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CHAPTER 1

Introduction

The central topic of this thesis is the investigation of a rather general class of families of
difference operators H., parameterized by a small parameter ¢, ¢ > 0. They act on ¢2((cZ)?), the
square summable functions on the lattice (¢Z)9.

We are going to analyze the asymptotic behavior as ¢ — 0 of the spectra and the eigenfunctions
of these operators.

Inspired by the paper of Helffer and Sjostrand [33], we give sharp estimates for interactions
between different “wells” (minima) of the potential energy, in particular for the discrete tunnelling
effect.

While the continuous case has been exhaustively explored (see for example Helffer-Sjostrand
[33], [34], [35], [36]), there exist very few results in the discrete setting (see Helffer-Sjostrand
[37], [38], [39] for the one dimensional Harper equation) and none, known to the author, in the
generality presented here.

For a multiple well potential energy, the interaction between different wells is analyzed by
comparing the eigenvalues of local operators at the wells with the eigenvalues of the original
operator. Eigenvalues of the direct sum of the local operators, which are degenerate, correspond
to eigenvalues of the original operator H., which are exponentially close to each other. Thus we
can say that the coupling of the wells induces a splitting of degenerate eigenvalues.

Furthermore, taking the matrix-representation of H. with respect to the basis of eigenfunctions
of the decoupled operators located at the wells, the non-diagonal terms describe the interaction
and thus the tunnelling between these wells.

1.1. Definition of the Operator Class

We are going to analyze a discrete Hamilton operator H,, acting on ¢? ((5Z)d), the space of
square summable functions on the d-dimensional e-scaled lattice (¢Z)?. The lattice parameter € > 0
takes the role of a small parameter, analogously to the Planck constant in Schrodinger operators
in the semi-classical setting. Thus we always assume that ¢ is small and construct expansions with
respect to ¢ in the limit € — 0.

The operator H. is given by

H.=(T.+V.) where (1.1)
T. = Z a~(x)7y
vE(eZ)?

and V; is a multiplication operator. The operator 7., denotes a translation, i.e. for x,v € (eZ)4
Tyu(x) = u(x +7) .

As a function of the lattice point x, a is assumed to be slowly varying, i.e., a, together with all its

derivatives should be bounded uniformly with respect to v. The summand ag7y, which is in fact a

multiplication operator, is chosen such that 7. can be interpreted as generalized kinetic energy in

the sense of Definition (in particular it has to be positive).

The kinetic energy of the usual Schrodinger operator is given by —h?A, where the Planck
constant A plays the role of the small parameter and is in our setting replaced by the lattice
parameter €. In contrast to this, the discrete kinetic energy 7. is not a differential operator of
second order (not even polynomial as can be seen by the symbol given in ) Furthermore,
it is of course not local, since the value of T.u(x) depends not only on a neighborhood of z, but
on all lattice points = + v with a,(z) # 0. In addition it is allowed to depend explicitly on the
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2 1. INTRODUCTION

configuration space coordinates x (this is also the case for the usual Schrédinger operator on a
manifold, where the Laplace operator depends via the metric on z). A simple example for T
is given by the discrete Laplace operator, i.e., for ap = 2d, ay, = —1 for v = +ce; and a, = 0
otherwise.

The potential energy V., which is a multiplication operator, is assumed to be the restriction
to the lattice (¢Z)? of a function V.e ¢ (RY).

We assume that V, can for any N € N be written as asymptotic series

N
%=%+Z€ka+RN7
k=1
where Ry is of order eV *! uniformly in any compact set and Vi, k = 0,1,..., N is independent

of e. In addition we assume that there exsists a constant ¢ > 0 such that V. > ¢ > 0 for all
¢ €]0, 9] and that the leading term V} takes its minimal value only at a finite number of points —
the potential wells — and these critical points are non-degenerate (for details see Hypothesis .

Near these wells of V, the potential can therefore be approximated by the potential of an
harmonic oscillator.

We define an e-dependent Fourier transform .%., which is adapted to the discrete setting and
maps lattice functions on 27-periodic functions and vice versa by means of a Fourier series.
This allows us to introduce in Appendix [Bla symbolic calculus and to derive microlocal estimates.
The symbol ¢ associated to the kinetic energy 7. and the symbol h associated to the Hamilton
operator H., respectively, are then given by

(o, 6) = 3 ay@e €, h(@,6) =t + Vi), seRLEeT!,  (12)
YE(eZ)?

where T? denotes the d-dimensional 27-torus. For any x, the coefficients a~ are the Fourier
coefficients of the periodic function & — t(z,£). It is shown that the regularity of ¢ is strongly
related to the decay of a, with respect to  (Lemmata[A.1}[A.2and[A.3). In the several parts of this
work, the regularity we have to assume for ¢ is different, but by Hypothesis @, the coefficients a,
are assumed to decrease at least polynomially. From Section on, the a., decay even exponentially
(Hypothesis with respect to 7, thus the amplitude of translations to distant points becomes
exponentially small. Although the kinetic energy is non-local, T, can by this property of a, be
viewed as weakly local.

One important tool in the various parts of this work lies in the approximation of 7T, by the
kinetic energy of a usual Schrédinger operator. With respect to the usual symbolic calculus and
quantization procedure on R including the Planck constant h as small parameter, which is in-
troduced for example in Dimassi-Sjostrand [16] and Robert [50], the symbol of —h2A is given by
2. Localization of ¢ in phase space at a microlocal minimum z = x; and £ = 0 thus leads to the
assumption that the expansion of ¢ with respect to £ at a point (z;,0) starts with a quadratic term
in £ (Definition , which gives some further conditions for the coefficients a, (Remark d))

We can summarize the assumptions on the Hamilton operator H. by saying that it should be
a translation operator with underlying potential, such that the leading order term in e for x near
a potential well and £ small is equal to an harmonic oscillator.

1.2. General Strategy and Main Results

The interaction between neighboring potential wells leads by means of the tunnelling effect
to the fact that the eigenvalues and eigenfunctions are different from those of an operator with
decoupled wells, which is realized by the direct sum of “Dirichlet-operators” situated at the several
wells. Since the interaction is small, it can be treated as a perturbation of the decoupled system.

Thus the idea is to approximate the eigenfunctions of the original Hamilton operator H.
with respect to a fixed spectral interval by the eigenfunctions of the several Dirichlet operators
situated at the different wells and to give a representation of H. with respect to a basis of Dirichlet-
eigenfunctions. The non-diagonal part of this matrix-representation can be interpreted as a current,
describing the tunnelling between the different wells.

In a second step, these Dirichlet eigenfunctions are approximated by WKB-expansions at the
wells using the eigenfunctions of the associated harmonic oscillators. This allows us to compute
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explicit expansions for the elements of the interaction matrix and to obtain sharp estimates for the
leading order term.

We start the analysis of the spectrum and the eigenfunctions of discrete Hamilton operators
in Chapter [2 by a stability result for the low lying spectrum. It is shown in Theorem [2.10] that
the first n eigenvalues of H. are in the “continuum limit” ¢ — 0 equal to the first n eigenvalues
of the direct sum of harmonic oscillators on R¢ located at the several wells. Our proof is close to
analogous estimates by Simon [55] (see also [15]) for Schrodinger operators. The main difficulty
is the step from a discrete operator H. on £2((¢Z)%) to the associated operator H on .Z2(R%). A
more technical difficulty is the fact that contrary to the situation discussed by Simon in [55], the
kinetic energy term T is allowed to depend on the lattice point. The fact that ¢ is a function of z
and & forces us to use microlocal estimates and thus to build up a full symbolic calculus, which is
adapted to the discrete setting, allowing us to give a discrete version of the Calderon-Vaillancourt
Theorem and of the Persson Theorem, which are essential for the proof of Theorem [2.10

The quite rough result of Chapter [2|leads to the conjecture that the eigenfunctions associated
to the first eigenvalues are localized in a small neighborhood of the union of the different wells.
Therefore we restrict the system in Chapter [3|to a neighborhood of one well. Motivated by the wish
to find approximate eigenfunctions, which decrease exponentially fast, we assume that the symbol ¢
of the kinetic energy has an analytic continuation to the complex plane with respect to £&. Then by
use of WKB-methods and conjugation with a suitable exponential weight (dilation), we construct
asymptotic expansions with respect to € and x for the quasi-modes and for the eigenvalues of H..
The quasi-modes decay exponentially fast with a real-valued rate function ¢ solving the generalized
eikonal equation

t(x,iVe(z)) + Volz) =0 (1.3)

near the well. One of the main difficulties in this chapter is that the symbol ¢ of the kinetic energy
is periodic with respect to the momentum variable &.

In order to find a rate function describing the exponential behavior of the eigenfunctions away
from the critical points, i.e., an extension of ¢ outside of the neighborhood of the well, we introduce
a Finsler distance d on R? in Chapter Similar to the Jacobi metric (or the Agmon metric
respectively) for Schrodinger operators, this distance function is adapted to the Hamilton operator
in the sense that the base integral curves of the Hamiltonian vector field are geodesics with respect
to the metric associated to d. Additional assumptions for ¢ are made in this chapter in order to
ensure that the function A (z,€) := —t(z,i€) — Vo(x), obtained by rotating the leading order term
of h in the complex plane, is a hyper-regular Hamilton function in the sense of Abraham-Marsden
[2].

The distance function is derived by a variational process, inspired by the Maupertuis principle
in classical mechanics. More specifically, we define for fixed energy E the length of a path ~ in
R? as an integral over the canonical pairing & - 4. The momentum ¢ is chosen as the Legendre
transform of 4 multiplied with a scaling factor, such that h(y(t),£(t)) = E for all ¢, i.e., we force
the path to lie within an energy shell. The distance between two points is then defined as the
infimum of the length of all paths between them.

The fact that the adapted metric for a Schrédinger operator is euclidian, is strongly related to
the property of the kinetic energy to be of second order in the momentum variable £. The symbol
of the kinetic energy in our setting depends exponentially of £ (see ) One of the main results
of this chapter is to show that it is nevertheless possible to define an adapted metric and that this
metric turns out to be Finslerian (thus the metric tensor depends not only on the base point on
the manifold, but also on the tangent vector, i.e., the velocity).

The aim of Chapter [5] is to show that the Finsler distance to a fixed well of the potential
energy is actually the correct rate function to describe the exponential decay of the eigenfunctions
of H. in the neighborhood of this well. In Theorem and we give estimates for the £2-

norm of the eigenfunctions of a Dirichlet operator at a single well. In particular we show that the
d(z,x ;)
£2-norm of these eigenfunctions multiplied with e~ = “ is at most of order e~ ¥o for some Ny € N.
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In Chapter [6] we return to the original setting of several wells and investigate the interaction
between them. In order to analyze the eigenspace of H. with respect to a given spectral interval
1., we proceed by methods similar to those used in semi-classical analysis.

Let Sy denote the (Finsler) distance between the two closest wells. We start by showing in

Theorem m that up to an error of order 6_%, the eigenspace of H. with respect to I. can be
approximated by the direct sum of the eigenspaces of Dirichlet operators near the various wells.
Then we refine the analysis of the error term by splitting off a part of quadratic order. We
show in Theorem [6.13] that the Hamilton operator H. restricted to the eigenspace with respect to
the spectral interval I. can, with respect to the basis of Dirichlet eigenfunctions, be written as the

sum of a diagonal matrix, an interaction matrix given by the off-diagonal terms, which is of order
S 25
e~ = and error terms of order e~ = . The interaction terms describe the tunnelling and can in

first order be interpreted as a current between the wells.

In Theorem we estimate the difference between the Dirichlet eigenfunctions and the ap-
proximate ones constructed in Chapter [3] where the phase function is replaced by the Finsler
distance d. In the interaction matrix we then replace the (unknown) Dirichlet eigenfunctions by
the approximate ones, which could be computed up to arbitrary high order in €. This allows us
to give in Proposition [6.35] and Theorem |6.37] expansions of the elements of the interaction matrix
with respect to € and to derive in a particular setting in Theorem refined estimates for the
order of its magnitude.

1.3. Classification and Motivation

In quantum physics, the effect of tunnelling between two wells separated by a potential barrier
is a well-known quantum phenomenon related to the description of the quantum state as a wave
packet.

Although numerous experimental and technical applications of the tunnelling effect have been
performed a long time ago, sharp theoretical results concerning the eigenvalues and eigenstates of
the multi-well Schrodinger operator where not obtained until the 80’s. In 1980, the one-dimensional
double well potential was analyzed by Harrell [27] with WKB-methods. Subsequently there were
approaches given by Combes-Duclos-Seiler [13] using the Krein-formula to analyze the difference
of the spectra of the original operator with a Dirichlet version and in the case of more dimensions
by Simon ([55],[56]) using large deviations. The finest results where obtained approximately at
the same time by Helffer-Sjostrand ([33],[34],[35],[36],[29]), where the interaction between several
potential wells of a Schrédinger operator are analyzed in the semi-classical limit by use of WKB-
expansions and pseudo-differential operators. The methods and the main approach of this thesis
are in the spirit of the semi-classical analysis of Schrédinger operators used in these papers. It is
already mentioned there that parts of the analysis remain valid in the case of a general pseudo-
differential operator. Nevertheless, the strong relation between quasi-modes and the weighted norm
estimates is not valid for differential operators of higher order, since the construction of the Finsler
distance is missing.

On the other hand, the results obtained in this thesis can be seen as generalization and re-
finement of the analysis of the tunnelling effect of probabilistic operators on a lattice by means of
probabilistic methods (see Bovier-Eckhoff-Gayrard-Klein [11]). In this paper, the special structure
of probabilistic operators, described in (1.4), which we do not presume here, is a main ingredient
of the analysis.

A treatment of statistical problems with semi-classical techniques is done by Helffer [31], using
the Witten Laplacian or the analysis of transfer operators.

Nevertheless, little is done in the context of this thesis, i.e. of discrete Schrodinger operators
on a lattice, and nothing with the present amount of generality.

From the methodological point of view, the main part of this thesis is inspired by the paper
[33] by J. Sjostrand and B. Helffer on Schrodinger operators with multiple well potential in the
semi-classical limit (see also [29]). Although the operators we analyze are discrete in the sense that
the kinetic part acts on a scaled lattice as translation operator, our assumptions are made in such
a way that from a microlocal point of view, the multiple well Schrodinger operators analyzed in the
papers mentioned above turn out to be the first order terms of our discrete operators with respect
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to micro-localization at the phase space minima (z;,0). It should be mentioned that the symbols
associated to lattice operators are defined by use of a Fourier series, which can be seen as Fourier
transform relating the square summable lattice functions ¢2 ((¢Z)?) with the 27-periodic functions
<z (Td), where T¢ denotes the d-dimensional torus. A different approach to pseudo-differential
calculus on the torus is given in [21].

Therefore the interpretation of H. as first order terms of Schrodinger operators with adapted
potential still needs a transfer between the different kinds of symbols.

Based on these ideas, the first step of this thesis consists in tracing back H. to a harmonic
oscillator. This point is inspired by the theorem on the quasi-classical limit of the eigenvalues of a
Schrédinger operator proven by B. Simon in [55] (see also [15]).

The method of constructing asymptotic solutions to the eigenvalue problem of a one-well
Dirichlet version of H. is inspired by a paper of Klein and Schwarz [45], where the FBI-transformation
is avoided.

The following estimate on the decay properties of Dirichlet eigenfunctions are done in the spirit
of the Agmon estimates for Schrodinger operators described in Agmon [3]. The Agmon distance,
determining the rate of decay for Schrédinger eigenfunctions, must in our setting be replaced by a
distance associated to a more general Finsler metric.

An overview on Finsler manifolds and metrics is given in Bao-Chern-Shen [6], Rund [54] and
Abate-Patrizio [I], some applications are described in Asanov [5]. In the context of rate functions, a
Finsler metric is introduced by Tintarev [59] to analyze short time asymptotics of the fundamental
solutions of parabolic equations for a differential operator A of even order m > 2 with real smooth
coefficients. The principal symbol a(z,£) of A is assumed to be uniform elliptic, strongly convex
with respect to & and Vea(z,£) # 0 for all £ € C?\ {0}. For such an operator, the Finsler

distance can be defined by g(z,v) = m%(f . ’U)%, where & denotes the Legendre transform of
v. Then the Finsler distance is defined via variation of integration over this function along pathes
between two points. Thus for m = 2 this Finsler distance is equal to the usual Agmon distance for
Schrédinger operators. Again in the setting of higher order parabolic equations and heat kernels,
Barbatis [10], [9], gives an equivalent definition of a Finsler metric. Under similar assumptions on
the operator he introduces the set of Lipschitz-functions ¢, solving the equation a(x, Vo(z)) <1
almost everywhere. Then the Finsler distance between two points x and y is defined to be the
supremum over all such functions ¢ of the difference ¢(x) — ¢(y). To the author s knowledge, more
general cases are not analyzed in the literature by use of a Finsler distance.

The last part of this work, dedicated to the interaction between several wells, is strongly
influenced by the papers [33] of Helffer and Sjostrand, concerning a Schrédinger operator which
has a potential with a finite number of wells.

In the most general case, the translation operator analyzed in this work is localized only by
means of the exponential decaying factor a., thus translations to any point of the lattice are in
principle allowed. In the Schrodinger case, the interaction matrix describing the tunnelling between
two wells depends only on a hypersurface lying between these wells. Due to the non-locality, this
is not the case for the translation operator in our discrete setting. Nevertheless in first order the
values of the interaction matrix are determined by a small neighborhood of such a hypersurface
and it can be interpreted as a physical current, since it is given by the derivative of the kinetic
energy (compare Harrell [27] and Helffer-Sjostrand [33]).

There are several fields in which the results of this work are applicable.

One motivation lies in problems connected with the theory of Markov chains. Given € > 0,
the relation between a Markov chain on (¢Z)? and a self adjoint operator on ¢%((¢Z)?) is as
follows. Defining a strictly positive probability measure p on the d-dimensional lattice, we can
consider a Markov chain determined by a probability matrix P = (ps,), where pg, denotes the
transition probability from the state = to y € (¢Z)%. If the detailed balance condition holds, i.e. if
[aDay = HyDyz, the matrix P induces a self adjoint diffusion operator on ¢2((eZ)%; 1), the space of
square summable functions with respect to the measure pu, via

(1= Plu(z) = u(@) = Y poyuly).

y€(ez)?
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By conjugation with ,ul/z7 this yields a self adjoint Hamilton operator H. := ;ﬁ(l — P)/f% on
?%((eZ)?) of the form (1.1, where V. is assumed to be

Ve(w) =~ 2(@) (Tn?) (@) - (1.4)

Thus the probabilistic operators generated by Markov chains or diffusion processes are examples
for the kind of operators considered in this thesis. In particular the associated symbol ho is a
hyper-regular Hamilton function on the cotangent bundle. But contrary to the quite general class
of operators considered in this thesis, they obey the strong additional structure (1.4]).

The theory of Markov chains can be applied in several fields of science.

A simple model for a statistical system with discrete scaled state space is the following. Con-
sider a chain s of particles with spin, more precisely N undistinguishable particles in a fixed order,
each of them being in one of two possible states +1 or —1 (“ spin up or down ).

The probability for a particle to be, for example, in the state +1 depends on the state of the
other particles and on the state of the environment, for example an external magnetic field. To
the different states of the full chain s we can associate macroscopic variables. An easy example is
the magnetization m defined as

X
m(s) = N Zsi ,
i=1

where s; denotes the state of the particle at position i, i.e., s; € {1,—1}. The minimal change
of m, induced by one “spin flip”, i.e., the change of the state of one chain element, is scaled by
€= % It is thus evident, that the space of the possible values of d macroscopic variables can be
modelled by the e-scaled lattice (¢Z)¢ or a bounded subdomain.

There is a huge number of publications dealing with spin chains.

Further possible applications lie in the field of population dynamics, describing evolution pro-
cesses as reproduction, selection and mutation (see Baake-Baake-Wagner [8], Baake-Baake-Bovier-
Klein [7]).

1.4. Structure of this work

1.4.1. Chapter [2| As already mentioned, Chapter [2] is mainly concerned with the fact, that
the spectrum of the discrete operator H. on £2((¢Z)?) is in the limit ¢ — 0 asymptotically given by
the spectrum of an adapted harmonic oscillator on .#?(R?). This can be considered as a generalized
stability of the spectrum of the harmonic oscillator under a perturbation, since the perturbed and
the unperturbed operator act on different spaces.

Chapter [2| starts with the setting and some basic definitions and notations, introducing the
periodic kinetic energy function, inner product and Fourier transform on ¢2((¢Z)?), which are
used throughout the work. Furthermore the main assumptions for the Hamilton operator H. are
described in Hypothesis @ postulating that near a phase space minimum z = x; and £ = 0, the
zero order term in ¢ should behave like an adapted (slightly generalized) harmonic oscillator Hy.

Theorem then states that for fixed n € N, the operator H. has at least n eigenvalues and
the n-th eigenvalue of H. is in the limit ¢ — 0 equal to the n-th eigenvalue of Hy.

The proof splits into the two basic inequalities. For the first, we show that the expectation
value of Hy and H. with respect to the eigenfunctions of Hy and their restriction to the lattice,
respectively, are equal modulo O(sg). Since H. and Hj, are not acting on the same space, we
have to perform the transfer between the different scalar products. In order to use the Rayleigh-
Ritz-principle to get the first n eigenvalues, we employ an analogue of Persson’s Theorem for
the discrete setting with translation operator, which is proven in Section via the microlocal
calculus introduced in Appendix [B]

To prove the other inequality, it is necessary to introduce in Appendix [B] a symbolic calculus
adapted to the discrete setting. In particular, we introduce a product of symbols which is related
to the composition of the associated operators, give an expansion for this product and proof an
analogue of the Calderon-Vaillancourt Theorem ([12]). Then the idea is to simultaneously localize
H. in 3 -scaled neighborhoods of the phase space minima (z;,0). The difference of the original and
the localized operator can be estimated by determining the symbol class of the double commutator
(in the sense of symbolic multiplication) of ¢ with the scaled cut-off functions. This allows us to
reduce the operator not only to the zero order term in €, but also to the first term in the Taylor
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expansions at these points, denoted by H;. By the assumptions on H,, this is unitarily equivalent
to a slightly generalized harmonic oscillator.

1.4.2. Chapter The third chapter concerns the construction of formal asymptotic solu-
tions of the Schrodinger problem for the “Dirichlet” version of H. in a neighborhood €2 of one well
xg, i.e. for the operator H? =1 H. 1. Here 1 denotes the characteristic function on Q. The
result of Chapter [2| suggests that the leading order term of the Dirichlet eigenfunctions behaves
like the eigenfunctions of the appropriate harmonic oscillator, i.e. like Hermite polynomials in %,
multiplied with an exponentially decreasing term. The rate of decrease is determined by a solution
o of a generalized eikonal equation adapted to H., which is given by

t(z,iVe(x)) + Vo(z) =0. (1.5)

The existence of ¢ in a neighborhood of one well follows from the Stable Manifold Theorem.

In addition to Hypothesis 2.7]in Chapter [2 we have to assume in Hypothesis [3.1] that the symbol
t of the kinetic energy is periodic, even and smooth in £&. The main aim of this chapter is the
construction of formal WKB-expansions for the eigenfunctions of the operator H. on ZL(RY),
where ﬁgu(x) is, for any u € Z?(R%), given by the right hand side of (L.I]). To this end, we define

a dilation of ﬁs by means of the unitary transform U. : Z%(R%, dz) — £2 (Rd,e”@dy)

defined by (U.(p)f)(y) = B P f(y/ey). This means that we conjugate H. with the expected

exponential decrease factor e~ to take away the exponential behavior and pass to the variable
Yy = % Formal expansions with respect to y allow us to treat eigenvalues, which are degenerate
in the harmonic approximation.

The first step is the translation of the spectral problem for H. into an algebraic problem for
the formal Taylor expansion of G. = %Ug(gp)HE U= 1(y), acting as symmetric operator on a space of
formal power series in y. Given an eigenvalue Fy of the harmonic part Gy, we define the associated
spectral projection II of G as contour integral of the residue (G — Ey)~! around Ey. Then on the
range of IT the spectral problem of G is reduced to the diagonalization of a hermitian matrix over
a field of Laurent series, leading by use of Hermite polynomials to formal asymptotic expansions
for the eigenvalues and eigenfunctions. By a double Borel-procedure with respect both to = and
€, we finally get approximate eigenfunctions and eigenvalues for H,, i.e., solutions of the spectral
problem to arbitrary high polynomial order in € and =.

