V =

(
〈vα , vβ〉`2

)
its Gram-matrix. Let ~e = ~vV− 1

2 be its orthonormalization and fα = ΠFeα the orthogonal pro-
jection of ~e to the space F spanned by the eigenfunctions of Hε with respect to Iε. Denoting by
F =

(
〈fα , fβ〉`2

)
its Gram-matrix, we choose ~g := ~fF−

1
2 as orthonormal basis of F .

Then the following statements hold for all ε ∈ (0, ε0].
(a) The matrix of Hε|F with respect to ~g is for all σ < S given by

µ1,1

.
0

0
.
µm,nm

+ (w̃α,β) +O
(
e−

2σ
ε

)
,

where
w̃α,β =

1
2
(wαβ + wβα) = O

(
e−

σ
ε

)
with

wα,β =
〈
vα , (1−1Mj(β))Tεvβ

〉
`2

=
∑

x∈(εZ)d
x/∈Mj(β)

∑
γ∈(εZ)d

x+γ∈Mj(β)

aγ(x)v̄β(x+ γ)vα(x)

and w̃α,β = 0 for j(α) = j(β).
(b) There exists a bijection b : spec(Hε|F ) → spec ((µαδαβ + w̃αβ)) such that |b(λ) − λ| =

O
(
e
−2σ
ε

)
for all σ < S.

Proof:

(a) Let
M̃ = (m̃αβ) := (µαδαβ + w̃αβ) . (6.80)

We will proceed in two steps. First we show, that the matrix representation of Hε|F with respect
to ~f is modulo O

(
e
−2σ
ε

)
equal to the matrix representing Π0Hε|E with respect to ~e, i.e. equal to

M̃ . Then we show that the difference between the matrix representations of Hε|F with respect to
~f and to ~g is again of the same order.

As mentioned below Definition 6.10, the eigenspaces E and F can be identified by the pro-
jections ΠF |E and Π0|F . Furthermore ΠFΠ0 = ΠF , because both projections are along F⊥ (i.e.
ker Π0 = kerΠF = F⊥). The invariance of F under the action of Hε yields ΠFHε = HεΠF , we
therefore get for any v ∈ E

HεΠFv = ΠFHεv = ΠFΠ0Hεv
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and thus by Proposition 6.12

Hεfβ = HεΠFeβ = ΠFΠ0Hεeβ =

= ΠF

(∑
α

m̃αβeα +O
(
e
−2σ
ε

))
=

=
∑
α

m̃αβfα +O
(
e
−2σ
ε

)
.

In the last step we used, that the projection is bounded and therefore does not change the order
of the perturbation term.

To see that replacing the basis ~f by ~g = ~fF−
1
2 changes the matrix representation of Hε|F only

by terms O
(
e
−2σ
ε

)
, we write eα = fα + rα where fα ∈ F and rα ∈ F⊥. From the representation

rα = eα − fα = (ΠE −ΠFΠE)eα ,

together with Theorem 6.9 and ‖eα‖ = 1, it follows that

‖rα‖ = ‖(ΠE −ΠFΠE)eα‖ ≤ ‖ΠE −ΠFΠE‖ = ~dist(E ,F) = O
(
e
−σ
ε

)
. (6.81)

Moreover since fα and rβ are orthogonal for all α, β by construction, we get

δαβ = 〈eα , eβ〉`2 = 〈fα + rα , fβ + rβ〉`2 = 〈fα , fβ〉`2 + 〈rα , rβ〉`2 .
Therefore by (6.65) and the Cauchy-Schwarz-inequality

Fαβ = 〈fα , fβ〉`2 = δαβ +O
(
e
−2σ
ε

)
.

and thus

~g = ~fF−
1
2 = ~f

(
1+O

(
e−

2σ
ε

))− 1
2

= ~f +O
(
e−

2σ
ε

)
.

Since Hε is bounded on F , this yields for fα = gα + lα with ‖lα‖ = O(e−
2σ
ε ) the estimate

Hεfα = Hε(gα + lα) =
∑
β

m̂βαgα +Hεlα +O
(
e−

2σ
ε

)
=
∑
β

m̂βαgα +O
(
e−

2σ
ε

)
, (6.82)

where M̂ = (m̂αβ) denotes the matrix representing Hε|F in the basis ~g. On the other hand

Hε|Ffα =
∑
β

m̃βαfβ =
∑
β

m̃βα(gβ + lβ) =
∑
β

m̃βαgβ +R , (6.83)

where by the boundedness of the matrix elements m̃βα and by the norm of lβ the norm of the

remaining term R is of order O
(
e
−2σ
ε

)
. Combining (6.82) and (6.83) and multiplying with gγ

yields the postulated result, namely Mβα = M̃βα +O
(
e−

2σ
ε

)
.

(b) To show the second statement of the theorem concerning the spectra of Hε|F and M , we have to
estimate the relation between the eigenvalues of two symmetric operators on a finite dimensional
space in terms of their difference. The assertion thus follows from the subsequent Theorem of
Lidskii proven in Kato [44] (Thm 6.11, chapter 2).

Theorem 6.14. Let A,B symmetric operators on a finite dimensional vector space and denote
by C := A−B their difference, which is assumed to be finite. Denote by αi, βi, γi for i = 1, . . . , N
the repeated eigenvalues of A,B and C respectively in ascending order. Then for any convex
function Φ : R → R, the following inequality holds:∑

n

Φ(βn − αn) ≤
∑
n

Φ(γn) . (6.84)

Thus choosing the convex function Φ(x) = x2, Theorem 6.14 shows, that the difference be-
tween the eigenvalues of Hε|F and M is again of order O

(
e
−2σ
ε

)
, showing the last statement of

Theorem 6.13.
2

Idea of the Proof of Theorem 6.14:
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The idea of the proof of this theorem is to define a family of operators T (s) = A + sC for
0 ≤ s ≤ 1. Then it can be shown, that the repeated eigenvalues µn(s) are continuous and
piecewise holomorphic functions of s with µn(0) = αn and µn(1) = βn and that in the interval
[0, 1] are only a finite number of points, where the derivative of µn may be discontinuous. For each
value s, a complete orthonormal system of eigenvectors φn(s) can be chosen, such that the φn are
piecewise holomorphic in s. Differentiation of the spectral equation for T (s) gives

(C − µ′n(s))φn(s) + (T (s)− µn(s))φ′(s) = 0 .

Taking the inner product with φn(s) and using the symmetry of T (s) yields µ′n(s) = 〈φn(s) , Cφn(s)〉.
This can be integrated to give

βn − αn = µn(1)− µn(0) =
∫ 1

0

〈φn(s) , Cφn(s)〉 ds .

If {xj} denotes an orthonormal basis of eigenvectors of C, then

〈φn(s) , Cφn(s)〉 =
∑
j

γj |〈φn(s) , xj〉|2

and thus
βi − αi =

∑
σijγj ,

where
∑
j σij =

∑
i σij = 1 and σij ≥ 0.

A square matrix (σij) with these properties lies in the convex hull of the set of all permutation
matrices.

2

Corollary 6.15. If there is only one well x0 and S0 denotes the distance of the well to the
boundary of a bounded region M ⊂ Rd, then with S < S0 there exists a bijection b : spec (Hε|F ) ∩
Iε → spec

(
HM
ε

)
∩ Iε such that for all σ < S and ε ∈ (0, ε0] we have |b(λ)− λ| = O

(
e
−2σ
ε

)
.

Remark 6.16. In the case of one well, the interaction matrix is of order O
(
e
−2σ
ε

)
, as follows

directly from Theorem 6.13. Furthermore the discussions up to now are also valid in the case, that
the operator Hε on (εZ)d is replaced for some compact subset M of Rd, by a Dirichlet operator on
Mε = M ∩ (εZ)d.

6.3.2. Examples and Interpretation. Let us consider the case of two wells x1 and x2 each
having only one Dirichlet eigenvalue µ1 and µ2 respectively inside of the given interval Iε for fixed
ε. Then d(x1, x2) = S0 and by Proposition 6.12 and Theorem 6.13, the eigenvalues of Hε with
respect to Iε are for all σ < S ∈ [0, S0 − η] given by

λ± =
µ1 + µ2

2
±
√

1
4
(µ1 − µ2)2 + w̃2

12 +O
(
e
−2σ
ε

)
.

The difference between these eigenvalues is thus

|λ+ − λ−| =
√

(µ1 − µ2)2 + 4w̃2
12 +O

(
e
−2σ
ε

)
.

If the difference between µ1 and µ2 is larger than e−
δ0
ε for some 0 < δ0 < S0, then Hε admits two

eigenvalues λ+ = µ̃1 and λ− = µ̃2 and the difference between them is at least of the order e−
δ0
ε .

Computing formally the coordinates of the eigenfunctions b+ and b− of Π0Hε|E associated to λ+

and λ− with respect to the basis {e1, e2} yields(
µ1 − µ2

2
±
√

1
4 (µ1 − µ2)2 + w̃2

12

)
b±,1 = w̃12b±,2 .

Thus by setting w′12 := 4w̃2
12

(µ1−µ2)2
= O

(
e
−2(σ−δ0)

ε

)
and expanding the square root we get

|b+,1| ≤ Ce−
σ−δ0
ε |b+,2| and |b−,2| ≤ Ce−

σ−δ0
ε |b−,1| .

Thus the corresponding eigenfunctions b+ and b− are located modulo exponentially small error at
the wells x2 and x1 respectively. Thus the tunnelling effect does not change the basic properties
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of the eigenfunctions and the wells are almost independent (or non resonant). The concept of non
resonant wells will be introduced later in more detail for the general case.

These considerations lead us later on to the assumption, that the difference between two eigen-
values attached to different wells is exponentially small, such that the effect of tunnelling is not
negligible.

The tunnelling effect is relevant in the case of a symmetric double well, where µ1 = µ2 = µ.
Then

λ± = µ± w̃12

and thus the splitting is of the same order of magnitude as the interaction term w̃12. In the basis
{e1, e2} defined in Theorem 6.12, the normalized eigenfunctions of Hε are modulo O

(
e
−2σ
ε

)
given

by

u1 =
1√
2
(e1 + e2) and u2 =

1√
2
(e1 − e2) .

Therefore u1 + u2 is localized near x1 and u1 − u2 is localized near x2.

V0 was defined as restriction of a function on Rd independent of the scaling parameter ε. Thus
the position of the wells xj for j = 1, . . .m is fixed with respect to the underlaying space Rd. Nev-
ertheless the change of the ε will change the interaction of the wells. So it might occur that two
wells are resonant for some values of ε and non-resonant for others or that they become more and
more resonant for ε→ 0. This behavior can be traced back to three different effects. The first lies
in the change of the higher order terms

∑∞
k=1 ε

kVk in the expansion of the potential energy, giving
rise to a change of the whole scenery of the potential energy and in particular of the depth of the
wells and thus of the low spectrum. The second effect is produced by the change of the position of
the lattice points with respect to the underlying space Rd and thus to the potential wells. There-
fore the minimal potential energy at the wells is different from the minimal potential energy at a
neighboring lattice point. This fact does not change the WKB-expansions for the eigenfunctions
and eigenvalues at one fixed well as noticed in Chapter 3, but since the difference between the
eigenvalues must be exponentially small, this effect might change the resonance property. A third
point lies in the fact, that the spectral interval itself depends on the value of ε.

Now we come to a slightly more general case, where there might be more than two wells, but
for fixed ε only two of them have an eigenvalue (and exactly one) in the spectral interval Iε. Again
the tunnelling effect is relevant only, if the difference between these eigenvalues is exponentially
small.

Let 0 < a < S0, S0 + a < 2S and assume that for all δ > 0

µα − µβ = O
(
e
−(a−δ)

ε

)
.

Since by (6.43) we have 〈vα , vβ〉`2 = O
(
e
−S
ε

)
for S < S0 suitable, it follows from (6.78) that

wαβ = wβα mod O
(
e
−(S0+a−δ)

ε

)
.

If d(xj(α), xj(β)) ≥ S0 + a or if j(α) = j(β), then

wαβ = 0 mod O
(
e
−(S0+a−δ)

ε

)
. (6.85)

For j(α) = j(β) this is a direct consequence of Theorem 6.13. In the case d(xj(α), xj(β)) ≥
S0 + a, the estimate (6.85) can be seen as follows. By the triangle inequality for the distance
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function d

|wαβ | =

∣∣∣∣∣∣∣∣
∑

x∈(εZ)d
x/∈Mj(β)

∑
γ∈(εZ)d

x+γ∈Mj(β)

aγ(x)vβ(x+ γ)vα(x)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

x∈(εZ)d
x/∈Mj(β)

∑
γ∈(εZ)d

x+γ∈Mj(β)

aγ(x)e−
dj(β)(x)

ε e
dj(β)(x)

ε vβ(x+ γ)e−
dj(α)(x)

ε e
dj(α)(x)

ε vα(x)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∑

x∈(εZ)d
x/∈Mj(β)

∑
γ∈(εZ)d

x+γ∈Mj(β)

aγ(x)e−
d(xj(β),xj(α))

ε e
dj(β)(x)

ε vβ(x+ γ)e
dj(α)(x)

ε vα(x)

∣∣∣∣∣∣∣∣ .
By the assumption on d(xj(α), xj(β)), this yields

|wαβ | ≤ e−
(S0+a)

ε

∑
x∈(εZ)d
x/∈Mj(β)

∑
γ∈(εZ)d

x+γ∈Mj(β)

∣∣∣∣aγ(x)e dj(β)(x)
ε vβ(x+ γ)e

dj(α)(x)
ε vα(x)

∣∣∣∣ (6.86)

≤ e−
(S0+a)

ε

∑
x∈(εZ)d
x/∈Mj(β)

∣∣∣∣e dj(α)(x)
ε vα(x)

∣∣∣∣ ∑
γ∈(εZ)d

x+γ∈Mj(β)

∣∣∣∣aγ(x)e dj(β)(x)
ε vβ(x+ γ)

∣∣∣∣
=: e−

(S0+a)
ε

∑
x∈(εZ)d
x/∈Mj(β)

∣∣∣∣e dj(α)(x)
ε vα(x)

∣∣∣∣A(x)

Again by the triangle inequality dj(β)(x) ≤ d(x, x+ γ) + dj(β)(x+ γ), thus for all x /∈Mj,ε

A(x) ≤
∑

γ∈(εZ)d
x+γ∈Mj(β)

∣∣∣∣aγ(x)e d(x,x+γ)ε e
dj(β)(x+γ)

ε vβ(x+ γ)
∣∣∣∣

≤
∑

γ∈(εZ)d
x+γ∈Mj(β)

∣∣∣aγ(x)e d(x,x+γ)ε 〈γ〉
d+2
2

∣∣∣ ∣∣∣∣〈γ〉− d+2
2 e

dj(β)(x+γ)
ε vβ(x+ γ)

∣∣∣∣ .
By the Cauchy-Schwarz inequality, we get

A(x) ≤

 ∑
γ∈(εZ)d

x+γ∈Mj(β)

∣∣∣aγ(x)e d(x,x+γ)ε 〈γ〉
d+2
2

∣∣∣2


(1/2) ∑
γ∈(εZ)d

x+γ∈Mj(β)

∣∣∣∣〈γ〉− d+2
2 e

dj(β)(x+γ)
ε vβ(x+ γ)

∣∣∣∣2


(1/2)

≤ C

 ∑
γ∈(εZ)d

x+γ∈Mj(β)

∣∣∣∣〈γ〉− d+2
2 e

dj(β)(x+γ)
ε vβ(x+ γ)

∣∣∣∣2


(1/2)

, x /∈Mj,ε , (6.87)

where by Hypothesis 6.1,(d) the last estimate is uniform with respect to x. Inserting (6.87) into
(6.86) and using the Cauchy-Schwarz inequality again for the summation over x, we get

|wαβ | ≤ e−
(S0+a)

ε C
∑

x∈(εZ)d
x/∈Mj(β)

∣∣∣∣e dj(α)(x)
ε vα(x)

∣∣∣∣
 ∑

γ∈(εZ)d
x+γ∈Mj(β)

∣∣∣∣〈γ〉− d+2
2 e

dj(β)(x+γ)
ε vβ(x+ γ)

∣∣∣∣2


(1/2)

≤ e−
(S0+a)

ε C

 ∑
x∈(εZ)d
x/∈Mj(β)

∣∣∣∣e dj(α)(x)
ε vα(x)

∣∣∣∣2


1
2
 ∑

x∈(εZ)d
x/∈Mj(β)

∑
γ∈(εZ)d

x+γ∈Mj(β)

∣∣∣∣〈γ〉− d+2
2 e

dj(β)(x+γ)
ε vβ(x+ γ)

∣∣∣∣2


1
2
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By Theorem 5.6 there exists N0 ∈ N, such that the first sum is of order ε−N0 and by inverting the
order of summation in the second sum, this yields

|wαβ | ≤ e−
(S0+a)

ε Cε−N0

 ∑
γ∈(εZ)d

x+γ∈Mj(β)

〈γ〉−(d+2)
∑

x∈(εZ)d
x/∈Mj(β)

∣∣∣∣e dj(β)(x+γ)
ε vβ(x+ γ)

∣∣∣∣2


(1/2)

.

Again by Theorem 5.6, we get

|wαβ | ≤ e−
(S0+a)

ε Cε−N0

 ∑
γ∈(εZ)d

x+γ∈Mj(β)

〈γ〉−(d+2)
∑

x∈(εZ)d
x/∈Mj(β)

∣∣∣∣e dj(β)(x+γ)
ε vβ(x+ γ)

∣∣∣∣2


(1/2)

≤ e−
(S0+a)

ε Cε−N0

 ∑
γ∈(εZ)d

x+γ∈Mj(β)

〈γ〉−(d+2)ε−2N0


(1/2)

≤ e−
(S0+a)

ε C̃ε−2N1

= O
(
e−

(S0+a−δ)
ε

)
for some N1 ∈ N and any δ > 0. This proves (6.85).
The estimate (6.85) leads us to the assumption, that d(xj(α), xj(β)) < S0 + a.

Hypothesis 6.17. Assume that only two wells have an eigenvalue (and exactly one) in the spec-
tral interval Iε. We denote the eigenvalues by µα, µβ and the corresponding wells by xj(α), xj(β).
Let 0 < a < S0, S0 + a < 2S and assume that d(xj(α), xj(β)) < S0 + a and that for all δ > 0

µα − µβ = O
(
e
−(a−δ)

ε

)
. (6.88)

Consider the closed “ellipse” defined by

Eαβ := {x ∈ Rd | dj(α)(x) + dj(β)(x) ≤ S0 + a} , (6.89)

such that Eαβ ⊂
◦
M j(α) ∪

◦
M j(β). We choose Ω ⊂ Rd such that xj(α) ∈ Ω, xj(β) /∈ Ω and furthermore

E ∩ Ω ⊂
◦
M j(α) and E ∩ Ωc ⊂

◦
M j(β).

The next lemma concerns the support of the commutator of Hε with the characteristic function
with respect to a fixed set.

Lemma 6.18. Let A ⊂ Rd and denote by ∂A its boundary. For any δ > 0 we define δA :=
{x ∈ Rd | ∃y ∈ ∂A : |x− y| ≤ δ}, thus δA is an arbitrary small neighborhood of ∂A. Let δ > 0 be
fixed, then in operator norm for any C > 0 and for all ε ∈ (0, ε0]

[Hε,1A] = 1δA[Hε,1A]1δA +O
(
e
−C
ε

)
. (6.90)

Thus the commutator of Hε with the characteristic function of a set A is supported modulo
exponentially small error near the boundary of A.

Proof:

The potential energy Vε commutes with the characteristic function 1A, we therefore can write
by use of a partition of unity

[Hε,1A] = 1δA[Tε,1A]1δA +(1− 1δA) [Tε,1A]1δA + + 1δA[Tε,1A] (1− 1δA) + (6.91)
(1− 1δA) [Tε,1A] (1− 1δA) =: K1 +K2 +K3 +K4 .

For any u ∈ `2((εZ)d) we have by the definition of Tε

[Tε,1A]u(x) =
∑
γ

aγ(x) (1A(x+ γ)− 1A(x))u(x+ γ) .
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The difference between the characteristic functions in each summand is given by

(1A(x+ γ)− 1A(x)) =

 −1 , x ∈ A, (x+ γ) /∈ A
1 , x /∈ A, (x+ γ) ∈ A
0 , sonst

. (6.92)

Thus K2, K3 and K4 defined in (6.91) are nonzero only in the following cases:

K2 6= 0 =⇒ (x ∈ (δA)c and (x+ γ) ∈ δA) and
{
x+ γ ∈ Ac ∩ δA if x ∈ A \ δA
x+ γ ∈ A ∩ δA if x ∈ Ac \ δA

K3 6= 0 =⇒ (x ∈ δA and (x+ γ) ∈ (δA)c) and
{
x ∈ Ac ∩ δA if x+ γ ∈ A \ δA
x ∈ A ∩ δA if x+ γ ∈ Ac \ δA

K4 6= 0 =⇒ x, (x+ γ) ∈ (δA)c and
{
x ∈ Ac \ δA if x+ γ ∈ A \ δA
x ∈ A \ δA if x+ γ ∈ A \ δA

Thus for all these terms the sum over γ is reduced to the terms with |γ| > δ and we have the
estimate

‖([Hε,1A]− 1δA[Hε,1A]1δA)u‖`2 ≤ 3

∥∥∥∥∥∥
∑
|γ|>δ

aγ(x)u(x+ γ)

∥∥∥∥∥∥
`2

. (6.93)

By the exponential decrease of aγ discussed in Remark 6.2, we get for any C̃ > 0∥∥∥∥∥∥
∑
|γ|>δ

aγ(x)u(x+ γ)

∥∥∥∥∥∥
`2

≤ C
∑
|γ|>δ

e−
C̃|γ|
ε ‖u‖`2 (6.94)

and therefore we can conclude by (6.93) for any C > 0

‖([Hε,1A]− 1δA[Hε,1A]1δA)‖∞ = O
(
e−

C
ε

)
. (6.95)

2

By use of Lemma 6.18, we can now show the following proposition.

Proposition 6.19. Under the assumptions of Hypothesis 6.17 and with the notation δ̂Γ
(c)

:=
δΩ∩Ω(c) ∩E, the elements wαβ of the interaction matrix are for all δ > 0 and ε ∈ (0, ε0] given by

wαβ = 〈[Tε,1Ω]1E vα , 1E vβ〉`2 +O
(
e
−(S0+a−δ)

ε

)
=

〈
1cδΓ vα , Tε 1cδΓc vβ〉`2 − 〈Tε 1cδΓc vα , 1cδΓ vβ〉`2 +O

(
e
−(S0+a−δ)

ε

)
.

Proof:

The interaction matrix can by (6.66) and (6.67) be written as wαβ =
〈
vα , [Hε,1Mj(β) ]vβ

〉
`2

,
thus in the setting of Hypothesis 6.17 by considerations similar to those leading to (6.85), it follows
that

wαβ =
〈
1E vα , [Hε,1Mj(β) ]1E vβ

〉
`2

+O
(
e
−(S0+a−δ)

ε

)
.

In the following we write ≡ for equality modulo O
(
e
−(S0+a−δ)

ε

)
. Lemma 6.18 shows, that modulo

O
(
e
−(S0+a−δ)

ε

)
the commutator [Hε,1Mj(β) ] is supported near the boundary of Mj(β), which by

construction is included in Ω, thus〈
1E 1Ωc vα , [Hε,1Mj(β) ]1E vβ

〉
`2
≡ 0

and 〈
1E vα , [Hε,1Mj(β) 1E ]vβ

〉
`2
≡
〈
1E 1Ω vα ,

(
Hε 1Mj(β) −1Mj(β) Hε

)
1E vβ

〉
`2
.

Similar to the proof of (6.85) it follows, that all contributions from Ec to the scalar product are
zero modulo O

(
e
−(S0+a−δ)

ε

)
, thus modulo terms of the same order, it is possible to commute Hε
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and 1E within the scalar product. Since vη ⊂Mj(η) we get〈
1E 1Ω vα ,

(
Hε 1Mj(β) −1Mj(β) Hε

)
1E vβ

〉
`2

≡
〈
1Mj(β) 1E Hε 1Ω vα , 1E vβ

〉
`2
− 〈1E 1Ω vα , µβ 1E vβ〉`2

≡ 〈1E 1ΩHεvα , 1E vβ〉`2 + 〈1E [Hε,1Ω]vα , 1E vβ〉`2 − 〈1E 1Ω vα , µβ 1E vβ〉`2 .

Now we use Ω ⊂ Mj(α) and the assumption (6.88) on µα − µβ together with (6.43) and the fact
that we can commute Hε and 1E to proceed as

〈1E 1ΩHεvα , 1E vβ〉`2 + 〈1E [Hε,1Ω]vα , 1E vβ〉`2 − 〈1E 1Ω vα , µβ 1E vβ〉`2 ≡
≡
〈
1E 1Ω 1Mj(α) Hεvα , 1E vβ

〉
`2

+ 〈[Hε,1Ω]1E vα , 1E vβ〉`2 − 〈1E 1Ω vα , µβ 1E vβ〉`2 ≡
≡ 〈[Hε,1Ω]1E vα , 1E vβ〉`2 + 〈1E 1Ω vα , vβ〉`2(µα − µβ) ≡ 〈[Hε,1Ω]1E vα , 1E vβ〉`2 .

This shows the first equality of Proposition 6.19, since the potential energy commutes with the
characteristic function 1Ω.

To get the symmetric term claimed in the second equation, we use again Lemma 6.18 to get
with δ̂Γ = δΩ ∩ Ω ∩ E

〈[Hε,1Ω]1E vα , 1E vβ〉`2 ≡ 〈1δΩ[Hε,1Ω]1δΩ 1E vα , 1E vβ〉`2 = (6.96)〈
Tε 1cδΓ vα , 1δΩ 1E vβ

〉
`2
−
〈
Tε 1δΩ 1E vα , 1cδΓ vβ〉`2 .