1.4.3. Chapter [4l In order to analyze the behavior of the Dirichlet eigenfunctions away from
the wells, or more specifically their rate of decrease (which is done in Chapter [5)), we have to find
a notion of distance adapted to H.. This distance takes the role of the Agmon metric in the case
of Schrédinger operators. This is done in Chapter

In the first section of Chapter[d] we give general definitions and properties of a Finsler manifold
and a Finsler metric. Furthermore some properties of Finsler distances are described. The aim
of Section is to construct a Finsler distance which is adapted to a hyper-regular Hamilton
function h on R?? in the sense that its minimizing geodesics are the integral curves of the associated
hamiltonian vector field X}. Thus it describes the distance between two points under consideration
of the energetic landscape determined by h (Proposition . This is done by assigning a length
to each €2-curve as curve integral over a slightly adapted version of the canonical pairing between
moments and velocities. To ensure that the curve integral is independent of the parametrization of
the curve, it is necessary to replace the original elements of the tangent bundle by their projection
onto the energy shell for a fixed energy E. The distance between two points is then derived by a
variational process as the infimum of the curve length taken over all ¢’?-curves joining them.

In Section it is shown (Proposition that geodesics with respect to this Finsler metric
are base integral curves of the associated hamiltonian vector field and vice versa. Since the phase
space curve is fixed on the energy shell, this corresponds to the variational process leading to the
Maupertuis principle in classical mechanics.

In Section |4.4] we apply the general constructions to the symbol hy of the zero order term
of H.. We start with the additional assumptions that a, > 0 for v = 0 and ay < 0 for v # 0.

Furthermore, we assume span{y € (¢Z)?|a, < 0} = R? and HCLPYG%”gz < C uniformly in x.
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Then the kinetic energy t(z, —i) is hyper-convex with respect to &, i.e., the second derivative is
bounded from below by a positive constant, and thus hyper-regular (Proposition and .
This allows us to apply the results of the preceding sections to hg and thus to define a distance
function d adapted to H.. Then we show that the distance function d/(z) = d(z, ;) to a fixed
potential well z; satisfies the eikonal equation in a neighborhood of this well and the eikonal

inequality (4.80) everywhere.

1.4.4. Chapter In Chapter [5| we prove weighted estimates for the ¢2-norm of the eigen-
functions of a Dirichlet Hamiltonian HEM 7, where M; is a neighborhood of the well z;, which
includes no other wells of V;,. We show, that the Finsler distance to a fixed well is the correct
rate function, describing the exponential decrease of the Dirichlet eigenfunctions of this well. More
precisely we show in Theorem that if v; denotes an eigenfunction of the Dirichlet operator

Hejwj, then there exists a number My € N such that

e v;ll2ary) = O (670

1.4.5. Chapter [6] Chapter [6]is concerned with the interaction between different wells of the
potential energy. To be able to use the results for Dirichlet operators with one well derived in the
preceding chapters, we consider Dirichlet operators on bounded regions M}, each including exactly
one well. We denote by Sy the minimal Finsler distance between two wells. Then we show in
Theorem that for a fixed spectral interval the distance di_ét(E, F) between the direct sum of
the Dirichlet eigenspaces E and the exact eigenspace F' is for any S < Sy of order et (the non-
symmetric distance between two Hilbert spaces is defined by dist(E, F) = |1y — I gIlp||, where
IIg denotes the orthogonal projection on E). From this estimate it follows that the difference
between associated eigenvalues is of the same order. In the next step we analyze the error term
in more detail for H, restricted to F', which is with respect to an appropriate orthonormal basis a
finite symmetric matrix. We show in Theoremthat modulo a term of order e’§, it is equal to
a diagonal matrix with the Dirichlet eigenvalues on the diagonal plus the off-diagonal interaction
matrix, which can be interpreted as a physical current, leading to the tunnelling between different
wells. As an example we consider the case where the Dirichlet operators at two wells have exactly
one eigenvalue in the chosen spectral interval.

In Section we analyze the spectrum at a single well. At first it is shown that modulo e’%,
the spectrum is independent of the choice of M;. Then we define the spectrum of the well as the
collection of the spectra with respect to the different choices of M;. If r; denotes the “sphere of

influence” of the well x; with respect to a given eigenvalue A of H., we show that the distance
2(r;—3)
between the spectrum of x; and X is of order e~ == for any § > 0.

In Section [6.5| we compare the exact Dirichlet eigenfunctions at the wells with the approximate
eigenfunctions constructed in Chapter 3] It is shown in Theorem that in ¢?>-norm the differ-
ence between a Dirichlet eigenfunction at a fixed well and the associated asymptotic expansion
multiplied with the exponential weight ef is of arbitrary high polynomial order in €. This allows
us to use the approximating eigenfunctions instead of the exact ones to compute the interaction
matrix (Proposition . In the setting of only two wells, we give an expansion of the interac-
tion matrix in terms of the Hermite polynomials used to construct the WKB-expansions for the
Dirichlet operator (Theorem and to derive an estimate for the leading order term.

1.4.6. Appendix. The appendix splits into part A and B. Appendix [A]includes some techni-
cal details, remarks and some basics as the notion of valuation. In Appendix|B], an adapted version
of the microlocal calculus is introduced and the necessary results are proven. After defining classes
of e-dependent pseudo-differential operators, the method of stationary phase is used to introduce
the product in the symbolic calculus and to show that it reflects the composition of operators.
This gives rise to some norm estimates for operators by use of estimates on the associated symbols
via an adapted version of the Calderon-Vaillancourt Theorem. The proof follows the one given
by Hwang [28] in the continuous setting. Furthermore a version of the Persson Theorem in the
discrete setting is proven by use of the microlocal calculus. A crucial point is that a multiplication
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operator on the lattice with compact support is compact.

1.5. Open Questions related to this work

We want to mention briefly some fields to which one could proceed.

One point could be to investigate how far it is possible to follow the subsequent papers of
Helffer and Sjostrand ([34], [35], [36]). In particular, tunnelling through non-resonant wells is an
interesting and difficult subject, which is relevant even in the case of simple probabilistic operators.
It can be seen in the example of a discrete Schrodinger operator described in Section 23] that some
of the minima of V{ become saddle points (and thus non-resonant) by means of the first order term
of the potential energy with respect to €.

Furthermore one might try to find the leading order term of the interaction matrix analyzed
in Section [6.6]in more general situations and in a more explicit form.

An interesting and direct application could be the transfer of the concept of Finsler functions
constructed in this thesis to a broader class of differential operators, for example to elliptic opera-
tors of higher order. Furthermore we could compare these generalizations of our Finsler distance
to the Finsler distance defined by Tintarev and Barbatis for higher order differential operators and
analyze if these concepts lead to equivalent results.

Another interesting point is the applicability of the results obtained in this work to the theory of

transfer operators and Witten-Laplace-operators in the context of statistical mechanics as discussed
for example in Helffer [31].
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CHAPTER 2

Stability of the spectrum

1. Notations and Preliminaries

2.1.1. Norm, Scalar product and Fourier transform. For ¢ > 0, we consider ¢? ((€Z)d),
the space of square summable functions on the e-scaled lattice, with scalar product

(U, v)p = Z a(z)v(z), u,v € 2 ((eZ)?) . (2.1)
z€(eZ)?

Denoting the d-dimensional 27-torus by T¢ := R?/(27)Z¢, we introduce the scalar product
o= [ Fee@ds  fge2im), (22)

where .#%(T%) denotes the space of square integrable functions on T?. We denote the associated
norms by |||l and || .
The discrete Fourier transform %, : £2 (Td) — (% ((eZ)?) is defined by

1
(FN@) =—g [ e, fe 2 (23)
Var' Jem e
with inverse .1 : (2 ((eZ)?) — £2 (TY),
(Ft)(€) = ! v ei’”'gv(ac), v e l?((e2)?) , (2.4)
m z€(eZ)?
where z -y 1= (x, y) := Z?Zl z;y; denotes the usual scalar product in R? or (¢Z)? and we will

often suppress the dot when the meaning is clear from the context.
In other words, the Fourier transform defined in (2.3) and (2.4) satisfies the Fourier inversion
formulae

(Ze T u)() u €l ((cz)?)

Il
g
—
8
S~—

(Z1ZNE) = f&), feLHT)
Furthermore %, is an isometry, i.e.,
(v, u)pe =(F v, Flu), u,v € 2 ((eZ)%) (2.7)
(fs 9 =<«? foF9)es  fge LT, (2.8)
The equations , ) and ( are shown in Appendix equation (2.8)) is a direct conse-
quence of (12.6] and (12.7]
We denote by f g 2 = [ga F(§)g(€) d€ the scalar product on £2(R%), the space of square

integrable functions on Rd and we mtroduce on Z%(R%) the e-scaled Fourier transform
(F0E = (Vo [ et s (29)
Rd
(Fae) = (Vam [ eteru)ac,

Rd
where compared to the usual Fourier transform the roles of z and ¢ are interchanged. We notice
that for any f,g € Z%(R%)

<Fa_1f‘F5_1g>$2(Rg) :E_d <f|g>=§€2(Rg) (210)

We denote the set of the natural numbers with zero by N = {0,1,2,...} and the set of the natural
numbers without zero by N* = {1,2,...}.

11
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Furthermore M(n x m,K) denotes the space of n x m-matrices with elements in K.
The domain of an operator A is denoted by Z(A).

2.1.2. Pseudo-differential operators on the lattice (¢Z)?. We introduce the notion of
symbol spaces including the small parameter e € (0, 1], where the symbols are allowed to include &
not only directly but also as scaling parameter, as described in Dimassi-Sjostrand [16]. Since the
phase space is given by (¢Z)% x T?, the relation between the operators and their symbols is given
by use of the discrete Fourier transformation defined in ,.

For the general theory of microlocal analysis, we refer to Grigis-Sjostrand [24], Robert [50]
and Hormander [41], where symbol spaces and spaces of associated pseudo-differential operators
are introduced.

A symbolic calculus is introduced in Appendix

DEFINITION 2.1. (a) A functionm : REx T4 — [0,00) is called an order function, if there
exist constants Cy, N1 > 0, such that
m(z,€) < Colr —y)Mm(ym),  z.yeR! EneT!,

where we used the notation (x) := /1 + |z|?.
(b) For an order function m on R% x T, the symbol space S(m) (R? x T¢) consists of all
a € € (R x TY), for which for all a, 3 € N? there is a constant Ca,p such that

0200 a(x, &) < Capmi(z,€), xR’ €T,
where as usual Oy := 03t ... 03¢, We often write S(m), if the underlying space is clear.
(¢) The Fréchet-Semi-Norms of a symbol a € S(m) are defined as
s i o B0 8)
op z,£ m(x, f)

(d) If the symbol a(x,&;€) depends on a small parameter e € (0,1], a is said to be in S(m), if
a(- ;) is uniformly bounded in S(m) for e varying in (0,1]. Let S¥(m) := £¥S(m) describe
for k € R the space of symbols of the form e*a(x,&;¢) for a € S(m). For § € [0,1], the
space S¥(m) (R% x T?) consists of functions a(x,&;¢) on R? x T4 x (0,1], belonging to
S(m) (R? x T) for every fized e and satisfying

0200 a(x,& ¢)| < Cagm(w, )00 3 e RY e T?.

(e) Let a; € S(I;j (m),k; /" oo, then we write a ~ 37°°a; if a — Z;-V:o a; € S?N“(m) for
every N € N.
d
(f) A pseudo-differential operator Op: (a) : K ((e2)?) — K’ ((eZ)?) is defined by

O (@ew) =) 3 [ el o, )
yE(eZ)d [=m.m]?
where a € S§(m) (R? x TY),
K ((eZ)?) = {u: (eZ)* — C | u has compact support} (2.12)
and K' ((eZ)?) denotes its dual with respect to (., ).

We give two important results concerning symbols and the associated operators, which are
proven in Appendix The first (Lemma [B.2) tells us, that the operator associated to a symbol
via (2.11) can be extended continuously on a discrete version of a Schwartz-space.

LEMMA 2.2. Let a € S§(m) (Rd X Td) and, fore >0,

d
s((eZ2)?) == u: (cZ)* — (eZ)® )| |ulla == sup Z |a: u(z)| < oo, a € N¢
zE(eZ
We consider on s the natural topology T associated to the family of semi-norms || - |4 .

Then the operator Opgd (a) associated to a defined in (2.11)) is continuous : s ((Z)*) — s ((eZ)?)
with respect to T.
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If we consider only symbols, which are bounded (i.e. for which m = 1), we have an adapted
version of the Calderon-Vaillancourt Theorem (Proposition [B.8)).

PROPOSITION 2.3. Let a € S§(1) (R? x T9) with 0 < § < L. Then there exists a constant
M > 0 such that, for the associated operator Oplrd (a) given by the estimate

d
10p2 (a)ullez((ezyey < Me"||ullez((ezya)

holds for any u € s ((eZ)*) and any e > 0. Opgd (a) can therefore be extended to a continuous oper-

ator: €2 ((cZ)?) — 2 ((eZ)?) with || 0pT" (a)]|os < Me". Moreover one can choose M depending
only on a finite number of Frechet semi-norms of the symbol a.

2.1.3. Generalized Kinetic Energy. As briefly described in the introduction, we assume
the Hamilton operator H. to consist of a multiplication operator, interpreted as potential energy,
and a translation operator, taking the role of a (generalized) kinetic energy. Usually in classical
mechanics the kinetic energy as phase space function is represented by &2, where ¢ € R¢ denotes
the momentum variable. The associated operator derived by a quantization procedure is then
given by —A (or —h2A in the case of an Ai-scaled quantization).

We will now define what we mean by a (periodic) kinetic energy in a generalized sense.

DEFINITION 2.4. 1. A real valued symbol t € SQ(m) (R? x T?) is called a periodic kinetic
energy function, if:
(a) t(z,€) >0 for all x € RY and € € T
(b) t(z,&) =0 if and only if £ = 0.
(c) At & =0, the function t has for fized x € R an expansion

t(x, ) = (€, B@)§) + O (|¢°)  for [¢| =0, (2.13)
where B : RY — M(d x d,R) is positive definite and symmetric.

(d) For any € > 0, the associated operator Oplrd (t) on the Hilbert space ¢*((cZ)%) with
scalar product (., .),2, defined by

K50 Op! (Do) Y [ e, e

d
y€E(eZ)? ]

is positive and symmetric.
We say that t is the symbol associated to Oplrd (t). The operator Opgd (t) is then called a
discrete kinetic energy operator.
2. Let SQ(m)(R??) denote the usual symbol space with respect to a small parameter as de-
scribed in Appendiz[B-4}
A real valued symbol t € SJ(m) (RQd), 1s called a kinetic energy function, if:
(a) t(x,&) >0 for all x,& € RY.
(b) t(x,&) =0 if and only if £ = 0.
(c) At & =0, the function t has for fivzed v € R% an expansion

t(z,€) = (€, B(x)§) + O (I€F°)  for [¢] =0, (2.15)

where B : R — M(d x d,R) is positive definite and symmetric.
(d) For any € > 0, the associated operator Op,(t) on the Hilbert space £*(R?) with the
scalar product (., .) o2, defined by

CE(RY) 5 v Op.(t)v(z) := (e27) ¢ /]R ) /R . ez W= (2, E)v(y) dE da (2.16)

18 positive and symmetric.
The operator Op_(t) associated to a kinetic energy function is called a kinetic energy
operator.
3. A pure multiplication operator is called a potential energy operator.

REMARK 2.5. (a) Since the periodic kinetic energy function t is a function on R% x T¢,
it can also be considered as a function on R??, which is 2m-periodic with respect to €. We
denote this function also by t.
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For any x € R? and ¢ > 0, the function & — t(x,€) has a Fourier expansion
t(z, &) = Z aA,(J[:)e_é'y'5 . (2.17)
vE(eZ)4
There exists a function
a:Z% xRS (y,x) — a,(x) € C, such that a(x) = ax(z). (2.18)

Since t € C* (Rd X ']Td), it follows from Lemma mn Appendix that for fized x € R?
there exists a constant C' > 0 such that for alln € N and for alle > 0

I-1"a.(2)lle2((ezyry < C (2.19)

Thus converges for each fived x € (¢Z)%.

(b) Ift € S§(1) (R? x T9), i.e., if t is bounded, then the estimate holds uniformly with
respect to x. Furthermore it follows from Proposition [2.3 that in this case the associated
operator Opgd (t) is bounded and can therefore be defined on the whole space (> ((sZ)d),

(c) The discrete kinetic energy operator acts as a translation operator on u € (2 ((¢Z)?) via

o) = Y ay(@)m (2.20)

(see Appendiz[A.3), where Tyu(x) := u(x + 7).
(d) The comparison of the expansion of t(z, &) with the assumption yields

> o) (1= in- = 506 + O (6F) ) = {6 B@)) + 10 (€F)

A

thus for all x € (¢7)?

> @) = 0, (2.21)

YE(eZ)4
Z ay(a:)zvu = 0, for ve{l,...,d} (2.22)
e ©
1
_@Zav(x)'}/u%x = Bl/u(x) fO?" v e {Lvd} ) (223)
Bt
where B is symmetric. Since (v, B(x)v) = = a(z)(v- v)?, the matriz B is moreover

positive definite if a, <0 for all v # 0 and span{y € (¢Z)%|a, < 0} = R%.

In the next lemma, we will give conditions for a., which ensure that 7, is positive and sym-
metric.

LEMMA 2.6. Let € > 0 and let T, = Opgd(t) be the unbounded operator on (* ((eZ)*) with
domain K((eZ)?), defined by

T.u(z) = Z ay(z)u(z +7) .

Then
(a) T: is symmetric if and only if ay(x) = a—y(x + 7).
(b) T: is positive if it is symmetric and a(x) <0 for vy # 0.

Proof:

(a) <
By definition 7. is a symmetric operator if (T.u, v),. = (u, T.v),. for any u,v € Z(1;), or
equivalently,
S a@a e = Y e @@ +) . (2.24)

x,v€(eZ)? z,y€(eZ)?
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The right-hand side can through substitutions £ = 4+ v and 7y = —v be written as
> 5@+ )@ +)o(E) - (2.25)
Z,5€(eZ)4
Since the sum is taken over all  and 4, these variables can be renamed to  and v. If a,(x) =
a—~(x +y) for all = and +y, we see at once that (2.25) is equal to the left-hand side of (2.24]).
-
If T, is symmetric, equation (2.24]) holds for all u,v € 2(T;), so we can choose u = d; and v = dz,

where
1, z=yv
0. (y) = ’ .
) {O , otherwise

By this choice, ([2.24) yields

az—5(9) = ag—z (%)
and thus with v := y — & we are done.
(b) The operator T is positive if for all u € P(T)

(Tew, u)p = Y ay(@)u(z +y)ulz) > 0.
z,v€E(eZ)?

The sum can be rewritten as

YL ao(@)u@)® + Y ay(@)ulz +7)u(z)

T y#0
and by (2.21) this equals
DD aq(@) (wla +y)u(z) — [u(@)) .
T ~#£0
By (a) and the substitution # and 4 as in (2.25]), we can transform this sum to

(Tew, u)p = % Z ay () (u(z +y)ule) = Ju(z)[?) + Z a—5(Z +7) (w(@)u(@ +7) = [u(@ + 7))

Y¥#0 F#0

- ‘% > ay(@) (ul@) — u(z + 7)) .

If ay(z) <0 for v # 0, the last term is obviously greater or equal to 0.

2.2. Harmonic Approximation of the Spectrum of H.

In this section we will show that under certain assumptions, outlined below in Hypothesis [2.7]
the eigenvalues of the Hamilton operator H. introduced in ([I.1]), acting on ¢2 ((sZ)d), are given in
the limit € — 0 by the eigenvalues of an adapted harmonic oscillator on .£2 (Rd).

2.2.1. Hypothesis and Stability Result.

HyPOTHESIS 2.7. Let H, = T, + V. denote a self adjoint operator on (> ((EZ)d), where:

(a) T. is a discrete kinetic energy operator as introduced in Definition with the further
condition that the associated symbol t belongs to the symbol class S9(1) (Rd X ’]I‘d) in the
sense of Definition [2.1].

(b) The potential energy Ve acts as the lattice restriction of a polynomially bounded multipli-
cation operator ‘75 € >R on L2 (Rd), which has an expansion

V(z) = Vo(2) + e Vi(2) + Ra(;¢) (2.26)

where Vg, Vi belong to € (RY), Ry € €°°(R% x (0,0]) for some g9 > 0 and has the prop-
erty that for any compact set K C R? there exists a constant Cg such that
sup, i |Ra(w;e)| < Cke?.
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Furthermore there exist constants R,C > 0 such that V.(xz) > C for all |x| > R and
e € (0,ep].
(c) Vo > 0 and it takes the value 0 only at a finite number of points {z;}"* |, where its Hessian

~ . 2
(W)= 5 (5o (@) 227

is positive definite (i.e. the absolute minima are non-degenerate). We call the minima
{x;}7) of Vo potential wells.

For t € S§(1) it follows from Proposition that T, is bounded, thus H. is self adjoint on
the maximal domain of V., i.e. Z2(H.) = {u € £*((cZ)?) | Vou € £2((eZ)%)}.
REMARK 2.8. Any function f € %OOO(RZI), which is supported in (—m, )%, admits a unique €

periodic continuation to R®. Thus any such f can be considered as a function on the torus T¢. We
shall denote this function on T? by f.

Let k € €5° (R?) be a cut-off function on R? such that k(£) = 1 for |¢] < 2 and suppk C
(—m,m)%. Then the truncated quadratic approximation of ¢ given by

can by Remark be associated to t € SJ(1)(R? x T%). The associated bounded operator on the

lattice (see (2.11))) is denoted by Oplrd (trq) = Trq.
Moreover we define for a critical point x; of Vj in the sense of Hypothesis

~ ~ d

trq.i(§) =trq(x;§) and T.g;:= Opg (tra) - (2.29)
To compare H, with an harmonic oscillator on .#2 (Rd), we associate to the periodic kinetic energy
function ¢ a translation operator 7' := Op.(t) on C(RY) by identifying t € C>(R? x T?) with the
associated periodic function t € C*(R24). Then T is given by

T:=0p.(t)= Y ay(x)r,, xR (2.30)
YyE(eZ)d

Thus 7 induces the same translations on the square integrable functions on R? as 7. on the lattice
functions and we define the associated Hamilton operator H. on

() = {ue 2* (RY) | Voue 22 (RY) } as

H.u(z) == Z ay(z)u(z +7v) + Ve(z)u(z), we P(H). (2.31)
~yE(eZ)4

Contrary to the lattice case, it is possible to determine for the quadratic approximation t,(x, &) :=
(¢, B(x)€) of t on RY x R? the action of the associated operator on .Z%(R%) by

d
Ty :== Op.(ty) = —&? Z By (2)0,0, . (2.32)

v,p=1

As in the periodic case, we define for fixed a potential well z; € R? and for all £ € R¢

tq(€) == to(z;,6) and  Op.(ty;) =Ty, . (2.33)

REMARK 2.9. We denote by 9., = (¢Z)? + x¢ the e-scaled lattice, which is shifted to the point
zo € R? (thus xo € Yy, but it may be that 0 ¢ 9, ).

Then x +~y € 9y, for any © € Gy, x0 € RY and v € (eZ)?, thus if 1g, is defined as the
restriction map to the lattice 9,,, it follows at once that T, commutes with lg, . Since as a
function of x, the operator H. was assumed to be the restriction of an operator on R%, we can
therefore consider H. in the obvious way as an operator on K(9,,) and for any u € 65° (Rd), for
any xo € R? and any ¢ > 0

(1{%0 ﬁsu) (’1}) = (H5 ]_gwo u) (l’) ) S gzo . (234)
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By Hypothesis the potential energy ‘75 has at a critical point z; for | — z;| — 0 the
expansion
Vo(@) = Vi (@) + e Vi(w;) + £ O(Je — 2;5]) + O(|z — ;) + Ra(, ) (2.35)
and we set V7 (x) := VJ (z) + e Vi(z;) ,

where Vi () := <(a: —xz;), Az — JZJ)> and Ry = O(&?).

. 1.1 <
Let H. be an operator satisfying Hypothesis and let A7 := B2 A’B}, where A7 denotes
the Hessian of Vj at a critical point z; and Bp is the diagonalization of B(z;) as described in

Appendix [A] Section

The main result of this chapter is the following theorem:

THEOREM 2.10. Let
Kj::—A—|—<x,ij>+V1(mj), ji=1,...m

denote self adjoint operators on L2 (]Rd) and K = @;’;1 K; denote a self adjoint operator on
O, 22 (RY)).

Then for any fired n € N* and € sufficiently small, H. has at least n eigenvalues.

Counting multiplicity, we denote for n € N* the n-th eigenvalue of K by e, and the n-th
eigenvalue of H. by E, (). Then in the limit e — 0,

Er(e)=cer, + O (5%) . (2.36)

REMARK 2.11. The operators K; are harmonic oscillators with the additional additive constant
Vi(zj). Denoting by (w)? for w) > 0 the eigenvalues of the matriz A7, the eigenvalues of the
operator K; are given by

d

O'(Kj) = {eaJ = Z (u)lj;(QOly + 1)) + V1($L‘j)

v=1

ac Nd} . (2.37)

The spectrum o(K) of K is the union o(K) = \j_, 0(K;) of the spectra o(K;) for all j, i.e.
for n given as in the setting of Theorem the correspondence (o, j) < n is one-to-one. The
normalized eigenfunctions of the operators K; associated to an eigenvalue e ; are given by

Joi; (%) = ha(2)e#@ | a=(an,...,aq) €N, (2.38)
where ho () = hay - hay -+ - ha, and each hq, denotes a one-dimensional Hermite polynomial
(-1)' p(d : —t?
h(t) = —=+ — 2.39
0= et \at) © (239

with | = a,. We assume hy, to be normalized in the sense that the £*-norm of Jo,K; 18 equal to
unity. The phase function is given by

d
. 1 , 9
() =5 D wile, ud)", (2.40)
v=1
where yl, € RY, (v =1,...,d) is an orthonormal basis in R? of eigenvectors of A7.

2.2.2. Lemmata concerning the Proof of Theorem [2.10} The strategy of the proof is
to restrict the Hamilton operator H. to small &3 -scaled neighborhoods of its critical points in x
and &, i.e. to neighborhoods of {(z;, O)};n:1 in phase space. Then the restricted discrete operator
can be compared with a corresponding continuous operator acting on .Z2(R%).

We follow in part the ideas of the proof of Theorem 11.1 in Cycon-Froese-Kirsch-Simon [15] on
the quasi-classical eigenvalue limit of a Schrédinger operator. But in contrast to the Schrédinger
setting described in this proof, where the kinetic operator is given by the Laplacian on R?, the
discrete operator T, depends on both the position and the momentum and acts on a different space
than the harmonic oscillator. The first point consists in localizing the operator simultaneously with
respect to x and &, which is done by use of a version of microlocal calculus adapted to the discrete
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setting as invented in Appendix[B] The idea is to “quantize” the symbol of the operator multiplied
with cut-off functions with respect to x and &. By Proposition the uniform estimates for the
symbol can be used to get norm-estimates for the associated operators.

The starting point of the proof lies in the construction of a partition of unity. This is done in
such a way that it permits us to treat separately the neighborhoods of the minima and the region
outside of these neighborhoods.

Let x be a €5°(R?%)-function with the properties

(a) 0<x <1,

(b) x(z) =1if |z| <1,

(c) x(z) =0if [z > 2,

(d) /1—x2 is a € (R?)-function.

We define functions which localize in &3 -scaled neighborhoods of the minima z;, 1 < j < m, by

Xj,e(x) = x (5_%@ — xj)) ; r € Re. (2.41)

For ¢ sufficiently small, supp x;,- Nsupp xx = 0 for k£ # j. Thus by (d), the function

localizing outside of the wells, is an element of €’ (R%) for ¢ sufficiently small. Clearly by these
definitions 7" x7. = 1.

Using this partition of unity, we can find an estimate in sup-norm for the error, which arises
by replacing the potential energy operator V. introduced in in an e-scaled neighborhood of
x; by its quadratic approximation V7 (z) = V§ (x) + eVi(z;).

For 1 < j < m we get with the notation V{ (z) := Vi (;)

o (0 =18) +e (M =10)) e = _swe (% =W8) @] +<[ (= 17) )

oo xesupp(xj,e)

-0 (e?) : (2.42)
because (Vo(z) — Vi (z)) = O (|z — z;|*) and (V4 — Vi) (z) = O(|z — z;]) as  — 0 and since
|z —z;| =0 (6%) for « € supp(x;j,c). Thus by (2.35) we get the estimate

= ; I
ij,e (V - VJ) Xje|| =0 (es) : (2.43)
oo
In this context, we just mention that in the framework of the calculus of pseudo-differential opera-
tors introduced in Appendix [B]it is possible to consider 7. simultaneously localized in configuration

and momentum space. To this end we define a cut-off function ¢g € 65° (]Rd), using the original
cut-off function y, by

and ¢y 1= /1 —¢3 .

To ¢y we can associate a function q~5075 € 65°(T9) on the torus (see Remark . Let
boe(€) =00e§), &€ [-mm) (2.45)
and its periodic continuation for ¢ € R%. Then we set q~51,€(§) =4/1 —éaa € €>°(T9), which gives
Fot+ ot =1

The functions QNSJ-,S can be considered as elements of S9(R? x T?) with associated operator
5

Opgd(qgjﬁ). The statement of Proposition is the estimate

d  ~ d  ~ [
52 OPT" (G0.0) (T2 = Teg ) OPE (S0 s | =0 (<F) (2.46)
where ||.||o denotes the operator norm. The estimate (2.46) suggests the definition
ﬁj = fq7j+V(f+5V1(xj) (247)

$o.(€) = x(e73¢), ¢eR? (2.44)
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as a model operator on .Z2(R%), which is a good approximation of ﬁs and H. respectively for small
neighborhoods of £ = 0 and = = x;, i.e. for a localization in the configuration and momentum

space. As shown in Appendix HI is unitary equivalent to
Hj = —€2A+<(1’—xj), Aj(:c—xj)>+6V1(xj), (248)

where A7 is defined as in Theorem By scaling, H7 is unitary equivalent to e K ; (see Appendix
A.4)). Thus the spectrum of H7 is given by ¢ o(K ;) and the eigenfunctions are

gas(2) = =~ Hha (222) e (2.49)

The following lemma gives estimates on the error terms which occur by decomposing H. with
respect to the partition of unity introduced above into a sum of Dirichlet operators. It is a gen-
eralization of the IMS-localization formula for Schrodinger operators described for example in
Cycon-Froese-Kirsch-Simon [15].

LEMMA 2.12. Let H. = T. + V. satisfy Hypothesis and denote by VI the quadratic approz-
imation of V. defined in .
Let xjc,0 <j<m and ¢,k =0,1 be given by (2.41) and (2.45)) respectively and denote by

d  ~
Op;T (¢r.c) the associated operator. Then the following estimates hold in operator norm.

(a)
m
6
H, = ijvaHEXj,E +0 (55> :
=0

(b)

T + V2 = ObL (90.0) (T2 + VZ) OpL" (Go.c) + OpT (d1.0) (T. + VZ) 0BT (91,0) + O (=) .

The proof of Lemma [2.12] is done by use of the microlocal calculus introduced in Appendix
B] in particular Lemma [B:10] and Proposition But we should mention that at this point, it

would still be possible to give a proof by direct calculation, avoiding the symbolic calculus. This
is shown in Appendix [A6]

Proof of Lemma 2.12}

(a):

Since by definition ZTZO X?,s =1, we can split H. in the following way

H. = ;0 X He + 5 He ;O e = ;0 Xje He Xje + 5 ;0 (X e He] (2.50)

To show the assertion, we thus have to estimate the double commutators. To this end, we first
observe, that t € SJ(1) and x; € S%(1), 5 = 0,...m. Furthermore x; commutes with V., thus it

is sufficient to analyze the symbol of the double commutator with ¢. It follows from Lemma
6

that [xj.e, [Xj.e: tl#]# € S3(1). By Proposition this induces the stated result for the norm of

the corresponding operat(;r.

(b):
The arguments are quite similar to (a), but we need to consider the expansions for the symbolic
double commutator, since the quadratic potential V7 is not bounded, but V7 € S{(|z|?). Thus the
general result on the symbol class of the double commutator given in Lemma[B:10]is not sufficient.
By Lemma the double commutator in the symbolic calculus with o, a1, € N? for k =0, 1
can be written as

[64(), [91(9), (¢ + V) @ el = D_(02) ! (92t + V)@, Y (9676n) (96261 ) (©) + Bs.

|a]=2 aytoaz=a
Now we use that t € SJ(1) and ¢, € S%(1) and furthermore that the second derivative of the
5

quadratic term V7 is constant. Thus all the summands are bounded, of order £2-% and the s-order

6
in lowered by % with each differentiation. Thus all these terms are elements of S5 (1). By Lemma
5
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the remainder R3 depends linearly on a finite number of derivatives 92 (h + V) with |3 | >3
(whlch is bounded) and (651 qbk) (852@) with |81| + |B2| > 3. Thus it is an element of S (1).

We therefore get [¢x (), [0x(E), (t + VI)(x,€)]4]4 € S;( 1), yielding by Proposmon the stated

norm estimate for the associated operator.
O

In order to analyze the eigenvalues of H., one would usually try to compute the matrix elements
of H. with respect to the basis of eigenfunctions. Since we do not know the eigenfunctions of H,,
we work with the harmonic oscillator eigenfunctions g,; introduced in , and restrict them to
the lattice (¢Z)?. We denote these restricted functions, which are elements of (2 ((¢Z)?), by 95

The functions g,; defined in are localized near the well z; for j = 1,...,m and decrease
exponentially fast with respect to the phase function @%. Thus the difference between the matrix
element (gq;, Hegpi),» for H. and the one for the operator localized at the well z; by use of the
cut-off function ;. is small. This and similar estimates for the potential and kinetic energy oper-
ators are the subject of the following lemma.

LEMMA 2.13. Let H. and T: be given as in Hypothesis|2.7, VI by (fm) Let xj e, 1<j<m
as well as <Z~50,s and ¢g . denote the cut-off functions defined in (f2.411), 2.44[) and (f? 45]) respectz'vely
Let fq ; denote the quadratic approzimation off at the point x; as given in M Let g ) denote
the eigenfunctions of the harmonic oscillator defined in (m 2.49) (or their restriction to the lattice).
Then fore — 0:

(a)

6
)<g(61j7 Haggl>€2 - <Xj,£g(81ja Her7ag%l>z2 =0 (55) . (2~51)

(b) There exists a constant ¢ > 0 such that

S
N—

’<gaj, ‘/ajgﬂl>$2 - <Xj,€go¢ja ‘/EJX],EQBZ>$2’ =0 (e_c6
(c)
20 TXge0f) , — (OPT (B0.)X;205) - T OB (do.)s.c05
Xj,e9aj > Le Xj,e9p1 . Pe 0,e)Xj,e9aj)» Le YPe 0,6 )Xj4,c981 ol

(d) There exists a constant ¢ > 0 such that

‘<9aj s T Qﬁl> P <Op€(¢0,€)ij€gaj » T Ops(¢o,s)Xj,egﬁl> P

Proof of Lemma 2.13

(a):

By Lemma |2.12

‘<gg¢j ) Hsgfaj>£2 - <Xj,sgg¢j ) HEXj’Eg’%j>22 (2.53)

=1 > D xu(@)ga; (@)(Te + Vo)xu(@)gs; («) +O(e%).

z€(eZ)d k#j

We consider the kinetic and potential term separately, starting with the potential term V.. By
substituting (1 _X?,a) on its support by 1, we get

Y A2 )Ve@)gs; @@ < D |Vel@)gi; (2)gh (@)

z€(eZ)? mE(EZ)d2
le—w;|>eb

et Y Ve, @)

ze(ez)d
2
lz—zj|>e5
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for some C > 0, where we used that gg = O(e™ 4) for the last step. Setting v = x — x; where
u € 9, (see Remark [2.9), the right hand side is for some polynomial p bounded from above by
ul?

> b@@¢+xﬁha(jg)e <Cemf 3 plu))e

2 2
lu|>e5 lu|>e5

since the potential energy was assumed to be bounded by a polynomial in Hypothesis This
yields for some ¢ > 0

S (Vi) ()gae) —0( ele” ) | (2.54)

In order to estimate the kinetic term, we use gg = O(e~%) and the fact that for some C' > 0
> lay(z)| < C uniform with respect to z. Thus by the substitution u = z — z; we get

Y xnl@)gi (@ Zaw (@)xk(@ +7)g5(z +7)

2€(Z)d k#j
_1
=0 (e"” 5) . (2.55)

<oty \ha ()
u|>e?
Inserting (2.54) and (2.55) in ([2.53|) shows the stated estimate.
(b):
By the definition of the scalar product in .#? (]Rd) and the substitution of 1 _X?,a by 1 on its
support, we get

|<gaj ’ V:—;jgﬁl>g2 - <Xj,sgaj ) V;—ij,sgﬁl>gz|

[ (V20 = 33.V9%.0)) g i) d

S/ |9aj (@) VI (2)gpi(2)| da
le—x;|>e/5)

Using again gg = O(s_%) together with the substitution v = x — x; and the exponential decay of
Jaj, right hand side can for some polynomial p be estimated from above by

_d _oli? _c.-%
ce” 2 ) p(Jul)e < dlu=0(e 2 ,
lu|>e5

which proves the stated result.

(c):
To prove this statement, we sum by parts to increase the order in ¢ of the error term.
By Lemma [2.12]
d  ~ qd  ~
(<Xj,sgij T Xj,sgfﬂ> o <Oplr (b0.0)Xj.c95; » T Op: (¢0,5)Xj,sgél>zz‘ (2.56)
d  ~ P s
= [(OpT (Br0e02 T2 O (D1.0x5e95) ,| + O (<)

By equation (2.7) and the definition of the symbol ¢

-

d , ~ d , ~ ~ ~
(0PI (1.e0xic05; » o OPT (1.aicgin) | = |(9107 (Nie9)) s 161,27 (e02)). | -
2.57)

This gives by Definition (2.2])
’<$1,sy571(Xj,eng) ) t(l;l,syeil(Xj,sggl)> ‘

< [ [0t 0010 (PTG O F o) O] de . (259)

[~ x]4
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Now again by replacing the function (;315 on its support by 1, we get

[ 110409616 (BT8O (5 ) (€)] e (259)

[—7-(,71-]‘1

< [ |0 F ) O e )| de

[—m,m]d

2
l€]=e5

We now estimate the product of the Fourier transforms. By the definition (2.4) of the inverse
Fourier transform,

Ley €
> e Y (0)gs; W) -
V27r y€E(ez)d

To analyze this series and the complex conjugate with gg; respectively, we use summation by parts,
which allows us to obtain any order in € by repeating this procedure several times. To this end we

use the discrete Laplace operator A, in £2 ((EZ)d) (see equation (2.125) and Appendix D

(9 XJvfgaJ)

d
(Af)(z) == <Z(Tm +T_ce,) — 2d> flz). (2.60)

v=1
The operator A, is symmetric in £2((¢Z)?), i.e.,
(fy Ach)e = (Acf, B, [Lh€2((e2)Y). (2.61)

In order to use (2.61) to obtain an estimate for (2.59), we have to find a function h € £3((¢Z)?)
such that e*=%¢ = A_h(z). Since

d
AeFems = — <2d - 22 Cos ({Q) etzTt

v=1
we have the representation

d -1
etieé _ <2d — QZCOS (fy)> AeT=m¢ (2.62)
v=1
From (2.62) and ([2.61) it follows that

d
Z Xj,s(x)ggj(x)eigwf == <2d—2ZCOS (fu)) Z Acx;, Ega] )(@)e teot, (2.63)

z€(eZ)4 v=1 x€(eZ)?
We estimate the first factor on the right hand side of (2.63) in the region & € [—, ] with || > 5.

From the inequality 72(1 — cos&,) > &2 for |£,| < 7 it follows that
1 2 w2
d < d - 2"
o2 2cos(6)) T 2%, €2 20
Since we have to estimate in ([2.59) the product of two Fourier transforms, we estimate the square
of this factor. We thus have for |¢| > ¢3 and |¢,| < 7,v € {1,...,d}

1 2 7.‘.2 2 7T4 s
<Zi 1(22coS(§u))> = (253) —c (2.64)

To find an estimate for the remaining series on the right hand side of ( -7 we use the dlfferen-
tiability of the functions x;.g.; and their Taylor expansion, setting y : % and z := e~ 3z and

_d_ _1 o, 2
Gaj(T) =€ 1gaj(e 2 x) and Xje(x) = x;(e"5x), (2.65)

1

since go; is scaled by ¢e72 and x; is scaled by £~5. This yields

Or, (X3eas) (@) = e=4 (€78 [X3(@) (0, 907) (7F2) | + 72 [ (67H2) (91, %5) (€720)])
(2.66)
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We thus have

1

Ha{e? [40@) 0.507) (7 F)| + 23 (0 Ks) (63 0) g1y (72
9
)

~ 1
+ sup 5 |:X], ( it&‘ey) (8§Vgaj) (g 2($it€ey))
t€[0,1]

X905 (T £ €€1) — Xj,egaj(@)] <
]. 11 - _2 ~ _1
561 [0, %50) (€7 (0 £ 120,)) 9y, G0s) (e H (@ £ t20,))|
16 - _2 _ 1
#yet (@20 (€ Hot ey a2 1))

Since the first derivatives cancel, the term A.x; cgg;(z) can thus by (2.66]) be estimated as follows:

|AxGe05,(2)] =

(SC +€ eu) — Xj,e9aj (x)) + (Xj,sgaj (33 —¢€ eu) — Xj,e9aj (x))|

v=1

d
=€ Z;Z{ sup

o1 Ltelo,]

Xij.e (z+eey) (@iﬁa;‘) (5_%@ + Eeu))‘

1

+ |gTo (321,)2]‘,5) (5_3 (z+ee)) (ayugaj) (5_% (x+e eu))‘

+[eF (22, %50) (73 @ 2 e)ag) (e (@ mees))

e (@ = 2e0) (02 o) (7 H (@ = 2e,)|

2

5% (azyf(jﬁ) (5_3(55 - Eeu)) (ay,/gocj) (5_%(55 - Eeu))‘

+|es (92 Xje) (e 3z —cey))faj(e % (z — 7756,,))’} (2.67)
The cut-off functions and the eigenfunctions g.; of the harmonic oscillator are together with all

their derivatives summable. Thus the series on the right hand side of (2.63]) is bounded and by

2.67) of order e~ %. Since all the estimates were independent of the choice of («j), we get by
2.64)) for some C' > 0

_|_

(P02 (T i) ()] = O (e87%) (2.68)

Thus with one summation by parts, we gain a factor 3. Tteration this procedure N times and
estimating the derivatives of go; and x;. by the supremum over the intervals I, y = [z — Nee,,z+

Nee, |, which is bounded and summable with respect to z, we gain the factor £%". The integration
in (2.59) yields bounded terms, thus

| 10 g [P e O g ©)] de =0 (¥7F) . Nen
(=,

2
l€]=e5

and by the equations (2.56)), (2.57) and (2.58)), we have the stated result.
(d):

We split this estimate in two steps. At first, similar to the proof of point (a), we estimate

’<gaj ) Ops(d’o,s)fq,j Ops(QbO,e) gﬁl>$2 - <gaj y Xj,e Ops(¢0,e)fq,j Ops(¢0,e)Xj,s gﬁl>$2

< /
= _2
lo—zj|>e™5

Here we used that the derivatives of the eigenfunctions are bounded and that the eigenfunctions
are exponentially decreasing.
As second step we analyze the difference

)<9aj o 9m> P <gaj , Op.(60,:)T4,; Op.(¢o.) gﬁz>

1
5

9aj() (Ops(aﬁo,g) 0.i Op.(¢o, 5)) gm(m)‘ < Ceee

Kgaj , Op.(¢1,2)°Ty 9m>

¥2
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Similarly to (2.57)), by using Parseval‘s equation we estimate the last term,

’<9a3a0p5(¢1a) q,]gm> ‘—’<F ga]’¢15 q’]F gﬁl> ‘
§/ L (Fg0g) (O)tg(8) (Fhgan) (€)] de < Ce b
|€]>e5

where in the last step we used that the Fourier transform of the Gauss function is again a Gauss
function, and thus the Fourier transforms of the eigenfunctions and its derivatives are exponentially
decreasing and bounded as the eigenfunctions are.

O

Since Theorem compares the eigenvalues of a self adjoint unbounded operator on £2 ((€Z)d)
with the eigenvalues of the harmonic oscillator, which is an unbounded self adjoint operator on
2 (]Rd), we have to compare some matrix elements with respect to the scalar product (., .)
with those with respect to (., .) ,». How this can be done is shown in the next lemma, giving an
estimate for the difference of these terms.

LEMMA 2.14. Let T 4 ; and T, u,j be defined in and respectively and let VI be

given by (2.38). Let f,g € L2 ) denote normalzzed ezgenfunctions of the harmonic oscillator
given in (2.48) (of the form ) and f€,9° € (2 ((eZ)d) their restrictions to the lattice. Let
Xjer 1 <7 <m, ¢~>0,a and ¢g be the cut-off functions defined in , and . Then

for e sufficiently small

(a)

(xset* s O (B0 Ty OPL (o) oo,
== ({xef + Op-(00)T Op.(00) xs9) , + 0 (=F)) -
(b)
(VI 0 = ({0 VExe8) o + 0 (7))

Proof of Lemma 2.14}

(a):
By use of the isometry of the Fourier transform (2.7) and the symbol ¢, 4 ; associated to Ty 4 ;, we
get

<Xj,5f5 ) Opg (¢0 )1z, Opg ($O,E)Xj,sg€>€2 = <95_1(Xj,efs)7 éo,a 7qdqﬁo e (ijeg )>
= /[_ y ng,a(m)(é) T,q,] (5) (¢O € (y Xj.ed )) (5) de . (2.69)
]d

Since for & small enough (;30,5“,7,’”](1 = @0l[—n,xj¢ and ¢o(z) = 0 for x € R?\ [, 71]¢, we can within

the integral replace g?)oﬁ by ¢o and extend then the range of the integral to R¢. Furthermore for &
small enough we can identify ¢ 4 ; and t, ; on the support of ¢g, thus

R R GO (&O,Mglxj,sgS)) (6) de
/ G0(E) (T g2 I7) (E)ta 5 (€)60(€) (Flxse07)(€) dE . (2.70)

The right hand side of (2.70]) can, by addition of a — a with

a = ¢o(&)(Fe "X ) (E)tq,5(©)d0(€) (FZ'X5.97) () + (F ' x5.29)(€))
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be decomposed to the sum

90(&) (PTG = (FTNGN)) t05(6) 60(6) (F11x52°)() d

Rd

+ [ (OGN ) dl) (F506°)(E) = (P30
+ [ (PTG DO s (€ 40(6) (F o) @) de . (271

The last summand in li can be understood as a scalar product in .Z 2(Rg) and is, by the
2.10

“Parseval” relation (2.10|) for the quantized Fourier transform , equal to the remaining term
on the right hand side of (a).

We therefore have to estimate the first two terms on the right hand side of , where we
separately treat the factors in the integral. Using the identity e? = f[ML e[ dy and the definitions
of F-1 and (2.4) of Z!, we rewrite the first factor in the first summand. Thus the identity
of f¢ and ¢g° with f and g respectively on the points of the lattice yields

00(6) ((FZ x5 FNE) — (P N(O))
= ¢o (&) (E\/%) - Z /[z phe (e§$'£xj7af(x) — eéy'ij78f(y)) dy

z€(eZ)?

= 60(© (fm)dme(%d [ (e et = 51— 07 @) .
(2.72)

For the first summand in (2.72)), we use that || < 23 on supp ¢, thus with Q, = [z, z + ¢]¢

eézg—eiyg‘ < sup |tz —y)-¢| = O(sg) .
YEQy

Since the resulting term is independent of y, we use again 1 = ¢~ ¢ f[T ote

Ja dy to get

o (vor) | 3 [ Hg[d(eém-f )y () dy

JJE(EZ)d

< do(€)V2m io Z Xjelf(x (2.73)

z€(eZ)?