Substituting 1δΩ 1E = 1cδΓ +1dδΓc , which holds by definition, the terms with 1cδΓ on both sides of
the scalar product cancel and we can conclude

wαβ ≡
〈
Tε 1cδΓ vα , 1cδΓc vβ〉`2 − 〈Tε 1cδΓc vα , 1cδΓ vβ〉`2

and thus by the symmetry of Tε, the second equation in the proposition is shown.
2

The symmetric version of the interaction matrix given in Proposition 6.19 is quite similar to the
case of a Schrödinger operator on Rd, where under analogue assumptions, one gets for Γ := E∩∂Ω

wαβ ≡ h2

∫
Γ

(
vα
∂vβ
∂n

− vβ
∂vα
∂n

)
dS .

The normal derivative in the integral is replaced by the translation term, where the translation
passes the boundary ∂Ω. The reduction to a surface integral over the boundary of Ω in E has its
analogue in the reduction of the sum to an arbitrary small (but ε-independent) neighborhood of
this boundary.

As last example we consider the case, that the difference of the eigenvalues is only polynomially
small, i.e. that for all N ∈ N we have µα − µβ = O

(
εN
)
. Then along the same lines as in the last

example it can be shown that if d(xj(α), xj(β)) > S0, then for all N ∈ N

wαβ = 0 mod εNO
(
e
−S0
ε

)
Heuristically we can use the symbolic calculus introduced in Appendix B to see directly, that
the commutator of Hε and 1Ω and thus the interaction matrix is supported in a arbitrary small
neighborhood of the hyperplane Γ. By Lemma B.6 and Lemma B.7, the symbol of the commutator
(which can be defined only in the sense of distributions, because 1Ω is not differentiable at Γ) is
given by

[t(x, ξ),1Ω(x)] ∼ t(x, ξ)1Ω(x) +
∑
α∈Nd
|α|>0

(iε)|α|

|α|!
(
∂αξ t(x, ξ)

)
(∂αx 1Ω(x))− 1Ω(x)t(x, ξ)− 0 ∼

∼ iε
d∑
ν=1

(∂ξν t) (x, ξ) (∂xν 1Ω) (x) +
(iε)2

2

d∑
ν,η=1

(
∂2
ξνξη t

)
(x, ξ)

(
∂2
xνxη 1Ω

)
(x) + . . .

Thus all summands include derivatives of 1Ω, i.e. δ-distributions at the hyperplane Γ. Furthermore
the first order term is the expectation value of the derivative of the kinetic energy at Γ. The choice
of Ω (and thus of Γ) was quite arbitrary (except from the assumption that it should include one
of the wells and exclude the other).
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This together with the form of wαβ given in Proposition 6.19 suggests the interpretation of a
physical current between the two wells, flowing through any separating hyperplane. This leads to
the conclusion, that the proximity of eigenvalues (in this case µα and µβ) causes a probability for
the tunnelling from one well to the other.

6.4. The “Spectrum” of one well

In Hypothesis 6.3, Mj was not defined directly, but described by some properties. Thus there
is still some freedom in the choice of Mj . We show, that the results of the preceding sections are
independent of this special choice.

Then we compare the spectrum at one well with a fixed eigenvalue of Hε. For this point, we
have to introduce a sphere of influence for the given well with respect to the eigenvalue and its
eigenfunction. Then in a ball around the well, the eigenfunction is determined by the well.

Proposition 6.20. Let M1,M
′
1 denote compact sub-manifolds with C 2-boundary at the well

x1 as described in Hypothesis 6.3 and M1,ε,M
′
1,ε their restrictions to the lattice. Let S1 < S(1) :=

mink 6=1 d(x1, xk) and a(ε), Iε be as defined in Hypothesis 6.3. Choose c(ε) ∈]0, a(ε)] such that
log c(ε) = o

(
1
ε

)
and let B(0, c(ε)) denote the ball of radius c(ε) at zero.

Then for ε sufficiently small there exists a bijection

b : spec
(
HM1
ε

)
∩ Iε → spec

(
H
M ′

1
ε

)
∩
(
Iε +B(0, c(ε))

)
,

such that for all σ < S1

|b(λ)− λ| = O
(
e
−2σ
ε

)
.

Proof:
This proof follows directly Helffer,Sjöstrand [33], Proposition 2.15.

Without loss of generality, we can assume that M1 ⊆ M ′
1 (by introduction of a third domain

M̂1). Let Jε be an interval with the properties described in Hypothesis 6.3 for Hε, HM1
ε and HM ′

1
ε

and such that Iε + B(0, 2a(ε)) ⊆ Jε. Then it follows from Remark 6.16 that HM ′
1

ε can be inter-
preted as the full operator for a one well problem and by Corollary 6.15 there exists a bijection
b : spec(HM ′

1
ε ) ∩ Jε → spec(HM1

ε ) ∩ Jε with |b(λ) − λ| = O
(
e
−2σ
ε

)
. The proposition follows from

restricting b to spec(HM1
ε ) ∩ Iε.

2

By Proposition 6.20 we are now able to define the “spectrum” of one well.

Definition 6.21. Let spec(x1), the spectrum of the well x1, be defined by the collection of the
spectra spec(HM1

ε ) ∩ (Iε +B(0, c(ε)) for any M1 fulfilling Hypothesis 6.3

Proposition 6.20 and Definition 6.21 are valid and chosen respectively in the same way for the
other wells.

Definition 6.22. For ε ∈ (0, ε0], let uε ∈ `2((εZ)d) denote a normalized eigenfunction of Hε

to the eigenvalue λε.
(a) Let ψ denote the maximum of all functions φ on Rd, such that for all ε ∈ (0, ε0]

i) |φ(x)− φ(y)| ≤ d(x, y) for all x, y ∈ Rd.
ii) ‖e

φ
ε uε‖`2(Kε) = O

(
e
δ
ε

)
for all δ > 0 and K ⊂ Rd compact, where Kε = K ∩ (εZ)d.

(b) For j ∈ C we define aj := ψ(xj) ≥ 0 and S(j) := mink∈C,k 6=j dj(xk).
Then for B(xj , r) := {x ∈ Rd | |x− xj | < r} we set

rj := max{r ∈ [0, S(j)] |x ∈ B(xj , r) ⇒ ψ(x) = aj + dj(x)} . (6.97)

Remark 6.23. (a) In Definition 6.22(a), the function ψ is well defined. This follows
from the fact that for two functions satisfying (a)i) and (a)ii), the pointwise maximum of
them also does. Furthermore at each point x ∈ (εZ)d, the family of the values of functions
φ(x) satisfying (a)i) and (a)ii) is bounded, since by (a)ii) each φ must be bounded for
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some points (because u is localized by Proposition 6.5 and normalized) and thus by i) it is
bounded for all x ∈ Rd.

(b) The positivity of aj defined in Definition 6.22(b) follows from the fact that the distance
function d̃ defined in (6.11) has the properties (a)i) and ii) (as will be shown later on)
and thus ψ(xj) ≥ d̃(xj) = 0.

The fact that d̃ satisfies (a)ii) follows directly from Proposition 6.5.
To see the inequality (a)i), we have to analyze the different regions defined in (6.9)

separately. In all cases we use (6.12) together with the fact that the inequality is by use
of the triangle inequality valid for each distance function dj.

1) x, y ∈ B0 ⇒ |d̃(x)− d̃(y)| = 0 ≤ d(x, y)
2) y ∈ Bj for some j ∈ C ⇒ d̃(x) ≤ dj(x) ≤ dj(y) + d(x, y) = d̃(y) + d(x, y).
3) y, x ∈ Rj for some j ∈ C and assume without loss of generality dj(x) ≥ dj(y):

Setting z1 := 2dj(y)
C0

and z2 := 2dj(x)
C0

it follows from the definition of Rj that π
2 <

zi ≤ π and we have

dj(x)− dj(y)− d̃(x) + d̃(y) =
C0

2
(z2 + cos z2 − (z1 + cos z1)) =: g(z2)− g(z1) ,

where we set g(z) = C0
2 (z + cos z). Then in the considered interval g′(z) = C0

2 (1 −
sin z) > 0 and therefore g(z2)− g(z1) ≥ 0 and therefore

d̃(x)− d̃(y) ≤ dj(x)− dj(y) ≤ d(x, y) . (6.98)

4) y ∈ Rj and x ∈ Rk for j 6= k and we assume without loss of generality d̃(x) ≥ d̃(y):
We set z = 2dj(y)

C0
(then π

2 < z ≤ π) and we notice that dj(x) > C0π
2 and d̃(x) ≤

C0π
4 + C0

2 to get

dj(x)− dj(y)− d̃(x) + d̃(y) >
C0

2
(π − 1− z − cos z) =: f(z) .

Then f(π) = 0 and f ′(z) = −1 + sin z < 0 and therefore f(z) ≥ 0 for π
2 < z ≤ π,

yielding (6.98).
5) y ∈ Rj for some j ∈ C and x ∈ B0:

Then dj(x) ≥ dj(y) and d̃(x) = C0
2 (π2 + 1) ≥ d̃(y). Furthermore dj(x) > C0π

2 and

setting z := 2dj(y)
C0

gives π
2 < z ≤ π. Thus

dj(x)− dj(y)− d̃(x) + d̃(y) = dj(x)− C0

2
(z + 1 + cos z) >

C0

2
(π − z − 1− cos z) = f(z)

and by the same considerations as for the previous case we get (6.98).

By (a)i) it follows at once that |aj − ak| ≤ d(xj , xk).
Since by Proposition 6.5 the eigenfunction uε is localized at some of the wells and it is assumed

to be normalized, there is by (a)ii) at least one well xj with aj = 0 and the eigenfunction uε is
localized at those wells xk, for which ak = 0. At all the other wells, it is exponentially small.

Since the number rj is defined with respect to ψ, it depends by (a)ii) on the eigenfunction uε
(and thus on the eigenvalue λε). It describes radius of the sphere of influence of the well xj with
respect to u. For aj = 0 we have rj ≥ 1

2S0 with equality if for the well xk with dl(xj , xk) = S0

we also have ak = 0. If rj > 0, then inside of the ball around xj with radius rj the eigenfunction
u decreases exponentially with a rate controlled by the distance dj to the well 1. Take j ∈ C such
that rj > 0. Then for k 6= j and x ∈ ∂B(xj , rj) we have by (a)i) the estimate aj + rj − ak =
ψ(x)−ψ(xk) ≤ dl(x, xk) = dk(x) and thus aj + rj ≤ ak + dk(x) and aj +2rj ≤ ak + dj(x)+ dk(x).
By a variation over x ∈ ∂B(xj , rj), we get

aj + 2rj ≤ ak + d(xj , xk) for all k 6= j, k ∈ C .

To show the estimates on e
aj
ε ‖uε‖`2(B(xj ,rj)) given in Lemma 6.25, we need the following hypoth-

esis on the function ψ.

1In this sense one might say that for rj > 0 the eigenfunction uε “feels” the well xj , having at xj a little bump.

For aj > 0 this bump is on an exponentially small level



6.4. THE “SPECTRUM” OF ONE WELL 113

Hypothesis 6.24. We assume that the function ψ given in Definition 6.22 remains the max-
imal function satisfying (a)i) and (a)ii), if we replace the interval (0, ε0] by any subset J ⊂ (0, ε0]
with accumulation point zero.

Lemma 6.25. In the setting of Definition 6.22 choose xj such that rj > 0 and assume that
Hypothesis 6.24 holds. Let Bε(xj , rj) := B(xj , rj) ∩ (εZ)d.

Then for any δ > 0 there exists a constant Cδ > 0 and ε0 > 0 such that for all ε ∈ (0, ε0]
1
Cδ
e−

δ
ε ≤ e

aj
ε ‖uε‖`2(Bε(xj ,rj)) ≤ Cδe

δ
ε . (6.99)

Proof:

For simplicity we supress the ε-dependance of u, writing u = uε.
The second inequality in (6.99) follows directly from property (a)ii) in the definition of ψ and rj ,
since

e
aj
ε ‖u‖`2(Bε(xj ,rj)) ≤

∥∥∥∥e aj+djε u

∥∥∥∥
`2(Bε(xj ,rj))

=
∥∥∥eψε u∥∥∥

`2(Bε(xj ,rj))
= O

(
e
δ
ε

)
.

The first inequality in (6.99) is valid, since ψ was chosen to be the maximal function with the
properties given in Definition 6.22(a)i),ii) even for a subset of (0, ε0) with accumulation point 0.
This can be seen by contradiction. The formal contradiction of the statement leads to statement
holding for all C and ε0. Thus we assume that there exists a δ̃0 > 0 such that for all n ∈ N∗ there
exists a εn < ε0

n such that

e
aj
εn ‖u‖`2(Bε(xj ,rj)) <

1
n
e−

δ0
εn . (6.100)

It follows from the definition of εn, that (6.100) holds for all ε ∈ J := {εn |n ∈ N∗}, where
J ⊂ [0, ε0) with accumulation point zero.

Setting for δ0 := min{δ̃0, rj} and Bδ0 := B(xj , δ02 )

ψ̃(x) :=

{
aj + δ0

2 , x ∈ Bδ0
ψ(x) , x ∈ (εZ)d \Bδ0

we have ψ̃(x) ≥ ψ(x) for all x ∈ Rd and ψ̃(x) > ψ(x) for x ∈ Bδ0 . We get by (6.100) and the fact
that ψ(x) = aj + dj(x) for x ∈ Bδ0 that for all n ∈ N∗ there exists εn < ε0

n such that∥∥∥e ψ̃
εn u
∥∥∥
`2(Bδ0,ε)

= e
δ0
2εn e

aj
εn ‖u‖`2(Bδ0,ε) ≤

1
n
e−

δ0
2εn .

This yields for any compact set K ⊂ Rd for any δ > 0∥∥∥e ψ̃
εn u
∥∥∥
`2(Kε)

≤
∥∥∥e ψ

εn u
∥∥∥
`2(Kε\Bδ0,ε)

+
∥∥∥e ψ̃

εn u
∥∥∥
`2(Bδ0,ε)

≤ C1e
δ
εn + C2e

− δ0
2εn ≤ Ce

δ
εn .

showing property (a)ii) in Definition 6.22 for ψ̃, if [0, ε0) is replaced by the subset J . To see (a)i),
we have to analyze the different regions separately.

(a) x, y ∈ Bδ0 ⇒ |ψ̃(x)− ψ̃(y)| = 0 ≤ d(x, y).
(b) x, y /∈ Bδ0 ⇒ |ψ̃(x)− ψ̃(y)| = |ψ(x)− ψ(y)| ≤ d(x, y) by the definition of ψ.
(c) x ∈ Bδ0 , y /∈ Bδ0 : We use the fact that for all z ∈ ∂Bδ0 we have d(x, y) ≤ d(x, z) + d(z, y)

and there exists a constant r > 0 such that d(x, z) ≥ r. The distance d(x, y) = dl(x, y)
was defined in Definition 4.23 as the infimum of the curve length sl of all regular curves
joining x and y with respect to the Finsler function l, thus there exists a regular curve γ,
such that sl(γ) ≤ d(x, y) + r

2 . Denoting by γ(t0) := z0 ∈ ∂Bδ0 the point of intersection of
γ with the boundary of Bδ0 , it follows that

d(x, y) +
r

2
≥ d(x, z0) + d(z0, y) ≥ r + d(z0, y)

and therefore we have d(x, y) ≥ d(z0, y). Since by definition ψ̃(x) = ψ(z0) it follows

|ψ̃(x)− ψ̃(y)| = |ψ(z0)− ψ(y)| ≤ d(z0, y) ≤ d(x, y) .

Thus the function ψ̃ has the properties (a)i) and ii) at least on a subset J ⊂ [0, ε0) with
accumulation point zero and is larger than ψ, which is a contradiction to the definition of
ψ as maximal function with these properties satisfying Hypothesis 6.24. This shows the



114 6. INTERACTION BETWEEN MULTIPLE WELLS

first estimate in (6.99).

2

The next proposition concerns the difference of the spectrum at a given well to the fixed eigen-
value λ of Hε subject to the value of rj .

Proposition 6.26. For ε ∈ (0, ε0] let uε denote a normalized eigenfunction of Hε with asso-
ciated eigenvalue λε satisfying Hypothesis 6.24 and choose j ∈ C such that rj > 0, where rj is the
radius of the sphere of influence of xj as given in Definition 6.22.

For a(ε) and Iε as defined in Hypothesis 6.3, let c(ε) ∈]0, a(ε)] such that log c(ε) = o
(

1
ε

)
and

B(0, c(ε)) denote the ball of radius c(ε) at zero.
Then for any δ > 0

A(λε, spec(xj)) := min
{
|λε − x| |x ∈ spec

(
HMj
ε

)
∩
(
Iε +B(0, c(ε))

)}
= O

(
e
−2(rj−δ)

ε

)
,

where M j is chosen such that B(xj , rj − δ) ⊂Mj.

Proof:

For the sake of simplicity, we set u = uε and for a set Ω ⊂ Rd we write `2(Ω) instead of `2(Ωε),
where Ωε = Ω ∩ (εZ)d.

Let δ > 0 be fixed and set

Brj := B

(
xj , rj −

δ

2

)
and ũ :=

u

‖u‖`2(Brj )
, (6.101)

such that ‖ũ‖`2(Brj ) = 1. By (6.99) we have ‖u‖`2(Brj ) ≥ Ce−
aj+δ̃
ε for any δ̃ > 0 and therefore

‖ũ‖`2((εZ)d) =
‖u‖`2((εZ)d)

‖u‖`2(Brj )
≤ Ce

aj+δ̃
ε . (6.102)

Since by (6.97) (the definition of rj) we have ψ(x) = dj(x) + aj for x ∈ B(xj , rj), it follows by the
properties of ψ given in Definition 6.22 together with (6.101) and (6.102) with δ̃ = δ

4 that

‖e d
j

ε ũ‖`2(B(xj ,rj)) =
e−

aj
ε

‖u‖`2(Brj )
‖e

ψ
ε u‖`2(B(xj ,rj)) = O

(
e
δ
2ε

)
. (6.103)

Let v := 1Brj ũ, then

Hεv = λv +O

(
e
−(rj−δ)

ε

)
in `2(Brj ) . (6.104)

This can be seen as follows. Since

Hε 1Brj ũ = 1Brj Hεũ+ [Hε,1Brj ]ũ = λv + [Hε,1Brj ]ũ ,

we have to analyze the `2-norm of the commutator, which is given by∥∥∥[Hε,1Brj ]ũ
∥∥∥
`2(Brj )

=

∥∥∥∥∥∥
∑

γ∈(εZ)d

aγ

(
τγ 1Brj −1Brj τγ

)
ũ

∥∥∥∥∥∥
`2(Brj )

=

∥∥∥∥∥∥
∑

γ∈(εZ)d

aγ(.)
(
1Brj (.+ γ)− 1Brj (.)

)
ũ(.+ γ)

∥∥∥∥∥∥
`2(Brj )

Since for x ∈ Brj we have

1Brj (.+ γ)− 1Brj (.) =

{
0 for x+ γ ∈ Brj
−1 for x+ γ /∈ Brj ,
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it follows by the triangle inequality that

∥∥∥[Hε,1Brj ]ũ
∥∥∥
`2(Brj )

=

∥∥∥∥∥∥∥∥−
∑

γ∈(εZ)d
x+γ/∈Brj

aγ(.)ũ(.+ γ)

∥∥∥∥∥∥∥∥
`2(Brj )

≤

∥∥∥∥∥∥∥∥
∑

γ∈(εZ)d
x+γ∈B(xj,rj)\Brj

aγ(.)ũ(.+ γ)

∥∥∥∥∥∥∥∥
`2(Brj )

+

∥∥∥∥∥∥∥∥
∑

γ∈(εZ)d
x+γ/∈B(xj,rj)

aγ(.)ũ(.+ γ)

∥∥∥∥∥∥∥∥
`2(Brj )

=: S1 + S2 . (6.105)

We will analyze S1 and S2 separately.
For x ∈ Brj and x + γ ∈ B(xj , rj) \ Brj it is clear that |γ| < B for some B > 0, thus by (6.103)
and the Hölder inequality we have

S1 =

∥∥∥∥∥∥∥∥
∑

γ∈(εZ)d
x+γ∈B(xj,rj)\Brj

aγ(.)e−
dj(.+γ)

ε e
dj(.+γ)

ε ũ(.+ γ)

∥∥∥∥∥∥∥∥
`2(Brj )

≤ e−
(2rj−δ)

2ε

∑
γ∈(εZ)d
|γ|<B

‖aγ‖`∞(Brj )

∥∥∥e djε ũ∥∥∥
`2(B(xj ,rj))

≤ Ce−
(rj−δ)
ε (6.106)

To estimate S2 we use the exponential decay of the coefficients aγ as assumed in Hypothesis 6.1
(see Remark 6.2) together with (6.102). Since Brj is bounded and |γ| > δ

2 for x ∈ Brj and
x+ γ /∈ B(xj , rj), we get for any A > 0 by the Hölder inequality

S2 ≤
∑
|γ|> δ

2

‖aγ‖l∞(Brj )
‖ũ‖`2((εZ)d) ≤ Ce−

Aδ
2ε e

aj+δ
ε

and thus, choosing A big enough,

S2 ≤ Ce−
rj
ε . (6.107)

Thus inserting (6.106) and (6.107) in (6.105), the statement (6.104) is proven.
Let Ej denote the eigenspace to spec(HMj

ε ) ∩ Iε as introduced in Hypothesis 6.1. Then by
(6.104) we can use Proposition 6.8 to get

~dist(v, Ej) = O

(
e
−(rj−δ)

ε

)
and thus

‖ΠEjv‖`2(Brj ) ≡ ‖v‖`2(Brj ) ≡ 1 modulo O

(
e
−(rj−δ)

ε

)
. (6.108)

In addition we have

HεΠEjv = ΠEj 1Brj Hεũ+ ΠEj [Hε,1Brj ]ũ = ΠEjλv + ΠEj [Tε,1Brj ]ũ . (6.109)

But since
ΠEju(x) =

∑
k

〈u , vj,k〉`2vj,k(x) ,

where {vj,k} is an orthonormal basis for Ej as described in Hypothesis 6.1, we get

ΠEj [Tε,1Brj ]ũ(x) =
∑
k

〈
[Tε,1Brj ]ũ , vj,k

〉
`2
vj,k(x) (6.110)

where〈
[Tε,1Brj ]ũ , vj,k

〉
`2

=
∑

y∈(εZ)d

∑
γ∈(εZ)d

aγ(y)vj,k(y)
[
1Brj (y + γ)− 1Brj (y)

]
ũ(y + γ) . (6.111)



116 6. INTERACTION BETWEEN MULTIPLE WELLS

The following considerations are similar to the proof of Proposition 6.5 and (6.104). We notice
that the summands vanish if y and y + γ are both inside or outside of Brj , more precisely

1Brj (y + γ)− 1Brj (y) =


0 for y, y + γ ∈ Brj or y, y + γ /∈ Brj
1 for y /∈ Brj , y + γ ∈ Brj
−1 for y ∈ Brj , y + γ /∈ Brj .

Thus by (6.111)〈
[Tε,1Brj ]ũ , vj,k

〉
`2

= −
∑
y∈Brj

∑
γ∈(εZ)d
y+γ/∈Brj

aγ(y)vj,k(y)ũ(y + γ) +
∑
y/∈Brj

∑
γ∈(εZ)d
y+γ∈Brj

aγ(y)vj,k(y)ũ(y + γ) .

By use of B(xj , rj), we can split both sums again to get〈
[Tε,1Brj ]ũ , vj,k

〉
`2

= −
∑
y∈Brj

∑
γ∈(εZ)d

y+γ∈B(xj,rj)\Brj

aγ(y)vj,k(y)ũ(y + γ)

−
∑
y∈Brj

∑
γ∈(εZ)d

y+γ/∈B(xj,rj)

aγ(y)vj,k(y)ũ(y + γ)

+
∑

y∈B(xj ,rj)\Brj

∑
γ∈(εZ)d
y+γ∈Brj

aγ(y)vj,k(y)ũ(y + γ)

+
∑

y/∈B(xj ,rj)

∑
γ∈(εZ)d
y+γ∈Brj

aγ(y)vj,k(y)ũ(y + γ)

=: S1 + S2 + S3 + S4 . (6.112)

By the definition of Brj and the triangle inequality, we get

|S1| =
∑
y∈Brj

∑
γ∈(εZ)d

y+γ∈B(xj,rj)\Brj

∣∣∣∣aγ(y)vj,k(y)e− 2dj(y+γ)
ε e

2dj(y+γ)
ε ũ(y + γ)

∣∣∣∣ ≤
≤ e−

(2rj−δ)
ε

∑
y∈Brj

∑
γ∈(εZ)d

y+γ∈B(xj,rj)\Brj

∣∣∣∣aγ(y)e d(y,y+γ)ε vj,k(y)e
dj(y)
ε e

dj(y+γ)
ε ũ(y + γ)

∣∣∣∣ .
Since for y ∈ Brj and y+ γ ∈ B(xj , rj) \Brj we get |γ| < B for some B > 0, the Hölder inequality
yields

|S1| ≤ e−
(2rj−δ)

ε

 ∑
|γ|<B

∥∥∥aγe d(.,.+γ)ε

∥∥∥
l∞(Brj )

∥∥∥vj,ke djε ∥∥∥`2(Brj )
∥∥∥e djε ũ∥∥∥

`2(B(xj ,rj))
≤

≤ Ce−
(2rj−δ)

ε ε−N0e
δ
2ε = O

(
e
−2(rj−δ)

ε

)
. (6.113)

The last estimate follows from Corollary 6.4, (6.103) and (6.4).
To estimate the norm of S2, we use that for x ∈ Brj and x + γ /∈ B(xj , rj) we have |γ| ≥ δ

2 .
Thus by use of the Hölder inequality

|S2| =
∑
y∈Brj

∑
γ∈(εZ)d

y+γ/∈B(xj,rj)

|aγ(y)vj,k(y)ũ(y + γ)| ≤

≤
∑

γ∈(εZ)d

|γ|≥ δ2

‖aγ‖l∞(Brj )
‖vj,k‖`2(Brj ) ‖ũ‖`2((εZ)d) =

≤ Ce−
Aδ
2ε e

aj+δ
ε = O

(
e
−C
ε

)
(6.114)

for any C > 0, where in the last step we used the exponential decay of aγ described in (6.3)
together with (6.102). To estimate the third sum S3, we go along the same lines as for S1. By the
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triangle inequality for dj and the Hölder inequality, we have for some B

|S3| =
∑

y∈B(xj ,rj)\Brj

∑
γ∈(εZ)d
y+γ∈Brj

∣∣∣∣aγ(y)e− 2dj(y)
ε e

dj(y)
ε vj,k(y)e

dj(y)
ε ũ(y + γ)

∣∣∣∣ ≤
≤ e−

(2rj−δ)
ε

∑
y∈B(xj ,rj)\Brj

∑
γ∈(εZ)d
y+γ∈Brj

∣∣∣∣aγ(y)e d(y,y+γ)ε e
dj(y)
ε vj,k(y)e

dj(y+γ)
ε ũ(y + γ)

∣∣∣∣ ≤

≤ e−
(2rj−δ)

ε

 ∑
|γ|<B

∥∥∥aγ(.)e dl(.,.+γ)ε

∥∥∥
l∞(B(xj ,rj)\Brj )

∥∥∥vj,ke djε ∥∥∥`2(B(xj ,rj))

∥∥∥e djε ũ∥∥∥
`2(Brj )

.

Thus by use of Corollary 6.4, (6.103) and (6.4), we get

|S3| ≤ Ce−
(2rj−δ)

ε ε−N0e
δ
2ε = O

(
e
−2(rj−δ)

ε

)
. (6.115)

With the same arguments as in the estimate of S2 (i.e. in particular by the exponential decrease
of aγ), we get for S4

|S4| =
∑

y/∈B(xj ,rj)

∑
γ∈(εZ)d
y+γ∈Brj

|aγ(y)vj,k(y)ũ(y + γ)| ≤

≤ ‖vj,k‖`2((εZ)d)

∑
γ∈(εZ)d

|γ|≥ δ2

‖aγ‖`∞((εZ)d\B(xj ,rj))
‖ũ‖`2(Brj ) =

= O
(
e
−C
ε

)
(6.116)

for any C > 0. Inserting (6.113), (6.114), (6.115) and (6.116) into (6.112) gives〈
[Tε,1Brj ]ũ , vj,k

〉
`2

= O

(
e
−2(rj−δ)

ε

)
and thus we have by (6.110)

ΠEj [Tε,1Brj ]ũ = O

(
e
−2(rj−δ)

ε

)
. (6.117)

Inserting (6.117) into (6.109) gives in `2(Brj )

HεΠEjv = λΠEjv +O
(
e
−2rj+δ

ε

)
and thus

HMj
ε ΠEjv = 1Mj HεΠEjv = λΠEjv +O

(
e
−2rj+δ

ε

)
.

Since Ej is the eigenspace of HMj
ε with respect to Iε, we have on the other hand HMj

ε ΠEjv = µΠEjv
for some µ ∈ spec(xj), therefore

(λ− µ)ΠEjv = O

(
e
−2(rj−δ)

ε

)
.

Thus by (6.108) the proposition is shown.
2

It follows from Proposition 6.26 that if for a well xj one has for all δ > 0

A(λ, spec(xj)) ≥
1
Cδ
e−

δ
ε ,

then rj = 0. As described above Proposition 6.26 one might say that the eigenfunction u does not
“feel” the well xj , or in other words the existence of the well at xj has no influence on the decay
of u. Such a well is called non-resonant with respect to the eigenvalue λ.
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6.5. Comparison of exact and asymptotic Dirichlet eigenfunctions

To relate the asymptotic sums constructed in Chapter 3 with the eigenfunctions of the Dirichlet
operator, we fix one well x1 and choose coordinates centered at x1 (i.e. we set x1 = 0). As
discussed in Remark 3.2, this special choice can be done without loss of generality. We consider
the normalized eigenfunctions v1,k associated to the eigenvalue µ1,k for 1 ≤ k ≤ n1, where µ1,k ∈
Iε = [0, R0ε] and R0 is not an element of the spectrum of the harmonic oscillator K as introduced
in Chapter 2.

The analysis of the distance between the spectra of the operators Hε and HMj
ε in the preceding

subsections, especially Corollary 6.15 combined with Theorem 2.10 for the case of one well (i.e. if
m = 1) lead to the following result, where H1 is defined in (2.48).

Corollary 6.27. There exists a bijection b : spec(HM1
ε )∩ Iε → spec(H1)∩ Iε and a constant

C0 > 0, such that for all ε ∈ (0, ε0]

|b(λ)− λ| ≤ C0ε
6
5 .

Hypothesis 6.28. We denote by E1,0 the eigenspace of HM1
ε for the interval Iε(E0) = εE0 +

B(0, C0ε
6
5 ), where E0 is an eigenvalue of the harmonic oscillator K defined in Theorem 2.10. Let

N0 denote the dimension of E1,0. Let {v1,1, . . . , v1,N0} be an orthonormal basis of eigenfunctions
of E1,0 and {µ1,1, . . . µ1,N0} the associated eigenvalues.

Let Ø′ ⊂ M1 be an open sufficiently small neighborhood of x1 as described in Chapter 3 and
χ ∈ C∞

0 (Rd) a cut-off function, which is supported in Ø′ and equal to 1 in Ø. For the (realizations
of) asymptotic sums a1,k and Ẽ1,k defined in (3.92) and (3.93) let

û1,j := ε
d
4 a1,je

−ϕ
ε χ , 1 ≤ k ≤ N0

and denote by Ẽ1,0 the span of {û1,1, . . . , û1,N0}.

By use of Theorem 3.18 and Corollary 6.27 the next corollary follows from Proposition 6.8
(with δ = O(ε∞), a−1 = O(ε−

6
5 ) and N = N0)).

Corollary 6.29. For E1,0 and Ẽ1,0 defined in Hypothesis 6.28, we have

~dist(E1,0, Ẽ1,0) = O (ε∞) .

The eigenvalues of HM1
ε in Iε(E0) are given by εẼ1,k +O (ε∞).

It follows from Corollary 6.29, that there is an orthogonal matrix (cj,k(ε))1≤j,k≤N0
, such that

v1,j =
N0∑
k=1

cj,kû1,k +O (ε∞) , (6.118)

where (cj,k) can be chosen such that cj,k = 0 if Ẽ1,k is not asymptotically equal to µ1,j . If all Ẽ1,j

have different expansions, then (cj,k) may be chosen as identity matrix.
In Bao-Chern-Shen [6] it is shown, that short geodesics minimize the distance and are unique

up to reparameterization . We call a geodesic between two points minimal, if its length equals
the metric distance between these points. By Lemma 4.24 together with the construction of φ in
Section 3.2, we can choose a subset Ø of M1, such that the following statements hold.

Hypothesis 6.30. Let Ø ⊂M1 containing 0(= x1), such that the following holds.
(a) For d1(x) := d(x1, x) let Λ+ := {(x,∇d1(x)) | x ∈ Ø}, then we assume that etXq (x, ξ) ⊂

Λ+ for all t ≤ 0, (x, ξ) ∈ Λ+ and etXq (x, ξ) → (0, 0) for t→ −∞, i.e. that Λ+ is equal to
the outgoing manifold defined in Section 3.2.

(b) The base integral curves of the Hamiltonian vector field Xq joining any two points in
Ω \ {0} realize the minimal geodesics with respect to the Finsler distance d as introduced
in Definition 4.4.

The restriction of Ø to the lattice is denoted by Øε.
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By Proposition 4.18, the base integral curves on Rd \ {x1, . . . xm} are geodesics with respect
to d. Since it is shown in Abate-Patricio [1], Thm. 1.6.6., that short geodesics are minimal, as-
sumption (b) holds for Ω sufficiently small.
The same is true for assumption (a), since by Proposition 4.24 for Ø small enough d0 = ϕ on Ø,
where ϕ denotes the solution of the eikonal equation (3.10). The fact that (a) holds for d1 replaced
by ϕ follows from the construction of ϕ in Section 3.2 for Ø sufficiently small. Since ϕ ∈ C∞(Ø),
the same is true for d1.

Lemma 6.31. Let Xq denote the Hamilton vector field defined in (3.14) and for x0 ∈ Ω let
xt(x0) denote the base integral curve of Xq given by

]−∞, 0[3 t 7→ Πxe
tXq (x0,∇d1(x0)) =: xt(x). (6.119)

Let y0 ∈ Ø such that y0 /∈ {0} ∪ {xt(x0) | −∞ < t ≤ 0}, then

d1(x0) < d1(y0) + d(y0, x0) .

Proof:

By the triangle inequality the statement is true for ≤ instead of <. The idea of the proof is to
show, that equality may only occur, if y0 lays on the integral curve of Xq with starting point x0.

Let γ0 : [0, 1] → Ø be the curve along the segment {0}∪{xt(x0) | −∞ < t ≤ 0}, parameterized
such that γ0(0) = x0 and γ0(1) = 0. Thus γ0 is by construction and Hypothesis 6.30 a minimal
geodesic between 0 and x0. In Bao-Chern-Shen [6], Thm. 6.3.1, it is shown that minimal geodesics
are unique up to reparameterization. Equality in the lemma would contradict this uniqueness,
because this would mean that there are two different curves from 0 to x0, which minimize the
curve length and are thus minimizing geodesics.

2

By a standard compactness argument, we have the following

Corollary 6.32. Let K1, K2 ⊂ Ø be compact and assume that K2 is disjoint from K̂1, the
compact union of all minimal geodesics from all points of K1 to 0.
Then there exists δ > 0 such that for all x ∈ K̂1, y ∈ K2

d1(x) ≤ (1− δ)
(
d1(y) + dl(y, x)

)
.

The main purpose of this section is to compare for one fixed well, which we choose to be x1,
the asymptotic eigenfunctions derived via WKB-procedure with the exact eigenfunctions. To get
approximate eigenfunctions, which are defined in Ø , we replace the phase function ϕ by the Finsler
distance d1 associated to the well and solve the transport equations globally. Then the functions
ûik constructed in Section 3.5.2 satisfy (3.95) for x ∈ Ø. In consideration of the different normal-
ization factors in L 2 and `2, we multiply the factor ε

d
2 to the original version of the approximate

eigenfunctions constructed in Section 3.5.2.

Theorem 6.33. Let Ø ⊂⊂ M1 satisfying Hypothesis 6.30. For a1,k given in Theorem 3.18
and χ ∈ C∞

0 (Rd) with χ(x) = 1 for x ∈ Ø, let

û1,j := ε
d
4 a1,je

− d1
ε χ , 1 ≤ k ≤ N0 (6.120)

and define v′1,j :=
∑
k cj,kû1,k, where (cj,k) is the matrix determined by (6.118).

Then for every compact set K ⊂ Ø, for every N ∈ N and for all ε ∈ (0, ε0]∥∥∥e d1ε (v1,k − v′1,k
)∥∥∥
`2(Kε)

= O
(
εN
)
,

where Kε := K ∩ (εZ)d.

Proof:
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For w := v1,k − v′1,k, we set

(HM1
ε − Ek)v1,k − (HM1

ε − Ek)v′1,k = (HM1
ε − Ek)w =: r .

Since the first term on the left hand side vanishes exactly on Ø and the second is by Theorem 3.18
of order εNe−

d1
ε for any N ∈ N, we get for any compact K ⊂ Ø the estimate∥∥∥e d1ε r∥∥∥

`2(Kε)
= O

(
εN
)
. (6.121)

In addition, from the definition of the functions v′1,k and Corollary 6.4, it follows that for some
N0 ∈ N ∥∥∥e d1ε w∥∥∥

`2(Kε)
= O

(
ε−N0

)
. (6.122)

By (6.118) we have v1,k = v′1,k +O (ε∞), thus for any N ∈ N and K ⊂ Ø

‖w‖`2(Kε) = O
(
εN
)
. (6.123)

For a fixed compact set K ⊂ Ø, we denote by K̂ the union of all minimal geodesics from 0 to
points in K. In order to use Lemma 5.3, we have to consider functions u, which are supported on
the bounded region Ø. Therefore we choose a compact set G such that K ⊂⊂ G ⊂ Ω and define
w̃ := 1G w. Then by (6.121) and (6.122) we have for all N ∈ N and some N0 ∈ N∥∥∥e d1ε (HM1

ε − Ek)w̃
∥∥∥
`2(Øε)

≤
∥∥∥e d1ε 1G(HM1

ε − Ek)w
∥∥∥
`2(Gε)

+
∥∥∥e d1ε [HM1

ε ,1G]w
∥∥∥
`2(δGε)

= O
(
εN
)

+O
(
ε−N0

)
, (6.124)

where for the estimate of the second summand we used in addition the boundedness of the com-
mutator and Lemma 6.18. Here we choose δ such that δG∩ K̂ = ∅. In order to take the estimates
in the different regions into account, we define for N ∈ N the phase function

ΨN (x) := min{ΦN (x),Ψ(x)} , (6.125)

where for the phase function Φ defined in (5.14) in the proof of Theorem 5.4 and δ̃ > 0 as in
Corollary 6.32 we set

ΦN (x) := Φ(x) +Nε log
1
ε

and Ψ(x) := inf
y∈δG

Φ(y) + (1− δ̃)d(x, y) . (6.126)

Then for some neighborhood W of K̂ and for each N there is an εN such that for all ε < εN

ΨN (x) = ΦN (x) , x ∈W . (6.127)

This can be seen as follows. We have B := {d(x) < Bε} ⊂W for ε small enough, Φ(x) ≤ Φ(y) for
x ∈ B, y /∈ B and Φ is monotonically increasing with d for x /∈ B, i.e. Φ(x) ≥ Φ(y) if d(x) ≥ d(y).
Therefore we can restrict the discussion to the case d(x) ≥ Bε, where the function g is equal to
one. It follows from Corollary 6.32, that Φ(x) ≤ (1 − δ̃)(Φ(y) + d(x, y)) for x ∈ K̂ and y ∈ δG,
leading to the estimate

ΦN (x) ≤ inf
y∈δG

−δ̃Φ(y) +Nε log
1
ε

+ Φ(y) + (1− δ̃)d(x, y) ≤ Ψ(x) ,

where the second estimate holds for ε small enough to ensure that Nε log 1
ε ≤ δ̃Φ(y) for all y ∈ δG.

This shows (6.127).
Furthermore for x ∈ δG it is clear that Ψ(x) ≤ Φ(x) and therefore

ΨN (x) = Ψ(x) ≤ Φ(x) , x ∈ δG . (6.128)

Since ΨN was defined as minimum, we have in addition

ΨN (x) ≤ ΦN (x) , x ∈ Ø . (6.129)

Now the proof goes along the lines of the proof of Theorem 5.4. Thus we start to give estimates
for Vε + V ΨN , where V ΨN is defined by (5.2).

It follows at once by the definition of V ΦN and of ΦN , that V Φn = V Φ. Thus we have by
(5.37) and (5.38) the estimates

Vε(x) + V ΦN (x) ≥ −C5 ε for d(x) < Bε (6.130)
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and

Vε(x) + V ΦN (x) ≥
(
B

C0
− C5

)
ε for d(x) ≥ Bε . (6.131)

To analyze Vε + V Ψ, we first notice that Ψ is upper-C 2 on G in the sense of Rockafellar-Wets [51]
and thus Lipschitz continuous. It follows at once from [51], Theorem 10.31, that

LΨ(x) := lim sup
x1,x2→x

|Ψ(x1)−Ψ(x2)|
|x1 − x2|

= max
y∈Yx

(1− δ̃)|∇xd(x, y)| , x ∈ G ,

where Yx := {y ∈ δG |Ψ(x) = Φ(y) + (1 − δ̃)d(x, y)}. Furthermore is follows from [51], Theorem
10.31 and Theorem 9.7 that Ψ is differentiable almost everywhere (Theorem of Rademacher) and
that |∇Ψ| = LΨ. Thus ∇Ψ = maxy∈Yx(1− δ̃)|∇xd(x, y)| almost everywhere and by the generalized
eikonal inequality (4.80) it follows that for some a > 0

V0(x) + t(x,−i∇Ψ(x)) ≥ V0(x)− (1− δ̃)V0(x) = δ̃V0(x) ≥ a , x /∈W . (6.132)

Similar to the proof of Theorem 5.4, it is necessary to estimate Vε +V Ψ, thus by use of (5.26) and
(5.27) it remains to find an estimate for V Ψ(x)− t(x,−i∇Ψ(x)). We have

∣∣V Ψ(x)− tΣ(x,−i∇Ψ)
∣∣ =

∣∣∣∣∣∣∣
∑

γ∈(εZ)d
x+γ∈Ω

aγ(x)
{

cosh
(

1
ε
(Ψ(x)−Ψ(x+ γ))

)
− cosh

(
−1
ε
γ∇Ψ(x)

)}∣∣∣∣∣∣∣
≤
∑
γ∈Ω′x

|aγ(x)|
∣∣∣∣cosh

(
1
ε
(Ψ(x)−Ψ(x+ γ))

)
− cosh

(
−1
ε
γ∇Ψ(x)

)∣∣∣∣ , x ∈ Ø , (6.133)

where Ø′
ε(x) := {γ ∈ (εZ)d |x + γ ∈ Ø}. As in the proof of Theorem 5.4, we get by the Mean

Value Theorem∣∣∣∣cosh
(

1
ε
(Ψ(x)−Ψ(x+ γ))

)
− cosh

(
−1
ε
γ∇Ψ(x)

)∣∣∣∣
≤ sup
t∈[0,1]

e|
1
ε{(Ψ(x)−Ψ(x+γ))t−γ∇Ψ(x)(1−t)}|

∣∣∣∣1ε{(Ψ(x)−Ψ(x+ γ)) + γ∇Ψ(x)}
∣∣∣∣ . (6.134)

Since Ψ is Lipschitz continuous and the region is bounded, we have for some C, C̃

|γ∇Ψ(x)| ≤ C|γ| and |Ψ(x)−Ψ(x+ γ)| ≤ C̃ (6.135)

for all x, where Ψ is differentiable and for all γ ∈ Ø′
ε(x). Thus there exists a constant D > 0,

such that the exponential term on the right hand side of (6.134) can for almost all x ∈ Ø, for all
γ ∈ Ø′

ε(x) and for all ε ∈ (0, ε0] be estimated as∣∣∣e 1
ε{(Ψ(x)−Ψ(x+γ))t+γ∇Φ(x)(1−t)}

∣∣∣ ≤ e
D
ε |γ| . (6.136)

By second order Taylor-expansion, the remaining factor on the right hand side of (6.134) can be
estimated as

1
ε
|(Ψ(x)−Ψ(x+ γ)) + γ∇Ψ(x)| ≤ sup

t∈[0,1]

1
ε

∣∣∣∣∣
d∑

ν,µ=1

γνγµ∂ν∂µΨ(x+ tγ)

∣∣∣∣∣ . (6.137)

Again by Rockafellar-Wets [51], Thm. 9.7 and Thm.10.31, the modulus of the second derivative of
Ψ at a point x is equal to the the second derivative of d(x, y) for some y ∈ δG, which is bounded
for all x ∈ Ø. Therefore we get for some C3 > 0

1
ε
|(Ψ(x)−Ψ(x+ γ)) + γ∇Ψ(x)| ≤ C3

ε
|γ|2 , (6.138)

yielding to ∣∣V Ψ(x)− t(x,−i∇Ψ(x))
∣∣ ≤ εC4 . (6.139)

for some C4 by the same arguments as in the proof of Theorem 5.4.
Thus we have by (6.130), (6.131), (6.132), (5.27) and (6.139)

Vε(x) + V ΨN (x) ≥ −C6 ε for d(x) < Bε (6.140)
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and

Vε(x) + V ΨN (x) ≥
(
B

C0
− C6

)
ε for d(x) ≥ Bε . (6.141)

We now choose B such that
(
B

C0
− C6)ε− Ek ≥ ε

and define for

Ø− := {x ∈ Ø |Vε(x) + vΨN (x)− Ek < 0} and Ø+ := Ø \Øl

the functions F± : Ø → [0,∞) by

F+(x) :=
√
ε1{d(x)<Bε}(x) + (Vε(x) + V ΨN (x)− Ek)1Ø+(x) (6.142)

F−(x) :=
√
ε1{d(x)<Bε}(x) + (Ek − Vε(x)− V ΨN (x))1Ø−(x) . (6.143)

Then F± are well defined and there exists a constant C > 0 such that

F := F+ + F− ≥ C
√
ε > 0 , F− = O(

√
ε) and F 2

+ − F 2
− = Vε + V ΨN − Ek . (6.144)

Furthermore by (6.140) and (6.141)

suppF− ⊂ {d(x) < Bε} . (6.145)

Now we are going to use Lemma 5.3, yielding for v = e
ΨN
ε 1G w the estimate∥∥∥FeΨN

ε 1G w
∥∥∥2

`2(Øε)
≤ 4

∥∥∥ 1
F e

ΨN
ε

(
HM1
ε − Ek

)
1G w

∥∥∥2

`2(Øε)
+ 8

∥∥∥F−eΨN
ε 1G w

∥∥∥2

`2(Øε)
. (6.146)

Since e
ΦN
ε = e

Φ
ε ε−N , we have by (6.127), (6.144) and (5.47) for some N0 ∈ N∥∥∥FeΨN

ε 1G w
∥∥∥2

`2(Øε)
≥
∥∥∥FeΨN

ε 1G w
∥∥∥2

`2(Kε)
≥ Cε1+N0−N‖e d

1
ε w‖`2(Kε) (6.147)

and by (6.145) and (6.123)∥∥∥F−eΨN
ε 1G w

∥∥∥2

`2(Øε)
=
∥∥∥F−eΨN

ε w
∥∥∥2

`2({d(x)<Bε}ε)
≤ Cε1−N ‖w‖2`2({d(x)<Bε}ε) = O(1) . (6.148)

Furthermore by (6.128), (6.144) and (6.129)∥∥∥ 1
F e

ΨN
ε

(
HM1
ε − Ek

)
1G w

∥∥∥2

`2(Øε)
≤
∥∥∥ 1
F e

ΨN
ε 1G

(
HM1
ε − Ek

)
w
∥∥∥2

`2(Gε)
+
∥∥∥ 1
F e

ΨN
ε

[
HM1
ε ,1G

]
w
∥∥∥2

`2(δGε)

≤ Cε1+N0−N
∥∥∥e d1ε (HM1

ε − Ek
)
w
∥∥∥2

`2(Gε)
+
∥∥∥ 1
F e

Φ
ε

[
HM1
ε ,1G

]
w
∥∥∥2

`2(δGε)

= O(1) +O
(
ε−N0

)
, (6.149)

where in the last step we used (6.124). Thus inserting (6.147), (6.148) and (6.149) in (6.146) yields

‖e d
1
ε w‖`2(Kε) = O

(
εN
)

for all N ∈ N, proving the theorem.
2

6.6. Asymptotic eigenfunctions and the interaction matrix

Theorem 6.33 enables us, to analyze the elements wαβ of the transition matrix by use of the
approximate eigenfunctions û1,j in the case of two wells as introduced in Hypothesis 6.17.

Since in Chapter 3 the well was assumed to be at zero, we have to translate the asymptotic
expansions ûα and ûβ to the wells xj(α) and xj(β) respectively.

Hypothesis 6.34. In the setting of Hypothesis 6.17 we simplify the notation by writing xj and
xk for the wells, µj , µk for the Dirichlet eigenvalues respectively and E := Eαβ for the ”ellipse”.
In addition we assume the following:

(a) There are neighborhoods Ωj and Ωk of the points xj and xk respectively, such that Hy-
pothesis 6.30 is fulfilled for the distance functions dj and dk in Ωj and Ωk respectively.
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(b) The assumptions on E and Ω given in Hypothesis 6.17 hold for
◦
M j(α) and

◦
M j(β) replaced

by Ωj and Ωk.
(c) The Finsler distance between the two wells is minimal, i.e. dl(xj , xk) = S0 and there is a

unique geodesic γjk of length S0 joining them, which is included in Øj ∪Øk.
(d) For yjk ∈ γjk ∩ Øj ∩ Øk choose the neighborhood Ω defined in Hypothesis 6.17 such that

Γ := ∂Ø∩E ∩Øj ∩Øk defines a smooth hypersurface intersecting γjk transversally at yjk
and having no other intersections with γjk (here ∂Ø denotes the boundary of Ø).

(e) For A ⊂ Rd and δ > 0 we define δA := {x ∈ Rd | ∃y ∈ ∂A : |x − y| ≤ δ}. Then we set

δ̂Γ
(c)

:= δΩ ∩ Ω(c) ∩ E and δ̂Γ
(c)

ε := δ̂Γ
(c)
∩ (εZ)d.

With the assumptions in Hypothesis 6.34, it is by Theorem 6.33 possible to replace modulo
terms of order e−

S0
ε ε∞ the Dirichlet eigenfunctions, which are needed to compute the interaction

matrix wjk, by their approximating WKB-expansions.

Proposition 6.35. If Hypothesis 6.34 holds, then for

ûl := ε
d
4 ale

− dl

ε χ , l = j, k ,

where al denotes the asymptotic expansion (3.92) at the well xl, the elements of the interaction
matrix are given by

wjk =
〈
1cδΓε ûj , Tε 1cδΓcε ûk

〉
`2
−
〈
Tε 1cδΓcε ûj , 1cδΓε ûk

〉
`2

+O
(
ε∞e−

S0
ε

)
=

∑
x∈cδΓε

∑
γ∈(εZ)d

x+γ∈cδΓcε
aγ(x)

∑
l≥−Nj

∑
m≥−Nk

εl+m+ d
2

(
ãj,l(x)e−

dj(x)
ε ãk,m(x+ γ)e−

dk(x+γ)
ε

−ãj,l(x+ γ)e−
dj(x+γ)

ε ãk,m(x)e−
dk(x)
ε

)
+O

(
e−

S0
ε ε∞

)
.