Since f was supposed to be a normalized eigenfunction of the harmonic oscillator, i.e. scaled with
£~% and normalized with a factor 5_%, the last sum can be estimated with the substitution z = v
and

fla) = e f(z/VE) (2.74)

Yo oxelf@ e Y f(Veu) =TT | e Y |f(Vev)) (2.75)

z€(eZ)? veZ? veZI

Now we notice, that by the definition of the Riemannian integral

tim (<4 3 fvE0l | = [ Ifwldu (276)

veZd

which is a constant independent of e.

By inserting ([2.76)) into (2.75)), we get the estimate
_ 34
> welf@l=0(%) . (2.77)

z€(eZ)?
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Inserted in (2.73)), this yields

NGICC DS /[ +w(eérf—e%yf)xj,sﬂx)dy < go(§)0=5 7 (2.78)

z€(eZ)?

To estimate the second summand on the right hand side of (2.72)), we use |z} — yk| < ¢ for all k. In
order to take the scaling of f and x; with respect to € into account, we set u := ﬁ and z 1= 27 3.

This yields for f and ¥; as defined in (2.74) and (2.75) respectively with I, (z) = [z, + ce, |

Nied )= f(@)] <& 4dxf2sup i) (90, F) (7 Hw) %0 (02,55 Fw)) FeHu)|.

=1 wE v
(2.79)
Again the resulting term does not depend on y, therefore by (2.79)

@ (Vo) X [ e ) e @) dy

z€(eZ)?
< ¢o(§)m_d5i%d\/gc
X Z Z sup ‘XJE (au, f) (5_%10) teT (8%5(]-(5_%10)) f(s_%w)’ (2.80)

ze(ez)d v=1 wE[z,x+ee, ]

Since the derivative of f is of the same structure as f itself, we have by the arguments leading to
(12.75))

d

Y s [e) (90,F) (T Rw) + (0,50 ) ) fle )

ve(ez)d v=1 we[z,x+ee, ]

<c€—wiz s {|(07)]+ |7} Ho

yEeZd wely,ytey

(E%w) +et Z sup f‘ (e7w) » (2.81)

yEZd wely,y+1]4

O, f

d
Co Y ALY

yezd WElyy+1¢

It follows by (2.76) (see the construction of the Riemannian integral) that both summands on the
right hand side of (2.81)) tend to a finite limit and are therefore bounded by constants independent
of €, thus

d

67% Z Z sup

ve(ez)d v=1 welz,zt+ee, ]

1) (0.7) 2 o, ) b =0 (%)

(2.82)
Inserted in (2.80)), this leads for some C' > 0 to
—d i 1_3d
w©) (V) X [ )~ ety < Con(©F (28
ze(ez)d ' I* wtel?
Inserting (2.83) and (2.78]) into (2.72)) yields
$0(6) |(FZTG219)(©) — (F G2 N(©) = 0 (3% . (2.84)

For the first summand in 1) we use the estimate sup, ¢o(§)t,,;(§) < ces, which follows from
the fact that t, ; is quadratic with respect to ¢ together with the scaling of the support of ¢¢. This
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yields together with (2.84))

( TG - (Fa’lxy',sf)(f)) 14516 000 (P2 5071 (€

273
£5

/ 160()t0,1 ()] [60(6) (Fx3.00)(0)] de
Sng’Sd/ |0 (&) (F x5,.9°) ()] d€ = (g’d>-

In the last step, we used that g and its Fourier transform are of order e 1.
The second summand in (2.71)) can be treated using the same arguments, so

/ 00 (F x5, )(€)) L3 (€) 60(€) (F7x5.e9°)(E) — (F'5.9)(€)) d = O (£579) , (2.8)
which by (2.71)) proves (a) of Lemma [2.14]

(b):

Writing the scalar product similarly to equation 1' using the identity ¢ = f[x el dy, we get

<.f X, eV X3, ag Z fa Xj,eVEij,e 96)(-75) = (2'86)
z€(eZ)?
=3 / F@) = FO) (V20 ) )+
:DG (ez)d [ x+a['i

+ W) ((GeVEX5.e9) (@) = (. VEXGe9) W) + F (W) X5, VE X5 9(0) } dy -

The functions arising in the last summand are all defined on R?, the sum of integrals on the lattice
cells can therefore be combined to an integral on R¢, which by definition is equal to the scalar
product in #£2(R%) multiplied by the factor e~%. Similar to the proof of (a) it remains to estimate
the first two terms.

In order to estimate the second factor in the first summand on the right hand side of ,
we observe in that V7 is of second order in z — z; and that the term constant in z is of
order e. Since we have |z — z;|? < 4e5 for all 2 € supp(Y), this gives for some C' > 0 the estimate

SUD,cRd ‘XjVEij (x)] < Ces for the cut potential, thus

Y / (f(2) = f(v) x5, VI X5 9() dy
v warer?

<ctmic B /[ () — £l lg(@)] dy

€T

Setting u = = and I, (u) = [u,u + v/ge, [, a Taylor expansion at the point z yields for f defined

in (7

d
i sup [(9u, )(2)]. (2.87)

v—1 2€L (u)

f(z) = F(y)| < %™

Thus by (2.87) and with § defined similar to f

d
<cEY Y sw e e ot [

P71 s (e Elmatel? [o,a+e[¢

<02y et Yy swp 0, fllgler), (2.88)
d
v=1 Uezdze[vxv+1[
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where in the last step we used the substitution v = ez. By (2.76]), the sum is bounded by a
constant independent of ¢, thus we get

=Y [ - 1wl =0 (). 259)

z€(eZ)?

Inserting (2.89) in (2.87)) yields

S [ @ @) ey =0 (-

z€(eZ)?

Sles

*d) : (2.90)

The second term in equation (2.86|) can be shown by similar arguments to be of the same order
with respect to £, which completes the proof of the second part of the lemma. O

There is now still one estimate needed for the proof of Theorem It concerns the error,
which is made by replacing the z-dependent quadratic approximation T} of the kinetic energy by
the operator fixed at the well (and thus constant with respect to z).

LEMMA 2.15. Let fq and fq,j be given by and respectively for1 < j < m. Let x;.
be the cut-off function defined in and f,g denote normalized eigenfunctions of the harmonic

oscillator given in , then

‘<f,xj,efq><j,sg> <f Xj.e ,“xjsg> (— ( )

Proof:
By the definitions of the operators

‘<f XJE(T T )ngg>
As g is scaled by %,

= (£ X022 0 (Bun(@) = Bu@)00u x50 9) | -

10,0 x5.e9ll 22 = OCe) -
Since || < 2¢3 in the support of Xj.e, we have B, (z) — B,,(z;) = O (s%), which together with

the preceding estimate proves the lemma by the Schwarz inequality. O

2.2.3. Proof of Theorem We split the proof of the theorem in two parts by estimating
the term E”T(E) in the limit € — 0 from above 1) and from below (2.101)) by e,,, which together
give the equality (2.36)).

Estimate from above:
En(e)

<e,+0 (E%) for €e—0. (2.91)

The statement (2.91) can be shown using the preceding Lemmata and estimates.
At first we use the points (a) and (c) in Lemma [2.13] leading to the estimate

6
<g(ij ) HE g%l>g2 = <g¢€1j 9 Xj,EHsz,E g%l>52 + O (55> (292)
d  ~ d , ~ s
= <g§j , X4.e OPL (o,c)T= Opy (¢o,e)xj,sg§l)> + <92j ; xj,sstj,sggl> +0 (65> .

By Proposition [B.9)in Appendix [B] localized at the critical points with respect to  and £ simulta-
neously, T can (modulo terms of order 55) be replaced by its quadratic approximation 7} 4 ; at the
point 2;. Furthermore by (2.43) we can replace V; localized at ; by the quadratic approximation

VI given in (2.35). Thus

<93j , H gf}z>£2
— /e ,OTd~ T'OTd~ e € C Viv.  ab o (3
= \Yaj» Xje YPe (¢0,6)T%,q,; OP2 (¢0,6)XJ,69,31 £2+ 9aj> Xi.eVe Xie 9pi £2+ €

— = j g
=g (<9aj s Xg.e O (00.e) Ty, OPE(¢0,e)Xj,sgﬁl>$2 + (Gaj » X5.eVIXje 9p1) gpo + O (55 )) ;
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where for the second step, the transition from (functions and scalar product in) ¢2 ((¢Z)?) to
£? (RY), we used Lemma (a) and (b).
Point (d) and (e) of Lemma yield

<gaj y Xi,e Ops(¢0,a)TqJ Opa(¢0,€)xj,6 gﬁl)>$2 + <gozj ) Xj,EVstj,e gﬁl>$2 (2'93)
~ ) 6
= <9aj » Ty g 9,8l>$2 +{gaj, VI gﬁz>$2 +0 (55) .

By use of Appendix we can perform a coordinate transformation to pass over from H given
by (2.47) to the diagonalized H7 given by ({2.48)), therefore

<gaj s T gﬁl>$2 + <gaj V7 96l>$2 = <9aj , HY gﬁl>$2 = <gaj , HI gm>$2 . (2.94)
Since HY g, = €€n(a,j)Jaj, the estimates (2.92)) to (2.94) can be combined to give
_ 6
(925, He 9§1>Z2 =& (e Im@arnen + 0 (¢F)) (2.95)

where m(a, j) and n(8,1) are the numbers of the eigenvalues corresponding to the pairs (a, j)
and (3,1). The estimate (2.91)) follows from (2.95), if we use the Min-Max-formula for a fixed,
sufficiently small €. Choose (n — 1) linear independent elements (i, ...(,—1 of the domain of H,
and define

Qs+ Cnr) = inf {(¢, He))p [0 € D(He), 0] =1, ¥ € [Gro- . Gaa] ™} (2.96)
and
En(g) = ¢ Sup Q(Cla cee Cn—l) . (297)
1, 71 1
By Theorem in Appendix [B.5] which is an analog of Persson’s Theorem on the infimum of the
essential spectrum in the discrete setting, Hypothesis ensures that inf o.ss(H:) > ¢ > 0. Since
E, () is by (2.95) of order ¢, it belongs for € small enough to the discrete spectrum. Thus the
Min-Max principle shows that Ei(e) < Ej(e) < ... < E,(e) are the first (ordered by magnitude)
n eigenvalues of H..
For A > 0 we can choose (3, ...(,—1, such that

En(e) <Q(C1y.- - Coo1) + A (2.98)
To deal with the factor e~ in , we use the estimate
<g(‘ij ) g§l>e2 =" ((9as > 981) o= + O(VE)) (2.99)

which follows from the following considerations. Similar to the proof of Lemma [2.14] we use the
identity ¢ = f[x wtea @Y, to write

<fejg£>£2: Z fe

zE(sZ

B / — @) 9(@) + FO) (9(2) — ) + FW)a(w)} dy

me (ez2)d el

The last summand is equal to the scalar product in #?(R?) multiplied by the factor e~¢. By
, the first two summands in the integral are of order ﬁ‘d, thus is shown.

It follows from that for e > 0 sufficiently small, the functions g5 ; € £% ((¢Z)%) are linearly
independent. Thus the functions associated to the first n eigenvalues of H7 span an n-dimensional
space, which we denote by .#,,. Then A = ., N[(1,...Cn1]" is at least one dimensional. Thus
there exists a function 1 € 4 with |[¢|| = 1 and it follows from (2.95)) and (2.96) that

Q- Comt) < (U, Hoh) o < €00 +O (eg) (2.100)
Since \ is arbitrary, we have by (2.97) and ([2.100))
E,(e) <ee,+0 (5%)

proving (Z:91).
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Estimate from below:
E,(¢)

> e, +0 (s%) for &0 (2.101)

As in the first part of the proof, we will use the cut-off functions x;. and ggk defined in lj
and 1l (which are scaled by 5_%) and the corresponding function ¢, on R%.

Let | < n —1 such that e, = e,-1 = ... = e;41 > e, where e, denotes the r-th eigenvalue
of K for r € N* and ¢y := —o0. Let e € (e, e,), particularly e & a(@j K;). Then we claim that
there exists a constant C' > 0 such that

6
@, Hep)p 2 ce(®, V) + (¥, Ri) o — CllYl|2e™ . ¢ € D(H.), (2.102)

for some symmetric operator R; with rank R; < [. This implies (2.101). To see this implication,
let ¢ € A, with ||| = 1. From the Mini-Max-formula it follows

En(g) 2 <¢, HE ¢>42 . (2103)

On the other hand there exists a ¢ € ., Nker Ry, since dimker (Ry|.»,) > 1. For this ¢ the
inequality (2.102)) yields

(W, Hot))po zse+0(s%) . (2.104)

which together with (2.103]) gives (2.101]). It therefore suffices to show (2.102)).
By Lemma [2.12] H. splits as

m
HE = ZXj,aHerj,e + XO,&HEXO,E + O (Eg) s (2105)
j=1
where the estimate on the error term in the following estimates is understood with respect to
operator norm. Xo . is supported in the region outside of the wells, thus |z —z;| > eiforl1<j<m
and x € supp Xo,.. Since the potential is of second order in z or of order €, we have for ¢ sufficiently
small and e < e,
Xo0,eHeX0,e 2 X0,eVeXo,e > EeX(2)75 . (2106)
In the neighborhoods of the wells, (2.43) allows to approximate the potential by the quadratic
term, therefore (2.43)) and ([2.106|) give

H. > ij,g(Ts+ng)xj,g+€ex(2)’€+0 (E%) . (2.107)
j=1

In the first summand we introduce the partition of unity (2.45) in momentum space and get by

Lemma 2.12]

D Xe(Te+ VI e = ZXL ) OpX" () (T= + VZ) OpX" (f0)x.c (x)+

+ZX]7 ) OpX" (61)(T2 + V) Op! (él)xj,g(x)JrO(e%) . (2.108)

By use of the norm estimates for the operator localized simultaneously with respect to = and &
given in Proposition (Appendix , it is modulo terms of order O (5%> possible to replace T

by T 4,; in the region localized at £ = 0 and = ;. The function qgl is supported in the exterior
region with |£| > £%, thus we have by arguments similar to those leading to (2.106)

OpX" (61)(T= + V) 0T (1) > e Op!" (d1)? . (2.109)

Substituting (2.109) in (2.108)), replacing T, by T 4,; in the first summand of (2.108) and substi-
tuting the resulting equation in (2.107) yields

H. >an ) OpL (Go) (Te.qj + VZ) OPY (d0)xsec () (2.110)

+5eZ><]s (Ops (&1))2&',6( )+56X06+O( %)



2.2. HARMONIC APPROXIMATION OF THE SPECTRUM OF H. 31

By the isometry of the Fourier transform the expectation value of the first summand of (2.110))
can be written as

m

> (00T (B0)x5. (@), (Teg g + VZ) ODT (d0) x5 (@) ) (2.111)

02
Jj=1

S (0T (Get) s (trg + FVIF) 0T (G¥) ),

Jj=1
The cut-off function ¢ restricts the integration from the torus to the neighborhood of the origin
scaled by 5_%. For ¢ sufficiently small we therefore can pass from the scalar product in .2 (']Td)

defined in to the scalar product in .#2 (]Rd) if we simultaneously replace ¢g by ¢ and ¢, .
by tq,;- ThlS follows from the fact, that the range of the integral is in both cases restricted to the

support of ¢g. Changmg variables as described in Appendix u we can pass from HI to HY.
Moreover Z VI 7. = F-YVIF, and F.(¢, §)F-1 = —£2A, thus we get, for j =0,...m,
<&054‘;1<xj,6w> trgy + FIVIF) 60T (e¥)). (2112)
= <¢0§6_ (X] ew) ( 1H]F )(bOy (Xj,ew)>$2
We introduce the spectral decomposition of F.'H7F. and denote by /; the number of eigenvalues
of Hj below e. Thus e;; < e; < e for all j and Z;n:l l; = 1. By replacing all eigenvalues ey, > e of
H7 by e we get

(F-YHIF.) ﬂezek T, >e > eIl +ee(l— Y T ) (2.113)
k; <l; k; <l;

where H] denotes the projection on the eigenspace to the kj-th eigenvalue of HJ. Inserting
(2.113) mto the right hand side of (2.112) and going back to the scalar product on .#? (T¢) again
by replacing ¢o by ¢o yields

> <Opgd(€50)xj,s($)1/% (Tt g5 +V2) Opgd(égo)Xj,s(x)¢>

Jj=1

02
>3 {(00F 0G) s £ X (en, — O, G0 ().
j=1

tee (G0Z (iet) s hoF M Gev)) | (2114)
Thus by (2.114) together with (2.110) there exists a constant C' > 0 such that

<1/)7 H 1/) 02 > ge Z <¢ X] a‘/}) (230555_1()(]'751/})>T (2115)
Jj=1
+ 3 (60 (6t (6 Xey, en = OTH) b0.Fep ™ (1¥))
j=1
tee Y (BF Gew) s 1T (Gew) )

j=1
tee (o) (8 +8)(F xoat)) — Cet )

The introduction of ¢Z + ¢? = 1 in the last summand allows us to combine this term with the first
and third summand. Since rank(A + B) < rank A +rank B and rank Hij = 1, the operators in the
scalar products contributing to the second summand has rank l;. The restriction by the cut-off
functions does not increase the rank and moreover Z = l thus the rank of the operator
defined by

m

Ry = Z(nga_lXj,acge)(z)O Z (e(er — e)Hi)éo(g\E_lxﬁe‘g‘f)

j=1 k<l
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is at most equal to I. The right hand side of equation (2.115]) can therefore for some C' > 0 be
written as

ze Y (0(FNiet) s bo( T Niet) ), + (T2, R (P70,
j=0

+eed (el FNeb), bre(F T xew)) — ol (2116)

Jj=0

Again the first and third summand can be combined so that the cut-off functions in both spaces
add up to 1. We thus get by (2.115) and (2.116) that for some C >0

(W, Ho)pe > ce(h, ) + (0, Aih)pe — Ce[|lI72 (2.117)

where A; := .Z. ' R;.Z. is again an operator of at least rank [, because the rank of an operator

is not changed by taking the Fourier transform. Thus it is shown that (2.102) holds and by the
considerations at the beginning of the second part of the proof, the assertion (2.101)) follows. Com-

bined with (2.91]), this completes the proof of Theorem
O

2.3. Probabilistic Operator

Returning to the situation described in the introduction, we will show the applicability of
Theorem to Hamilton operators appearing in the discussion of questions connected to the
thermodynamic limit of the dynamics in metastable mean field spin chains.

To this end we have to check wether the operators induced by a Markov chain, which we call
probabilistic operators, satisfy the conditions described in Hypothesis

First we describe a general notion of a probabilistic operator, then we give an example and
analyze it more precisely.

Let us consider a family {4t }ce(0,c,] Such that the function s : (¢Z)* — (0,1] denotes a prob-
ability measure on the lattice (¢Z)%. Then a Markov chain is described by means of a ”transition
matrix” P. : (¢Z)? x (eZ)? — [0, 1], where P-(z,y) is interpreted as the probability of the transition
from x € (¢Z)? to y € (¢Z)%. P. is a stochastic matrix, thus

> Pwy)=1, we (D)’ (2.118)
y€E(ez)?

We assume that P; satisfies the detailed balance condition, i.e.

pe (@) P(z,y) = pe(y) P=(y, ) - (2.119)
Then (1 — P.) defines a self adjoint diffusion operator on £2 ((€Z)d, ug) via
(1—Pou(x) =u(x) — > Pelz,y)u(y) .
y€E(eZ)?

In fact P. is a bounded operator on £2((eZ)¢, u.) with ||P.|| = 1. To see this, we first notice that

by [@2-113)

|Pau@)P = > Plzy) (ZPs(w,y)U(y)F)

y€E(eZ)?

= P(z,y)|uly) .
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This yields by (2.119)), the Fubini-Theorem and again (12.118])

1Peullfeqezyagy = D pe(@)|Peu(z Zus Z z,y)lu(y)?

zE(eZ)?
-y (zp » ) WP
= ||“||e2((aZ>d,us) :
The symmetry follows from (2.119)), since for u,v € £2((eZ)?, u.)
(u, Pev)e((ezyd po) = Z pre () u() Z P.(z,y)v(y)

zE(eZ)? y€E(eZ)?

=D > ne) Py w)u(@)o(y) = (Peu, vyt )

|

Conjugation with respect to the measure p. induces a bounded self adjoint operator H, := pu2 (1 —
1
P.)pc ® on €% ((eZ)*), whose restriction to K((¢Z)?) is given by

Houw) = u(@) — p2 (0) Y Pe(w,a+ ) P (@ +)ule +4), we K(E2)Y)  (2120)

Note that K((¢Z)?) is dense in £2((¢Z)?) and H. is linear continuous and is therefore completely
determined by . In the following we will supress the mention to the e-dependance of . by
writing simply p.

To get the standard form H. = T. + V., where T, is a discrete kinetic operator in the
sense of Definition and V; is a potential energy, we use and add a — a with a :=

>0 17 (@) Pel,x +7)n™ 2 (@ + 7)u(x) to get

Hal@) = S ud@Pw e+ @) — 3 @) P,z + ) @+ 1)ul)
Y#0 Y#0
+> pE (@) P,z + )T (z + y)ul@) = D pE (@) Pz, 2z + )" Tu(z + )
¥#0 Y70
= Y (@) Pelz,m +7)u2 (2 4 7) (ulz) — ulz +7))
y#0
+ e (@) Pe(w,z +7) (u %(x)*u’%(w+v)) u(z) .

v#0
Then H, =T, + V., where
T.(x) := Zu
v#0
> pt () w:v+v)( @) —p i@ +) -
7#0

Comparing T, with the Fourier expansion (2.20)) for a general discrete kinetic energy operator, the
Fourier coefficients are given by

M\»—-

(2,2 +7)p" 2 (2 +7)(1—7)

Ve()

ap(z) = Zu% (x, x4+ y)p~ H(z+7)>0 (2.121)
770
ay(¥) = —pE@)P(v,z+)p (@ +q), Y#O. (2.122)

Thus we see that in the case of probabilistic operators, the condition a, < 0 for v # 0, which by
Lemma (b) insures the positivity of T, is always fulfilled. The detailed balance condition for
P. ensures the symmetry of T, as follows. By ([2.119)
1 1
p2(zay(z) = —p@)Pe(z,z+y)p 2 (x+7) =
= —ple+ )Pz +y,2)p”E (2 +7) =
= —pi@+)Pe(r+.2).
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On the other hand,

[N

pE(@)ay(z+7) = —p2(@)pd(z+y)Pela+v,2)p 2 (z) =
= —pi(z+y)P(x+7,1),

thus a,(z) = a_,(z + ) and by Lemma [2.6](a) the operator T, is symmetric. Therefore T is a
discrete kinetic energy operator in the sense of Definition [2.4] if the first three conditions on the
associated phase space function ¢ are fulfilled. Writing ¢(z, &) in the form , these conditions
follow from the fact that

ag—» ay =0 (2.123)

¥#0

for ap, a given by (2.121) and (2.122)) respectively. gives at once, that ¢(x,0) = 0 and by
the sign of a,

Ha) = a0+ ane T a0 = fay(@)lle” 7| 2

v#0 ¥7#0
> a0= ) lay@)l= D ay;=0
Y#0 ~E(eZ)d

Since on the other hand for each ¢ # 0 there exist v # 0 such that e~=7¢ # 1, the function ¢
is strictly positive for € # 0. As discussed in Remark (d), the matrix B is symmetric and
since for v # 0 all a, are smaller or equal to zero, it is positive definite. Thus the kinetic energy
operator of a probabilistic operator is a discrete kinetic energy in the sense of Definition [2.4] if the
stochastic terms p and P. can be interpreted as lattice restrictions of functions in € (Rd).

By acting with T, on ;ﬁ and multiplying with ,u_%, we get

i) (Tn?) (@) = 0 @) D e @)Pe,e e @+ 9) (it (@) - pd @+ 7)) =

¥#0
= > pi@)P(z,z+7) (u‘%(w+v)—u‘%(x)) :
¥#0

and thus for a general probabilistic operator, the potential energy can be written in terms of the
kinetic energy and the measure p. as

Vi(w) = —p * (x) (Tsuf) (z) . (2.124)

The assumptions on Vj given in Hypothesis 2.7 must be reflected in the form of the measure p and
the transition matrix P.. In the following, we will analyze an example, where . is the Boltzmann
measure induced by terms of a free energy functional F'.