The constants Nj and Nk depend on the energy µj and µk. If µj and µk are both principle
eigenvalues for the Dirichlet operators, then Nj = Nk = 0.

Proof:

Since by Hypothesis 6.17 each of the two wells has exactly one eigenvalue within the spectral
interval Iε, we have v′j = ûj in the setting of Theorem 6.33. We denote by ≡ equality modulo

O
(
e−

S0
ε ε∞

)
. Setting

A := 1cδΓε Tε 1cδΓcε −1cδΓcε Tε 1cδΓε , (6.150)

we have by Proposition 6.19 to estimate the difference∣∣wjk − 〈ûj , Aûk〉`2∣∣ =
∣∣〈vj , Avk〉`2 − 〈ûj , Aûk〉`2∣∣+O

(
e
−(S0+a−δ)

ε

)
≤

∣∣〈vj − ûj , Avk〉`2
∣∣+ ∣∣〈ûj , A(vk − ûk)〉`2

∣∣+O
(
e
−(S0+a−δ)

ε

)
.(6.151)

where vj , vk denote the exact Dirichlet eigenfunctions. We have by (6.150), the triangle inequality
and since dj(x) + dk(x) ≥ S0 for all x ∈ E

∣∣〈vj − ûj , Avk〉`2
∣∣ =

∣∣∣∣∣∣
∑

x∈(εZ)d

∑
γ∈(εZ)d

[
1cδΓε(x)1cδΓcε(x+ γ)− 1cδΓcε(x)1cδΓε(x+ γ)

]
×

×e
dj(x)
ε e−

dj(x)
ε (vj(x)− ûj(x)) aγ(x)e

dk(x)
ε e−

dk(x)
ε vk(x+ γ)

∣∣∣∣
≤ e−

S0
ε

∥∥∥e djε (vj − v′j)
∥∥∥
`2(cδΓε∪cδΓcε)

∥∥∥e dkε vk∥∥∥
`2(cδΓε∪cδΓcε)

∑
|γ|<B

∥∥∥aγe d(.,.+γ)ε

∥∥∥
`∞(cδΓ∪cδΓc) .

In the last step we used ûj = v′j and that for some B > 0 we have |γ| < B if x ∈ δ̂Γε and x+γ ∈ δ̂Γ
c

ε

and vice versa. Therefore by Theorem 6.33, Theorem 5.6 and (6.4) we have∣∣〈vj − ûj , Avk〉`2
∣∣ = O

(
e−

S0
ε ε∞

)
. (6.152)
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The second summand on the right hand side of (6.151) can be estimated similarly, which proves
the first equation in Proposition 6.35. To get the second equation, we only use the definition of ûj
together with the asymptotic expansion of aj constructed in (3.92).

2

6.6.1. Estimates for the interaction-matrix for finite step kinetic energy. In the set-
ting of Hypothesis (6.34), i.e. if we have only two wells inside a specified region with eigenvalues
inside of an exponentially small interval, we are now going to estimate the interaction matrix in
the case, that the step length of the translations caused by the the kinetic energy operator is
finite and scaled by ε, i.e., aγ vanishes for |γ| > Nε for some N . Furthermore we will restrict the
discussion to energies, which belong to the ground state with respect to the two wells. In this case,
the constants Nj , Nk occurring in the expansion of the interaction matrix wjk in Proposition 6.35
are both equal to zero (see Remark 3.19).

Hypothesis 6.36. We assume that there exists a N ∈ N such that aγ = 0 if |γ| > εN . We
associate to each pair (x, x+γ) ∈ δ̂Γε× δ̂Γ

c

ε, which occurs in the formula for the interaction matrix
element wjk in Proposition 6.35, a point yxγ ∈ Γ as the point of intersection of Γ with the straight
line between x and x+ γ. Then we set

Γ∗ := {y ∈ Γ | y = yxγ , x ∈ δ̂Γε, x+ γ ∈ δ̂Γ
c

ε}
and

δ̂Γ
′
ε(y) := {γ ∈ (εZ)d | ∃x ∈ δ̂Γ : y = yxγ} .

Then we define for y ∈ Γ∗ and ξ ∈ Td

t̃δ(y, ξ) := −
∑

γ∈cδΓ′ε(y)
aγ(y)e

γ·ξ
ε .

We denote by ≡ equality modulo O
(
e−

S0
ε ε∞

)
.

By Hypothesis 6.1, the symbol t̃δ is hyperconvex with respect to ξ (see Remark 4.21).

Theorem 6.37. Under the assumptions given in Hypotheses 6.36 and 6.34, and for v′j as
defined in Theorem 6.33, the elements of the interaction matrix are for δ = Nε given by

wjk ≡
∑
x∈cδΓε

v′j(x)v
′
k(x)

(
t̃δ(x,∇dj(x))− t̃δ(x,∇dk(x)) +O(ε)

)
. (6.153)

If v′j and v′k are both strictly positive in δ̂Γε, we have modulo O
(
ε∞e−

S0
ε

)
∑
x∈cδΓε

v′j(x)v
′
k(x)∇ξ t̃δ(x,∇dk(x))(∇dj(x))−∇dk(x))

≤ wjk ≤
∑
x∈cδΓε

v′j(x)v
′
k(x)∇ξ t̃δ(x,∇dj(x))(∇dj(x))−∇dk(x)) . (6.154)

Proof:

We start proving that Proposition 6.35 holds for δ = Nε for some N ∈ N. This is a direct
consequence of the assumption aγ = 0 for |γ| > Nε, since then right hand side of (6.94) is equal
to zero for δ = εN and therefore we get

‖([Hε,1A]− 1δA[Hε,1A]1δA)‖∞ = 0 , (6.155)

leading at once to Proposition 6.19 and Proposition 6.35 for this choice of δ.
By Proposition 6.35 we have

wjk ≡
∑
x∈cδΓε

∑
γ∈(εZ)d

x+γ∈cδΓcε
aγ(x)ε

d
2

(
aj(x)e−

dj(x)
ε ak(x+ γ)e−

dk(x+γ)
ε − aj(x+ γ)e−

dj(x+γ)
ε ak(x)e−

dk(x)
ε

)
.

(6.156)



6.6. ASYMPTOTIC EIGENFUNCTIONS AND THE INTERACTION MATRIX 125

By (3.9) and γ = O(ε), Taylor expansion at the points x ∈ δ̂Γε yields∑
γ∈(εZ)d

x+γ∈cδΓcε
aγ(x)aj(x)e−

dj(x)
ε ak(x+γ)e−

dk(x+γ)
ε = −aj(x)ak(x)e−

1
ε (dj(x)+dk(x))(t̃δ(x,∇dk(x))+O(ε)) .

(6.157)
Inserting (6.157) in (6.156) yields

wjk ≡
∑
x∈cδΓε

ε
d
2 aj(x)ak(x)e−

1
ε (dj(x)+dk(x))

(
t̃δ(x,∇dj(x))− t̃δ(x,∇dk(x)) +O(ε)

)
.

Since by the assumptions v′l = ûl. where ûl is defined in Proposition 6.35, equation (6.153) is
shown.

To show (6.154), we use that for any convex function f on Rd

∇f(η)(ξ − η) ≤ f(ξ)− f(η) ≤ ∇f(ξ)(ξ − η) , η, ξ ∈ Rd .

Thus for v′j and v′k both positive in δ̂Γ, (6.159) follows from the convexity of t̃δ.
2

Now we restrict ourselves to the case, that E0 describes the ground state of the system with
respect to xj and xk. Then it is possible to give the leading order term with respect to ε.

Theorem 6.38. Under the assumptions given in Hypotheses 6.36 and 6.34, we assume that
E0 is the principal eigenvalue of the harmonic oscillators at xj and xk. Then

|wjk| = O
(
ε

1
2 e−

S0
ε

)
. (6.158)

If v′j and v′k are both strictly positive on Γ and Γ is transversal to all geodesics from xj and xk to
y ∈ Γ, we have for some C > 0

Cε
1
2 ≤ −wjke

S0
ε ≤ 1

C
ε1−

d
2 . (6.159)

If furthermore there exists a constant C > 0 such that

dj(y) + dk(y) ≥ S0 +
1
C
d2(y, yjk) , (6.160)

we get for some C ′ > 0 the estimate

C ′ε
1
2 ≤ −wjke

S0
ε ≤ 1

C ′
ε

1
2 . (6.161)

Proof:

To show (6.158), we analyze the Taylor expansion at the points yxγ ∈ Γ∗ as introduced in
Hypothesis 6.36. We get

wjk ≡
∑
x∈cδΓε

∑
γ∈(εZ)d

x+γ∈cδΓcε
aγ(x)ε

d
2 aj(yxγ)ak(yxγ)e−

1
ε (dj(yxγ)+dk(yxγ)) (6.162)

× e−
1
ε (∇dj(yxγ)+∇dk(yxγ))(x−yxγ)

(
e−

1
ε∇d

k(yxγ)γ − e−
1
ε∇d

j(yxγ)γ +O(ε)
)
.

By the boundedness of the region δ̂Γ, the fact that the product ajak(yxγ) is of order zero in ε for
the ground state and the estimate (x − y) = O(ε) = γ, which follows from the assumption that
there are only finite steps allowed, it follows

|wjk| ≤ Cε
d
2

∑
y∈Γ∗

e−
1
ε (dj(y)+dk(y)) .

This sum can be estimated via the integral over the hypersurface Γ. By the scaling of the sum
with respect to ε, we get a factor ε−(d−1), since the codimension of Γ is one. Thus we get

|wjk| ≤ C̃ε1−
d
2

∫
Γ

e−
1
ε (dj(y)+dk(y)) dσ(y) . (6.163)
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By Hypothesis 6.34 we have for some C > 0

S0 ≤ dj(y) + dk(y) ≤ S0 + Cd2(y, yjk) , y ∈ Γ . (6.164)

Inserting (6.164) in (6.163) we can use of the method of stationary phase (see for example Grigis-
Sjöstrand [24]) to analyze the integral on the right hand side of (6.163). This leads to an additional
factor ε

d−1
2 and thus to the estimate (6.158).

For (6.159), we have to analyze the terms in (6.162) more detailed. By assumption, aj(y)ak(y) > 0
for all y ∈ Γ. Since Γ was assumed to be transversal to all geodesics from xj and xk, it follows
by the construction of Ø, including xj and excluding xk, and from the definition of δ̂Γ and δ̂Γ

c
in

Hypothesis 6.34, that ∇dk(y)γ < 0 and ∇dj(y)γ > 0 for all y ∈ Γ, γ ∈ δ̂Γ
′
ε(y). Thus there exists a

constant C > 0 such that for all y ∈ Γ, x ∈ δ̂Γ, γ ∈ δ̂Γ
′
ε(y)

1
C
≤ aj(y)ak(y)e−

1
ε (∇dj(y)+∇dk(y))(x−y)

(
e−

1
ε∇d

k(y)γ − e−
1
ε∇d

j(y)γ
)
≤ C . (6.165)

Since by Hypothesis 6.1 the coefficients aγ are negative and bounded, we get by inserting the first
estimate in (6.164) and (6.165) in (6.163)

−wjk ≤
1
C
e−

S0
ε ε

d
2

∑
y∈Γ∗

1 . (6.166)

and by inserting the second estimate in (6.164) and (6.165) in (6.163)

Ce−
S0
ε ε

d
2

∑
y∈Γ∗

e−C
d2l (y,yjk)

ε ≤ −wjk . (6.167)

In both equations, the sum over Γ∗ can be estimated via the integral over Γ. By the scaling of
the sum with respect to ε, we get a factor ε−(d−1), since the codimension of Γ is one. Therefore
(6.166) yields

−wjk ≤
1
C
e−

S0
ε ε1−

d
2 . (6.168)

The integral that we get in (6.167) can be estimated again by the method of stationary phase,
yielding the additional factor ε

d−1
2 . Thus we get by (6.167) together with (6.168) the equation

(6.159). This statement can be improved by an additional assumption (6.160). Then we get
instead of (6.166) the estimate

−wjk ≤
1
C
e−

S0
ε ε

d
2

∑
y∈Γ∗

e−C
d2l (y,yjk)

ε ,

yielding (6.161) again by the method of stationary phase.
2

Thus at least for the principal eigenvalue and under quite strong assumptions it is possible to
find the exact order of wjk with respect to ε. It coincides with the values in the case of Schrödinger
operators on Rd as described in Helffer [29] and in Helffer-Sjöstrand [33].



APPENDIX A

Technical details and supplementary computations

A.1. The discrete Fourier transform

We show some properties of the discrete Fourier transform introduced in Chapter 3.

Equation (2.5):
We show this equation for u ∈ lc

(
(εZ)d

)
, the summable functions with compact support, in order

to check the scaling factors. The generalization to `2
(
(εZ)d

)
can be done by the usual density

arguments, as described in Reed, Simon [49]. By definition

(FεF
−1
ε u)(x) =

(
1√
2π

)d ∫
[−π,π]d

e−
i
εxξ(F−1

ε u)(ξ) dξ =

=
(

1√
2π

)d ∫
[−π,π]d

e−
i
εxξ

(
1√
2π

)d ∑
x′∈(εZ)d

eix
′ ξ
ε u(x′) dξ =

=
(

1
2π

)d ∑
x′∈(εZ)d

u(x′)
∫

[−π,π]d
e
i
ε ξ(x

′−x) dξ .

Since x
ε ∈ Z, we have (

1
2π

)d ∫
[−π,π]d

e
i
ε ξ(x

′−x) dξ =
{

1 for x = x′

0 for x 6= x′

and therefore equation (2.5) is shown for u ∈ lc
(
(εZ)d

)
.

Equation (2.6):
Let g(x) := e−x

2
and f ∈ Pt(Td), the polynomials of trigonometric functions. Then

F−1
ε (gFεf) (ξ) = (2π)−

d
2
∑

x∈(εZ)d

e
i
εx·ξg(x)(Fεf)(x) =

= (2π)−
d
2
∑

x∈(εZ)d

e
i
εx·ξg(x) (2π)−

d
2

∫
[−π,π]d

e−ix
ξ′
ε f(ξ′) dξ′ =

= (2π)−d
∫

[−π,π]d
f(ξ′)

∑
x∈(εZ)d

e
i
εx(ξ−ξ

′)g(x) dξ′ =

= (2π)−
d
2

∫
[−π,π]d

f(ξ′)(F−1
ε g)(ξ − ξ′) dξ′,

where we used, that g is a Schwartz function and f ∈ Pt to interchange integration an summation.
If we now start with ga(x) := g(ax) = ea

2x2
, for which lima→0 g(ax) = 1 and with F−1

ε,a f(ξ) :=
a√
2π

d∑
x′∈(aεZ)d e

i
εx

′ξg(x′), for which lima→0 F−1
ε,a f(ξ) = F−1f(ξ) in the sense of a Riemannian

sum, we get with η = ξ′−ξ
a

F−1
ε (gaFεf) (ξ) = (2π)−d

∫
[−π,π]d

f(ξ′)
∑

x∈(εZ)d

e
i
εx(ξ−ξ

′)g(ax) dξ′ =

= (2π)−d
∫

[−π,π]d
f(ξ′)

∑
x′∈(aεZ)d

e
i
aεx

′(ξ−ξ′)g(x′) dξ′ =

= (2π)−
d
2

∫
[ ξ−πa , ξ+πa ]d

f(ξ + aη)(F−1
ε,a g)(−η) dη .
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In the limit a→ 0, the last integral is equal to

f(ξ) (2π)−
d
2

∫
Rd
F−1
ε g(−η)dη = f(ξ)Fε(F−1

ε g)(0) = f(ξ) .

Since on the other hand

lim
a→0

(2π)−
d
2
∑

x∈(εZ)d

e
i
εxξg(ax)(Fεf)(x) = g(0)F−1

ε (Fεf)(ξ) ,

we are done. As in the previous assumption, we refer to Reed, Simon [49] for the generalization
to f ∈ L 2(Td).
Equation (2.7):
For u, v ∈ lc

(
(εZ)d

)
, we have by the definitions (2.1) and (2.2)

〈v , u〉`2 =
∑

x∈(εZ)d

v̄(x)u(x) =

=
∑

x∈(εZ)d

1
√

2π
d

∫
[−π,π]d

e
i
εxξ(F−1

ε v)(ξ) dξ u(x) =

=
∫

[−π,π]d
(F−1

ε v)(ξ)
1

√
2π

d

∑
x∈(εZ)d

e
i
εxξu(x) dξ =

=
∫

[−π,π]d
(F−1

ε v)(ξ)(F−1
ε u)(ξ) dξ =

=
〈
F−1
ε v , F−1

ε u
〉

T .

The change of integration and summation is possible, since the integral is taken over a compact
range.

Lemma A.1. For fixed x ∈ (εZ)d let fx ∈ `2
(
(εZ)d

)
not depending on the choice of ε, i.e. we

assume that there exists a function f̃x : Zd → R such that fx(γ) = f̃x(γε ). Furthermore we assume
(Fεfx) ∈ C∞ (Td).
Then there exists a constant Cx > 0, such that for all N ∈ N and for all ε > 0

|fx(γ)| ≤
Cx

1 +
(
|γ|
ε

)2N
, x ∈ (εZ)d . (A.1)

If Fεfx is bounded with respect to x, then the estimate holds uniformly in x, i.e., there exists a
constant C > 0 such that for all N ∈ N, ε > 0

sup
x∈(εZ)d

|fx(γ)| ≤
C

1 +
(
|γ|
ε

)2N
, x ∈ (εZ)d . (A.2)

Proof:
By the Fourier inversion formula, we have for fixed x ∈ (εZ)d

fx(γ) = (2π)−
d
2

∫
[−π,π]d

e−
i
εγξ
(
F−1
ε fx

)
(ξ) dξ .

The operator L := 1−∆ξ

1+( |γ|ε )2 has the property Le−
i
εγξ = e−

i
εγξ. Thus we can introduce L into the

integral and get by partial integration

fx(γ) = (2π)−
d
2

∫
[−π,π]d

(
LNe−

i
εγξ
) (

F−1
ε fx

)
(ξ) dξ

= (2π)−
d
2

(
1 +

|γ|2

ε2

)−N ∫
[−π,π]d

e−
i
εγξ(1−∆ξ)N

(
F−1
ε fx

)
(ξ) dξ . (A.3)

Since the last integral is bounded by assumption, (A.1) follows from the triangle inequality.
If F−1

ε fx is bounded with respect to x, the same is true for fx by the compactness of the torus.
Thus taking the supremum over all x on both sides in (A.3) shows (A.2).
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2

Lemma A.2. Let g ∈ lc
(
(εZ)d

)
with g(γ) = 0 for |γ| ≥ A and such that g does not depend on

the value of ε in the sense of Lemma A.1.
Then

(
F−1
ε g

)
can be continued to an entire analytic function. Using the notation ζ = ξ+ iη, then

for ξ ∈ [−π, π]d there exist a constant C > 0, such that for all N ∈ N

|F−1
ε g(ζ)| ≤ Ce

A
ε |η|

1 +
(
|ζ|
ε

)2N
.

Proof:
Since g ∈ lc

(
(εZ)d

)
, the function

F−1
ε g(ζ) = (2π)−

d
2

∑
γ∈(εZ)d

e
i
εxζg(γ)

is well defined and analytic for all values of η, because we can differentiate each summand of the
finite sum. To use partial summation similar to the proof of Lemma 2.13 c, we introduce the
operator

Lε :=
1− ε2∆ε

1 +
∑d
ν=1(2− 2 cos ζν)

,

where ∆ε is the discrete Laplacian defined in (2.60), which is symmetric with respect to the `2

scalar product. Thus Lε obeys this symmetry property too and in addition Lεe
i
εγζ = e

i
εγζ by

construction. Therefore

F−1
ε g(ζ) = (2π)−

d
2

∑
γ∈(εZ)d

(
LNε e

i
εγζ
)
g(γ) =

= (2π)−
d
2

(
1 +

d∑
ν=1

(2− 2 cos ζν)

)−N ∑
γ∈(εZ)d

e
i
εγζ(1 + ε2∆ε)Ng(γ)

and from g(γ) = 0 for |γ| ≥ A, it follows that∣∣∣∣∣∣
∑

γ∈(εZ)d

e
i
εγζ(1 + ε2∆ε)Ng(γ)

∣∣∣∣∣∣ ≤
∣∣∣e iεA(ξ+iη)

∣∣∣ ∑
γ∈(εZ)d

∣∣(1 + ε2∆ε)Ng(γ)
∣∣ ≤ e

A
ε |η|C . (A.4)

Furthermore

|2− 2 cos ζν | = |2− 2 cos ξν cosh ην − i sin ξν sinh ην | =

=
(
(2− 2 cos ξν cosh ην)2 + (2 sin ξν sinh ην)2

) 1
2 =

= 2
(
1 + cos2 ξν cosh2 ην − 2 cos ξν cosh ην + sin2 ξν(cosh2 ην − 1)

) 1
2 =

= 2
(
1 + (cos2 ξν + sin2 ξν) cosh2 ην − 2 cos ξν cosh ην − sin2 ξν

) 1
2 =

= 2
(
cos2 ξν − 2 cos ξν cosh ην + cosh2 ην

) 1
2 =

= 2(cosh ην − cos ξν) ,

where for the last equality we used that cosh ην ≥ cos ξν . With the estimates

cosh ην ≥ 1 +
η2
ν

2
, π2(1− cos ξν) ≥ ξ2ν for ην ∈ R, |ξν | ≤ π ,

we can conclude

2(cosh ην − cos ξν) ≥ 2
(

1 +
η2
ν

2
− cos ξν

)
≥ 2

(
η2
ν

2
+
ξ2ν
π2

)
≥ 2

1
π2

(
η2
ν + ξ2ν

)
=
|ζν |2

π2
.

We thus get for |ξν | ≤ π the estimate

|2− 2 cos ζν | ≥
|ζν |2

π2
1 ≤ ν ≤ d . (A.5)



130 A. TECHNICAL DETAILS AND SUPPLEMENTARY COMPUTATIONS

Combining (A.4) and (A.5) yields

∣∣F−1
ε g(ζ)

∣∣ ≤ (2π)−
d
2

∣∣∣∣∣1 +
d∑
ν=1

(2− 2 cos ζν)

∣∣∣∣∣
−N ∣∣∣∣∣∣

∑
γ∈(εZ)d

e
i
εγζ(1 + ε2∆ε)Ng(γ)

∣∣∣∣∣∣ ≤
≤ Ce

A
ε |η|(

1 +
∑
ν
|ζν |2
π2

)N ≤ Ce
A
ε |η|

1 +
(
|ζν |
π

)2N
,

which proves the lemma.
2

Proposition A.3. For f ∈ `2
(
(εZ)d

)
the Fourier-transform

(
F−1
ε f

)
has an analytic contin-

uation to the set Ka := {ζ ∈ Cd | |=ζ| < a} with the property that
(
F−1
ε f

)
( · − iη) ∈ L 2(Td) for

each η ∈ Rd with |η| < a and that for any b < a

sup
|η|≤b

‖
(
F−1
ε f

)
( · − iη)‖Td <∞ ,

if and only if e
b
εγf ∈ `2

(
(εZ)d

)
.

Proof:

=⇒:
For any g ∈ lc

(
(εZ)d

)
we have by (2.7)∑
γ∈(εZ)d

g(γ)f(γ) =
∫

[−π,π]d
(F−1

ε g)(ξ)(F−1
ε f)(ξ) dξ . (A.6)

Since by Lemma A.2 and by assumption F−1g and F−1
ε f can be continued analytically to the set

Ka, the Cauchy Integral Theorem gives for |η| < a∫
[−π,π]d

(F−1
ε g)(ζ)(F−1

ε f)(ζ) dζ −
∫ π−iη1

−π−iη1
. . .

∫ π−iηd

−π−iηd
(F−1

ε g)(ζ)(F−1
ε f)(ζ) dζ+ (A.7)

+
∫ π−iη1

π

. . .

∫ π−iηd

π

(F−1
ε g)(ζ)(F−1

ε f)(ζ) dζ −
∫ −π−iη1

−π
. . .

∫ −π−iηd

−π
(F−1

ε g)(ζ)(F−1
ε f)(ζ) dζ = 0 .

The Fourier transforms of lattice functions are 2π-periodic in ξ for each fixed value of η, since for
h ∈ `2

(
(εZ)d

)
(
F−1
ε h

)
(π − iη) = (2π)−

d
2

∑
γ∈(εZ)d

e
i
ε |γ|πe

γ
ε ηh(γ) = (2π)−

d
2

∑
γ∈(εZ)d

(−1)
|γ|
ε e

γ
ε ηh(γ)

and (
F−1
ε h

)
(−π − iη) = (2π)−

d
2

∑
γ∈(εZ)d

e−
i
ε |γ|πe

γ
ε ηh(γ) = (2π)−

d
2

∑
γ∈(εZ)d

(−1)
|γ|
ε e

γ
ε ηh(γ) .

Therefore the last two integral terms in (A.7) cancel each other and∫
[−π,π]d

(F−1
ε g)(ζ)(F−1

ε f)(ζ) dζ =
∫

[−π,π]d
(2π)−

d
2

∑
γ∈(εZ)d

e−
i
εγξg(γ)(F−1

ε f)(ζ) dξ =

=
∫

[−π,π]d
(2π)−

d
2

∑
γ∈(εZ)d

e−
i
εγ(ξ−iη)g(γ)(F−1

ε f)(ξ − iη) dξ =

=
∫

[−π,π]d
(2π)−

d
2

∑
γ∈(εZ)d

e
i
εγ(ξ+iη)g(γ)(F−1

ε f)(ξ − iη) dξ =

=
∫

[−π,π]d
(F−1

ε g)(ξ + iη)(F−1
ε f)(ξ − iη) dξ (A.8)
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Defining hη(ξ) := (F−1
ε f)(ξ − iη), we get by (A.6) and (A.8) and since g ∈ lc

(
(εZ)d

)
∑

γ∈(εZ)d

g(γ)f(γ) =
∫

[−π,π]d
(F−1

ε g)(ξ + iη)hη(ξ) dξ =

=
∫

[−π,π]d
(2π)−

d
2

∑
γ∈(εZ)d

e−
i
εγξe−

γ
ε ηg(γ)hη(ξ) dξ =

=
∑

γ∈(εZ)d

e−
γ
ε ηg(γ)(2π)−

d
2

∫
[−π,π]d

e−
i
εγξhη(ξ) dξ =

=
∑

γ∈(εZ)d

e−
γ
ε ηg(γ)(Fεhη)(γ) .

The function g was arbitrary, we therefore get almost everywhere

(Fεhη)(γ) = e
γ
ε ηf(γ) .

Since hη ∈ L 2
(
Td
)

for each fixed η, this yields e
γ
ε ηf(γ) ∈ `2

(
(εZ)d

)
.

⇐=: Since e
b
ε |γ|f ∈ `2

(
(εZ)d

)
, we can perform the Fourier-transform to get

F−1
ε

(
e
b
ε |γ|f

)
=

1
√

2π
d

∑
γ∈(εZ)d

e
i
εγ·ξe

b
ε |γ|f(γ) =

=
1

√
2π

d

∑
γ∈(εZ)d

e
i
εγ·(ξ−ib)f(γ) =

= F−1
ε f(ξ − ib)

Thus F−1
ε f has a continuation to Kb and is bounded for each fixed ξ ∈ Td. 2

A.2. Simultaneous diagonalization of two quadratic forms

In Chapter 2 we need only the diagonalization of the kinetic energy for x fixed at a critical
point xj . Since each symmetric matrix B(xj) can by use of two orthogonal matrices P and P t be
diagonalized by P tB(xj)P =: BD, where BD is diagonal, we have

〈ξ , B(xj)ξ〉 = 〈ξ , BDξ〉 =
〈
B

1
2
Dξ , B

1
2
Dξ
〉

=: 〈ξ′ , ξ′〉 .

Then for x′ = B
1
2
Dx

〈x′ , Ax′〉 =
〈
B

1
2
Dx , AB

1
2
Dx
〉

=
〈
x , B

1
2
DAB

1
2
Dx
〉

=:
〈
x , Ãx

〉
.

In Chapter 3, we assumed that the kinetic and potential energy are diagonalized simultaneously,
if there is only one well x1 = 0. This can be done as follows.
The symbol of the quadratic part of the kinetic energy at x = 0 is given by

tq0(ξ) = 〈ξ , Bξ〉 ,
where B := B(0) is a symmetric positive definite matrix. The harmonic part of the potential V 1

0

takes the form
V 1

0 = 〈x , Ax〉 ,
where the matrix A is symmetric as well. This setting can be reduced to the case, where the
quadratic term of both operators is diagonal, as treated in Chapter 3. Since B is symmetric and
positive definite, 〈x , y〉B := 〈x , By〉 defines a scalar product for which tq0 is already diagonal.
Denoting by CT the matrix for which 〈Cx , y〉B =

〈
x , CT y

〉
B

and by Ct the transposed matrix of
C, we get CT = B−1CtB. To be orthogonal with respect to the B-scalar product, C therefore has
to satisfy the relation C−1 = B−1CtB. Since the harmonic part of the potential given above is a
quadratic form with form matrix A, we can find another matrix AB representing this form, which
is symmetric with respect to 〈. , .〉B and which therefore can be diagonalized by conjugation with
a B-orthogonal matrix C. We thus have

〈x , ABx〉B =
〈
x , CTAdCx

〉
B

= 〈Cx , AdCx〉B = 〈x′ , Adx′〉B
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where Ad := CTABC denotes the diagonalized matrix and x′ := Cx is an element of the trans-
formed lattice C(εZ)d. By this transformation of the x-variable, we get the related transformation
ξ′ = (CT )−1ξ = Cξ for the momentum variable, which preserves the B- scalar product. Expressed
in the new variables, we therefore have

tq0(ξ′) = 〈ξ′ , ξ′〉B and Vh = 〈x′ , Adx′〉B =
d∑
ν=1

λ2
νx

′2
ν ,

where λ2
j , j = 1, . . . d, are the eigenvalues of Ad. Since C does not depend on ε, the estimates given

in these notes are not changed by these transformations. For x 6= 0, the kinetic energy is of course
not diagonal with the chosen transformation.

A.3. Kinetic Energy as translation operator

At first we determine the inverse Fourier transformed of the translation operator τεeν to a
neighboring lattice point. We have

(F−1
ε τεeνu)(ξ) =

1
√

2π
d

∑
x∈(εZ)d

eix
ξ
ε τεeνu(x) =

=
1

√
2π

d

∑
x∈(εZ)d

eix
ξ
ε u(x+ εeν) =

1
√

2π
d

∑
y∈(εZ)d

ei(y−εeν)
ξ
ε u(y) =

=
1

√
2π

d
e−iξν

∑
y∈(εZ)d

eiy
ξ
ε u(y) = e−iξν (F−1

ε u)(ξ) ,

from which the form of the symbol t in subsection 2.3 follows. Any translation τγ can be written
as linear combination of these elementary translations, i.e. γ =

∑d
ν=1 εkνeν for kν ∈ Z, thus the

form (2.20) of Tε as translation operator follows from the form (2.17) of the associated symbol.
Since in particular

Tεv(x) = FεtF
−1
ε v(x) =

1
(2π)d

∫
[−π,π]d

e−
i
εxξt(x, ξ)

∑
y∈(εZ)d

e
i
εyξv(y) dξ =

=
1

(2π)d
∑

γ∈(εZ)d

v(x− γ)
∫

[−π,π]d
e−

i
εγξt(x, ξ) dξ =

1
(2π)d

∑
γ∈(εZ)d

τ−γ

∫
[−π,π]d

e−
i
εγξt(x, ξ) dξ v(x) ,

we have
a−γ(x) =

1
(2π)d

∫
[−π,π]d

e−
i
εγξt(x, ξ) dξ . (A.9)

Thus a−γ = Fεt, i.e., aγ is the Fourier transform of the symbol t ∈ C∞(Td) and it follows by
Lemma A.1, that |γ| d+1

2 aγ is square summable with respect to γ for each fixed x ∈ (εZ)d. If we
assume in addition that the symbol t has an analytic continuation to Cd (as we do in Hypothesis
4.20) and is bounded in the region {z = (ξ + iη) ∈ Cd | |η| ≤ b}, then aγ decreases for |γ| → ∞
exponentially, i.e. e

|γ|b
ε aγ ∈ `2((εZ)d) as shown in Proposition A.3.

A.4. Unitary Transformation

To show the unitary equivalence of Hj , given by (2.48), to εKj as defined in Theorem 2.10,
we define the unitary operators

(T (b)k)(x) := k(x− b) , (D(ε)k)(x) := ε
d
2 k(εx) , k ∈ L 2(Rd).

Then

D
(
ε−

1
2

)
T
(
ε−

1
2xj

)
εKjT

(
−ε− 1

2xj

)
D
(
ε

1
2

)
k(x) = D

(
ε−

1
2

)
T
(
ε−

1
2xj

)
εKjε

d
4 k
(
ε−

1
2x+ xj

)
=

= D
(
ε−

1
2

)
ε

(
−ε∆ +

∑
kl

Ajkl

(
x− ε−

1
2xj

)
k

(
x− ε−

1
2xj

)
l
+ V1 (xj)

)
ε
d
4 k
(
ε−

1
2x
)

=

=

(
−ε2 ∆ +

∑
kl

Ajkl (x− xj)k (x− xj)l + ε V1 (xj)

)
k(x) = Hjk(x)
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and the assertion is shown.
.

A.5. Direct computation of wαβ − wβα

We compute directly the difference between the matrix elements wαβ and wβα without using
the microlocal calculus.

wαβ − wβα =
1
2


∑

x∈Mj(α)\Mj(β)

∑
γ

x+γ∈Mj(β)

aγ(x)vβ(x+ γ)vα(x)+

+
∑

x∈Mj(β)

∑
γ

x+γ∈Mj(α)\Mj(β)

aγ(x)vβ(x)vα(x+ γ)−

−
∑

x∈Mj(β)\Mj(α)

∑
γ

x+γ∈Mj(α)

aγ(x)vβ(x)vα(x+ γ)−

−
∑

x∈Mj(α)

∑
γ

x+γ∈Mj(β)\Mj(α)

aγ(x)vβ(x+ γ)vα(x)


The combination of the first with the fourth and the second with the third summand yields

wαβ − wβα =
1
2


∑

x∈Mj(α)\Mj(β)

∑
γ

x+γ∈Mj(β)∩Mj(α)

aγ(x)vα(x)vβ(x+ γ)−

−
∑

x∈Mj(β)∩Mj(α)

∑
γ

x+γ∈Mj(β)\Mj(α)

aγ(x)vα(x)vβ(x+ γ)+

+
∑

x∈Mj(β)∩Mj(α)

∑
γ

x+γ∈Mj(α)\Mj(β)

aγ(x)vβ(x)vα(x+ γ)−

+
∑

x∈Mj(β)\Mj(α)

∑
γ

x+γ∈Mj(α)∩Mj(β)

aγ(x)vβ(x)vα(x+ γ)

 . (A.10)

Since vα is an eigenfunction of the associated Dirichlet operator, we have

〈(µα − V )vα , vβ〉`2 =
∑

x∈Mj(α)∩Mj(β)

∑
γ

x+γ∈Mj(α)

aγ(x)vβ(x)vα(x+ γ) (A.11)

and therefore we can rewrite the first and third term in (A.10) to get

wαβ − wβα =
1
2


∑

x∈Mj(α)\Mj(β)

∑
γ

x+γ∈Mj(α)∩Mj(β)

aγ(x)vα(x)vβ(x+ γ)− 〈(µβ − V )vβ , vα〉`2+

+
∑

x∈Mj(β)∩Mj(α)

∑
γ

x+γ∈Mj(α)∩Mj(β)

aγ(x)vα(x)vβ(x+ γ) + 〈(µα − V )vα , vβ〉`2 −

−
∑

x∈Mj(β)∩Mj(α)

∑
γ

x+γ∈Mj(α)∩Mj(β)

aγ(x)vβ(x)vα(x+ γ)−

−
∑

x∈Mj(β)\Mj(α)

∑
γ

x+γ∈Mj(α)∩Mj(β)

aγ(x)vβ(x)vα(x+ γ)

 .
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Combining the first with the third and the fifth with the sixth term, this yields

1
2

(µα − µβ)〈vα , vβ〉`2 +
∑

x∈Mj(α)

∑
γ

x+γ∈Mj(α)∩Mj(β)

aγ(x)vα(x)vβ(x+ γ) −

−
∑

x∈Mj(β)

∑
γ

x+γ∈Mj(α)∩Mj(β)

aγ(x)vβ(x)vα(x+ γ)

 . (A.12)

By the substitution x̃ = x + γ and γ̃ = −γ in the last two terms and by using the symmetry
relation aγ(x) = a−γ(x+ γ), the term (A.12) is equal to

1
2
(µα − µβ)〈vα , vβ〉`2 +

∑
x̃∈Mj(α)∩Mj(β)

∑
γ̃

x̃+γ̃∈Mj(α)

aγ̃(x̃)vβ(x̃)vα(x̃+ γ̃)−

−
∑

x̃∈Mj(β)∩Mj(α)

∑
γ̃

x̃+γ̃∈Mj(β)

aγ̃(x̃)vα(x̃)vβ(x̃+ γ̃) .

Using again (A.11), we therefore can conclude

wαβ − wβα = (µα − µβ)〈vα , vβ〉`2 .

A.6. Direct proof of Lemma 2.12

Lemma 2.12 can also be proven without using the symbolic calculus introduced in Appendix
B in the following way.

Proof:
(a):
Since by definition,

∑m
j=0 χ

2
j is a partition of 1, we can split Hε as

Hε =
1
2

m∑
j=0

χ2
j Hε +

1
2
Hε

m∑
j=0

χ2
j =

m∑
j=0

χj Hε χj +
1
2

m∑
j=0

[χj , [χj ,Hε]] . (A.13)

To show the assertion, we thus have to estimate the double commutator. By the action of Tε as
translation operator in `2

(
(εZ)d

)
as described in (2.20), we calculate

[χ, [χ, τγ ]] = χ2τγ + τγχ
2 − 2χτγχ = (χ− (τγχ))2τγ .

Thus for ψ ∈ `2((εZ)d)

〈ψ , [χj , [χj ,Hε]]ψ〉`2 =
〈
ψ ,
∑
γ∈(εZ)d aγ(χj − (τγχj))2τγψ

〉
`2
≤

≤
∑

γ∈(εZ)d

‖aγ‖∞ ‖χj − (τγχj)‖2∞ ‖ψ‖2`2 . (A.14)

Using the Taylor expansion to first order with the notation χj(x) = χ̃j(ε−
2
5x) and the fact that

|γ|
ε is integer, we have with a suitable η ∈ (0, 1)

‖χj(x)− χj(x+ γ)‖2 = ε
6
5

(
|γ|
ε

)2
∥∥∥∥∥

d∑
ν=1

(∂ν χ̃j)(x+ ηγ)

∥∥∥∥∥
2

.

The coefficient |γ|
ε ∈ Z is not bounded, because the transitions are allowed to be of any length.

To estimate the right hand side of (A.14), we thus have to include the decrease of aγ(x) in γ. It
follows from the smoothness of tπ and the form (A.9), that aγ(x) decreases faster than (1+ |γ|

ε )−N

for increasing |γ| and for all N ∈ N (Lemma A.1). Thus the series
∑

|γ| aγ(x)
(
|γ|
ε

)2

is convergent
and ∑

γ∈(εZ)d

‖aγ‖∞ ‖χj − τγχj‖2∞ ‖ψ‖2`2 = O
(
ε

6
5

)
‖ψ‖2`2 .

Then
‖ [χj , [χj , Tε]] ‖ = O

(
ε

6
5

)
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and point (a) of the lemma is proven.
(b):
By a splitting similar to (A.13) we have

Tε + Ṽ jε = OpTd
ε (φ̃0)(Tε + Ṽ jε ) OpTd

ε (φ̃0) + OpTd
ε (φ̃1)(Tε + Ṽ jε ) OpTd

ε (φ̃1)+

+
1
2

1∑
k=0

[
OpTd

ε (φ̃k), [OpTd
ε (φ̃k), (Tε + Ṽ jε )]

]
. (A.15)

We first consider the double commutator
[
φ̃k, [φ̃k,F−1

ε Ṽ jε Fε]
]
. The constant term keeps constant

under the conjugation and therefore commutes with φ̃k. By (2.4) we have

(F−1
ε Ṽ jε ψ)(ξ) =

1
√

2π
d

∑
x∈(εZ)d

(
e−

i
ε ξx

d∑
ν,µ=1

Ãjνµxνxµψ(x)

)
.

Using the identity ∂ξe−
i
ε ξx = − i

εxe
− i
ε ξx we can continue

1
√

2π
d

∑
x∈(εZ)d

(
d∑

ν,µ=1

Ãjνµ(−ε2)
(
∂ξν∂ξµe

− i
ε ξx
)
ψ(x)

)
= −ε2

d∑
ν,µ=1

Ãjνµ∂ν∂µ(F
−1
ε ψ)(ξ) ,

where for the last equality we changed summation and differentiation. We have

[φ̃(ξ), [φ̃(ξ), ∂ν∂µ]] = φ̃2(ξ)∂ν∂µ + ∂ν∂µφ̃
2(ξ)− 2φ̃(ξ)∂ν∂µφ̃(ξ) =

= 2φ̃2(ξ)∂ν∂µ + 2φ̃(ξ)∂ν φ̃(ξ)∂µ + 2φ̃(ξ)∂µφ̃(ξ)∂ν + 2(∂ν φ̃(ξ))(∂µφ̃(ξ)) + 2φ̃(ξ)(∂ν∂µφ̃(ξ))−

− 2(∂ν∂µφ̃(ξ))− 2φ̃(ξ)(∂ν φ̃(ξ))∂µ − 2φ̃(ξ)(∂µφ̃(ξ))∂ν − 2φ̃2(ξ)∂ν∂µ = 2(∂ν φ̃(ξ))(∂µφ̃(ξ)) ,

With φ̃k(ξ) =: ˜̃
φk(ε−

2
5 ξ) we thus can deduce for ψ ∈ `2((εZ)d) that〈

F−1
ε ψ(ξ) ,

[
φ̃k, [φ̃k, (F−1

ε Ṽ jε Fε)]
]
F−1
ε ψ(ξ)

〉
T

= (A.16)

= 2ε
6
5

d∑
ν,µ=1

Ãjνµ

〈
F−1
ε ψ(ξ) , (∂ν

˜̃
φk)(∂µ

˜̃
φk)F−1

ε ψ(ξ)
〉

T
.

Since the derivatives of φ̃k are bounded by definition, it follows by (A.16) that[
φ̃k, [φ̃k, (F−1

ε Ṽ jε Fε)]
]

= O
(
ε

6
5

)
.

To treat the double commutator
[
φ̃k(ξ), [φ̃k(ξ), Tε]

]
, we have by Lemma B.10 to analyze the

commutator with aγ(εDξ). To this end, we write aγ(εDξ) = a1γεDξ + a2γε
2D2

ξ + O(D3
ξ). For

the first term

[φ̃k(ξ), [φ̃k(ξ), a1γεDξ]] = ε
(
φ̃2
k(ξ)Dξ − 2φ̃k(ξ)Dξφ̃k(ξ) +Dξφ̃

2
k(ξ)

)
= 0 .

For the second term, the estimates are the same as for Ṽ jε and for higher orders of derivatives they
are even better. Therefore by (A.15) the assertion (b) of the lemma is shown. 2

A.7. Valuation on K 1
2

Let vε : K 1
2
→ R+

0 be a real-valued function, defined by vε(k) := εn for k =
∑

j∈
N∗
2

j≥n

εjkj and

vε(0) := 0. To be a valuation on K 1
2
, vε must have the following properties for all k, l ∈ K 1

2
:

1) vε(k) = 0 if and only if k = 0,
2) vε(k + l) ≤ max{vε(k), vε(l)},
3) vε(kl) = vε(k)vε(l).
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These properties of vε can be verified by direct calculation.
We call vε the ε-adic valuation on K 1

2
and define the ε-norm on V by

‖p‖V := (vε(〈p , p〉V))
1
2 , p ∈ V. (A.17)

The ε-norm has the properties of a norm, i.e.
(a) ‖p‖V ≥ 0:

vε(k) ≥ 0 for all k ∈ K 1
2
.

(b) ‖p‖V = 0 if and only if p = 0:
1) and (〈p , p〉V = 0 ⇔ p = 0).

(c) ‖kp‖V = vε(k)‖p‖V for all k ∈ K 1
2
, p ∈ V:

from the definition of the scalar product in V we get ‖kp‖V = (vε(k2〈p , p〉V)
1
2 . By 3) this

is equal to (vε(k2)vε(〈p , p〉V))
1
2 = v(k)‖p‖V .

(d) ‖p+ q‖V ≤ ‖p‖V + ‖q‖V for all p, q ∈ V.
By the linearity of the scalar product and 2)

‖p+ q‖V = (vε(〈p , p〉V + 〈p , q〉V + 〈q , p〉V + 〈q , q〉V))
1
2 ≤

≤ (max{vε(〈p , p〉V), vε(〈p , q〉V), vε(〈q , p〉V), vε(〈q , q〉V)}) 1
2 . (A.18)

From the definition of the scalar product we get

min{vε(〈p , p〉V), vε(〈q , q〉V)} ≤ vε(〈p , q〉V), vε(〈q , p〉V) ≤ max{vε(〈p , p〉V), vε(〈q , q〉V)}.
Thus the last term in equation (A.18) is equal to

max{vε(〈p , p〉V)
1
2 , vε(〈q , q〉V)

1
2 } = max{‖p‖V , ‖q‖V} ≤ ‖p‖V + ‖q‖V .

For an operator T on V we define the ε-norm by ‖T‖V := supp∈V
‖Tp‖V
‖p‖V . Because ‖ . ‖V obeys all

the properties of a norm, we can deduce that M : V × V → R, defined by

M(u, v) := (vε(〈u− v , u− v〉V))
1
2 ,

is a metric on V, which therefore is a metric space.



APPENDIX B

Symbolic Calculus in the discrete setting

We introduce the notion of symbolic calculus including the small parameter ε ∈ (0, 1], where
the symbols are allowed to include ε not only directly but also as scaling parameter, as described
in [16]. Since the phase space is given by (εZ)d×Td, the relation between the operators and their
symbols is given by use of the discrete Fourier transformation defined in (2.4),(2.3).
For the general theory of microlocal analysis, we refer to [24], [50] and [41], where symbol spaces
and spaces of associated pseudo-differential operators are introduced.
The calculus introduced in the following sections allows, to given norm estimates of the difference
between Tε and the approximating operator Tεqj defined in (2.29) for each fixed potential minimum
xj .

B.1. Pseudo-differential operators on the lattice (εZ)d

Definition B.1. (a) A function m : Rd × Td → [0,∞) is called an order function, if
there exist constants C0, N1 > 0, such that

m(x, ξ) ≤ C0〈x− y〉N1m(y, η) , x, y ∈ Rd, ξ, η ∈ Td ,

where we used the notation 〈x〉 :=
√

1 + |x|2.
(b) For an order function m on Rd × Td, the symbol space S(m)

(
Rd × Td

)
consists of all

a ∈ C∞(Rd × Td), for which for all α, β ∈ Nd there is a constant Cα,β such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,βm(x, ξ) , x ∈ Rd, ξ ∈ Td ,

where as usual ∂αx := ∂α1
x1
. . . ∂αdxd . We often write S(m), if the underlying space is clear.

(c) The Fréchet-Semi-Norms of a symbol a ∈ S(m) are defined as

‖a‖α,β := sup
x,ξ

|∂αx ∂
β
ξ a(x, ξ)|

m(x, ξ)
.

(d) If the symbol a(x, ξ; ε) depends on a small parameter ε ∈ (0, 1], a is said to be in S(m), if
a(· ; ε) is uniformly bounded in S(m) for ε varying in (0, 1]. Let Sk(m) := εkS(m) describe
for k ∈ R the space of symbols of the form εka(x, ξ; ε) for a ∈ S(m). For δ ∈ [0, 1], the
space Skδ (m)

(
Rd × Td

)
consists of functions a(x, ξ; ε) on Rd × Td × (0, 1], belonging to

S(m)
(
Rd × Td

)
for every fixed ε and satisfying

|∂αx ∂
β
ξ a(x, ξ; ε)| ≤ Cα,βm(x, ξ)εk−δ(|α|+|β|) , x ∈ Rd, ξ ∈ Td .

(e) Let aj ∈ S
kj
δ (m), kj ↗ ∞, then we write a ∼

∑∞
j=0 aj if a −

∑N
j=0 aj ∈ S

kN+1
δ (m) for

every N ∈ N.
(f) A pseudo-differential operator OpTd

ε (a) : K
(
(εZ)d

)
−→ K′

(
(εZ)d

)
is defined by

OpTd
ε (a)v(x) := (2π)−d

∑
y∈(εZ)d

∫
[−π,π]d

e
i
ε (y−x)ξa(x, ξ; ε)v(y) dξ , (B.1)

where a ∈ Skδ (m)
(
Rd × Td

)
,

K
(
(εZ)d

)
:= {u : (εZ)d → C | u has compact support}

and K′
(
(εZ)d

)
denotes its dual with respect to 〈 . , . 〉`2 .

In the following, some properties of the symbols and operators of definition B.1 are collected.

137
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Lemma B.2. Let a ∈ S0
δ (m)

(
Rd × Td

)
and

s
(
(εZ)d

)
:=

u : (εZ)d → (εZ)d
∣∣ ‖u‖α := sup

x∈(εZ)d

d∑
j=1

∣∣xαjj u(x)∣∣ <∞, α ∈ Nd
 .

We consider on s the natural topology τ associated to the family of semi-norms ‖ · ‖α.
Then the operator A associated to a defined in (B.1) is continuous : s

(
(εZ)d

)
−→ s

(
(εZ)d

)
with

respect to τ .

Proof:
We start proving, that A : s

(
(εZ)d

)
−→ l∞

(
(εZ)d

)
, where l∞

(
(εZ)d

)
denotes the bounded

functions on (εZ)d. By use of the operator

L1(y − x, ξ) :=
1− ε2∆ξ

1 + |y − x|2
=

1− ε2∆ξ

〈y − x〉2
, (B.2)

for which L1(y − x, ξ)e
i
ε (y−x)ξ = e

i
ε (y−x)ξ, we have for u ∈ s

(
(εZ)d

)
and a ∈ S

(
Rd × Td

)
(the

space of Schwartz-functions on Rd × Td), by repeated partial integration

|Au(x)| =

∣∣∣∣∣∣(2π)−d
∑

y∈(εZ)d

∫
[−π,π]d

(
Lk1(y − x, ξ)e

i
ε (y−x)ξ

)
a(x, ξ; ε)u(y) dξ

∣∣∣∣∣∣
≤ (2π)−d

∑
y∈(εZ)d

∫
[−π,π]d

∣∣∣∣∣ e
i
ε (y−x)ξ

〈y − x〉2k
(
1− ε2∆ξ

)k
a(x, ξ; ε)u(y)

∣∣∣∣∣ dξ
≤ ca(2π)−d

∑
y∈(εZ)d

|u(y)|
〈y − x〉2k

∫
[−π,π]d

|m(x, ξ)| dξ .

In the second step, we used that the boundary terms vanish, since a(x, . ; ε) is 2π-periodic. By
definition there exist C,N0 > 0 such that

m(x, ξ) ≤ C〈y − x〉N0〈y〉N0m(0, 0) .