We assume that we can associate an smooth energy functional F' : R — R to the config-
uration space, the ”free energy” of the system, having only non-degenerate critical points. Then

w

we can associate to each lattice point @ € (¢Z)? the Boltzmann measure p.(z) := Zgle’y with

() . .. .
the state sum Z, = >, e~ as normalizing factor. We define a transition matrix P. on (¢7Z),
where the only transitions which are allowed, are those to neighboring lattice points, by

V u(z+) | | —¢
@) ot

PE<.'L',J?+’}/) = 0 7|7|>5
vV (z47)
1727>0W ,7:0

As described in the general case, kinetic and potential energy of the induced Hamilton operator
H. =T, + V_ are given by

d
Toi=2d— Y (Tee, + T-ce,) = —Ac (2.125)

v=1

equal to the discrete Laplacian defined in () and
_1 1
Vo= Y poi(mpd) - 2d = —p "3 (1) .

[v|=e
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By Appendix the symbol associated to (2.125)) is
d
H¢) =2d—2) cos(&),  £eT,
v=1

therefore the Taylor expansion of ¢ at £ =0 is

) =2d — 22(1—++0(|§|6))

and thus has the form assumed in Definition 2.4l
The potential energy can be computed as

F(xz)

Vo(w) = —e "2 (T e 2 ) (2.126)

(z) F(zteey) F(z—eey)
= —2d + E e 2? ( et +e” = ) .

To verify equations (2.26)) and - ) for this potential, we make a Taylor expansion of F(z *¢e,)
at x to get

d
V. = —2d + Z (efi(6,/F(z)s+%83F(m)€2+O(e3)) i efi(fal,F(z)aJréafF(x)52+0(63)))

d
=24+ (e—%fw(x) n eéaum)) o~ HO2F(@)e+0(?) (2.127)
v=1
Expanding the second factor at zero, this yields

d
Vo=—2d+) (e—%auF(w + eéaum)) (1-102F(z)e + O(e?)) .
v=1

Using the equality of the first bracket to the term 2 cosh (%ayF (x)), we get
d
Ve=-2d+2 Z (cosh (30, F(z)) — $02F (z)e cosh (30, F(z)) + O(e?)) .
v=1
From cosh(2z) = 1 + 2sinh?(x) for the first summand and 9, (sinh(f(z))) = 8, (f(x)) cosh(f(z))
for the second it follows that

d
V. = Z (4 sinh? (ia,,F(x)) —€0, (sinh (%GVF(:L‘))) + 0(52)) = Vo(z) + e Vi(x) + O(?)
v=1
with
d
= z:élsinh2 (iayF(x))}
v=1
d
Vi(z) = — Z 9y (sinh (20, F(z))) .

Thus the potential can be written in the form (2.26]). By an expansion at the potential wells, which
are the extremals of the free energy, up to the order €2, we get

d d
Vel —aj) = ) <2233 )00y (F(x )))(x—ﬂfj)u(x—xj)u>+
v,pu=1 n=1
d
+ps(lr — ;) —e > O F(x;) + O(e%),
n=1
therefore by setting (A7) := 2Zzzl(81,877(F(xj))auan(F(xj))), the quadratic approximation of
Ve takes the form (2.35)), if the critical points of the free energy are non-degenerate. The absolute
minima of the potential energy correspond to the minima of the free energy while the saddle points
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of the free energy induce minima of V., which are higher by a term of order €. If we assume, that F'
tends to oo at least as |z|? for |2| — oo, then V. is bounded from below and strictly positive for |z|
large enough as follows from . Therefore Hamilton operator under consideration therefore
fulfills the assumptions of Theorem

Thus the spectrum of H. converges in the limit of infinitely many elements of the spin chain
to the spectrum of the direct sum of the associated harmonic oscillators HJ, at the wells x;, where

d d
Hju(x) = —Au(w) + (2 Y (VO (F(x)), (@ =) =< 53,F($j)> :



CHAPTER 3
Construction of asymptotic expansions

This chapter is mainly concerned with the analysis of Vi -, the Hamilton operator on .#2 (Rd)
associated to the discrete Hamiltonian H.. We construct asymptotic expansions of WKB-type for
the eigenfunctions and eigenvalues of PAIE in the neighborhood of one fixed potential well. The
restriction of these quasi-modes to any e-scaled lattice &, = (¢Z)? + z as described in Remark
are then quasi-modes for the discrete Hamiltonian H. for the same eigenvalues.

3.1. Hypothesis and motivation

Motivated by the form of the eigenfunctions of the harmonic oscillator, we will make the ansatz,
that the eigenfunctions in the classically forbidden regions are exponentially decreasing. In Section
[3:2] this approach results in the eikonal equation as leading order of the eigenvalue problem. We
can associate to the eikonal equation an energy function. It turns out to be —t(x,i&) — Vp(x).

To obtain these improvements of the stability result proved in Chapter [2] it is necessary to refine
the assumptions for the Hamilton operator H. and thus H c.

HypoOTHESIS 3.1. 1. Let H, = T. + V. be a self adjoint operator on (> ((sZ)d) with

associated phase space symbol he(z,&;¢) = t(x, &) + ‘A/g, such that:

(a) t € SQ(1) (Rd X ']Td) is a periodic kinetic energy function in the sense of Definition
. Regarding t as o function on R% x RY, which is periodic with respect to &, we
assume furthermore that the function R? > & s t(x,€) is even and has an analytic
continuation to C?. R

(b) The potential energy Ve is the lattice restriction of a function V. € € (R?), which
has an expansion

N
Vo(x) = e'Vi(z) + Ry (a;2), (3.1)
=0

where Vy € €°°(R?). In addition Ryy1 € €°°(R? x (0,0]) and for any compact set
K C RY there exists a constant Ck such that sup,ci |Ryyi1(z;e)] < CreN+L,
c) We assume that there exist constants R,C > 0 such that V.(x) > C for all |z| > R
and € € (0,e0]. Furthermore Vy(x) has exactly one, strictly non-degenerate, mini-
mum at x1 = 0 with the value V(0) = 0.
2. Let Op,(he) =: H. = T+V. denote a self adjoint operator on Z2(RY), where we identified
the symbol h. on R* x T¢ with the periodic symbol on R* x R?.

REMARK 3.2. (a) It follows from the Hypothesis, that Vi expands at x = 0 as
N
Vo(z) = (&, Az) + Y Wi(x) + O (|l2|V*1) = Vi () + Vi(x) - where (3:2)
k>3

Vi (2) = (a, Aa) |

Wy, denotes a homogeneous polynomial of order k and A is symmetric. Vi (z) denotes the
harmonic oscillator potential described in Chapter[qd with critical point x1 = 0.

(b) If the value of Vi at the minimum x1 = 0 is Ey, the potential can be replaced by Vo — Ey
to fulfill the hypothesis.

(c) Since the constructions in this chapter are all done on R?, the particular choice x1 = 0 is
arbitrary. This choice is done only to simplify the notation and may be changed just by
translation to any other point.

37



38 3. CONSTRUCTION OF ASYMPTOTIC EXPANSIONS

(d) We will use the notation ho(z,§) = t(z,§) + Vo(x) for the symbol of the zero order part
of H. with respect to €.

(e) Since the periodic function & — t(x,§) is assumed to be even with respect to & — =&, it
has the representation

t(x, &) = Z a(z)cos (Ly-¢€), zeR? € eRY. (3.3)
vyE(eZ)d

This leads to the fact, that its Taylor expansion at the point £ = 0 is even, i.e. we have

t(z,§) = (€, B)¢) + Y Ba(z)¢*, £€T!, zeR? (34)
="
where £* ==& ..., a € N¢ and B, are real valued functions on R?.

(f) The assumption on the analytic continuation on R x C? implies that the Fourier trans-
forms a~ decay exponentially with respect to -y, more precisely it follows from Propo-
sition [A.3 in Appendiz that for any ¢ > 0 there exists a constant C such that

le™= a.(x) |l (ezya) < C uniformiy with respect to x € R%,

REMARK 3.3. We will reduce the discussion to the case where the quadratic terms in the po-
tential and kinetic energy are diagonalized simultaneously at the point x1 as described in Appendix
[A-3 We thus choose coordinates, such that for the symbol t the quadratic term in & at xq is the
scalar product and Vi (z) = 25:1 A2z2 with A, >0 for 0 < v <d.

As described in Section the associated harmonic oscillator
H'(z,eD) := —e*A + Vj' (z) + £V (0), zeR?,

as defined in 1D for j = 1, approximates H. and fAfs near the well ;1 = 0 in the limit ¢ — 0.
The eigenfunctions of H' are given by (2.49) with

Ay
wo(z) := po(x) = Z ?x?,, z e RY, (3.5)

v=1

which solves the harmonic eikonal equation |V (x)|? = Vi ().
This suggests looking for a formal symbol a(z,¢) and a real valued continuous function ¢(z) such
that

is a formal eigenfunction for H..
The aim of this chapter is to show that we can find a positive ' *°-function ¢(z) on R?, asymptotic
sums

Ej(E)N ZEkEjk, j=1....m
kEN/2
where £Fj is an eigenvalue of H! with multiplicity m, and corresponding asymptotic sums
aj(z,e) ~ Z efajp(2), ajp € €F(RY), (3.6)
kez/2

k>—M

such that in a neighborhood @’ of 0

(H. = 2E5(2)) (a5, 2)e™ ") =0 (%) e~ (3.7)
for ¢ — 0. Then from (2.34) it follows that the restriction of these quasi-modes to any e-scaled

lattice %,,, To € RY satisfy the same equation with ﬁg replaced by the discrete operator H. acting
on (2 ((eZ)%).
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3.2. Solution of the Eikonal Equation

(z)

If we formally compute the left hand side of l) and expand the coefficients of e in
powers of €, the equation of order zero determines the functmn . The order zero term of the

conjugated potential energy is Vj, since V commutes with e~ . The conjugated kinetic term is
for u € £? (Rd) given by

-~ _e e(x) _elz+y)
STe Fu(z) = e Z ay(z)e” = u(z+7)

If in addition u € €' (R?) and ¢ € ¢? (R?), using the Taylor expansion of ¢(z + ) and u(z + 7)
at z, the last sum is equal to

1
Z a,y(x)e%(*"/'v@(x)fzuu M fol 6u81/(§9(1+t'7))(17t) dt (U(.’E) +/ VU((E + t,y) . ’Ydt)
vE(eZ)d 0

1
_ Z ay(x)e —yVe(r) ;=€ X, Yuyu Jo 0u0u (p(z+tey))(1—t) dt (u(az) _1_6/ Vu(zx + tey) -ydt) (3.8)
yeZa 0

for @, defined in (2.18)). The term of order zero in € can therefore by the assumption on the analytic
extension of t to D, be understood as

Z a(z)e” 1 Vo) u(z) = t(x, —iVe(x)) . (3.9)

YE(eZ)4

Since t(z, £) was assumed to be even with respect to & — —&, we have t(x, —iVp(x)) = t(z,iVp(z))
and therefore t(x,i€) is real valued. In particular we have by (3.3)) the representation

t(x,i€) = Z a~(z) cosh%.g, z,& €RY.

vE(eZ)4
The resulting order zero part of (3.7)) is given by
t(z,iVe(x)) + Vo(z) =0. (3.10)

We call (3.10) the eikonal equation (it is the generalization of the harmonic eikonal equation
mentioned above).
By this procedure we have derived a new energy function

ho(x,€) == —ho(z,if) = —t(z, i) — Vo(z) , (3.11)

where the sign is chosen in such a way that the kinetic energy function —t(x, &) is positive.
We shall prove that there exists a unique positive € *°-function ¢ defined in a neighborhood 2 of
0, solving ([3.10]), such that ¢ has an expansion as asymptotic series

p(z) ~ o)+ Y er(z), €9, (3.12)
E>1

where ¢ is given by and each ¢y is an homogeneous polynomial of order k + 2, (i.e.
o(@) = po(z) = O(|z]*) for x| — 0).

Following Helffer (J29]), the idea of the proof is to determine ¢ as generating function of a la-
grangian manifold A, = {(z, V()| (x,£) € A} lying in the ”energy shell” hy'(0), where A is
a neighborhood of (0,0). By Hypothesis ho expands in a neighborhood of (0,0) in T*R? as

ho(z, &) = ZA2x2+O (11> + 12]?) . (3.13)
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Thus by the symmetry of the matrix B, the Hamiltonian vector field of g in a neighborhood
of (0,0) expands as

d d ) ) d aBW 9 , ,
X, o= 2y ZBw(x)f“aT + A+ > (1)t o ) O (I¢]% + |2|?) =

v=1 \p=1 v pyn=1 v v

v=1 \p=1 h ! axl’ v afu ’ ’

We assume B(0) = 1 as in Remark thus the linearization of Xj at the critical point (0,0)
yields the fundamental matrix

(3.15)

L has the eigenvalues £2X, ,v =1,...d.
An eigenvector (z,£) with respect to ), fulfills £, = £\, z,. By A% we denote the positive (resp.
negative) eigenspace of L. A can be characterized as the phase space subsets, which consist of
all points (z, &) such that e~*L(x, &) — 0 for t — 4-00. Moreover, AY. are Lagrangian subspaces of
T(0,0)(T*R?) of the form & = £Vg(z) with ¢y defined in .

Denote by F; the flow of the hamiltonian vector field Xj . Then the Local Stable Mani-
fold Theorem ([2]) tells us, that there is an open neighborhood .4 of (0,0), such that the two
submanifolds

As (XG,,(0,0)) == {(2,€) € T"R?| Fy(z,¢) — (0,0) for t— Foo} (3.16)

exist and are unique in .#". They are called stable (A_) and unstable (Ay) manifold of Xj
of the critical point (0,0). Moreover they are of dimension d and tangent to A% at (0,0) (i.e.
T(0,0)(A+) =A%). Ay and A_ are contained in hyt(0), because ho(Fy(x,€)) = ho(z, £).

In order to show that the tangent spaces at each point (x,£) € AL are Lagrangian linear
subspaces of T(, ¢ (T*R?) (in which case we call A1 Lagrangian manifolds in 7*R?), we have to

show, that the canonical symplectic form w = 2?21 d€; A dxj vanishes for all u,v € T(, ¢ (Ax).
The Hamiltonian flow leaves the symplectic form invariant, we therefore find for (u,v) € T(, ¢)(A4)

W(g,e) (U, V) = WE, (2,6)(DF)u, (DF})v) .

In the limit ¢ — —oo0, the elements of T(, ¢)(A ) lie in the lagrangian plane A(L where the symplectic
form vanishes, thus w(, ¢)(u, v) = 0 for all (u,v) € T(5¢)(Ay).
The projection (z, &) — x defines a diffeomorphism of .4 N Ay onto a sufficiently small neigh-

borhood € of 0 in R?. Therefore we can parameterize A, as the set of points (z1, . .. z4, ¥1 (), ... ¥4(x))
o, _ 0V,

R T and there exists a function

with U, € €>°(Q). Since A, is Lagrangian, we can deduce
p € €°(Q) with

Vo(x) =¥(x) and ¢(0)=0.

Since T(o,0)(A+) = A9, the leading order term of this function ¢ is equal to ¢g, thus ¢ can be
written as 1' Furthermore ¢ solves the eikonal equation |D because A C iLa L(0).

REMARK 3.4. With the ansatz , we have a constructive procedure to iteratively find the
terms y.
The coefficients of the eikonal equation of the lowest order in x vanish and the coefficients
belonging to higher orders in x iteratively fix the ¢y,.
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To this end, we expand B(x) and By(x) at x =0 as

d
B(z) = 1+ <Z %(0):0,,) + O (|z?) =: 1+(DB)(0) = + O (|z|?) (3.17)

v=1

0)z, + O (|z*) =: Ba(0) + (DB,)(0) z + O (|z]?) . (3.18)

The third order equation

d
—(Vo, (DB(0) )Vpo) —QZA x,,a‘m( )+ Ws(z) =0, xz €N
v=0

fizes o1 for a given W3, the fourth order

d 2
~2(Vigo., (DB)(0) 2)Ver) + > Ba(Vigo)® fQZA 2,922 (o 2(3%)  Wa(z) =

lo]=4

s an equation for po and the higher orders in ¢ are inductively given by the higher order parts of
the eikonal equation, which all take the form

d
<Z )\quaiu> @k(x) = ’Uk+2(x)7 S Qa
v=1

with v, = O(|x|*) for |x| — 0.

3.3. Transformation of the variable and formal symbol spaces

In order to find WKB-expansions there are, as in the setting of usual Schrédinger operators, two
possible strategies to deal with the degeneracy of eigenvalues in the harmonic approximation. The
first is an FBI-transformation of the eigenfunctions as described for example in Helffer-Sjostrand
[33]. The second method, which we are going to use, is the conjugation of the eigenfunctions

with the exponential weight e~ 2 and the coordinate change y = % This procedure is used for
example in Klein-Schwarz [45].

DEFINITION 3.5. Let ¢ denote any real valued function on R?.
We introduce an e-dependent unitary map

U.() : £ (Rd,dm) — 7 (Rd,e#@d@ =: I,

by

d ¥v(ey)
(V=) )y) =ete™ =" f(vey) . (3.19)
Then, for H. as described in Hypothesis

~

Geww 1= 2 U-()HLUZ ) (320)

)

defines a self adjoint operator on .77, whose domain contains the set of all polynomials, if ) > C|z|
for some C' > 0 and for all large =.

We are going to apply the dilation defined in (3.20) to a function ¢ € ¥°°(R?), which is
constructed as follows.

HYPOTHESIS 3.6. Let @ denote a neighborhood of 0 such that the function ¢ € ‘f"o(@) con-
structed in the previous section fulfills the eikonal equation inside ofé and such that for any 6 > 0
and for some C' > 0 the estimate |V(z)| > C holds for x € @\ {|z| < §}.

We consider some set @ such that @ C O and define a smooth cut-off function x supported in
@ such that x(x) =1 for any x € O.

Then we set for any § >0

P(x) == xp(x) + (1 — x)|z] .
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Henceforth we write ée = @s,@.

We will now give an expansion of G, with respect to v/z. To this end, we consider the Taylor ex-
pansion ZToh. of h. at the point (0,0) € R??. To this Taylor expansion, we can associate an operator
ToH. := Op,.(7oh:). We shall obtain a formal series G := ToG. by expanding éUg(gZ)TOHEUgl(@)
as amplified below.

PROPOSITION 3.7. The Taylor expansion at the phase space point (0,0) of @E defined in

s given by

TG = > Gy, (3.21)
kel
where
2k+2
Gr=bro(y)+ Y bes(y (3.22)
lvl=1

Here by is a polynomial of degree m < 2k and by, for |y| # 0 are polynomials of degree
m < 2k +2 —|vy|. They are even (odd) with respect to y — —y for even (odd) m

Before we prove Proposition we introduce the following formal symbol spaces, to give an

algebraic sense to the expansion (3.21)).
Let for n € N*

Ki=qp= Z piel | uj € C and ¢, = inf{j|pu; # 0} > —oco (3.23)
JER

Vi=<p= ijsj p; € Cly] and ¢, :=inf{j|p; #0} > —oc0 p . (3.24)
j€g

Defining componentwise addition and multiplication by the Cauchy product, i.e,

Z akgk . Z blsl = Z Z (akbl>5m = U3, M1, 2, (43 S IC% )
kel lek

me L ktl=m
IC becomes a field of formal Laurent series with final principal part and V is a vector space over

IC1 We can associate to G a well defined operator G on V by setting for Vo p=>" izk elpj,

JG bl
Gpy) =Y I TGepi(y) =D &> 'Gopjly) = Y. £Gpiy) eV.  (3.25)
Jjzk izk  rel Jjrr=1>k
REMARK 3.8. (a) As a map on Cly] (the polynomial ring over C), Gy, raises the degree of

a polynomial by 2k and preserves (or changes) the parity with respect to y — —y according
to the sign (—1)%F. This follows at once from the degree and parity of the polynomials bi.0
and by in the representation of Gy,.

(b) The term of order zero is given more precisely by

Go = Aygoly) + Z By, B0(1))y,) — Ay + V1 (0) (3.26)

This will be shown after the proof of Proposition [3.7]
Proof of Proposition [3.7}
Step 1:

To show equation { , we start by analyzing the terms arising from the potential energy ‘75 We
have

UL GTUS ()7 ) = TVa(VE) )
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and expanding V;(1/zy), i € N, at y = 0, we get

d
ToVo(Vey) =e > M2+ e2Wi(y) (3.27)
j=1 k>3
k421

e TVi(Vey) = Vi(0) + € DuVilmoy + Y e 7 qur(y), €N,
k>2

where ¢ are monomials in y of order £ € N. The formal power series ’]6‘75 is defined by the
formal sum of terms given in (3.27)). Thus if ¢ ; denotes for each I € N a monomial of order k in
y for k > 2 and zero otherwise and Wa(y) := 32%_, A2y2, we have

v

1~ )
gToVE(\/gy)ZZ & | Wajra()+ Y (aej—ay®) + Visr(0) | +
JEN 1<1<j—1

2j+1

+e 2z (W) + Y. (aueii-20®) + DaVisale—oy | | = Y e*prly)  (3.28)
1<i5-4 kel

where p;, denotes a polynomial of degree 2k+2. Each power k of € can be written as a sum k& = [+m
with k,1 € % and m € N. Here [ arises as (ey?)! by the transformation of variables and m describes
the power in € belonging to V,,,. Thus any combination of [ and m with [ 4+ m = k results in one
of the summands in the coefficient of ¥ and is a monomial in y of order 2I. Since m € N, we have
2k+2 = 2l mod 2 and thus all summands in the polynomial py have the same parity, i.e. py is even
(odd) if 2k+2 is even (odd) (this is equivalent to the statement, that k is an integer (half-integer)).

Step 2:

Now we investigate the coeflicients in the expansion of the kinetic energy T after conjugation with
U.(3).

We start by analyzing a differential operator (¢9)® conjugated with the exponential weight
e. By the Leibnitz formula, each derivative 9, acting on the product of e~ and g splits into a
derivative dg acting on the exponential and a derivative 0, with v = o — 3 acting on g. In general,
we have the formula

2@ ol na — 2@ x w1 1 ¢
NG
For the exponential term, we get with 3, k; € N¢
#(2) @ o
a8 (e— : ) —e Y eyt Y [[oela) . (3.30)
n=1 B=ki+...4+k, j=1

To get the resulting lowest order in e for fixed n after the transformation of the variable x to
Y= %, we have to find the lowest order of ¢ in x. Since ¢ can by be written as asymptotic
series, where the first term is quadratic in z, each factor in the product on the right hand side of
with a first derivative of @, i.e. with |k;| = 1, which starts linear in x, leads to one positive
order /e. Higher derivatives of ¢ start with a constant term, thus the variable transformation of
these factors has no effect on the lowest order in € of the resulting product.