We therefore can conclude with the substitution y′ = y − x

|Au(x)| ≤ ca
2πd

∑
y∈(εZ)d

|u(y)|
〈y − x〉2k

∫
[−π,π]d

|m(x, ξ)| dξ

≤ c̃a
∑

y∈(εZ)d

〈y〉N0 |u(y)|〈y − x〉N0−2k

≤ ˜̃ca sup
y∈(εZ)d

(
〈y〉N0 |u(y)|

) ∑
y′∈(εZ)d

〈y′〉N0−2k

∫
[−π,π]d

〈ξ〉N0dξ

≤ Ca,ε sup
α∈Nd
|α|≤N0

‖u‖α

for k big enough. Therefore supx∈(εZ)d |Au(x)| < ∞ and A is uniformly continuous s
(
(εZ)d

)
→

l∞
(
(εZ)d

)
for a varying in a bounded set in S0

δ (m) and by a density argument for a ∈ S0
δ (m).

To show that A : s
(
(εZ)d

)
−→ s

(
(εZ)d

)
, we estimate for u ∈ s

(
(εZ)d

)
∣∣〈x〉lAu(x)∣∣ = ∑

y∈(εZ)d

(2π)−d
∫

[−π,π]d
e
i
ε (y−x)ξ〈x〉la(x, ξ; ε)u(y) dξ .
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If the supremum of this term is finite, we can deduce that Au ∈ s
(
(εZ)d

)
. By definition we have

for a ∈ S0
δ (m)

(
Rd × Td

)
∣∣∂pxν (〈x〉la(x, ξ; ε))∣∣ =

∣∣∣∣∣∣
∑

m′+m′′=p

(
∂m

′

xν 〈x〉
l
)(

∂m
′′

xν a(x, ξ; ε)
)∣∣∣∣∣∣

≤

∣∣∣∣∣∣ε−pδm(x, ξ)cl〈x〉l +
∑
j<p

ε−jδm(x, ξ)
∑
k≤l

ckx
k

∣∣∣∣∣∣
≤ Cpm(x, ξ)ε−pδ〈x〉l .

With the new order function ml(x, ξ) := m(x, ξ)〈x〉l, this yields 〈x〉la(x, ξ; ε) ∈
S0
δ (ml)

(
Rd × Td

)
. Since the boundedness was shown for all order functions m, we can conclude

by induction Au(x) ∈ s
(
(εZ)d

)
. Furthermore for any α ∈ Nd, there exists Cα, Nα such that

‖Au‖α ≤ Cα sup
|β|≤Nα

‖u‖β , u ∈ s
(
(εZ)d

)
.

Thus the mapping is continuous.
2

In order to prove the subsequent lemmata, we introduce the convolution and δ-distribution in
`2
(
(εZ)d

)
and L 2

(
Td
)
. We denote by

u ∗ε v(x) :=
∑

y∈(εZ)d

u(y)v(x− y) , u, v ∈ `2
(
(εZ)d

)
(B.3)

the convolution on (εZ)d and by

f ∗π g(ξ) :=
∫

[−π,π]d
f(η)g(ξ − η) dη , f, g ∈ L 2

(
Td
)

(B.4)

the convolution on the d-dimensional torus. In addition we introduce δ-distributions adapted to
the discrete calculus. Let

δε(x) :=
{

1 for x = 0
0 otherwise . (B.5)

Then
∑
x∈(εZ)d u(x)δε(x) = u(0) and we can represent this distribution by

δε(x) = (2π)−d
∫

[−π,π]d
e−

i
εxξdξ , (B.6)

as can be seen by direct calculation. The distribution δπ defined by the relation

(2π)−d
∫

[−π,π]d
δπ(η)f(η) dη := f(0) , (B.7)

can be written as

δπ(η) =
∑

x∈(εZ)d

e
i
εxη (B.8)

by use of FεFε
−1 = 1.

Lemma B.3. Let u, v ∈ `2
(
(εZ)d

)
and f, g ∈ L 2

(
Td
)
. Let ∗ε and ∗π as defined in (B.3) and

(B.4). Then

(a) ((Fεf) ∗ε (Fεg))(x) = (2π)
d
2 (Fε(f · g)) (x) .

(b) (Fε(f ∗π g)) (x) = (2π)
d
2 ((Fεf) · (Fεg)) (x) .

(c)
(
Fε

−1(u ∗ε v)
)
(ξ) = (2π)

d
2
(
(Fε

−1u) · (F−1v)
)
(ξ) .

(d)
(
(Fε

−1u) ∗π (Fε
−1v)

)
(ξ) = (2π)

d
2
(
Fε

−1(u · v)
)
(ξ) .
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Proof:
(a)

((Fεf) ∗ε (Fεg))(x) =
∑

y∈(εZ)d

(Fεf)(y)(Fεg)(x− y)

=
∑

y∈(εZ)d

(2π)−d
∫

[−π,π]d
e−

i
εyξf(ξ) dξ

∫
[−π,π]d

e−
i
ε (x−y)ηg(η) dη

= (2π)−d
∫∫

[−π,π]d
e−

i
εxηf(ξ)g(η)δπ(η − ξ) dηdξ =

=
∫

[−π,π]d
e−

i
εxξf(ξ)g(ξ) dξ

= (2π)
d
2 (Fε(f · g)) (x)

(b)

(Fε(f ∗π g)) (x) =

(
Fε

∫
[−π,π,]d

f(η)g(ξ − η) dη

)
(x)

= (2π)−
d
2

∫
[−π,π]d

e−
i
εxξ

∫
[−π,π,]d

f(η)g(ξ − η) dηξ

= (2π)−
d
2

∫
[−π,π]d

dη f(η)
∫

[−π,π,]d
dµ e−

i
εx(µ+η)g(µ)

= (2π)−
d
2

∫
[−π,π]d

dη e−
i
εxηf(η)

∫
[−π,π,]d

dµ e−
i
εxµg(µ)

= (2π)
d
2 ((Fεf) · (Fεg)) (x) .

(c)

(
Fε

−1(u ∗ε v)
)
(ξ) =

Fε
−1

∑
y∈(εZ)d

u(y)v(x− y)

 (ξ)

= (2π)−
d
2

∑
x∈(εZ)d

e
i
εxξ

∑
y∈(εZ)d

u(y)v(x− y)

= (2π)−
d
2

∑
y∈(εZ)d

u(y)
∑

z∈(εZ)d

e
i
ε (z+y)ξv(z)

= (2π)−
d
2

∑
y∈(εZ)d

u(y)e
i
εyξ

∑
z∈(εZ)d

e
i
ε zξv(z)

= (2π)
d
2
(
(Fε

−1u) · (Fε
−1v)

)
(ξ)

(d) (
(Fε

−1u) ∗π (F−1
ε v)

)
(ξ) =

∫
[−π,π]d

dη(F−1
ε u)(η)(Fε

−1v)(ξ − η)

= (2π)−d
∫

[−π,π]d
dη

∑
x∈(εZ)d

e
i
εxηu(x)

∑
y∈(εZ)d

e
i
εy(ξ−η)v(y)

= (2π)−d
∑

y∈(εZ)d

∑
x∈(εZ)d

u(x)v(y)
∫

[−π,π]d
e
i
ε (yξ+(x−y)η) dη

=
∑

x∈(εZ)d

u(x)
∑

y∈(εZ)d

v(y)e
i
εyξ δε(y − x)

=
∑

x∈(εZ)d

e
i
εxξu(x)v(x)

= (2π)
d
2
(
Fε

−1(u · v)
)
(ξ) .
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2

B.2. Stationary phase and applications

The following lemma describes the method of stationary phase in a special case, which is an
important tool in the subsequent proofs.

Lemma B.4. Denote Dx = −i∂x(= −i∇x), then for any N ∈ N there exists a constant CN ,
such that, for any ε ∈ (0, ε0], u ∈ C∞

0

(
Rd × Td

)
,

∑
z∈(εZ)d

∫
[−π,π]d

dη e−
i
ε zηu(z, η) = (2π)d

N−1∑
k=0

1
k!
(
(iεDz ·Dη)ku

)
(z, η)| z=0

η=0
+ SN (u, ε)

with

|SN (u, ε)| ≤ C

N !
εN

∑
|α+β|≤2d+1

‖∂αz ∂βη (∂z · ∂η)Nu‖1 ,

where ‖ . ‖1 := ‖ . ‖l1((εZ)d)×L 1(T).

Proof:
For the function f(µ, y) := e−

i
εyµ, the Fourier transform is given by(

Fεµ→zFε
−1
y→ηf

)
(z, η) = e−

i
ε zη , (B.9)

since by definition

(
Fεµ→zFε

−1
y→ηf

)
(z, η) = (2π)−d

∫
[−π,π]d

dµ e−
i
ε zµ

∑
y∈(εZ)d

e
i
εyηe−

i
εyµ

= (2π)−d
∫

[−π,π]d
dµ e−

i
ε zµ

∑
y∈(εZ)d

e
i
εy(η−µ) = (2π)−d

∫
[−π,π]d

dµ e−
i
ε zµδπ(η − µ) = e−

i
ε zη .

In addition for Schwartz-functions u and v∑
y∈(εZ)d

∫
[−π,π]d

dµ v(µ, y)
(
Fε

−1
z→µFεη→yu

)
(µ, y) (B.10)

= (2π)−d
∑

y∈(εZ)d

∫
[−π,π]d

dµ v(µ, y)
∑

z∈(εZ)d

e
i
ε zµ

∫
[−π,π]d

dη e−
i
εyηu(z, η)

= (2π)−d
∑

y∈(εZ)d

∫
[−π,π]d

dη
∑

z∈(εZ)d

u(z, η)e−
i
εyη

∫
[−π,π]d

dµ e
i
εµzv(µ, y)

= (2π)−
d
2

∑
z∈(εZ)d

∫
[−π,π]d

dη u(z, η)
∑

y∈(εZ)d

e−
i
εyη
(
Fεµ→(−z)v

)
(−z, y)

=
∫

[−π,π]d
dη

∑
z∈(εZ)d

u(z, η)
(
Fε

−1
y→(−η)Fεµ→zv

)
(−z,−η) .

Similarly to the usual Fourier transformation in Rd one can show

Fεη→y(η · u)(z, y) = −εDy(Fεη→yu)(z, y) and (B.11)

Fε
−1
z→µ(z · u)(µ, η) = εDµ(Fε

−1
z→µu)(µ, η) . (B.12)
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Using Lemma B.3, we can define and deduce for f polynomially bounded

f((−εDx), (εDξ))u(x, ξ) := Fε
−1
y→ξ

(
f((−εDx), y) ·

(
Fεξ→yu

)
(x, y)

)
(ξ) (B.13)

= (2π)−
d
2
((

Fε
−1
y→ξf

)
((−εDx), . ) ∗π u(x, . )

)
(ξ)

= (2π)−
d
2

∫
[−π,π]d

dη
(
Fε

−1
y→ηf

)
((−εDx), η)u(x, ξ − η)

:= (2π)−
d
2

∫
[−π,π]d

dηFεµ→x

((
Fε

−1
y→ηf

)
(µ, η) ·

(
Fε

−1
x→µu

)
(µ, ξ − η)

)
(x)

= (2π)−d
∫

[−π,π]d
dη
((

Fεµ→xFε
−1
y→ηf

)
( . , η) ∗ε u( . , ξ − η)

)
(x)

= (2π)−d
∫

[−π,π]d
dη

∑
z∈(εZ)d

(
Fεµ→zFε

−1
y→ηf

)
(z, η)u(x− z, ξ − η)

and therefore with (B.10)∑
y∈(εZ)d

∫
[−π,π]d

dµ (µ · y)k
(
Fε

−1
z→µFεη→yu

)
(µ, y) = (2π)d(−ε2DzDη)ku(z, η)| z=0

η=0
. (B.14)

Together with the Taylor expansion for the exponential function, which gives for real t

|eit −
N−1∑
k=0

(it)k

k!
| ≤ |t|N

N !
,

it follows that∑
z∈(εZ)d

∫
[−π,π]d

dη e−
i
ε zηu(z, η) = (2π)d

N−1∑
k=0

1
k!

(iεDzDη)ku(z, η)| z=0
η=0

+ SN (u, ε) ,

where

|SN (u, ε)| ≤ C

N !
εN

∑
y∈(εZ)d

∫
[−π,π]d

dµ |(µ · y)N
(
Fε

−1
z→µFεη→yu

)
(µ, y)|

≤ CεN

N !

∑
|α+β|≤2d+1

‖∂αz ∂βη (∂z · ∂η)Nu‖1 .

2

By use of the method of stationary phase it is possible to prove the following lemma concerning
the map eiεDxDξ . This will be used later to define the symbol associated to the composition of two
operators as a special product between the symbols of the single operators.

Lemma B.5. Let 0 ≤ δ ≤ 1
2 and m be an order function. Then eiεDxDξ : Srδ (m)

(
Rd × Td

)
→

Srδ (m)
(
Rd × Td

)
is continuous. If δ < 1

2 , then

eiεDxDξb(x, ξ) ∼
∞∑
j=0

1
j!
(
(iεDx ·Dξ)j b

)
(x, ξ)

in Srδ (m)
(
Rd × Td

)
. If we write eiεDxDξb =

∑N−1
j=0

(iεDx·Dξ)j
j! b + RN (b, ε), the remainder RN is

an element of the symbol class SN(1−2δ)
δ (m) and it depends linearly on the derivatives of b with

respect to x and ξ of order j for N ≤ j ≤ N + 2d+ 1.

Proof:

Step 1: We start with the asymptotic sum in the case δ < 1
2 .

We restrict the proof to r = 0, the case r 6= 0 is then obvious.
Using equation (B.13) with f((−εDx), (εDξ)) = eiεDx·Dξ and (B.9), we have

(2π)deiεDx·Dξb(x, ξ; ε) =
∫

[−π,π]d

∑
z∈(εZ)d

e−
i
ε z·ηb(x− z, ξ − η; ε) dη . (B.15)
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To analyze the integral given by (B.15), we introduce a cut-off-function ζ ∈ K
(
(εZ)d

)
localized

in a neighborhood of 0. This allows to split the symbol into the two summands b1 and b2 by
multiplication with 1−ζ(z) and ζ(z) respectively. The aim is now to show b1 ∈ S∞(m) and
b2 ∈ S0

δ (m) having the required asymptotic expansion. We start by analyzing b1. By use of the
operator

L2(z, η) :=
−ε2∆η

|z|2
, (B.16)

which is well defined on the support of 1 − ζ(z) and has the property L2(z, η)e−
i
ε zη = e−

i
ε zη, we

have by partial integration

b1(x, ξ; ε) =
∑

z∈(εZ)d

∫
[−π,π]d

(
Lk2(z, η)e−

i
ε z·η

)
(1−ζ(z))b(x− z, ξ − η; ε) dη

=
∑

z∈(εZ)d

∫
[−π,π]d

e−
i
ε z·η

(1−ζ(z))
|z|2k

(−ε2∆η)kb(x− z, ξ − η; ε) dη .

Since b ∈ S0
δ (m), the integrand is for some C > 0 bounded from above

Cε2k(1−δ)
m(x− z, ξ − η)

〈z〉2k
≤ Cε2k(1−δ)

m(x, ξ)
〈z〉2k

〈z〉N0 .

This term is integrable and summable for k big enough yielding

b1(x, ξ; ε) = ε2k(1−δ)−dO(m(x, ξ)) .

The derivatives can be estimated similarly, because

∂αx e
iεDx·Dξb(x, ξ; ε) = eiεDx·Dξ∂αx b(x, ξ; ε) .

Since this holds for every k ∈ N, we have b1 ∈ S∞(m).
For b2 the method of stationary phase described in Lemma B.4 leads to

b2(x, ξ; ε) =
∑

z∈(εZ)d

∫
[−π,π]d

e−
i
ε z·ηζ(z)b(x− z, ξ − η; ε) dη (B.17)

= (2π)d
N−1∑
j=0

(iεDx ·Dξ)j

j!
b(x, ξ; ε) +RN (b, ζ, ε)

with

|RN (b, ζ, ε)| ≤ CNε
N

∑
|α+β|≤2d+1

‖∂αz ∂βη (∂z · ∂η)Nζ(z)b(x− z, ξ − η; ε)‖1 (B.18)

≤ C ′Nm(x, ξ)ε(1−2δ)N−δ(2d+1)−d .

Derivatives of this term are of the same order multiplied by ε−δl. Therefore
RN ∈ S

(1−2δ)N−δ(2d+1)−d
δ (m). Furthermore it follows directly by the formula (B.18), that only

derivatives of order between N and N + 2d + 1 contribute to the remainder and the dependance
of the derivatives of b is linear.
Splitting the remaining term RN into an explicit sum, in which the summands are elements of
S
N(1−2δ)
δ (m), and a second remaining term RM with M = (1 − 2δ)(N + k) − δ(2d + 1) − d ≥
N(1 − 2δ) for k ∈ N big enough, it follows that RN ∈ S

N(1−2δ)
δ (m). Since the Fréchet norms

of eiεDxDξa(x, ξ; ε) in S0
δ (m) depend only on a finite number of Fréchet norms of a(x, ξ; ε), the

mapping is continuous.

Step 2: The continuity for δ = 1
2 .

We choose a cut-off function in z and in η, which is ε-scaled, i.e. we split the integral (B.15)
by multiplying with ζ

(
z√
ε
, η√

ε

)
and 1−ζ

(
z√
ε
, η√

ε

)
. The first integral is thus by the substitution
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z̃ = z√
ε

and η̃ = η√
ε

b1(x, ξ) =
∑

z∈(εZ)d

∫
[−π,π]d

e−
i
ε z·η

(
1−ζ

(
z√
ε
,
η√
ε

))
b(x− z, ξ − η; ε) dη

=
∑

z̃∈(
√
εZ)d

ε
d
2

∫
[− π√

ε
, π√
ε
]d
e−iz̃·η̃ (1−ζ(z̃, η̃)) b(x−

√
εz̃, ξ −

√
εη̃; ε) dη̃ .

To analyze this integral, we use the differential operators

L3(z̃, η̃) :=
−∆η̃

|z̃|2
and

L4(z̃, η̃) :=
−ε∆

√
ε

z̃

2d− 2
∑d
ν=1 cos(

√
εη̃ν)

,

where

−∆
√
ε

z̃ :=
1
ε

(
2d−

d∑
ν=1

(τ√εeν + τ−
√
εeν )

)
(B.19)

denotes the discrete Laplacian on the
√
ε-lattice (compare the definitions and arguments in the

proof of Lemma 2.13,(c)). Then

b1(x, ξ) =
∑

z̃∈(
√
εZ)d

ε
d
2

∫
[− π√

ε
, π√
ε
]d

(
Lk4(z̃, η̃)Ll3(z̃, η̃)e

−iz̃·η̃) (1−ζ(z̃, η̃))×

× b(x−
√
εz̃, ξ −

√
εη̃; ε) dη̃

=
∑

z̃∈(
√
εZ)d

ε
d
2

∫
[− π√

ε
, π√
ε
]d

(
Lk−1

4 (z̃, η̃)Ll3(z̃, η̃)e
−iz̃·η̃)(2d−

∑
ν

2 cos(
√
εη̃ν)

)−1

×

×
{(

2d (1−ζ(z̃, η̃)) b(x−
√
εz̃, ξ −

√
εη̃; ε)−

−
d∑
ν=1

{(
1−ζ(z̃ +

√
εeν , η̃)

)
b(x−

√
ε(z̃ +

√
εeν), ξ −

√
εη̃; ε)+

+
(
1−ζ(z̃ −

√
εeν , η̃)

)
b(x−

√
ε(z̃ −

√
εeν), ξ −

√
εη̃; ε)

})}
dη̃ . (B.20)

By Taylor expansion, the last term is equal to

∑
z̃∈(

√
εZ)d

ε
d
2

∫
[− π√

ε
, π√
ε
]d

(
Lk−1

4 (z̃, η̃)Ll3(z̃, η̃)e
−iz̃·η̃)(2d−

∑
ν

2 cos(
√
εη̃ν)

)−1

d∑
ν=1

∫ √
ε

0

(t−
√
ε)∂2

z̃ν

{
(1−ζ(z̃ + teν , η̃)) b(x−

√
ε(z̃ + teν), ξ −

√
εη̃; ε)+

+ (1−ζ(z̃ − teν , η̃)) b(x−
√
ε(z̃ − teν), ξ −

√
εη̃; ε)

}
dt dη̃ .

Iterating this argument k times gives with the notation (f(a+ b, c))S := f(a+ b, c) + f(a− b, c)

b1(x, ξ) =
∑

z̃∈(
√
εZ)d

ε
d
2

∫
[− π√

ε
, π√
ε
]d

(
Ll3(z̃, η̃)e

−iz̃·η̃)(2d−
∑
ν

2 cos(
√
εη̃ν)

)−k
d∑

ν1,...,νk=1

∫ √
ε

0

dt1 . . .

∫ √
ε

0

dtk∂
2
z̃ν1

. . . ∂2
z̃νk

{(1−ζ(z̃ + t1eν1 + . . .+ tkeνk , η̃))×

×b(x−
√
ε(z̃ + t1eν1 + . . .+ tkeνk), ξ −

√
εη̃; ε)

}S k∏
i=1

(ti −
√
ε) dη̃ .
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Integrating by parts with L3 similar to the first part of the proof and taking the norm, the integrand
can be estimated by

ε
d
2O(1)|z̃|−2l

∑
|α|≤l

∣∣∣∣∣Qα(−Dη̃)

{
(1−ζ(z̃, η̃))

(2d−
∑
ν 2 cos(

√
εη̃ν))

k

}∣∣∣∣∣×
×

d∑
ν1,...,νk=1

∫ √
ε

0

dt1 . . .

∫ √
ε

0

dtk

k∏
i=1

∣∣ti −√ε∣∣ {m(x−
√
ε(z̃ + t1eν1 + . . .+ tkeνk), ξ −

√
εη̃)
}S

(B.21)

To estimate the derivatives of (2
∑
ν(1− cos(

√
εη̃ν)))−k, we introduce the notation

Pk,l
(
cos(

√
εt), sin(

√
εt)
)

:= akl cosk(
√
εt) sinl(

√
εt)

with k, l ≥ 0 and akl ≥ 0. Then

∂tPk,l
(
cos(

√
εt), sin(

√
εt)
)

=
√
εakl

(
−k cosk−1(

√
εt) sinl+1(

√
εt)+

+l cosk+1(
√
εt) sinl−1(

√
εt)
)

=
√
ε
{
P(k−1),(l+1)

(
cos(

√
εt), sin(

√
εt)
)

+ P(k+1),(l−1)

(
cos(

√
εt), sin(

√
εt)
)}

and for the function

f(t) :=
Pkl (cos(

√
εt), sin(

√
εt))

(1− cos(
√
εt))m

,

we therefore get

∂tf(t) =
√
ε

{
P(k−1),(l+1) (cos(

√
εt), sin(

√
εt)) + P(k+1),(l−1) (cos(

√
εt), sin(

√
εt))

(1− cos(
√
εt))m

−

−
Pk,(l+1) (cos(

√
εt), sin(

√
εt))

(1− cos(
√
εt))m+1

}
.

Using the estimates π2(1 − cos(
√
εt)) ≥ εt2 and |Pk,l(cos(

√
εt), sin(

√
εt))| ≤ Pk,l(1, |

√
εt|) for

|
√
εt| ≤ π, we get

|f(t)| ≤ akl|
√
εt|l

(
√
εt)2m

= O
(
ε
l
2−m

)
Ql−2m(|t|) ,

where Qs(t) denotes a Polynomial in t of order s and

|∂tf(t)| ≤
√
ε

{
a(k−1),(l+1)|

√
εt|l+1 + a(k+1),(l−1)|

√
εt|l−1

(
√
εt)2m

−
ak,(l+1)|

√
εt|l+1

(
√
εt)2(m+1)

}
= O

(
ε
l
2−m+1

)
Ql+1−2m(|t|) +O

(
ε
l
2−m

)
Ql−1−2m(|t|) .

Derivatives of functions of the form f(t) lead therefore to sums of the same form and leave the
order in ε unchanged. Since (1− cos(

√
εt))−m is of the form of f(t) with k = l = 0 and the order

in |t| increases with each derivative at most by one, (B.21) can be estimated by

ε
d
2−kO(1)

m(x, ξ)
〈z̃〉2l

Ql(|η̃|)
〈η̃〉2k

〈
√
εz̃〉N12k

∑
ν1,...,νk

k∏
i=1

∫ √
ε

0

|ti −
√
ε|〈
√
εtieνi〉N1 dti

≤ ε
d
2O(1)

m(x, ξ)Ql(|η̃|)
〈z̃〉2l〈η̃〉2k

〈
√
εz̃〉N1 ,

since each integral with respect to ti is smaller or equal to cε. We thus finally get

|b1(x, ξ)| ≤ Cm(x, ξ)
∑

z̃∈(
√
εZ)d

ε
d
2

∫
[− π√

ε
, π√
ε
]d
〈z̃〉−2lQl(|η̃|)〈η̃〉−2k〈

√
εz̃〉N1 dη̃ , (B.22)

which is O(m(x, ξ)) for k, l big enough. By arguments analogue to the case δ < 1
2 for derivatives,

b1 ∈ S0
δ (m).



146 B. SYMBOLIC CALCULUS IN THE DISCRETE SETTING

The second integral can be estimated directly, using again the substitution z̃ = z√
ε

and η̃ = η√
ε
,

by

|b2(x, ξ)| =

∣∣∣∣∣∣
∑

z̃∈(
√
εZ)d

ε
d
2

∫
[− π√

ε
, π√
ε
]d
e−iz̃·η̃ζ(z̃, η̃)b(x−

√
εz̃, ξ −

√
εη̃; ε) dη̃

∣∣∣∣∣∣ ≤
≤ Cm(x, ξ)

∑
z̃∈(

√
εZ)d

ε
d
2

∫
[− π√

ε
, π√
ε
]d
ζ(z̃, η̃)〈

√
εz̃〉N1〈

√
εη̃〉N2 dη̃ .

Therefore b2 is also O(m(x, ξ)) and by the same arguments as above is an element of S0
δ (m) and

the mapping is continuous. 2

The following corollary concerns the composition of symbols.