Introducing for a fixed n and decomposition § = ki + ... + k, the notation m, = #{k; €
N ||k;| = p}, where 1 < p <[], we get —n + ™ as resulting order in . The integer m,, denotes
the number of factors which are derivatives of ¢ of order p. Thus for 3,v,k; € N? the left hand

side of ([3.29) is equal to

18l n

Z 979(y) Z Z R H (851'@) (y) . (3.31)

B+y=a n=1p3=>"k; Jj=1
To get the lowest e-order, we have to analyze the possible combinations of n and m;, which depends
of (k‘l, ey kn)
It follows from the definition of m,, that n = Z]ﬂl my, and in addition °7_, |k;| = Zf:ll pmy, =
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18]
By the discussion above, the leading terms of the right hand side of (3.29)) after the transformation

from x to /ey and multiplication with e~ (which occurs in the transformatlon from H. to G )
are of order

glal-1-l—ny 21 (3.32)
Let n = || — 1 for 1 <[ < |3, then the possible values for m; are
(n=10)y <mp <n-—1, where (n—1);:=max{n—10}. (3.33)

For n = |G it follows at once that m; =n. If I < @, then at least n — 1 factors on the right hand

side of (3.30) must be first derivatives of ¢. If n < @, then it is possible that the number m; of
first order derivatives is zero. By (3.33) and with n = |3| — [, we can estimate the term —n + -
as follows

—1 —18| +1 —1—n=-8B g <1<l
I my > _n+ (n—1)+ > 18] +1+ 5 (||§| )=—1%5 or (\)ﬁr <3 . (3.34)
2 2 —1B]+1> -5 for 5 <1<
The full exponent of € can therefore be estimated by
vl 18] _ e
SR L .
jo -1 - - 112 (3.35)

. . . . . Lo . I
The lowest order in e resulting from a differential operator (¢D)® is thus e 2 ~!. Since the kinetic

energy starts with a second order derivative, we see that no negative orders in € occur and we start
with €0,
From the preceding discussion, we get
1 - N
EUE(‘:@) (Ba(2)(eD2)®) Ue(p) t=
18]

=Ba(Wey) Y Y Y et BT (049) (Vey)dy

Y+B=an=13% k;=4 j=1
Since the lowest order of ¢ in x is two (see Section , we have for fixed n and decomposition
(k] := (K1, ..., kn) with >, k; = B, as already mentioned above,

n
s my mq+1
T [[ 08 ¢(Vey) = am We™ + > amu)e >,

Jj=1 lEN*

where a; denotes a homogeneous polynomial of order k. By use of the Taylor expansion of B,

given in (3.17) and (3.18)), this leads to
Ba(\ﬁy) H a;cj@(ﬁy) = Z Z aﬁB % (am1 Tl + Z am1+l y € 12+l> =

j=1 1eN |8|=l lEN~

my+l
ZE 2 bm1+l(y)a

leN

where by denotes a homogeneous polynomial in y of order k. By (3.33)), it follows with I = |3| —n
that (n — 1)+ = (2n — |B|)+, thus we can conclude denoting by (n —1,n) =n — 1 for n < |3| and
(n—1,n) =n for n =|f|

Bl (n—1m)

T U-($) (Ba(e)(eD2)") DD DD DEEED Dt st N0 )

y+B=a n=1m;=(2n—|8])+ lEN

and therefore
1 18l (n—1,n) sl
T-U.0) (BT D) V@) = 3 3 Y X Y L))
lal=2n y+B=an=1m,=(2n—|B|); lEN
(3.36)
Step 3:
In the last step we are going to combine the terms resulting from the kinetic and potential energy.
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In equation (3.36), the term with |y| = 0 and n = || is given by ¢(z,iV) as described in the
beginning of Section Thus by the eikonal equation it follows that in a neighborhood
of = 0 this term cancels with the potential term ¢~V (y/cy) leading to the summands W, in
(13.28)). Thus the remaining potential term is given by

1 ~
Tog(Vs—Vo)(\/gy) = Vi(0) +eV2(0 Z Viv1(0) + Z @, 25—21)(Y)

j>2 1<i<j—1

2541
+e (VVj41(0), y) + Z a1, 25+1—21)(Y)

1<I1<5—4

= Y ), (337)

N
k‘€§

where py, denotes a polynomial of order (2k — 2).
The combination of the transformed potential and kinetic energy described in (3.37)) and ([3.36 -
therefore yields

~ 1 B . o
TG = To-U:(3)(0)ToHU:(p)™"
min{|8],|a|-1} (n—1,n)

P Sl S S S S

meN lor|=2n v+B=a n=1 m1=(2n—|B]) €N
n>

S G ,),

reg

where py, is even (odd) with respect to y — —y, if k is even (odd).
In order to get the stated result, we collect the terms with the fixed order r in €. For these
terms the kinetic part must satisfy

mi+ 1+ |’)’|
2 )
which is coupled with by, ; and a differential operator 9. Equation (3-38) vyields

r=lal—-1-n+ (3.38)

my+1=2r+2(1+n—|a])+]v].

Thus for fixed || the polynomial has fixed parity, since 1 +n —|a| € Z and therefore 2(1+n — |a])
is even for all possible combinations of |a| and n. The maximal order for the polynomials results
for n = min{|g|, |a| — 1} = min{|a| — |v|,|a| — 1} in

_Jer20tlal=hl—la)+hl=2r+2-hl, hl>0
2r+2(1+ ol —1—|a]) = 2r, v/ =0

For || > 0, the coefficient of 9] is therefore a polynomial of order 2r +2 — || which is even (odd)
with respect to y — —y, if 2r +2 —|v| is even (odd). For |y| = 0, the polynomial is even. For fixed
order £”, the maximal degree |y|max of differentiation occurs for m; +1 = 0 (the coefficient is then
constant), since |y| = 2r + 2 — (my + 1) and therefore |y|max = 2r + 2.

The resulting term of the transformation of the kinetic energy can therefore be written as

2r+2

T(%UE(@ (5T, eD)) Ua(@) ™ ~ 12, ~iV6) = S & [ anely) + 3 anppo ()] |+ (339)

reld [v|=1

where ay(y) denotes a polynomial of degree k which is even (odd) with respect to y — —y, if k is
even (odd).

The term for the potential energy given in can be included into the term for |y| = 0, since
the polynomials py are of order 2k — 2 in y for £ > 2 and of order zero otherwise and obey the
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same parity properties as the polynomials ag,., as discussed below (3.28]). Thus

2r+2
T70G. = Zsrpr(y) + ZsT ag, + Z agry2- 14| (y)9y
rel rel lvl=1
2r+2
= > e b+ D barga )] | = > "G
rel [vl=1 rel
with
2r+2
Gr = ba(y) + Z bary2—|4(y)0y
[v[=1

as stated in the proposition.

Proof of Remark [3.8](b):
From equations @ and (3.27) it follows that the term of order £° results only from the trans-
formation of the quadratic part of the kinetic energy evaluated at @ = 0 (the lowest order term in
the e-expansion of B(x)), the quadratic part of the potential energy and the the constant V;(0).
Again by use of the eikonal equation the terms V() and |V@o(z)|? cancel. As remarked
we chose coordinates such that B(0) = 1, these terms can therefore be calculated directly, which
by the chain and product rule or with leads to (|3.26)).

a

We shall define a sesqui-linear form on V with values in K 1 (where complex conjugation is
understood componentwise), which is formally given by

f
— 5 3(vEY)
(P, q>v=/p(€,y)q(€,y) [e 2= L dy , (3.40)
Rd
where [e_zwfy)} respectively [ / indicates, that we are dealing with formal expansions with

respect to powers in e. To this end, using (3.12)), we define real polynomials ¢, € R[y] by ¢¢ := 1
and

RS DL A IS > fory) | - (3.41)

N
ke

{672 w(\fy)]
f

Then

25 !
0= Y o). enw). (3.42)
I=1 K1+ k=)
ki€ 5
which is a sum of homogeneous polynomials of degree 2j + 2/ with parity (—1)%/.
By the expansion and the special structure of the elements of V, we can now give a definition

of the sesqui-linear form in V.

DEFINITION 3.9. Forp = Zje% ijj and q = Zje% qjaj in V we define the sesqui-linear form
- .)V:VXV—MC% by

] _— _d 2
P dy=Y_ > [ piWa)oily)e Zv=1 v dy. (3.43)
i€l Jtktl=ipy
Note that (p, ¢),, depends only on the Taylor expansion of ¢ at 0.

LEMMA 3.10. The sesqui-linear form defined in s non-degenerate, i.e,
(p,q), =0 forall peV implies q=0. (3.44)
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Proof:
We have to show that for every ¢ # 0 there exists a p such that the sesqui-linear form does not
vanish.
If ¢ # 0 we have ¢ = EjZk g€l k,j € % for some k. Defining p := £¥q;, (we could also choose
p = ¢ to get the stated result), the lowest order occurring in the sesqui-linear form is 2k, and the
coefficient to this order is given by

/ gk e Z0r M dy > 0.
Rd

Since all other combinations lead to higher orders in €, this term can not be cancelled.

We shall show that G is a symmetric operator with respect to (., .),,.

PROPOSITION 3.11. Let G be the operator (3.25) on V induced by G. defined in and let
(., )y be the non-degenerate sesqui-linear form introduced in Definition .
Then for all p,q € V

(p, Gg)y, = (Gp, q)y, -

Proof:
We will denote by Y = C[y] the set of all polynomials in y, considered as a subset of the form
domain of G. for € > 0. This can canonically be identified with the subset ) of all polynomials in
V.
By the linearity of the sesqui-linear form, it is sufficient to prove the proposition for p,q € V.
We need the following lemma:

LEMMA 3.12. Let p,q € Y . Then the following holds.
(a) For all y € R? and for ey sufficiently small, the function

2¢(VEy)

Ve = Fy,v/e) = p(y)(Geq)(y)e ™ ¢ (3.45)

is well defined as a €>°-function of \/e € [0, /€0].
(b) For all z € R? and N € N the function defined in satisfies

(N i g
lim 07-F(y, V) = Z<j)P(y)(GgQ)(y)¢N—j(y)e_ v=1 Aty (3.46)

2

=0

= a%zoF(ya Ve).

J(Ve) = | Fly.ve)dy (3.47)

R4
defines a function in €°°([0,0)), for which

JMN(0) = / 0%-_oF(y, V) dy, N e N. (3.48)
R4

Proof of Lemma R
(a): This follows from the Definition of G¢ and the fact that the solution of the eikonal
equation @(x) is €°° in some neighborhood @ of 0.

(b): We use the Taylor expansion for the exponential factor and the expansion of ég
given by (3.21)) and (3.22). These combined with the Leibnitz rule give directly the term in .

(c): By use of Definition (3.20) and y = % one has

1 —_ _28(VEy)

WA =1 [ AU D w)e

3

dy =
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thus J € (R \ {0}). In order to show (3.48)) we split the region of integration by introducing
cut-off functions (o, (1 such that ¢y € E5°(R?), (o(x) =1 for |z| < n and (o + (1 = 1. Here n is
chosen such that {|z| < n} C @ for @ as introduced in Hypothesis [3.6| We get

26 (VEy)

18 = ( [ aanpi@ame =) dr+

1 [ an () R (o(5) ) @) .m0

To find an estimate for the second term, we notice that by Hypothesis we have I/{fs =T+ ‘75,
where T' is bounded and V. is a multiplication operator, which is polynomially bounded. Thus

H. (q (%) e W;)) =: uc(z) is an element of £?(R?) and ||u.||g> is at most of order e=* for
some finite k£ > 0 depending on the dimension d.
By the assumptions on ¢ we have @(z) > C|x| on the support of (;, thus by the Cauchy-

Schwarz inequality

2(x)

[ () (o (7))

e =
<[ e ) de
|z[>n

_ Zp(a) ———
< el (/ S
lz[>n

-0 (e*z*"e) (3.51)

We shall now prove the assertion by induction in N.

For N = 0 we have to analyze the limit € — 0 of J(4/2) as given in (3.50). In order to show
(3-48), it remains by to show, that we can interchange integration and lim._.o in the first
term on the right hand side of . This can be done by use of the Dominated convergence
theorem, since there exist constants C, D > 0 such that for any € € [0, €] the integrand is bounded
as

~—
o
U
S
N———
[N

—_ 5 _20(V/Ey)

[Co(@)p() (Gea) ()™
In order to see this, we write CA}’E by use of I?E as described above and use the Taylor expansion of
eTe <u given in (3.8) and the expansion of V.. By (3.9) and the eikonal equation (3.10), the
term of order e~ on the left hand side of (3.52)) vanishes on the support of (5. The remaining
potential term (o(V: — Vo) is by assumption polynomially bounded, thus (3.52) is obvious for this

< Ce ' (3.52)

term. In order to analyze the remaining kinetic term, we use that it can by (3.8)) be written as

1
Co() Z an(x)e—n-vsa(w)efe o Mo fo 00 ((a-tten))(1-1) dt/ Vu(z + ten) - ndt (3.53)
nezd 0
for a, defined in . The idea is to split the sum on the right hand side of for some
R > 0 in the part with |n| < R, which is bounded by some constant depending on R, and the
part with || > R. For the second part, we use that by Hypothesis and , the second
derivative of @ is positive definite inside of @ and homogeneous of order —1 outside of @. Thus by
the exponential decay of a., this part of the sum is bounded as well. This yields .
We therefore can deduce that J € ¢°(R) and that it satisfies for N =0, ie.,

J(0) = lim J(vz) = /]Rd €liﬁmOF(y, Ve)dy.

e—0
It remains to show that for arbitrary N the assumption (3.48) for N —1 and J € €V ~}(R) imply
7O0) = [ 0 o Pla VB dy = lim T (V) (3.54)
The second equality then gives J € €V (R). We have by
SN (JF) = oV /y|<} Fly, ey +0 (o) = /|y< NPy, V) dy+ 0 (e E)

(3.55)

o
Ve
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and by the induction hypothesis, we have (3.55) also for /¢ = 0. Thus

lim — (J<N ”(ﬁ)—J(N‘l)(O)) =

e—0 /€

1 N—1 N—1 -

lim ‘ylg%wﬁ Py, V&) = 0N Fly.vE) dy +0 (¢7%) . (3.56)
Using (3.46) and the fact that each Gy maps polynomials to polynomials, we find as above an
integrable upper bound for the integrand, which is independent of . Thus again by the Dominated
convergence theorem, the right hand side of (3.56]) is equal to

/ O Fy,Ve)dy + O (e‘%) =/ O Fly,Ve) dy.
DS R

This gives the first equality in (3.54)).
In order to obtain the second equality, we use (3.55) with N — 1 replaced by N and again the
Dominated convergence theorem. O

We come back to the proof of Proposition [3.11]
In order to use the symmetry of G. on J¢3, we define a function on Ry by

<p7 @q> (Ve) = <p, @sq> , PgEY. (3.57)
A Ao
By Lemma the function defined in (3.57) is °°([0, £¢]). If we denote the set of such functions
by F, (3.57) yields a well defined map
<., é.> Y XY - F.
K
Denotingby T : F — K 1 the map which assigns to each f € F its Taylor expansion in /g, it follows
from Lemma[3.12] and from the definitions of G and of the sesqui-linear form in V, that the diagram

., G.
YXYM F

l r
yay LGl

is commutative. Since for <é . >% and (G ., .),, we have the analogous diagram, the proposition
(3

K1
2
is traced back to the symmetry of G on Hs. |

3.4. Construction of asymptotic expansions

In this section we construct formal asymptotic expansions for the eigenfunctions and eigenval-
ues of H., solving the spectral problem to arbitrary high order in €.
First we recall that the operator eG¢ on 4, given in (3.26)), is unitary equivalent to the harmonic
oscillator

HO(e) = —e®A + Z 2222 +V4(0 (3.58)

where the umtary transformation U, (pg) is deﬁned in . Therefore the spectrum of Gg is
given by (2.37) with w replaced by A,.

The elgenfunctlons of H'(g) are the functions g, defined in ) with (g introduced in ,
thus the ##Z-normalized eigenfunctions of eGg are given by

(UE(QOO)ga,O) (y) = ha(y) ) (359)

where h, denotes as in Remark the product of Hermite polynomials h,, € R[y,]. Since
hi(—x) = (=1)*hy(z), it follows that h, is even (respectively odd), if |a| is even (resp. odd).
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In order to get an expression for the resolvent of the full operator G on V, we notice that for
2 ¢ 0(Gp) the resolvent Ry(z) = (Go — 2)~! is well defined on polynomials and hence on V.

LEMMA 3.13. Let z ¢ 0(Gy) and p,q € V. Then
(a) the inverse of (G —z):V — V is given by the formal von Neumann series

k
R(z) := Z —Ro(2) Z e1Gj| Ro(z) = — Z er;(2) with (3.60)
k=0 Nt N
J€S I€3
ry = Z (—RoG1)" Ro
(b)
(P, R(2)q)y, = (R(2)p, q)y, - (3.61)

(c) Forr; defined in (3.60))

(p, ri(2)a)y, = (r;(2)p, @)y JjE€

(NP

(3.62)
Proof:

(a): Ro(z) and G; map polynomials to polynomials and raise the degree only by a finite order
depending on j (see Remark . Thus they are linear operators in V and the same is true for
each summand in the von Neumann expansion. For each j € % the operator r; is a finite sum of
compositions of Ry and G, where the order of G}, is at most equal to j. Thus r; is a bounded
operator in V.

In order to show that the series is well defined we have to show that with the notation G :=
ZjeN—* e/G; the partial sums

2

N _ 1= (=RoGy)" !
5= PR = G

converge. Using the metric M and the norm || .||y on V respectively defined in Appendix
by means of an e-adic valuation, we will show that {S,},en is a Cauchy sequence. Let n >
m, n,m,k € N and u € V fixed with ||ul|y = ¥. Then by the properties of the e-adic valuation

on IC%
v (e )= (A mee ) ) <

1
(=Ro(2)G4)" | (=Ro(2)G4)7+! 2l
Sjer?ﬁfn}{(vf (< TTRo(2)G+ 4> T 1+Ro(2)Gx u>v)) }_

2k+n+1—1
2

= flullvez,
because Ry(z)G 4 raises the order in € by % Thus in this formal sense of expansions with respect
to 5%, the mentioned sequence is Cauchy in the given metric and the series converges to (1 +

RO(Z)G+)71.
In order to verify that R(z) = (G — 2)~!, we analyze
R(2)(G—=z) = Z[—RO(Z)GJF}]“RO(Z)(GQ +Gy —2). (3.63)
k=0

The right hand side of equation (3.63)) is equal to
(1+ Ro(2)G+) " Ro(2)(Go — 2) + (1 + Ro(2)G1) ™ Ro(2)Gy. =
=(1+ Ro(2)G1) *(1+ Ro(2)Gy) =1
and thus R(z) is the left inverse of G — z. Applying (G — z) from the left to R(z), we get
(G—=2)R(z) = (Go — 2+ G4)(Ro(2) — Ro(2)G+Ro(2) +...) =
=1 7G+R0(Z) + G+R0(Z)G+R0(Z) — ...+ G+R0(Z) — G+R0(Z)G+R0(z) +...=1.
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and therefore R(z) is the inverse of (G — z).
(b): By use of R(z)(G — z) =1 = (G — z)R(z) and Proposition we can write

@)y =P, (G=2)R(z)q), = (G - 2)p, R(2)q)y,
and
(p, @)y = (R(2)(G—=2)p, q)y -
This proves the second statement.

(c): This follows directly from the expansion ((3.60)).
O

In the following we will use the resolvent operator R(z) to define a spectral projection for G asso-
ciated to an eigenvalue of the harmonic oscillator, i.e. of Gy.

By R(z) is determined on the polynomials and hence on V by the action of the operators
rj(2) : V — V on the Hermite polynomials, which form a basis in ) and thus in V.

It follows from Proposition that G raises the degree of each polynomial by 24, thus there
exist real numbers céﬁ such that for all o, 3 € N4, j € g we have

Giha= Y dshs (3.64)
[BI<|al+25
and from 1D together with 1) we can conclude, that there exist rational functions di ﬂ(z)
with poles at most at the elements of the spectrum of Gy for which

ri(2)ha = Y d4(2)hs. (3.65)
|6I<]al+27

Let E be an eigenvalue of Gy with multiplicity m and let I'(E) be a circle in the complex plane
around F, oriented counterclockwise, such that all other eigenvalues of Gg lie outside of it.

Then since r;(z) is for each j € % well defined on V and depends meromorphically of z, we can
define for p=>",.,, ehpL eV

o1
Mgp := Z SJQ—M, ri(2)pr dz. (3.66)
kti=jed r(E)
We denote this operator by
1
HE:—% (G—Z)ildz.
r(E)

In the Schrodinger setting, such an operator describes the projection to the eigenspaces of all
eigenvalues of G inside of T.

PROPOSITION 3.14. Let E € o(Gq) with multiplicity m.
Then the operator Ilg defined in is a symmetric projection in V of dimension m, which
commutes with G.

Proof:
Symmetry:
The symmetry of Iy is a consequence of (3.62]):

(P oy i) d20) = (o 7i(2) d2p, q).,

where the negative sign results from the conjugation of z. Since we defined Il with an additional ¢,
the sign will not change and with linearity of the scalar product the symmetry of Il g follows at once.

H% = HE:
Let z ¢ IntT'(E), where Int I'(E) denotes the interior of I'(F). Then
(G—2) My = —(G— 3" 7{ G=2)ldzm—— d(G=2) N CG=2)Tdr (3.67)

211 211
r(E) r(E)
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and using the resolvent equation ((G —2)™' — (G —2)7!) = (2 — 2)(G — 2) 71 (G — z)~! the last
term is equal to

1 1

o J E-z
r(2)

— 1 1 —1
r(E)

To get the last equality we used the fact, that Z lies outside of I'(E') and thus the first integral term
vanishes. Now let F( ) be another circle around E, which lies in the exterior of I'(E), such that in
the interior of F( are no other eigenvalues of Go too. Choosing z ¢ IntI'(F) with zZ € IntI'(E)

and using we get

1
ng - L f(c—z)*ldz f(a—z)*ldzz
472
N(E) (E)
S e )—17( didz———— § (G- tdz=m0
T 4q2 i YT o i T B
I(E) I'(E) I(E)
rankIlg =m
We introduce the set
Ip = {a € N*| Goho = Eho} = {a',...,a™} (3.69)

numbering the m Hermite polynomials with eigenvalue (energy) E for Gy. As a consequence of the
representation (3.60) (recall ro(z) = Rp(z)) and of the definition (3.66]), we can write for o € Iy

gha =ha+ Y &'p; (3.70)
i
for some polynomials p; € C[y] of degree less than or equal to |a| + 27 (this follows from (3.65))).

Since the Hermite polynomials form a basis, (3.70]) implies that the functions Hghyr, k=1,...m
are linearly independent over XC 1 Thus their span has dimension m. It remains to show that
this span coincides with the range of Ilg, i.e., we have to show that for all 3 € Ng there exist
Lo € /C%, a € Ig, such that

Mghs = Z taha - (3.71)
aclp
The case § € Ig is trivial, so let § ¢ Ig, then

Mphs = Y &'p; (3.72)
P\
J€S

for some p; € C[y]. Since the Hermite polynomials form a basis in C[y], the polynomial p expands

to
pL=Y_ cahat »_ cihy. (3.73)
a€lp v¢le

Applying Iz on both sides of (3.72) and using 113, = Ilg, (3.73) and again (3.72)) for the second
equality, we get

Mphs =c% Y callpha +¢% Y clphy + > &llgpy =t > callpha + Y 'p;
a€lg v¢Ig i1 a€lp i>1

* *

i€ i€

for p; € Cly]. Thus by expanding the terms of the next order we gain the order £7 in the remaining
term and inductively obtain p, € IC% satisfying equation 1)
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G = Gllg:
This follows from the fact that G commutes with R(z) together with the definition (3.66).
a

The aim of the following construction is to find an orthonormal basis in Ran Iz, such that G|ran 1,
is represented by a symmetric m x m-Matrix M = (M;;) with M;; € K.
To this end, we rename the spectral projections of the eigenfunctions belonging to the eigenvalue
E by fj :==ghas, o/ € Ig. Then equation (3.70) and Definition [3.9| for the sesqui-linear form in
V imply

<fivfj>V:5ij+ Z Ek’ykv ]-glngma ’WCERa (374)
since the Hermite polynomials are orthogonal and the g, ¢ are normalized in the .#?-norm. Defin-
ing F' = (F;) := ({fi, fj),,), F is symmetric, because the fj are real functions. The symmetric
matrix B := F~2 is given by a binomial series (using the Taylor series for (1+ x)_% at 0, which is
convergent for < 1) and if all matrix elements Fj; are in K1, the same is true for all B;;. Then

e:=(e1,...,em):=(f1,...,fm)B=: fB (3.75)

defines an orthonormal basis {ej,...e} of Ranllg (the orthonormalization of
{fl? ey fm}), because

(fB)(fB)=Bf'fB=F *FF 2 =1.
In this basis, the matrix M = (M;;) of G|ranmi, is given by
M =e'Ge = BftGfB = BF°B, (3.76)
where F,S = (fx,Gf)y € IC%. Thus M is a finite symmetric matrix with entries in IC%. Using

the Propositions and the equations |) and |) and the fact, that €%haj, ol € Ig,

are the eigenfunctions of G for the eigenvalue F, we can conclude

FS=FEd;j+ Y e'u  pr€R. (3.77)
ekl
It is shown in [45], that KC := (J, oy
in IC possesses m eigenvalues in K, counted with their algebraic multiplicity. By the following
theorem, which is proven in the appendix of [45], it actually follows that the eigenvalues of matrices
with entries in the ring K1 also lie in 1.

K1 is algebraically closed, thus any m x m-matrix with entries

THEOREM 3.15. Let M be a hermitian m X m-matriz with elements in K1 for some n € N.
Then the eigenvalues E1,...E,, are in K1 with real coefficients, and the hz’ghnest negative power
occurring in their expansion is bounded bynthe highest negative power in the expansions of M;;.
Furthermore the associated eigenvectors u; € (K1)™ can be chosen to be orthonormal in the natural
inner product. !

We can conclude from Theorem [3.15| and the special form of the elements of M defined in
(3.76) that this matrix possesses m (not necessarily distinct) eigenvalues in K 1 of the form

Eie)=E+ Y "Ep=>Y Ep, j=1,...m (3.78)
ke kel

where Ejo = E and the corresponding eigenfunctions are

vi(e) =Y . (3.79)
el
From (3.70) and the fact that every eigenfunction can be written as linear combination

=" Aallph, (3.80)

a€lp

with coefficients A\, without negative powers in /¢, it follows that the maximal degree of 13, € Cly]
is given by maxqer, (|o| + 2k).

Using the several parity results in the preceding propositions, we can prove the next proposition
about the absence of half integer terms in the energy expansion.
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PROPOSITION 3.16. Let all o € Ig have the same parity (i.e., |a| is either even for all o € Ig

or odd for all a € Ig), where I is deﬁned m . Let M denote the matriz specified in equation
and Ej(e) its eigenvalues given in . Then M;; € K1 and Ej(e) € Ky for1 <i,5 <m.

Proof:
By Theorem we know that if M;; € Ky, the same is true for the eigenvalues Ej(¢), so it suffices

_1
to prove the proposition for M;;. By equation 1} M = BFYB where B = ((fi, fj>V) 2 and
FS = ({fi, Gfi)y)-
In order to distinguish between the indices arising in the expansions and those numbering different
eigenfunctions, we will change the notation during this proof to f, = eiTlgh, and Ffﬁ for o, €
Ig.
We start by proving that (fo, fg),, € K1. By definition (3.66) the coefficients in the power series
of f, are given by

foj = %f}rj(z)ha dz. (3.81)
The 7;(z) are determined by G; and Ry(z), and since G; changes the parity of a polynomial in
Cly] by the factor (—1)%, j € NT* (see Remark , we can conclude by the definition of Ry(z)
that 7;(z) changes the parity by (—1)% as well. Using that the parity of h, is given by (—1)led,
we obtain (—1)I*1727 as parity of faj. By Definition we have

s fohy =" 3 /faj o ()or(y)e™ et M2 dy.

ne— J.k,leg Z
J+k+1= 71

We shall show that for 2n odd (and thus for n half-integer), each summand vanishes. For fixed
4, k,1 the integral will vanish if the entire integrand is odd. According to the parity of ¢; is
(—1)2! the scalar product therefore vanishes if (Ja|+2j+|3|+2k+2l) is odd. Since by assumption
a and [ have the same parity, ||+ || is even and so 2(j + k+1) = 2n has to be odd, which occurs
if n is half-integer. This shows that (fa , f3),, € K1 and the same is true for B,g by definition.
It remains to show the same result for F fﬁ given by

Uos Glby =22 Y /fw G for ()or(y)e St 2% dy

ne 3 J.k,l 7‘6 bl
jt+k+l+r=n
The operator (i, changes the parity by (—1)?" as already mentioned, so as before the integral
vanishes if j + k + [ 4+ r = n is half integer.
O

3.5. Construction of Asymptotic Expansions in z and ¢

In this section we will construct formal asymptotic expansions in our original variable z and
associate ¢ °°-functions to them by use of a Borel-procedure.

3.5.1. Expansion with respect to the original variable. We will now return to our
original variable z = /zy. Substituting it in equation (3.79) and rearranging with respect to
powers in /¢ yields

Vi(y,e) = > Fny) = Y ( - ) Z eld(x) (3.82)

N N
k€§ k€§ 2y

and we set

Qj(z,e) ==, ( ) 2; 'ai(x (3.83)

l>N

The order of 15, as a polynomial in y is M = maxaer, (Ja| + 2k), giving rise the order —% in
e after the substitution = \/zy. Thus the order of e¥9;;, is —N = k — & = —maxaey, \2|
independent of k. It is then clear that N = 1 if E denotes the lowest eigenvalue.
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In general, @j; is a formal power series in x, because for every fixed [ there exists a smallest A,
such that only v;, with & > h contribute (for example a; _n consists of the highest power terms
of all ¢, respectively).

The lowest order in z of @;; is determined by the order in y of the first contributing function
Y;n, which results in the power ¢! (looking again at our example, we see that for aj _n the lowest
order in x is 2N = maxqyer, |@|, for @; _n41 the lowest order is 2N — 1 and for aj; with I > 0, the
lowest order is given by the lowest order term of v;;, which is zero). We denote by A the set of
formal symbols @; given by a power series as in with arbitrary N. Then A is a vector space
over KC 1, 0n which

6

B@) ~ @)
e = Hoe =

acts as an operator with eigenfunctions @;, where ﬁg fulfills Hypothesis and ¢ is constructed
in Hypothesis The following theorem will summarize these results and give a condition on the
absence of half integer terms in the expansion.

THEOREM 3.17. Let E be an eigenvalue with multiplicity m of the harmonic approximation
Go of Ge given in . Let H. be a Hamilton operator satisfying Hypothesis and ¢ be the
real function described in Hypothesis[3.5.

p(x) = 5(x) . . —~
(a) Then the operator e = H.e= "= has an orthonormal system of m eigenfunctions aj;

of the form in A, where the lowest order monomial in a; € C[[z]] is of degree
max{—2l,0}.
The associated eigenvalues are

EEj(E) =c| EF+ Z EkEjk
N

ke

(b) If || is even (resp. odd) for all o € I, then all half integer (resp. integer) terms in the
expansion of the eigenfunctions with respect to x vanish.

Proof:

(a): This point is already shown in the discussion succeeding equation (3.83]).
(b): By equation (3.80) and Proposition together with Theorem we can write any
eigenfunction v as a linear combination of IIgh, with coefficients in Iy, thus we get explicitly

k€§

As discussed below (3.81)), the polynomials f,; are of degree (|| + 2k) in y, thus they have the
order e=*+5) and the parity of |a| + 2k, since they consist of monomials of order |«| 4 2k — 21,

0 <2l <|a|+ 2k, ! € N. If we combine the powers in ¢ arising in the sum, we get sj+l*%, where
j and [ are both integer. If || is even, the whole exponent is integer, if it is odd the exponent
is half integer. So if one of these assumptions is true for all a € Iy, there remain no half integer
respectively integer terms. Since the transition to @; is just a reordering, this is also true for @;.
O

3.5.2. Approximate Eigenfunctions. As a first step, to analyze the spectrum of H. as an
operator on (2 ((st)d)7 we construct quasi-modes, i.e., €*°-functions a;; and real numbers E’jl,
such that asymptotic sums of them solve to arbitrary high polynomial order in x and ¢ in a
sufficiently small neighborhood @’ of 0 (independent of €).

For @; given by , we can use the Theorem of Borel (see for example Grigis, Sjostrand [24])

with respect to z, to find €°°-functions ?Nijl possessing a@;; as Taylor series at zero and to define a
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formal asymptotic series in a neighborhood @’ of 0 by

a]xs E 6&_7[

162
1>-N
Then
P (@) _ (@) =
*E (B, - eBy(e)e “F;(a,0) = by(a,2) (3.84)

where b;(z,€) = ez elb;i(z) has the property, that each b;; vanishes to infinite order at x = 0.
1>— N

It remains to show that it is possible to modify the functions @ ajl by uniquely determmed functions

bﬂ vanishing at zero to infinite order, such that for the resulting functions aj := ajl bjl, the

formal series

)= Y caj(x) (3.85)

I>—N
lez/2
solves for z € @’ the equation

#(x) P(x)

e« (H.—ceEj(e))e” = aj(x,e)=0.

To this end, we have to show that the equation

5(x) p(x) ~

e (H. — EEj(E))e_wf bj(z,e) =bj(x,¢) .

has a unique formal power solution b, (&) ~ 3 &'bj () with coefficients bj; € €°°(?)') vanishing
to infinite order at x = 0. The equation of order zero is the eikonal equation already mentioned in
Section vanishing identically in ()’ for the appropriate choice of ¢. All higher order equations
are called transport equations and determine for given initial conditions order by order the functions
bj;. We must show that they have unique solutions and that the solutions are €°°. By the definition
of T, and the assumptions in Hypothesis we have

2 T+ Ve—e | B+ Z f B || e Ea Z by (x) =

I>—N
ken/2 1€z/2

=Y Y [a@etP gy )+ 3 (Vila) — B bulae)

I>-N d
lez/2 vE(eZ) k€No/2

To get the different orders in € of the kinetic term, we expand ¢ and Ejl at x and set n:= 1 € ze,
For appropriate t,t' € [0,1]

M | =

d 5 d
_ _ . € . € B
(‘p(x) - <p($ + 577)) = _V(P(l') /i 5 Z nunuavauSD(x) - G Z nanun#aaavawp(x + t€77)

v,p=1 a,v,pu=1
and
~ ~ ~ d ~
bit(a + en) = bu(w) +en- Vhu(e) +€> 3 om0, dubju(a + t'en) .
v,u=1

In addition, we use the expansion of the exponential function at zero to get

d 9 d 2
L(@(z)—@(z —Vo(x)- € ~ € ~
2 (@@)=@(a+) — ~Vél@)n |1 _ 5 > 0 0up(x) + T < > mnﬁﬁw(@) —0() | %

vp=1 vp=1

5 d
X (1 - % Z NaMNu0a0,0,@(x + ten) + O (54)> (1+0 (%) .

o,v,pu=1

The lowest order equation is that of order —N. By the eikonal equation, the left hand side vanishes
and the same argument applies for the —N + % order equation. The first non-vanishing term arises
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from the action of the first order part of the conjugated operator on the function Bj,, ~N(z),which

is for a defined in (2.18)

d
- V(). 1 - =
> dy(w)e Ve <77~V—2 E:nunﬁuwm) +Vi(z) = E pbj—n(z) =bj—n. (3.86)

nezd v,pu=1

This equation takes the form

(P(z,0:) + f(x) u(z) = v(zx) (3.87)
for the differential operator
Plw,0y) = ), ay(@)e” V2V, (3.88)
nezd

which is well defined by the polynomial decrease of a., (see Remark . The next and all higher
order equations result from the action of the first order part of the conjugated operator given
in on the respective highest order part of Ej, which for the k-th order is the term Bj,kq-
Additionally to the first order equation, a term is produced by the action of higher orders of the
conjugated operator on lower order parts of l;j. Since these lower order terms are already deter-
mined by the preceding transport equations, this additional part can be treated as an additional
inhomogeneity of (3.87). Thus all transport equation take the form

(P(x,02) + f(2)) u(z) = v(z) (3.89)
with f,v € € (@) and v vanishing to infinite order at 2 = 0 by the construction of the formal
series (3.83)). The differential operator P defined in (3.88) is of the form (Z, V) for the vector field
Z(x) = (z1(x), ..., z4(x)) given by

2y () = Z &n(x)eivsa(a:)'nnu .
nezd

Using (2.22)) we see that = 0 is a critical point of the vector field Z. In order to linearize at zero,
we compute

O, 2(0) = 3 (D) )™ 72Oy, — Gy (0)e 2O 0,, (95, m) (O] -
nezd
Since for x € @ the phase function ¢ is given by (3.12)), we get V3(0) = 0 and 0, (V@) (0) = Aun,.
In Hypothesis we assumed the kinetic energy to vary at least quadratic in z, thus the first
derivative of a., vanishes and

0z, 2,(0) = — Z an(0)Aumpmy -

nezd
By (2.23) and since we chose coordinates such that B(0) =1 as described in Remark we get

. A >0 for v=yp
- ngzjd Ay (0) 1 Ay = { 0 for v#p.

Therefore the linearization of Z at 0 is Zy := (z10,-..,2d0) With z,0(x) = A\ z, and the corre-
sponding differential operator is given by

d
PO(.’E, a:r) = Z )\quaa:u
v=1

with A\, > 0 for v =1,...,d. Now we are in the state to use the results in Dimassi-Sjostrand [16]
(Proposition 3.5) and Helffer [29] (Proposition 2.3.7), which tell us, that under the given assump-
tions the differential equation has a unique % °°-solution in a sufficiently small neighborhood
() of suitable shape (star-shaped in the notion of Dimassi-Sjostrand [16]) vanishing to infinite
order at x = 0. We briefly recall the proof for the existence and uniqueness of solutions of the
partial differential equation using the method of integrating along the characteristics of the
vector field Z. We denote by | — 00,0] 5 t — 7(t) the integral curve of Z, i.e.,

() =Z(y(t)), with ¥(0) =20 € O, (3.90)
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for some 2o € @'\ {0}. Formally this integral curve is given by v(t) = e'?(x), t < 0. By (3.90)
we get

u(y(t) = (1(t), Vu(y(t)) = (Z, Vu)(y(t)) = P(z, 02 )u(~(t)) = v(y(t)) — faly(t))

Since all eigenvalues of the linearized vector field Z; are strictly positive, it follows by the theory
of ordinary differential equations, that ~(t) approaches 0 exponentially fast for ¢ — —oo, i.e.,
()] <C e || for arbitrary small suitable (. The inhomogeneity v is a ¢ °°-function vanishing
at 0 to infinite order, thus by the preceding estimate v(y(t)) = O (e—CIt\) for every C > 0 and we
have a unique %*°-solution u of with w = O (Jz|*). Thus the formal power series a;(z,¢)
defined in solves in @’ the equation
(ﬁ]E — sEj(e)) (&j(x,s)e_ Ha(:)) =0, E‘j(s) =E+ Z ¥ By .
ket

Again by a Borel procedure, but now with respect to e, we can find a function a); € € (0’ x [0, 00))
representing the asymptotic sum a,(x,¢) given in (3.85)), which we denote by

al(x,e) ~ Z claji(z). (3.91)
=
1> N

In order to get a function, which is defined on R x [0, 00), we multiply with a cut-off function

k € ¢§°(R?), with supp k C ' and such that for some @,6 C @' we have k(z) = 1 for z € @. We
denote the resulting function a; € €§° (R? x [0,00)) by

a;(v,€) = k(z)a)(z,€) ~ k(z) Y elaj(r). (3.92)

z
leg
1>-N

Analogously we define a real number E;(¢) as an asymptotic sum
Eie)~E+ > "By . (3.93)
kel

We have therefore proven the main part of the following theorem.

THEOREM 3.18. Let, for e > 0, flg and H. respectively be an Hamilton operator satisfying
Hypothesis [3.1] As described in Hypothesis [3.6, we choose a real function ¢ and a star shaped
neighborhood @' of 0.

Let €E be an eigenvalue of the harmonic approzimation H® of H. given in (3.58) with mul-
tiplicity m and for j = 1,...,m let the functions a; € 65° (Rd x [0, oo)) be as defined in (3.92)),
where the cut-off function k is supported in @ and k(x) =1 for x € @ for some neighborhood @ of
0 with @ C @'. Then the functions a; and the real numbers E; defined in (3.93) solve the equation

(H. — eEj(e)) (aj(:c,e)e_ ﬂf)) =0 (™) e 5 , (z€0,e—0). (3.94)

For any o € R?, the restriction 1g,, a;(xz,e)e” = of the approzimate eigenfunctions to the

lattice ¥, = (eZ)? + x¢ are approzimate eigenfunctions for the operator H. with respect to the
same approximate eigenvalues, i.e.,

f(x)

(H. — eB;(0) 1, (050,00 ) =14, 0(X) e, (2€0NG,, e~ 0).  (395)

Proof:

To make the step from ﬁg acting on 65° (Rd) to the operator H. acting on lattice functions
K ((eZ)d’), we use that %, the lattice shifted to any point zo € R in the sense that z¢ € ¥, is
invariant under the action of H. as discussed in Remark Thus the restriction to the lattice
commutes with H. and the action of the restriction operator 1y, ~to yields by use of
(12.34)).
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REMARK 3.19. It follows from the construction given in (3.83)) that the constant N denot-

ing the lowest order in € in the expansion is given by N = maxaer, % Here Ig =
{oz € N4 | Gohy = Eha}, where E denotes an eigenvalue (energy) of the harmonic oscillator Gy,
giving the zero order term in the erpansion . Furthermore, h, denote the associated eigen-
functions, which were shown to be products of the hermite polynomials introduced in .

It follows at once that in the case of the bottom of the spectrum, i.e., if E = 1, the associated

eigenfunctions are the constant function hg and therefore N = 0 in this case.






CHAPTER 4

Finsler Distance associated to H.

In this chapter, we define the notion of a metric and distance function adapted to the Hamilton
operator H., which describes the decay rate of the eigenfunctions of a Dirichlet operator associated
to H. and extends the solution of the eikonal equation outside of a neighborhood €2 of one well.
Analog to the construction of Agmon [3] for Schrodinger operators, the idea is to find a metric,
such that the geodesics with respect to this metric are equal to the base integral curves of the
Hamilton vector field, but since T is a translation operator we have to use the notion of a Finsler
metric instead of a Jacobi metric.

In Chapter @, we will use this distance function on R?, to replace the locally defined quasi modes
of H. constructed in Chapter [3| by globally defined functions.

In the following definitions we introduce the general notion of a Finsler manifold, where the
distance is defined via variation over the length of curves as in the Riemannian setting. For the
theory of Finsler manifolds we refer to the detailed description for example in Bao-Chern-Shen
[6] (from which we adopt the notation), Asanov [5] Abate-Patrizio [I] and Giaquinta-Hildebrandt
[22].

For a manifold M we denote by T, M the tangent space at the base point x € M and by TM
the tangent bundle of M. We denote an element of TM by (x,v) where x € M and v € T, M such
that the projection 7 : TM — M is given by m(x,v) = x. The cotangent space TxM at x € M is
the dual space of T, M, the cotangent bundle is denoted by T* M and analog to the tangent bundle
its elements are written as (z,£). The projection 7* : T*M — M is then given by 7*(x,§) = x.
Sometimes the tangent space T, M = 7~ (z) and the cotangent space T* M = (7*) " (z) are called
fibre over x.

The canonical pairing between an element v € T, M and § € T; M is written as v - &.

For a local coordinate system (x1,...,24) : U — RY, where U € M open, the induced coor-
dinate bases of TM and T*M are given by 0,, and dz,, v = 1,...d respectively. An element
(z,v) € 7 }(U) C TM can then be written in local coordinates (z1,...,Z4,v1,...,v4), Where

v =13 _,0,0, and analogously an element (z,{) of the cotangent bundle can be written as
(1,...,xa,&1,...,&) for £ =5 &dx,. If fis a function on M or T'M, then we use the same
letter for the associated function in R? with respect to local coordinates.

4.1. Definition and Properties of Finsler Manifold and Finsler Metric

DEFINITION 4.1. Let M denote a d-dimensional €°°-manifold, TM its tangent bundle and
TM\ {0} :={(z,v) € TM |v # 0} the slit tangent bundle.
(a) A (Lagrange)-function F : TM — [0,00) is called a Finsler function on M, if:
1) F is of class €°(TM \ {0}).
2) It satisfies the homogeneity condition F(x,\v) = AF(x,v) for X\ > 0, i.e. F is
positive homogeneous of order 1 in each fibre T, M.
3) F(z,v) >0 forv#0.
(b) A Finsler function F is said to be absolutely homogeneous, if
4) it satisfies the condition F(x, \) = |A|F(x,v) for all A € R,
i.e. if it is absolute homogeneous of order 1 with respect to the fibre variable.
(¢) A manifold together with a Finsler function, (M, F'), is called Finsler manifold.

In our setting, only absolutely homogeneous Finsler functions arise.
A Finsler function induces a curve length on M as follows.

DEFINITION 4.2. (a) A curve v : [a,b] = M, t+— ~(t) on M is called regular, if it is
%2 and the velocity 5(t) # 0 for all t € [a,b], where 4(t) := £~(t) € Ty M.

61
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(b) We denote by Ty p(z1,22) the collection of all reqular curves v on M which are parame-
terized over [a,b] and satisfy v(a) = 1 and v(b) = xo. Then Ty p(x1,22) is a Banach-
manifold (for the notion of manifolds of maps and the construction of coordinate charts
see for example Klingenberg [46] or Hamilton [26] ).

(c) For any Finsler function F' on M, the curve length sp : Ty p(z1,22) — R associated to F
is defined as

b
sp(y) = / F((t), Sy (1)

(d) Foranyd > 0, a regular variation of v € Ty p(z1,x2) is a €*-map s : [a,b] x (—6,8) — M,
such that v5(t,0) = () for allt € [a,b] and vs(.,u) is reqular for each u € (=6,0).

A regular variation of v with fized endpoints (i.e. with vs(a,u) = x1 and v5(b,u) = x9
for all u € (—6,68)) can be considered as a map s : (—=8,8) — Top(x1,22), ie. as a €>-
curve in Ty p(21,22) passing the point v for the parameter value u = 0.

Therefore the tangent space of Ty p(21,22) at a point n is given by

TyTap(z1,22) = {Ounslu=0 | M5 is a regular variation of n with fized endpoints} . (4.1)

(e) The tangential of the curve length sp with respect to a Finsler function F at a point
n is a mapping dsp|y : TyLap(w1,22) — Ty pR, which is given by dsr|,(0unslu=0) =
8u8F(775)‘u:O-

dsp s called the first variation of curve length in Finsler geometry.

(f) A regular curve v € T'qp(x1,x2) is called a geodesic with respect to the Finsler function
F (or a Finsler geodesic), if dsp|ly =0, i.e. if Ousp(Vs)|lu=o0 = 0 for all reqular variations
¥s of v with fixed endpoints.

REMARK 4.3. (a) The curve length sp(7y) of v is well defined, because by condition 2) for
F (the positive homogeneity with respect to v, Def[f.1](a)2)) the integral is independent
of the parametrization of the curve.

(b) In the book of Agmon [3], the curve length in Finsler geometry is defined with respect to the
wider class of absolutely continuous curves. (A complex curve vy on the interval [a,b] is
absolute continuous, if for alle > 0 there exists a § > 0 such that 377_, |v(B;) —v(ey)| < ¢
for alln € N and disjoint segments (a1, 1), ... (o, By) which satisfy Y25, |3 — oyl < 8.)

These curves are not differentiable in the usual sense, but it is shown in Rudin [52],
Thm.7.18, that if v is absolutely continuous, then it is differentiable almost everywhere
on [a,b], ¥ € L1 and y(t) — v(a) = fat A(s) ds.

The restriction to the class of €?-curves is adapted to the definition given by Abate-
Patrizio [1], allowing to use the results given there.

(c) Since the pointn € T'q p(x1,x2) is a curve on M, any tangent vector Ouns|u=o0 € Tylap(x1, T2)
at n can be considered as a vector field Oynslu=0(.) along n(.) C M, i.e. as a function
Ounslu=o0 : [a,b] — TM such that Ounslu=o(t) € TyyM. Since the variation 15 was
assumed to have fized endpoints, it follows that Oyns|u=o(a) = Ouns|u=o0(b) = 0.

If the manifold M is connected, the notion of the integral length of a curve suggests to define
the distance between two points as the infimum of the distance over all regular curves joining these
points.

DEFINITION 4.4. Let (M, F) denote a Finsler manifold.
(a) The Finsler distance dp(x1,x2) : M x M — [0, 00] between the points x1 and x4 is defined
by

dp(z1, ) 1= inf sp(7) -
v€l0,1(71,22)

IfTo1(x1,m2) is empty, the distance is defined to be infinity.
(b) A geodesic v between two points x1 and xo is called minimal, if sp(y) = d(x1,z2).

In Lemma we will show, that in the case of an absolutely homogeneous Finsler function,
this distance is actually a metric on M.
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REMARK 4.5. A function g € € (T'M,R) is called a Riemannian metric if for each x € M
its restriction g, : T, M — R to the fibre over x is a positive definite quadratic form and therefore
induces a scalar product. Defining g;j(.) := g (0z,, Oz;), in local coordinates the Riemannian metric
1s therefore given by a covariant two-tensor

d
d82 =g = Z gij(gc)dxi ® dl‘j with Gij(z) = Yji(x) - (42)
i,j=1
Each Riemannian metric g induces a Finsler function via Fy(z,v) := /g(v,v), thus each Rie-
mannian manifold is a Finsler manifold. In local coordinates F s determined by

ng(xla"'axdavla"'avd) :Zgij(x)vivj (43)

and thus
g= Z v ( ) de; @ dx; . (4.4)

Then for any reqular curve v : [0,1] — M, the curve length with Tespect to F' = Fy defined in
Deﬁmtion is equal to the Riemannian curve length, i.e. sp (v) = [ |5(t)|dt, 'wzth |¥(#)]? =
Gty (Y(t),7(t)) and the Finsler distance dr, given in Definition (4.4 is thus equal to the Riemannian
distance.