Corollary B.6. The map

C∞ (Rd × Td
)
× C∞ (Rd × Td

)
3 (a, b) 7−→ a#b ∈ C∞ (Rd × Td

)
with

(a#b)(x, ξ; ε) :=
(
e−iεDy·Dξa(x, ξ; ε)b(y, η; ε)

)
| y=x
η=ξ

(B.23)

has a bilinear continuous extension :

Sr1δ1 (m1)
(
Rd × Td

)
× Sr2δ2 (m2)

(
Rd × Td

)
→ Sr1+r2δ (m1m2)

(
Rd × Td

)
for all δk ∈ [0, 1

2 ], k = 1, 2 and all order functions m1,m2, where δ := max{δ1, δ2}. For δj < 1
2 ,

j = 1, 2

(a#b)(x, ξ; ε) ∼
∑
α∈Nd

(iε)|α|

|α|!
(
∂αξ a(x, ξ; ε)

)
(∂αx b(x, ξ; ε)) (B.24)

in Sr1+r2δ (m1m2)
(
Rd × Td

)
for all a, b ∈ S

rj
δj

(mj)
(
Rd × Td

)
, j = 1, 2. Writing a#b(x, ξ; ε) =∑N−1

|α|=0
(iε)|α|

|α|!

(
∂αξ a(x, ξ; ε)

)
(∂αx b(x, ξ; ε)) + RN (a, b, ε), the remainder RN is an element of the

symbol class SN(1−δ1−δ2)
δ (m1m2) and it depends linearly on a finite number of derivatives of the

single symbols a and b. Furthermore it depends only on derivatives of a and b with respect to ξ
and x respectively which are at least of order N .

Proof:
By the Leibnitz rule, the map

Sr1δ1 (m1)× Sr2δ2 (m2) 3 (a, b) 7→ a · b ∈ Sr1+r2δ (m1m2)

is continuous, since each Fréchet-norm of the product depends only on a finite number of Fréchet-
norms of a and b. The same is true for the restriction map. The main part follows by Lemma B.5
by doubling the dimension of the space.

2

The next lemma relates the #-product of symbols with the composition of the associated
operators.

Lemma B.7. Let a ∈ Sr1δ1 (m1)
(
Rd × Td

)
, b ∈ Sr2δ2 (m2)

(
Rd × Td

)
with 0 ≤ δk ≤ 1

2 , k = 1, 2
and u ∈ s

(
(εZ)d

)
. For a#b given by (B.23),(

OpTd
ε (a)

)
◦
(
OpTd

ε (b)
)

= OpTd
ε (a#b)

in L
(
s
(
(εZ)d

))
.

Proof:
Denoting by KA(x, y) the kernel of the operator OpTd

ε (a), i.e.〈
v , OpTd

ε (a)u
〉
`2

=: 〈v × u , KA〉`2×`2 , (B.25)

(B.1) gives〈
v , OpTd

ε (a)u
〉
`2

=
∑

x∈(εZ)d

∑
y∈(εZ)d

u(y)v̄(x)(2π)−d
∫

[−π,π]d
e
i
ε (y−x)ξa(x, ξ; ε) dξ
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and therefore

KA(x, y; ε) = (2π)−d
∫

[−π,π]d

e
i
ε (y−x)ξa(x, ξ; ε) dξ = (2π)−

d
2
(
Fεξ→(x−y)a

)
(x, x− y; ε) . (B.26)

Since by definition

Cu(x) := OpTd
ε (a) ◦OpTd

ε (b)u(x) = OpTd
ε (a) ◦ (2π)−d

∑
y∈(εZ)d

∫
[−π,π]d

e
i
ε (y−z)ξb(z, ξ; ε)u(y) dξ

= (2π)−2d
∑

z∈(εZ)d

∫
[−π,π]d

e
i
ε (z−x)ηa(x, η; ε)

∑
y∈(εZ)d

∫
[−π,π]d

e
i
ε (y−z)ξb(z, ξ; ε)u(y) dξdη ,

the kernel KC associated to the operator C as defined in (B.25) takes the form

KC(x, y; ε) = (2π)−2d
∑

z∈(εZ)d

∫∫
[−π,π]d

e
i
ε ((z−x)η+(y−z)ξ)a(x, η; ε)b(z, ξ; ε) dξdη .

Thus by (B.26) the symbol associated to the operator C is given by

c(x, ν; ε) = (2π)
d
2

(
Fε

−1
(x−y)→νKC

)
(x, ν; ε) =

∑
(x−y)∈(εZ)d

e
i
ε (x−y)νKC(x, (x− y); ε) (B.27)

=
∑

(x−y)∈(εZ)d

e
i
ε (x−y)ν(2π)−2d

∑
z∈(εZ)d

∫ ∫
[−π,π]d

e
i
ε ((z−x)η+(y−z)ξ)a(x, η; ε)b(z, ξ; ε) dξdη .

With the substitution x− y = r, this leads to

(2π)−2d
∑

r∈(εZ)d

∑
z∈(εZ)d

∫∫
[−π,π]d

e
i
ε (rν+(z−x)η+(x−r−z)ξ)a(x, η; ε)b(z, ξ; ε) dξdη

= (2π)−2d
∑

r∈(εZ)d

∫
[−π,π]d

e
i
ε r(ν−ξ)

∑
z∈(εZ)d

∫
[−π,π]d

e
i
ε zηa(x, ξ − η; ε)b(x− z, ξ; ε) dξdη .

Equation (B.15) gives

(2π)−2d
∑

r∈(εZ)d

∫
[−π,π]d

e
i
ε r(ν−ξ)

∑
z∈(εZ)d

∫
[−π,π]d

e
i
ε zηa(x, ξ − η; ε)b(x− z, ξ; ε) dξdη

= (2π)−d
∑

r∈(εZ)d

∫
[−π,π]d

e
i
ε r(ν−ξ)

(
e−iεDzDηa(x, η; ε)b(z, ξ; ε)

)
| z=x
η=ξ

dξ

and by the representation (B.8) and definition (B.7) of δπ we have

(2π)−d
∑

r∈(εZ)d

∫
[−π,π]d

e
i
ε r(ν−ξ)

(
e−iεDzDηa(x, η; ε)b(z, ξ; ε)

)∣∣
z=x
η=ξ

dξ

= (2π)−d
∫

[−π,π]d
δπ(ν − ξ)

(
e−iεDzDηa(x, η; ε)b(z, ξ; ε)

)∣∣
z=x
η=ξ

dξ

=
(
e−iεDzDηa(x, η; ε)b(z, ν; ε)

)∣∣
z=x
η=ν

. (B.28)

Inserting (B.28) in (B.27) therefore shows

c(x, ν; ε) =
(
e−iεDzDηa(x, η; ε)b(z, ν; ε)

)∣∣
z=x
η=ν

. (B.29)

Together with the Lemmata B.2 and B.5, this proves the assertion.
2
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B.3. Norm estimates for operators on (εZ)d in microlocal approximation

To prove Proposition B.9, we need in addition the following proposition, which is an adapted
version of the Calderon-Vaillancourt-Theorem.

Proposition B.8. Let a ∈ Srδ (1)
(
Rd × Td

)
with 0 ≤ δ ≤ 1

2 . Then there exists a constant

M > 0 such that, for the associated operator OpTd
ε (a) given by (B.1) the estimate

‖OpTd
ε (a)u‖`2((εZ)d) ≤Mεr‖u‖`2((εZ)d)

holds for any u ∈ s
(
(εZ)d

)
and ε > 0. OpTd

ε (a) can therefore be extended to a continuous operator:

`2
(
(εZ)d

)
−→ `2

(
(εZ)d

)
with ‖OpTd

ε (a)‖∞ ≤ Mεr. Moreover M can be chosen depending only
on a finite number of Fréchet semi-norms of the symbol a.

Proof:
We have to show for all u, v ∈ s

(
(εZ)d

)
the estimate

|
〈
u , OpTd

ε (a)v
〉
`2
| ≤Mεr‖u‖`2‖v‖`2 (B.30)

holds, where M depends only on a finite number of Fréchet semi-norms ‖∂αx ∂
β
ξ a‖∞. By use of the

Fourier transformation defined in (2.3) and (2.4) and with the substitution z̃ = z√
ε

for z = x, y, η, ξ,
which symmetrizes the ε-dependance between configuration and momentum space, we have〈

u , OpTd
ε (a)v

〉
`2

= (2π)−d
∑

x∈(εZ)d

ū(x)
∑

y∈(εZ)d

∫
[−π,π]d

dξ e−
i
ε (x−y)ξa(x, ξ; ε)v(y)

= (2π)−
3d
2

∑
x∈(εZ)d

∫
[−π,π]d

dηe−
i
εηx
(
Fε

−1ū
)
(η)
∑

y∈(εZ)d

∫
[−π,π]d

dξ e−
i
ε (x−y)ξa(x, ξ; ε)v(y)

= (2π)−
3d
2 εd

∑
ỹ,x̃∈(

√
εZ)d

∫∫
[− π√

ε
, π√
ε
]d
dη̃dξ̃

(
Fε

−1ū
)
(
√
εη̃)e−i((x̃−ỹ)ξ̃+x̃η̃)×

× a(
√
εx̃,

√
εξ̃; ε)v(

√
εỹ) .

Introducing a cut-off-function ζ(|ξ̃ + η̃|) supported in a neighborhood of zero, the integral splits
into two parts, i.e.

〈
u , OpTd

ε (a)v
〉
`2

= I1 + I2 (compare the proof of lemma B.5).

To analyze the part multiplied by (1−ζ(|ξ̃ + η̃|)), which we denote by I1, we use the operators

L5(x̃− ỹ, ξ̃) :=
1−∆ξ̃

〈x̃− ỹ〉2
and

L6(x̃, ξ̃ + η̃) :=
−ε∆

√
ε

x̃

2d− 2
∑
ν cos(

√
ε(ξ̃ν + η̃ν))

,

where ∆
√
ε

x̃ denotes the discrete Laplacian defined in (B.19). Since L6 and L5 leave the exponential
function occurring in the integral invariant, we have by summation by parts

I1 = (2π)−
3d
2 εd

∑
ỹ,x̃∈(

√
εZ)d

∫ ∫
[− π√

ε
, π√
ε
]d

dη̃dξ̃
(
Lk6(x̃, ξ̃ + η̃)Ll5(x̃− ỹ, ξ̃)e−i((x̃−ỹ)ξ̃+x̃η̃)

)
×

×
(
Fε

−1ū
)
(
√
εη̃)(1−ζ(|ξ̃ + η̃|))a(

√
εx̃,

√
εξ̃; ε)v(

√
εỹ)

= (2π)−
3d
2 εd

∑
ỹ,x̃∈(

√
εZ)d

∫∫
[− π√

ε
, π√
ε
]d
dη̃dξ̃

(
Ll5(x̃− ỹ, ξ̃)e−i((x̃−ỹ)ξ̃+x̃η̃)

)
×

×
(
Fε

−1ū
)
(
√
εη̃)v(

√
εỹ)

1−ζ(|ξ̃ + η̃|))(
2d− 2

∑
ν cos(

√
ε(ξ̃ν + η̃ν))

)k (−ε∆√
ε

x̃

)k
a(
√
εx̃,

√
εξ̃; ε) ,
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which leads by integration by parts to

I1 = (2π)−
3d
2 εd

∑
ỹ,x̃∈(

√
εZ)d

∫∫
[− π√

ε
, π√
ε
]d
dη̃dξ̃ e−i((x̃−ỹ)ξ̃+x̃η̃)

(
Fε

−1ū
)
(
√
εη̃)

v(
√
εỹ)

〈x̃− ỹ〉2l
×

×
∑
|α|≤2l

Qα(Dξ̃)
1−ζ(|ξ̃ + η̃|)(

2d− 2
∑
ν cos(

√
ε(ξ̃ν + η̃ν))

)kPα(Dξ̃)
(
−ε∆

√
ε

x̃

)k
a(
√
εx̃,

√
εξ̃; ε) .

With the notation

Glkα(x̃, ξ̃) :=
ε
d
2

√
2π

d

∫
[− π√

ε
, π√
ε
]d
e−ix̃η̃

(
Fε

−1ū
)
(
√
εη̃)Qα(Dξ̃)

1−ζ(|ξ̃ + η̃|)(
2d− 2

∑
ν cos(

√
ε(ξ̃ν + η̃ν)

)k ×
×Pα(Dξ̃)

(
−ε∆

√
ε

x̃

)k
a(
√
εx̃,

√
εξ̃; ε) dη̃ and (B.31)

Fl(x̃, ξ̃) :=
ε
d
2

√
2π

d

∑
ỹ∈(

√
εZ)d

eiỹξ̃
v(
√
εỹ)

〈x̃− ỹ〉2l
(B.32)

we have

I1 = (2π)−
d
2

∑
x̃∈(

√
εZ)d

∫
[− π√

ε
, π√
ε
]d
dξ̃ e−ix̃ξ̃Fl(x̃, ξ̃)

∑
|α|≤2l

Glkα(x̃, ξ̃) . (B.33)

By use of the Schwarz inequality, we can now estimate the `2
(
(
√
εZd

)
×L 2

(
(T/

√
ε)d
)
-norm of

Fl and Glkα separately, to get an estimate for the given integral. Since

Fl(x̃, ξ̃) = Fε
−1

y→
√
εξ̃
ε
d
2

v(y)
〈x̃− y√

ε
〉2l

and

Glkα(x̃, ξ̃) = Fεη→
√
εx̃

(
Fε

−1ū
)
(η)Qα(Dξ̃)

1−ζ(|ξ̃ + η√
ε
|)(

2d− 2
∑
ν cos(

√
εξ̃ν + ην)

)k ×
×Pα(Dξ̃)

(
−ε∆

√
ε

x̃

)k
a(
√
εx̃,

√
εξ̃; ε) ,

we have by (2.8)

‖Fl‖2`2((√εZ)d)×L 2((T/
√
ε)d) =

∑
x̃∈(

√
εZ)d

∫
[− π√

ε
, π√
ε
]d
|Fl(x̃, ξ̃)|2 dξ̃

=
∑

x̃∈(
√
εZ)d

ε−
d
2

∫
[−π,π]d

|Fl(x̃,
ξ√
ε
)|2 dξ = ε−

d
2

∑
x̃∈(

√
εZ)d

∑
y∈((εZ)d)

|Fεξ→yFl(x̃,
ξ√
ε
)|2

≤
∑

x̃∈(
√
εZ)d

ε−
d
2

∑
y∈((εZ)d)

εd
|v(y)|2

〈x̃− y√
ε
〉4l

and thus for l big enough with t̃ = x̃− ỹ

‖Fl‖2`2((√εZ)d)×L 2((T/
√
ε)d) ≤ ‖v‖

2
`2((εZ)d)

∑
t̃∈(

√
εZ)d

ε
d
2 〈t̃〉−4l ≤ Cl‖v‖2`2((εZ)d) . (B.34)



150 B. SYMBOLIC CALCULUS IN THE DISCRETE SETTING

On the other hand by (2.7)

‖Glkα‖2`2((√εZ)d)×L 2((T/
√
ε)d) =

∫
[− π√

ε
, π√
ε
]d
dξ̃

∑
x̃∈((

√
εZ)d)

|Glkα(x̃, ξ̃)|2

=
∫

[− π√
ε
, π√
ε
]d
dξ̃

∑
x∈((εZ)d)

|Glkα(
x√
ε
, ξ̃)|2 =

∫
[− π√

ε
, π√
ε
]d
dξ̃

∫
[−π,π]d

dη|Fε
−1
x→ηGlkα(

x√
ε
, ξ̃)|2

≤
∫

[−π,π]d
dη
∣∣(Fε

−1ū
)
(η)
∣∣2 ∫

[− π√
ε
, π√
ε
]d
dξ̃

∣∣∣∣∣∣∣Qα(Dξ̃)
1−ζ(|ξ̃ + η√

ε
|)(

2d− 2
∑
ν cos(

√
εξ̃ν + ην)

)k
∣∣∣∣∣∣∣
2

×

×
∣∣∣∣Pα(Dξ̃)

(
−ε∆

√
ε

x̃

)k
a(
√
εx̃,

√
εξ̃; ε)

∣∣∣∣2 .
Since by assumption

sup
x̃,ξ̃

∣∣∣∂αx̃ ∂βξ̃ a(√εx̃,√εξ̃; ε)∣∣∣ ≤ M̃εr+( 1
2−δ)(|α|+|β|) , (B.35)

we can use the arguments given from equation (B.20) to (B.22) concerning the discrete Laplacian

and the derivatives of
(
2d− 2

∑
ν cos(

√
ε(ξ̃ν + η̃ν))

)−1

, to get with τ̃ = ξ̃ + η̃

‖Glkα‖2`2((√εZ)d)×L 2((T/
√
ε)d) ≤ Mε2(r+( 1

2−δ)(|α|+2k)+k)‖u‖2`2((εZ)d)

∫
supp(1−ζ)

dτ̃

∣∣∣∣ Ckα
|
√
ετ̃ |2k

∣∣∣∣2
≤ CkαMε2(r+(|α|+2k)( 1

2−δ))‖u‖2`2((εZ)d) (B.36)

for k big enough. Inserting (B.34) and (B.36) in (B.33) yields

|I1| ≤
∑
|α|≤2l

ClkαMεr+(|α|+2k)( 1
2−δ)‖u‖`2((εZ)d)‖v‖`2((εZ)d)

≤ ClkMεr‖u‖`2((εZ)d)‖v‖`2((εZ)d) . (B.37)

To get an estimate for the modulus of I2, which denotes the integral over the support of ζ, we use
L5(x̃− ỹ, ξ̃), so

I2 = (2π)−
3d
2 εd

∑
ỹ,x̃∈(

√
εZ)d

∫∫
[− π√

ε
, π√
ε
]d
dη̃dξ̃

(
Ll5(x̃− ỹ, ξ̃)e−i((x̃−ỹ)ξ̃+x̃η̃)

)
×

×
(
Fε

−1ū
)
(
√
εη̃)ζ(|ξ̃ + η̃|)a(

√
εx̃,

√
εξ̃; ε)v(

√
εỹ) =

= (2π)−
3d
2 εd

∑
ỹ,x̃∈(

√
εZ)d

v(
√
εỹ)

〈x̃− ỹ〉2l

∫∫
[− π√

ε
, π√
ε
]d
dη̃dξ̃ e−i((x̃−ỹ)ξ̃+x̃η̃)

(
Fε

−1ū
)
(
√
εη̃)×

×
(
1−∆ξ̃

)l
ζ(|ξ̃ + η̃|)a(

√
εx̃,

√
εξ̃; ε) .

With the notation

Gl(x̃, ξ̃) :=
ε
d
2

√
2π

d

∫
[− π√

ε
, π√
ε
]d

dη̃e−ix̃η̃
(
Fε

−1ū
)
(
√
εη̃)
(
1−∆ξ̃

)l
ζ(|ξ̃ + η̃|)a(

√
εx̃,

√
εξ̃; ε) =

= Fεη→
√
εx̃

(
F−1ū

)
(η)
(
1−∆ξ̃

)l
ζ(|ξ̃ +

η√
ε
|)a(

√
εx̃,

√
εξ̃; ε)

and Fl as given in (B.32)

I2 = (2π)−
d
2

∑
x̃∈(

√
εZ)d

∫
[− π√

ε
, π√
ε
]d
dξ̃e−ix̃ξ̃Fl(x̃, ξ̃)Gl(x̃, ξ̃) . (B.38)
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We get by (B.35), the substitution τ̃ = ξ̃+η̃ and the isometry of the Fourier transform in `2
(
(εZ)d

)
‖Gl‖2`2((√εZ)d)×L 2((T/

√
ε)d) ≤

∫
[−π,π]d

dη
∣∣(Fε

−1ū
)
(η)
∣∣2×

×
∫

[− π√
ε
, π√
ε
]d
dξ̃

∣∣∣∣∣∣
∑
|α|≤2l

(
Qα(Dξ̃)ζ(|ξ̃ +

η√
ε
|)
)(

Pα(Dξ̃)a(
√
εx̃,

√
εξ̃; ε)

)∣∣∣∣∣∣
2

≤ ‖u‖2`2((εZ)d)

∫
[− π√

ε
, π√
ε
]d
dτ̃

∣∣∣∣∣∣
∑
|α|≤2l

Cαε
r+( 1

2−δ)|α|Qα(Dτ̃ )ζ(|τ̃ |)

∣∣∣∣∣∣
2

≤ Clε
r‖u‖2`2((εZ)d) . (B.39)

for l big enough. Inserting (B.34) and (B.39) in (B.38) leads via the Schwarz inequality to

|I2| ≤ Clε
r‖u‖`2((εZ)d)‖v‖`2((εZ)d)

and therefore we finally get

|
〈
u , OpTd

ε (a)v
〉
`2
| ≤Mεr‖u‖`2((εZ)d)‖v‖`2((εZ)d) .

Since s
(
(εZ)d

)
is dense in `2

(
(εZ)d

)
, the operator OpTd

ε (a) is continuous in `2
(
(εZ)d

)
with the

operator norm
‖OpTd

ε (a)‖∞ ≤Mεr .

2

We are now in the position to introduce the Hamilton operator analyzed in Chapter 2 and to
find the norm estimate of this operator in microlocal approximation.

Proposition B.9. Let Tε be a translation operator on the lattice (εZ)d as described in Hy-
pothesis 2.7 with the symbol t and let Tε,q,j denote the quadratic approximation of Tε, associated
to the symbol tπ,q,j defined in (2.29). Let χj,ε, 1 ≤ j ≤ m and φ̃0,ε be the cut-off-functions defined
in (2.41) and (2.45) respectively. Then

||χj,ε OpTd
ε (φ̃0,ε)(Tε − Tε,q,j) OpT

d

ε (φ̃0,ε)χj,ε||∞ = O(ε
6
5 ) .

Proof:
To use Proposition B.8, we have to find the symbol associated to the operator we want to estimate.
Because the operator is a composition of several operators, this will be done by use of Lemma B.7.
First we remark that for two symbols a, b ∈ Srδ (m), δ < 1

2 , where b has compact support, and a
function ψ ∈ C∞

0 (Rd × Td) with ψ(x, ξ)|supp b = 1, we have

a#b(x, ξ, ε) = aψ#b(x, ξ, ε) +O (ε∞) . (B.40)

(B.40) follows directly by (B.24) for the asymptotic expansion, yielding

(a#b)− (aψ#b) ∼
∑
α∈Nd0

(iε)|α|

|α|!
∂αξ (a− aψ)∂αx b ,

since on the support of b

∂αξ (a− aψ) = ∂αξ a(1− ψ) +
∑
β,γ

1≤|β|,|γ|≤|α|

∂βξ a∂
γ
ξ ψ = 0 .

Thus (B.40) holds and the operator associated to aψ#b is equal to A ◦ B modulo terms of order
ε∞.
Introducing the cut-off-functionŝ̃

φ0(ξ) := φ̃0,ε

(
ξ

3

)
and χ̂j(x) := χj,ε

(x
3

)
,

which are equal to 1 on the support of φ̃0,ε respectively χj,ε, this allows us to analyze the symbol

p̂(x, ξ; ε) := (χj,ε#φ̃0,ε#(t− tπ,q,j)
̂̃
φ0χ̂j#φ̃0,ε#χj,ε)(x, ξ; ε)
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instead of p := (χj,ε#φ̃0,ε#(t−tqj)#φ̃0,ε#χj,ε), which by Lemma B.7 corresponds to the considered
operator.
The aim of the proof is to show p̂ ∈ S

6
5
2
5
(1), since the proposition then follows directly from

Proposition B.8.
To this end, we determine the symbol class of (t−tπ,q,j)̂̃φ0χ̂j . With the notation χ̂j(x) =: ˜̂χj(ε−

2
5x)

and similar for ̂̃φ0, let α, β, αi, βi ∈ Nd0 for i = 1, 2 and |α1|+ |α2| = |α| as well as |β1|+ |β2| = |β|,
then∣∣∣∂αx ∂βξ (t− tπ,q,j)

̂̃
φ0χ̂j

∣∣∣ =
∣∣∣∣∣∣

∑
α1,α2,β1,β2

ε−
2
5 (|β2|+|α2|)

(
∂α1
x ∂β1

ξ (t− tπ,q,j)
)(

∂β2
ξ
̂̃
φ0

)(
∂α2
x

˜̂χj
)∣∣∣∣∣∣ . (B.41)

The scaling of the support of the cut-off-functions with respect to ε yields |x−xj | = O
(
ε

2
5

)
= |ξ|,

therefore

sup
|ξ|∈supp(

b̃
φ0)

sup
|x|∈supp(bχj)

(
∂α1
x ∂β1

ξ (t− tπ,q,j)(x, ξ; ε)
)

= sup
|ξ|∈supp(

b̃
φ0)

sup
|x|∈supp(bχj)

(
∂α1
x ∂β1

ξ (〈ξ , (B(x)−B(xj))ξ〉+O
(
|ξ|3
)
)
)

≤ Cε
6
5−|β1| 25−|α1| 25 . (B.42)

Inserting (B.42) in (B.41) shows

|∂αx ∂
β
ξ (t− tπ,q,j)

̂̃
φ0χ̂j(x, ξ; ε)| ≤ Cα,βε

6
5−

2
5 (|α|+|β|)

and therefore (t − tπ,q,j)
̂̃
φ0χ̂j ∈ S

6
5
2
5
(1). The cut-off-functions χj,ε and φ̃0,ε are both elements of

S0
2
5
(1), thus by Lemma B.6 we get p′ ∈ S

6
5
2
5
(1)(Rd×Td). The estimate of the norm of the associated

operator in `2
(
(εZ)d

)
results by use of Lemma B.8.

2

The following lemma, which gives the resulting symbol class of double commutators, is an
application of the Lemmata B.6 and B.7.

Lemma B.10. Let χ(x) ∈ C∞(Rd) and φ(ξ) ∈ C∞(Td) be multiplication operators in the
configuration respectively momentum space with symbols in Sr1δ1 (m1)(Rd × Td), δ1 < 1

2 . Let H be
an operator on `2((εZ)d) associated to the phase space symbol h(x, ξ) ∈ Sr2δ2 (m2)(Rd ×Td), δ2 < 1

2 .
For a ∈ Sraδa (ma)(Rd × Td) and b ∈ Srbδb (mb)(Rd × Td) let

[a, b]# := a#b− b#a

denote the commutator in symbolic calculus.
Then for α, α1, α2 ∈ Nd with |α| ≥ 2 and α1 + α2 = α with |αk| ≥ 1, k = 1, 2 and for δ :=
max{δ1, δ2}:

(a) [χ, [χ, h]#]# ∈ S2−2(δ1+δ2)
δ (m2

1m2) and it has the expansion

[χ(x), [χ(x), h(x, ξ)]#]# ∼
∑
α

(iε)|α|

|α|!
(
∂αξ h

)
(x, ξ)

∑
α1,α2

(∂α1
x χ) (x) (∂α2

x χ) (x) .

(b) [φ(ξ), [φ(ξ), h(x, ξ)]#]# ∈ S2−2(δ1+δ2)
δ (m2

1m2) and it has the expansion

[φ(ξ), [φ(ξ), h(x, ξ)]#]# ∼
∑
α

(iε)|α|

|α|!
(∂αxh) (x, ξ)

∑
α1,α2

(
∂α1
ξ φ

)
(ξ)
(
∂α2
ξ φ

)
(ξ) .

(c) the symbol associated to the operator [A,B] is given by [a, b]#.
If we split the asymptotic series given in (a) and (b) in the finite sum of terms with 2 ≤ |α| ≤ N−1
and a remainder RN , the remainder is an element of the symbol class SN(1−δ1−δ2)

δ (m2
1m2) and it

depends linearly on a finite number of Fréchet semi-norms of the single symbols. Furthermore it
depends only on the derivatives of h, which are at least of order N and of the product of derivatives
of the cut-off functions of order N1 and N2, such that N1 +N2 ≥ N .
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Proof:
(a):

The double commutator is given by

[χ(x), [χ(x), h(x, ξ)]#]# = χ#χ#h(x, ξ) + h#χ#χ(x, ξ)− 2χ#h#χ(x, χ) . (B.43)

By Lemma B.6, these terms are given by

χ#χ#h(x, ξ) = χ · χ · h(x, ξ)

h#χ#χ(x, ξ) =
∑
α∈Nd

|α|≤N−1

(iε)|α|

|α|!
(
∂αξ h

) (
∂αxχ

2
)
(x, ξ) +RN (x, ξ; ε

χ#h#χ(x, χ) =
∑
α∈Nd

|alpha|≤N−1

(iε)|α|

|α|!
χ
(
∂αξ h

)
(∂αxχ) (x, ξ) + R̃N (x, ξ; ε) .

where RN , R̃N ∈ S
N(1−δ1−δ2)
δ (m2

1m2). The terms with |α| = 0 and |α| = 1 cancel in (B.43)
Furthermore all terms with 2χj∂αxχj cancel. Thus it remains by use of the Leibnitz formula with
α1 + α2 = α and |αk| ≥ 1, k = 1, 2 the expansion

[χ(x), [χ(x), h(x, ξ)]#]# =
∑
α∈Nd

2≤|α|≤N−1

(iε)|α|
(
∂αξ h

) ∑
α1,α2∈Nd
α1+α2=α

1
|α1|!|α2|!

(∂α1
x χ) (∂α2

x χ) (x, ξ)+RN (x, ξ; ε)

with RN ∈ S
N(1−δ1−δ2)
δ (m2

1m2). The statement on the symbol class follows at once from this
expansion, since each summand is at least of order ε2(1−δ1−δ2) and by use of the Leibnitz rule.
(b):

As above the double commutator consists of the terms

[φ(ξ), [φ(ξ), h(x, ξ)]#]# = φ#φ#h(x, ξ) + h#φ#φ(x, ξ)− 2φ#h#φ(x, χ) (B.44)

and the summands have the expansions

φ#φ#h(x, ξ) =
∑
α∈Nd

|α|≤N−1

(iε)|α|

|α|!
(∂αxh)

(
∂αξ φ

2
)
(x, ξ) +RN (x, ξ; ε)

h#χ#χ(x, ξ) = h · φ · φ(x, ξ)

χ#h#χ(x, χ) =
∑
α∈Nd

|α|≤N−1

(iε)|α|

|α|!
φ (∂αxh)

(
∂αξ φ

)
(x, ξ) + R̃N (x, ξ; ε) ,

where RN , R̃N ∈ S
N(1−δ1−δ2)
δ (m2

1m2). Therefore in (B.44) remains as discussed in (a) with α1 +
α2 = α and |αk| ≥ 1, k = 1, 2

[φ(ξ), [φ(ξ), h(x, ξ)]#]# ∼
∑
α∈Nd

2≤|α|≤N−1

(iε)|α|

|α|!
(∂αxh)

∑
α1,α2∈Nd
α1+α2=α

(
∂α1
ξ φ

)(
∂α2
ξ φ

)
(x, ξ) +RN (x, ξ; ε)

with RN ∈ S
N(1−δ1−δ2)
δ (m2

1m2). The statement on the symbol class follows from this expansion
as discussed in (a).
(c): This is a direct consequence of Lemma B.7.

The additional properties of RN follow immediately from the properties of remainder in Corol-
lary B.6.

2

B.4. Definition of Pseudo-differential Operators on L 2(Rd)

We follow the definitions of h-scaled symbol classes and associated pseudo-differential operators
given in Dimassi-Sjöstrand ([16]) and Robert ([50]). These definitions are analogue to the lattice
case and for several results on the composition of symbols and the Calderon-Vaillancourt Theorem,
we refer to the books just mentioned.
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Definition B.11. (a) A function m : Rn → [0,∞) is called an order function, if there
exist constants C0 > 0 and N0 > 0, such that

m(x) ≤ C0〈x− y〉N0m(y) , x, y ∈ Rd,

with the notation 〈x〉 :=
√

1 + |x|2.
(b) For an order function m on Rn, the symbol space S(m) (Rn) consists of all a ∈ C∞(Rn),

for which for all α ∈ Nd there is a constant Cα such that

|∂αx a(x)| ≤ Cαm(x) , x ∈ Rd .
We often write S(m), if the underlying space is clear.

(c) If the symbol a(x; ε) depends on a small parameter ε ∈ (0, 1], a is said to be in S(m),
if a(· ; ε) is uniformly bounded in S(m) for ε varying in (0, 1]. Let Sk(m) := εkS(m)
describe for k ∈ R the space of symbols of the form εka(x; ε) for a ∈ S(m). For δ ∈ [0, 1],
the space Skδ (m)

(
Rd
)

consists of functions a(x; ε) on Rd × (0, 1], belonging to S(m)
(
Rd
)

for every fixed ε and satisfying

|∂αx a(x; ε)| ≤ Cαm(x, ξ)εk−δ|α| , x ∈ Rd .

(d) Let aj ∈ S
kj
δ (m), kj ↗ ∞, then a ∼

∑∞
j=0 aj means that a −

∑N
j=0 aj ∈ S

kN+1
δ (m) for

every N ∈ N.
(e) A pseudo-differential operator Opε : C∞

0

(
Rd
)
→ (C∞

0 )′
(
Rd
)

associated to a symbol a ∈
Skδ (m)

(
R2d

)
is defined by

Opε u(x) =
1

(ε2π)n

∫
Rd

∫
Rd

e
i
ε (y−x)ξa(x, ξ; ε)u(y) dydξ , u ∈ C∞

0

(
Rd
)
.

Using the symbolic calculus introduced in Dimassi-Sjöstrand [16], in particular Proposition 7.7,
Theorem 7.9 and Theorem 7.11, it is possible to show by similar considerations as in the lattice
case, that for T̂ , T̂qj defined in (2.30) and (2.33) respectively and the cut-off functions χj,ε, φk
defined in (2.41) and (2.44) the norm estimate

||χj,ε(x)φ̃0,ε(εD)(Tε − Tεqj)φ̃0,ε(εD)χj,ε(x)||∞ = O(ε
6
5 ) (B.45)

holds.

B.5. Analogue of the Persson Theorem in the discrete setting

In this section we will prove a theorem on the infimum of the essential spectrum of Hε acting
in `2

(
(εZ)d

)
, which is similar to Persson’s Theorem for Schrödinger operators. The proof follows

the proof of Persson’s Theorem in the Schrödinger setting given in Helffer [30] and Agmon [3]
respectively.

Theorem B.12. Let Hε = Tε + Vε satisfy Hypothesis 2.7, denote by σess(Hε) the essential
spectrum of Hε and define

Σ(Hε) := sup
K⊂(εZ)d

finite

inf
{
〈Hεφ , φ〉`2
‖φ‖2`2

|φ ∈ c0
(
(εZ)d \K

)}
, (B.46)

where c0(D) denote the space of real-valued functions on (εZ)d with compact, i.e. finite, support
in ((εZ)d \D). Then

inf σess (Hε) = Σ (Hε) .

The proof of Theorem B.12 is divided in two Lemmata and the main part.

Lemma B.13. For x ∈ (εZ)d and R > 0 let Bx(R) := {y ∈ (εZ)d | |x− y| < R} denote the ball
around x with radius R and

ΛR(x,Hε) := inf
{
〈Hεφ , φ〉`2
‖φ‖2`2

; φ ∈ c0 (Bx(R))
}
. (B.47)

Then for all δ > 0 there exists a radius Rδ > 0, such that for all R > Rδ and φ ∈ c0
(
(εZ)d

)
〈Hεφ , φ〉`2 ≥

∑
x∈(εZ)d

(ΛR(x,Hε)− δ) |φ(x)|2 .
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Proof of Lemma B.13:

Let ρ ∈ C∞
0

(
Rd
)

be real valued with ρ(x) = 0 for |x| ≥ 1
2 and

∫
Rd |ρ(x)|

2 dx = 1 and define

ρy,R := ρ

(
y − x

R

)
.

Then ρy,Rφ ∈ c0
(
By
(
R
2

))
and therefore by the definition of ΛR

〈Hερy,Rφ , ρy,Rφ〉`2 ≥ ΛR
2
(y,Hε)‖ρy,Rφ‖2`2 .

Since By
(
R
2

)
⊂ Bx(R) for |x− y| < R

2 and thus ΛR
2
(y) ≥ ΛR(x), we get the estimate

〈Hερy,Rφ , ρy,Rφ〉`2 ≥
∑

x∈(εZ)d

ΛR(x,Hε)(ρy,Rφ)2(x) . (B.48)

To analyze the scalar product we use that Tε is self adjoint and φ, ρ are real valued, yielding

〈Tερy,Rφ , ρy,Rφ〉`2 =
1
2
(
〈Tερy,Rφ , ρy,Rφ〉`2 + 〈ρy,Rφ , Tερy,Rφ〉`2

)
=

=
1
2

(〈
Tεφ , ρ

2
y,Rφ

〉
`2

+ 〈[Tε, ρy,R]φ , ρy,Rφ〉`2 +
〈
ρ2
y,Rφ , Tεφ

〉
`2

+ 〈ρy,Rφ , [Tε, ρy,R]φ〉`2
)

=

=
〈
Tεφ , ρ

2
y,Rφ

〉
`2

+
1
2
(
〈[Tε, ρy,R]φ , ρy,Rφ〉`2 + 〈ρy,Rφ , [Tε, ρy,R]φ〉`2

)
.

Since [Tε, ρy,R]∗ = −[Tε, ρy,R] it follows that

〈Tερy,Rφ , ρy,Rφ〉`2 =
〈
Tεφ , ρ

2
y,Rφ

〉
`2

+
1
2
〈(ρy,R[Tε, ρy,R]− [Tε, ρy,R]ρy,R)φ , φ〉`2

and since Vε commutes with ρy,R, we therefore get〈
Hεφ , ρ

2
y,Rφ

〉
`2

= 〈Hερy,Rφ , ρy,Rφ〉`2 −
1
2
〈[ρy,R, [Tε, ρy,R]]φ , φ〉`2 . (B.49)

To analyze the double commutator, we use the symbolic calculus introduced in Appendix B. By
Lemma B.10, the symbol associated to the operator [ρy,R, [Tε, ρy,R]] is given by

ρy,R(x), [t(x, ξ), ρy,R(x)]#]# =

=
∑
α∈Nd

2≤|α|<N

(iε)|α|

|α|!
(
∂αξ t
)
(x, ξ)

∑
α1,α2

|α1|+|α2|=|α|

(∂α1
x ρy,R) (x) (∂α2

x ρy,R) (x) +RN (t, ρy,R) , (B.50)

where RN depends of a finite number of derivatives of ρy,R, which are at least of order N . By the
scaling of ρy,R, it follows that |∇xρy,R(x)| ≤ C

R for C suitable. Since all terms in the finite sum in
(B.50) and the remainder RN depend on a product of two (at least first order) derivatives of ρy,R,
any Fréchet semi-norm of the symbol of the double commutator is of order 1

R2 . By Proposition
B.8, the same statement follows for the operator-norm of the associated operator, thus there is a
constant C > 0 such that

‖[ρy,R, [Tε, ρy,R]]‖∞ ≤ C

R2
(B.51)

By the Cauchy-Schwarz inequality, we get by inserting (B.48) and (B.51) in (B.49)〈
Hεφ , ρ

2
y,Rφ

〉
`2
≥

∑
x∈(εZ)d

ΛR(x,Hε)|ρy,Rφ(x)|2 − C

R2

∑
x∈By(R)

|φ(x)|2 . (B.52)

We remark that by setting z = y−x
R∫

Rd
ρ2
y,R(x) dy = Rd

∫
Rd
ρ2(z) dz = Rd (B.53)

and ∫
Rd

1{|x−y|<R} dy = Rd
∫

Rd
1{|z|<1} dz = CRd . (B.54)

Thus integration of the left hand side of (B.52) with respect to y yields by (B.53)∫
Rd

〈
Hεφ , ρ

2
y,Rφ

〉
`2
dy =

〈
Hεφ ,

∫
Rd ρ

2
y,R dyφ

〉
`2

= Rd〈Hεφ , φ〉`2 . (B.55)
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If we integrate the right hand side of (B.52) with respect to y and use (B.54), we get

∫
Rd

 ∑
x∈(εZ)d

ΛR(x,Hε)ρ2
y,R(x)φ2(x)− C

R2

∑
x∈(εZ)d

1{|x−y|<R} |φ(x)|2
 dy =

= Rd

 ∑
x∈(εZ)d

ΛR(x,Hε)φ2(x)− C ′

R2

∑
x∈(εZ)d

|φ(x)|2
 . (B.56)

The Integration of both sides of (B.52) with respect to y and division by Rd gives by (B.55) and
(B.56)

〈Hεφ , φ〉`2 ≥
∑

x∈(εZ)d

(
ΛR(x,Hε)−

C

R2

)
|φ(x)|2 . (B.57)

By choosing for δ > 0 the radius Rδ =
√

C
δ , the statement of Lemma B.13 follows for all R > Rδ

by (B.57).
2

The family ΛR(x,Hε) describes the lowest eigenvalue of the Dirichlet problem with respect to
the ball Bx(R). The next lemma relates this family with Σ(Hε).

Lemma B.14. Let ΛR(x,Hε) and Σ(Hε) defined in (B.47) and (B.46) respectively, then

Σ(Hε) = lim
R→+∞

lim inf
|x|→∞

ΛR(x,Hε) . (B.58)

Proof of Lemma B.14:

We split the proof in two parts showing the two fundamental inequalities.

Step 1: Estimate from above

Σ(Hε) ≤ lim
R→+∞

lim inf
|x|→∞

ΛR(x,Hε) (B.59)

Let K ⊂ (εZ)d compact and R > 0 fixed. Then Bx(R) ⊂ (εZ)d \K for |x| large enough and
thus

inf
{
〈Hεφ , φ〉`2
‖φ‖2`2

; φ ∈ c0
(
(εZ)d \K

)}
≤ inf

{
〈Hεφ , φ〉`2
‖φ‖2`2

; φ ∈ c0 (Bx(R))
}

(= ΛR(x,Hε)) .

This inequality is satisfied for all |x| large enough and the left hand side is independent of x, thus

inf
{
〈Hεφ , φ〉`2
‖φ‖2`2

; φ ∈ c0
(
(εZ)d \K

)}
≤ lim inf

|x|→∞
ΛR(x,Hε) .

The left hand side of this inequality is independent of R and the right hand side understood as a
function in R is monotonically decreasing and bounded from below, thus the limit R→∞ is well
defined and

inf
{
〈Hεφ , φ〉`2
‖φ‖2`2

; φ ∈ c0
(
(εZ)d \K

)}
≤ lim
R→+∞

lim inf
|x|→∞

ΛR(x,Hε) .

Now the right hand side is independent of the choice of K, thus we can take the supremum over
all compact sets K ⊂ (εZ)d and by the definition of Σ(Hε), this shows (B.59).

Step 2: Estimate from below

Σ(Hε) ≥ lim
R→+∞

lim inf
|x|→∞

ΛR(y,Hε) . (B.60)

By the definition of lim inf, it follows that for all δ > 0 and all R > 0 there exists an R0 such
that for all |x| > R0

ΛR(x,Hε) ≥ lim inf
|x|→∞

ΛR(x,Hε)− δ .
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It follows immediately that for all φ ∈ c0
(
(εZ)d \B0(R0)

)
∑

x∈(εZ)d

ΛR(x,Hε)|φ(x)|2 ≥
(

lim inf
|x|→∞

ΛR(x,Hε)− δ

)
‖φ‖2`2 . (B.61)

By Lemma B.13 we know that for all δ > 0 and φ ∈ c0
(
(εZ)d

)
there exists Rδ such that for all

R > Rδ

〈Hεφ , φ〉`2 ≥
∑

x∈(εZ)d

(ΛR(x,Hε)− δ) |φ(x)|2 . (B.62)

Inserting (B.62) in (B.61) it follows that for all δ > 0 there exists Rδ such that for all R > Rδ

there exists R0 such that for all φ ∈ c0
(
(εZ)d \B0(R0)

)
〈Hεφ , φ〉`2
‖φ‖2`2

≥ lim inf
|x|→∞

ΛR(x,Hε)− 2δ . (B.63)

By the definition of Σ(Hε) it follows directly that

Σ(Hε) ≥ inf
{
〈Hεφ , φ〉`2
‖φ‖2`2

|φ ∈ c0
(
(εZ)d \B0(R0)

)}
. (B.64)

The equation (B.62) holds for all φ ∈ c0
(
(εZ)d \B0(R0)

)
, thus we can take on the left hand side

the infimum over all these functions, which together with (B.64) yields

Σ(Hε) ≥ lim inf
|x|→∞

ΛR(x,Hε)− 2δ . (B.65)

The left hand side is independent of R and since the relation holds for all R > Rδ, it is possible to
take the limit R→∞, which yields for all δ > 0

Σ(Hε) ≥ lim
R→+∞

lim inf
|x|→∞

ΛR(x,Hε)− 2δ .

Thus in the limit δ the estimate (B.60) follows.
2

Proof of Theorem B.12:

We discuss the cases Σ(Hε) = ∞ and Σ(Hε) <∞ separately.

Case 1: Σ(Hε) <∞:
As in the preceding proof, we conclude the equality by showing that both inequalities hold.

Step 1: Estimate from below

inf σess(Hε) ≥ Σ(Hε) (B.66)

As a function of R, the term lim inf |x|→∞ ΛR(x,Hε) is monotonically decreasing, thus it follows
by Lemma B.14, that for fixed R > 0

Σ(Hε) ≤ lim inf
|x|→∞

ΛR(x,Hε)

and thus for all δ > 0 there exists aδ such that for all x ∈ (εZ)d with |x| > aδ

Σ(Hε)−
δ

2
≤ ΛR(x,Hε) . (B.67)

On the other hand denoting by σ(Hε) the spectrum of Hε, it is clear by the definition of ΛR(x,Hε)
and the Min-Max-principle that

ΛR(x,Hε) ≥ inf σ(Hε) . (B.68)

Since Hε is bounded from below, it follows by (B.67) and (B.68) that there exists a constant C > 0
such that for all x ∈ (εZ)d

ΛR(x,Hε) ≥ Σ(Hε)− C . (B.69)
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We choose a function W ∈ c0
(
(εZ)d

)
such that W (x) ≥ C for |x| < aδ and W (x) ≥ 0 everywhere.

Then for Hε +W it follows by Lemma B.13, (B.67) and (B.69), that for φ ∈ c0
(
(εZ)d

)
〈(Hε +W )φ , φ〉`2 ≥

∑
x∈(εZ)d

(W (x)− ΛR(x,Hε)−
δ

2
)|φ(x)|2

≥
∑
|x|≤aδ

(Σ(Hε)−
δ

2
)|φ(x)|2 +

∑
|x|>aδ

(W (x) + Σ(Hε)− δ)|φ(x)|2

≥ (Σ(Hε)− δ)
∑

x∈(εZ)d

|φ(x)|2 .

Thus it follows
inf σess(Hε +W ) ≥ inf σ(Hε +W ) ≥ Σ(Hε)− δ , (B.70)

where the first estimate follows directly by the definition of the spectra. The perturbation W is
compactly supported, thus each u ∈ `2((εZ)d) is mapped by W to a lattice function with compact
support, i.e. which is non-zero only at finitely many lattice points. Thus W is a finite rank operator
and in particular compact. This allows to use the Theorem of Weyl (see for example [30], [49]),
telling us that a perturbation of a closed operator by means of a relatively compact operator does
not change the essential spectrum. Since each compact operator is relatively compact to any closed
operator, it follows that

σess(Hε +W ) = σess(Hε)
and since (B.70) holds for all δ > 0 the estimate (B.66) is shown.

Step 2: Estimate from above

inf σess(Hε) ≤ Σ(Hε) (B.71)

Fix µ < inf σess(Hε) and denote by Πµ := Π(−∞,µ] the spectral projection to the eigenspace
of energies smaller or equal to µ. Since µ lies below the essential spectrum and Hε is semi-
bounded from below, it follows that Πµ has finite rank. Thus there exists an orthonormal system
of eigenfunctions ψ1, . . . , ψn ∈ `2

(
(εZ)d

)
such that

Πµ =
n∑
j=1

〈 . , ψj〉`2ψj

and for all δ > 0 there exists an Rδ such that∑
|x|>Rδ

|ψj(x)|2 ≤ δ .

Therefore (by the Cauchy-Schwarz inequality) for all φ ∈ c0
(
(εZ)d \B0(Rδ)

)
‖Πµφ(x)‖2`2 =

n∑
j=1

|〈φ , ψj〉`2 |
2 ≤ ‖φ‖2`2

n∑
j=1

∑
|x|>Rδ

|ψj(x)|2 ≤ δ‖φ‖2`2 . (B.72)

By the definition of Πµ and since there exists a constant C > 0 such that Hε ≥ −C, we have

〈Hεφ , φ〉`2 ≥ µ〈(1−Πµ)φ , (1−Πµ)φ〉`2 − C〈Πµφ , Πµφ〉`2 . (B.73)

Therefore

Σ(Hε) ≥ inf
{
〈Hεφ , φ〉`2
‖φ‖2`2

|φ ∈ c0
(
(εZ)d \B0(Rδ)

)}
≥ inf

{
µ
‖(1−Πµ)φ‖2

‖φ‖2`2
− C

‖Πµφ‖2

‖φ‖2
|φ ∈ c0

(
(εZ)d \B0(Rδ)

)}
=

= inf
{
µ− (C + µ)

‖Πµφ‖2

‖φ‖2`2
|φ ∈ c0

(
(εZ)d \B0(Rδ)

)}
and by (B.72)

Σ(Hε) ≥ µ− (C + µ)δ .
The left hand side is independent of δ, thus for δ → 0 we get

Σ(Hε) ≥ µ
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for any µ < inf σess(Hε) and thus in the limit µ → inf σess(Hε) the estimate (B.71) follows and
thus Theorem B.12 is proven.

Case 2: Σ(Hε) = ∞:
By Lemma B.14 it follows at once that lim|x|→∞ ΛR(x,Hε) = ∞, because ΛR(x,Hε) is mono-
tonically decreasing with respect to R. Thus for all M > 0 there exists a aM such that for all
x ∈ (εZ)d with |x| > aM the estimate ΛR(x,Hε) ≥ M holds. On the other hand by (B.68) and
the semi-boundedness of Hε it follows that there exists a constant C > 0 such that

ΛR(x,Hε) ≥ −C , for all x ∈ (εZ)d .

We can choose a function W ∈ c0
(
(εZ)d

)
such that W (x) ≥ C +M for |x| < aM and W (x) ≥ 0

everywhere. Then

〈(Hε +W )φ , φ〉`2 ≥
〈
(W + ΛR(.,Hε)− δ

2 )φ , φ
〉
`2
≥
(
M − δ

2

)
‖φ‖2`2

and thus for all M > 0 there exists a function W ∈ c0
(
(εZ)d

)
such that

σess(Hε +W ) ≥ σ(Hε +W ) ≥M .

As in the case Σ(Hε) <∞ we have σ(Hε+W ) = σ(Hε) and therefore σess(Hε) ≥M for all M > 0
and thus σess(Hε) = ∞.

2
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[16] M. Dimassi, J. Sjöstrand: Spectral Asymptotics in the Semi- Classical Limit, London Mathematical Society
Lecture Note Series 268, Cambridge University Press, 1999

[17] P. G. Doyle, J. L. Snell:Random Walks and electric networks, arXiv:math.PR/0001057 v1 , 2000

[18] P. Duclos, C. Erdmann, M. Klein and R. Seiler: Eine verfeinerte Abschätzung des quantenmechanischen Tun-
nelparameters, Festschrift Ernst Mohr zum 75. Geburtstag, Mathematica, p. 39-52, 1985

[19] R. Estrada, R. P. Kanwal: Asymptotic Analysis: A Distributional Approach, Birkhäuser, 1994
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