In a weak sense there is an inverse of this connection between Riemannian and Finsler man-
ifolds. For a given Finsler function F', equation with F' instead of Fy defines a symmetric
covariant 2-tensor gp. The elements of the matriz (g;;(x,v)) determined by again with a
general Finsler function at the place of Fy, are then depending not only on the base variable x but
also on the tangent vector v. In local coordinates, g;; can for a general Finsler function be defined
as

02 1 0*F OF OF
yi=—— |=F?)=F —.

9i a'l}ial)j ( ) 8vi8vj + a’l)i 8vj
DEFINITION 4.6. We denote by SM :=TM/ ~g the sphere bundle, where

(4.5)

(x,v) ~s (y,w), if z=y and v=AIw forany X>0.
By PTM we denote the projective bundle of TM, i.e. PTM =TM/ ~p, where
(z,v) ~p (y,w), if z=y and v= v forany A#0.

Since F' is positive (or absolutely) homogeneous of degree one in v, the functions g;; are homo-
geneous of degree zero in v and are thus functions on the sphere (or projective) bundle respectively.

REMARK 4.7. In the literature, the definition of the Finsler function is sometimes slightly
different concerning the positivity (Deﬁnitiona}3) ). Instead of positivity of F, strong convezity
of F is required, i.e. the matriz (g;j(x,v)) defined in 18 assumed to be positive definite. By use
of the homogeneity condition, this follows from the positivity of F' as can be seen by the following
considerations.

A function F which is homogeneous of order 1, fulfills by the Euler Theorem the relations

d

oF
Zvl o =F and Zvl 8111811] . (4.6)

The second equation follows from the first by differentiation. To verify the positive definiteness of
g, we have to analyze the term
d d
0’F OF OF
Z gijvivj = Z (Fuvv + — vlvj> .
G ] 0v;0v; ov; Ov

By @), the first summand on the right hand side vanishes and the second is again by the Euler
theorem equal to F2. Thus by the positiveness of the Finsler function except for v =0, the matriz
g is positive definite. Since by definition F > 0, the two assumptions are equivalent.
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It is shown in Bao-Chern-Shen 6], that additional properties of a Finsler function are

F(z,v+0) < F(z,v) + F(z,0), (z,v),(z,0)eTM Triangle inequality (4.7
. 9F

Z Wiy (v) < F(w), wveT,M,v#0 Fundamental inequality (4.8)
=1 i

In (4.8) equality holds if and only if w = av for some a > 0.

In the next lemma some elementary properties of the Finsler distance are described. For a
detailed proof of (b) we again refer to Bao-Chern-Shen [6], Lemma 6.2.1.

LEMMA 4.8. Let (M, F) be a Finsler Manifold and dp the Finsler distance as defined in
Definition [{-4).
(a) dp obeys the following two properties of a metric space.
i) dp(x1,22) > 0, where equality holds if and only if x1 = xa.
11) dF(ZL'l, {E3) < dF(ZL'l, {EQ) + dF(x% 1'3)
If in addition the Finsler function F is absolutely homogeneous, then
iii) dF(.’L‘l,IQ) = dF(.%‘g,l‘l).
For an absolutely homogeneous Finsler function, (M,dg) is thus a metric space.
(b) At every point x € M there exists a local coordinate system ¢ : U — R®, with the following
properties for some ¢ > 1:
i) The closure of U is compact, ¢(x) = 0 and ¢ maps U diffeomorphically onto an open

ball of RY. -
ii) For allv=>,v;0,, € T,M and x € U
ol < F(z,v) < c|v] and F(z,—v) < ZF(z,v) ,
c

where [v] = /Y, vZ.

iii) Given any xo,z1 € U, we have

Yp(n) — oleo)| < dp(ao 1) < clé(e) — dlao)]

iv) For every pair of points xg,x1 € U, we have
1
deF(ﬂh»wo) < dp(wo, 1) < *dp(21,20) -

Proof:

(a) i) follows directly from the strict positivity of F.
ii) The right-hand side is given by the minimum over all curves joining z; and z3 and
hitting x2 while on the left-hand side the minimum is taken over all curves from x; to xs.
Thus on the right-hand side we take the minimum over a smaller set and the inequality
follows.
iii) The absolute homogeneity of F yields F(x,v) = F(x,—v). Therefore the original
integral is equal to the reversed one from the end point to the starting point which proves
the given statement.

(b) This part is identical to Bao-Chern-Shen [6], Lemma 6.2.1, and we refer to the proof given
there.

a

4.2. Finsler Function adapted to a hyperregular Hamiltonian

To define a Finsler distance, which is adapted to the given physical context, we introduce a Le-
gendre transformation with respect to a Hamilton function A on the cotangent bundle 7* M, which
allows to pass from covectors (momentum variables), denoted by &, to vectors (velocity variables)
denoted by v and vice versa. To this end, we need the notion of fibre derivatives, hyperconvexity
and hyperregularity of h. It is shown in Proposition that hyperconvexity of h is a sufficient



4.2. FINSLER FUNCTION ADAPTED TO A HYPERREGULAR HAMILTONIAN 65

condition for hyperregularity.

DEFINITION 4.9. (a) Let M be a manifold and f € €°° (T*M,R). Denote by f, the
restriction flr=n of f to the fibre Ty M over x. Then the map Dpf : T"M — TM
defined by Dpf(x,€) := Df,(§), is called the fibre derivative of f.

We sometimes use the notation Dp f(x,§) = D¢ f(x,§).

(b) Along the same lines the fibre derivative of a function g € € (T'M,R) is defined as
Drg:TM — T*M, Drg(x,v):= Dg,(v).

(¢) Let Gy : TfM x TyM — R denote the canonical pairing G, (§,v) := & - v(= &(v)). We
denote by G the function on M, that associates to each x € M the function G.

(d) A function f : SM — TM s called strictly fibre preserving, if f([(x,u)]) € [(z,u)] (i.e.
if for each [(z,u)] := {(z,v)|v = Au, A > 0} € SM there exists a A > 0 such that
f((z,w)]) = (z, Au)).

(e) A smooth function h: T*M — R (or L : TM — R) is said to be hyperregular, if its fibre
deriative Dph : T*M — TM (or DpL :TM — T*M ) is a diffeomorphism.

REMARK 4.10. (a) The derivative D f,(§) maps Te (Ty M) linearly to Ty eR. Since
TrM and R are vector spaces, they are isomorphic to their tangent spaces Te (T M)
and Ty, )R respectively. Thus D f,(§) can be considered as bounded linear functional on
TrM, i.e. as an element of T, M. It follows immediately from Deﬁnition that Dr f is
a fibre preserving smooth mapping. For h € €°° (T*M,R) we will in the following often
use the notation

&n(x,v) = (Dph) " (z,v) and wvp(x,€) := Dph(z,§) . (4.9)

(b) In local coordinates (x1,...,xq) the canonical pairing G, is given by

d
Gaz(fla cee 7vd) = Zguvu .
v=1

DEFINITION 4.11. Let V' be a normed vectorspace and L a real valued function on V.
(a) L is called convez, if for all vi,vs € V and X € [0,1]

L(Avy + (1= MNwvg) < AL(vy) + (1 — M) L(v2) . (4.10)
(b) If furthermore L € €%(V), it is called strictly convez, if D?L)|,,(v,v) > 0 for all vg,v € V,

i.e. if the bilinear map D*L|,, on V is positive definite.
(c) We call L € €2(V) hyperconvez, if there exists a constant o > 0 such that

D2L|yy(v,0) > aljv||®  for all wvo,v € V.
As in the case of functions on R", convexity of L implies that the bilinear map D?L|,, is non-

negative. This can be seen as follows. Define for any fixed v1,vy € V the function f:[0,1] — R
by setting f(t) := L(tvy + (1 — t)vs). Then f is convex, since for any A, s,t € [0, 1]

fOt+ (1 =X)s) = LM+ (1=XNs)vr + (1 — (At + (1 —N)s))t)
= LA(tvr + (1 —t)vg) + (1 = X)(sv1 + (1 — s)v2))

< AL(tvy + (1 = t)vg) + (1 = XN)L(svy + (1 — s)va)
= AMBO+A=XNf(s).
Thus f’ is increasing,
f) = f(s) = f'(s)(t —s) (4.11)
and therefore
(=)'t - F(s) 20 and ()20, steol] (4.12)

By the definition of f, from follows
L(tvy + (1 — t)va) — L(svy + (1 — s)va) > DL(sv1 + (1 — s)va)(v1 — v2)(t — 5)
and in particular by setting t =1 and s =0
L(vy) — L(ve) > DL(vg)(v1 — va) . (4.13)
The second estimate in yields
F"(t) = D* Ll (o, 4 (1—tyom) [(v1 = 02), (01 = 02)] > 0. (4.14)
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Furthermore, if L is strictly convex, the inequality in (4.10) and (4.12)) is strict. Thus again by the
definition of f it follows from (4.12)) that

(t —s) (DL(tvy + (1 — t)ve)(v1 — v2) — DL(sv1 + (1 — s)ve)(v1 —v2)) > 0.
In particular, setting ¢t = 1 and s = 0, we have
(DL(v1) — DL(v2)) (v1 — v2) > 0 (4.15)
The following Proposition gives a connection between hyperconvexity and hyperregularity.

PROPOSITION 4.12. If a real valued function h € €°° (T*M) is hyperconvez in each fibre T M,
it is hyperregular.

Proof:

The fibre derivative Dph : T*M — TM is a global diffeomorphism, if it is a local diffeomor-
phism and bijective.

By definition, Dgh is fibre preserving, thus with respect to local coordinates at (xg,&p), its
derivative is given by the 2d X 2d-matrix

1 0
DDph|(zy ¢0) = ( . M) . where M = DZh|(y,.¢,) - (4.16)

Since h was assumed to be hyperconvex in each fibre, M is positive definite and thus it follows
from , that Dph is a local diffeomorphism (Inverse Function Theorem).

Since Drh is by definition fibre preserving, i.e. it is the identity map with respect to the base
point x € M, it is sufficient to show the bijectivity of the function Dh, : T M — T, M for all
xe M.

Thus we fix any € M and analyze Dh,. Since h, is strictly convex for each x € M, the
inequality

(€ =) (Dho(€) = Dha(n)) >0, &meTiM, n#¢
holds by (4.15). Thus & # 1 implies Dhy(§) # Dhy(n), and therefore Dph(z,.) = Dh, is injective.
To show the surjectivity, we first consider for any vy € T, M the solution v : [0,1] — T, M of
the initial value problem
0(t) = v, v(0) =0, (4.17)
which obviously fulfills v(t) = tvy and v(1) = vo. The idea is now to show, that there exists a
curve £ : [0,1] — T¥M, such that £(1) is the pre-image of vy with respect to Dh,, i.e. such that
Dhp(§(1)) = vo.
If we can establish, that the initial value problem

v =1 Dh(e(t) = Dhate) €. €(0) =0. w1s)
has a solution £(t) for all ¢ € [0,1], then

1
Vo = /0 D?hy (£(t)) - £(t) dt = Dhy(£(1)) — Dha(£(0)) = Dhy(£(1)) .

Thus the existence of a solution of (4.18)) for any vy € T,,M and all ¢t € [0, 1] implies the surjectivity
of Dhy.
Since from the hyperconvexity it follows that D?hgle;) > 0, there exists at each point £(t) of

the curve the inverse (Dth|g(t))7l of the linearization of Dh, at £(t), thus can be rewritten
as
£t) = (D?hulen) ™ w0, €(0)=0. (4.19)
The differential equation is thus of the form & = F (&) for the vector field F on Ty M given by
F¢) = (D2hac|§)71 -vg. Since h € € (T*M), the vector field F' is locally Lipschitz for all
& € T M, thus it follows from the Picard-Lindeléf Theorem (see for example Walter [61], page 61,
Theorem 7), that the initial value problem has for any vy € T, M a solution, which either
exists for all ¢ > 0 or becomes infinity for a finite value of t.
In order to exclude, that the curve £ reaches infinity for some ¢ < 1, which means that the
curve does not exist on the whole interval [0, 1], we need the hyperconvexity of h. We choose a
norm ||.[|7:ar on Ty M and denote by ||.||7, 3 the norm on T, M, which is induced by duality. Since
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for fixed n € TyM = Te¢(T; M) the second derivative D?h,|¢(n) can be seen as linear form on
T*M,ie. as an element of T, M, it follows by the hyperconvexity of h, that there exists a constant
o > 0 such that for all £ € T) M

D3?h D?h
HDth‘g(n)HTJEM = sup | Ilf(na /J)| > | I|§<77777)|
per:m |l Il e

> alln]

Tinr, € Te(Ty M) (4.20)

and therefore

1 -1
[vllr,ar = 1D?hele (D?hale) ™ ()llmoar = all (D?hale) ™ (0)llmpae,  veTeM .  (421)
(4.19) together with (4.21]) yields
. -1 1
1@ 7ar = | (D?halewy)  (wo)llzem < - ol (4.22)

i.e. the velocity of the curve £ is bounded. Therefore [|£(t)]| < oo for t < oo, i.e. the curve exists
for all t € [0,1] and Dph(£(1)) = vo.
Thus for any vy € T, M there exists a pre-image with respect to Dph(z,.) = Dh,, given by £(1),
where £ : [0,1] — T} M is the solution of (4.19). This shows the surjectivity of Dh,.

Together with the injectivity of Dh, and the fact that Dph is a local diffeomorphism, it follows

that Dgrh is a global diffeomorphism.
O

REMARK 4.13. We define for any hyperreqular Hamiltonian h € €°° (T*M) the energy func-
tion Ey, on TM by

Eu(@,v) = ho (Deh) ™ (2,0)(= h(z, &(, v)) (4.23)
and the action

Ap:TM - R, Ap(z,v):= Gy ((Dph)il (:v,v)m) (=&n(z,v) ), (4.24)

where the fibre derivative Dph and the canonical pairing G, are introduced in Definition[.9 Then
it is shown in Abraham-Marsden [2], Prop.3.6.7, that the Lagrange function

Ly :TM — R defined by Ly(xz,v) = Ap(x,v) — Ep(z,v) (4.25)
(the Legendre transform of h) is hyperregular on TM and
DrLp(xz,v) = DyAp(z,v) — DyEy(z,v) (4.26)
= Dyén(x,v)-v+&p(x,v) — Deh(z,&p(x,v)) - Dyép(z,v)
= Dyép(z,v) v+ &p(z,v) —v- Dypép(z,v)
= &u(w,v) = (Drh) ™ (z,v)

In fact [2], Theorem 3.6.9 states, that the hyperregular Lagrangians on TM and the hyperregular
Hamiltonians on T*M are in bijection.

Later on we will use, that in particular by (4.24) and (4.26)
Ap(z,v) = DpLp(z,v)-v. (4.27)

We recall some standard facts of classical mechanics, which are proven for example in Abraham-
Marsden [2].

Let h be a hyperregular Hamilton function. Then (v(t),£(t)) € T*M is an integral curve of the
hamiltonian vector field X, in T*M if and only if it satisfies Hamilton’s equations

D (1) = Deh(4(8),€(1))(= Dih((6),£(1)) (4.28)

dt
(t) = Dyh(~(t),£(1)) -

dg
dt
If Ly, is the associated Lagrange function defined by ([£.28)), then (v(t),¥(t)) = (v(t), Drh(y(t),£(1)))
on the tangent bundle is an integral curve of the Lagrangian vector field Xy, in TM and satisfies
Lagrange’s equation
d

Doy Ln(v(1),7(8)) = - Dy Lu(v(2), 7(2)) - (4.29)
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On the other hand if a curve (v,%) in TM satisfies Lagrange’s equation (4.29), then the associated
curve (v, DpLp(y(t),%(t))) on the cotangent bundle T*M is an integral curve of the hamiltonian
vector field Xp,.

DEFINITION 4.14. For a smooth manifold M, a €°°-function h : T*M — R and Ey € R, we
define the set of singular points Sp(Fo) by

Sh(Eo) = {Z‘ eM | h(l‘,O) = Ey } .

Since Sy (Eo) is the level set of a smooth function h(.,0) on M, it is closed. Thus M := M\ Sj,(Eo)
s again a smooth manifold.

Let ws : TM — SM denote the projection ws(z,v) = [x,v], where [x,v] := {(y,u) € TM |3\ >
0: (y,u) = (x,\v)}.

PROPOSITION 4.15. Let M be a d-dimensional smooth manifold and h € € (T*M) be even,
hyperregular and strictly convez in each fibre T M.
Furthermore we assume that h(.,0) : M — R is bounded from above and we set Ey >

maxgen h(z,0) and Sy (Ep), M as described in Definition .

i) Then there exists a strictly fibre preserving €°-function g, : SM — TM, which is
uniquely determined by the condition

ho (Dph) " orp, = Ey . (4.30)

i) Let Tg, := T, 0 Tg : TM — TM and let lh By TM — R be defined by
U By (x,0) == Gy ((Dph)_1 o Tg, (z, v),v) .

Then by g, ts an absolutely homogeneous Finsler function on M.
iii) For any regular curve 7 : [a,b] — M, there exists a €*-function ) : [a,b] — R, such that

i, (7(1),4(1)) = (v(1), A(£)3(2)) -

REMARK 4.16. (a) Since by Proposition the Finsler function £y g, is defined only
on M = M\ S(Ey), we call (M, lh By) a Finsler manifold with singularities.

(b) It is possible to analyze an arbitrary energy value Eg (i.e. which not necessarily fulfills
the condition Ey > maxh(z,0)), by changing the definition of M to M, = M\ {z €
M| Ey < h(z,0)}.

(c) If we extend ¢y, g, continuously from M to M by setting lh By (x,v) = 0 for x € S(Ey),
the associated distance d; is well defined on all of M. Nevertheless contrary to the case
of a Finsler manifold without singularities (as described for example in Bao-Chern-Shen
[6] ), the geodesic curves with respect to U g, may have kinks at the singular points.

(d) Geometrically, the function Tg, projects an element (x,v) of the tangent bundle TM to
an element (x, \v) (for X > 0 suitable) in the (2d — 1)-dimensional submanifold £ of TM,
which is determined by the condition Ep|e = Fy, i.e.

Tr, (z,0) € € 1= E;I(EO) . (4.31)

Therefore physically £ can be interpreted as energy shell of the system for a given fized
energy Ey.
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(e) Schematically the functions occurring in Lemma are illustrated in the following dia-
gram.

R

Lh, B
h, Eq G

T,M ———— Ex TyM — h™Y(Ey) x T,M

g X1
TEy X1

SIZ\A] X Twﬂ

Ty X1 (Drh)~'x1

(0,v) ———— (&(0),v)
(f) With the notation (4.9)) it follows from the definition of G, (Def. , that 4, gy (x,v)

can be written as

v

lh gy (x,0) = Ep(x,0) - v where (z,0) = Tg,(z,v) € £ . (4.32)

(g) In the special case of a Schrédinger operator, i.e. if h(x,& 382 + V(x), the fibre
v.

derivative is given by v := D¢h(z, &) = £ and thus ¢y, g, (z,v) =0 -

To prove Proposition [£.15] we need the following lemma on the strict monotonicity of the
energy function Fj with respect to the modulus of the velocity.

LEMMA 4.17. In the setting of Propositionﬁx 2 €M andu € TIM with u # 0. Then for
En :TM — R defined by , the function

E,:[0,00) >R, E.(\) = Ep(z, \u)
is strictly increasing. Furthermore E,(0) < Ey and limy_, o, Ey(N) = oco.

Proof of Lemma [L.ITt

Since Dh,(0) =0 for all € M, it is clear that vp(x,0) = 0 and vice versa, thus
Eu(0) = En(z,0) = h(z,0) < maxh(z,0) < Eo, (x € M =M\ S(E)) .

To show that E,, is strictly increasing, we will analyze the derivative of F, for A > 0.
Since for fixed x € M by definition Dph(x,&) = Dh, (), we have by the chain rule

dE,
dA

We use the notation &, (x,v) = (Dhgy) ™' (v) (see Remark [4.10) and notice that Dhygle, (z,0) maps
the tangent space T¢, T,y M linearly to Tj,(, ¢, R, and these spaces are isomorphic to Ty M and R
respectively as described in Remark Thus Dhgle, (,0) can be interpreted as an element of
T, M. Since the fibre derivative of h at the point ¢ is by definition given by Drh(x,&) = Dh,(§) €
T, M it follows that

Ix = Dhal(phoy-10m) - D (Dhe) ™" aa(u) - (4.33)

Dhyle, (2.0) = Drh [(DFh)*1 (x,v)} =v. (4.34)

To analyze the second term on the right hand side of (4.33)), we use that the Lagrange function
Ly : TM — R associated to h as defined in Remark is strictly convex in each fibre and
DpLy(x,v) = (Dph) " (2,v). Together with ([.34) this yields
dE,
dA

Ix = At DyDpLp|(a ) () = AD?* L o xu(u, u) (4.35)
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where we used for the second equality, that the derivative of DpLy|(, ) with respect to v (which
by definition is given by D2Lh,w|v) is on the one hand a linear map from 7, M to T; M and on the
other hand by the duality of T, M and Ty M a bilinear form on T, M.

It follows immediately from together with the strict convexity of Ly, that the the first
derivative of E,, is strictly positive for A € (0,00) and thus E,, is strictly increasing.
The fact that E, is unbounded, i.e. that limy_ . E,(A\) = oo, can be seen as follows. From
the convexity of h and since h(z,§) > h(z,0) = —Vp(x) for all & € T*M, it follows that
lim¢| oo A(x,§) = o0o0. Since h is hyperregular, the mapping Dph(z,.) = Dhy : T.M — Ty M
is a global diffeomorphism. Thus for any norm ||.||7, a7 on T, M and the induced norm ||.||7:as on
TiM, we have || Dhy(v,)||7: 0 — oo for any sequence (vy,) in T, M satisfying [|v, ||z, pr — 00.

In fact if this would not be the case, there would exist a sequence (v,,) in T, M with ||v, |7, 0 —
00, but at least for a subsequence (v, ) there exists a constant R > 0 such that || Dhy(vn, )||7:0r <

R. Setting vy, = (Dhs)™" (), this would lead to [[€,, 720 < R, but || (Dha) ™" (&n,) |z, — 00,
which is a contradiction to || (Dhe) ™" (&n,) |7, < MAX| ¢ e o, <R | (Dha) ™" (En )l = M < oo.
Thus

lim E,(\) = Ali_)rg0 h(z,&p(z, M) = lim h(z,§) =o00.

A—o00

Proof of Proposition

i) From Lemma it follows that for fixed 2 € M, each ray [(z,u)] = {(z,v)|v = Au, A >
0} € SM intersects the hypersurface &, := E; '(Eo) N T, M in exactly one point. In fact since
E.(\) = Ep(z, Mu) is strictly increasing, it is injective and thus there exists at most one A such
that Eu(>\) = Eo.

On the other hand, since F,(0) < Ey and limy_, Fy(A\) = oo, there is by the Intermediate
Value Theorem at least on value A with E,(\) = Ey.

Thus for each ray [(x,u)] there is exactly one point (x, Au) € T, M such that En(z, Au) = Ey.
Since for each v € T, M there is exactly on ray [z,u] € S, M, it is therefore clear that for each
z € M the mapping TEyz Sy M — &,, given by TEy .« ([(z,w)]) = (z, Au) is a bijection and thus
TE, : SM — TM is in fact a parametrization of £ = E;l(EO) NTM by SM. Furthermore it
follows immediately from the construction of 7g,, that 7g,[(x,u)] = (z, Au) for some A > 0, i.e.
TE, is strictly fibre preserving.

To analyze the regularity of 75,, we will use the Implicit Function Theorem (on subsets of
R24). First we choose at any point [z, ug] € SM and (xo,v0) € TM local coordinates. There
exist open neighborhoods U ([, ue]) € SM and O(zg,v) C TM and open sets V C R24=1 and
I C R, such that the coordinate maps

¢ :U([zg,u]) =V, é(x,u]) =:s
and
¥ O(xo,00) = V x I, t(z,v) =(s,A)
are diffeomorphisms. Then we define the functions
T, =voTg,0¢ ' :V -V xI and Eh =Epo¢p 1V xI—-R.
It follows at once from the regularity of h and Dgh, that E‘h is a ¢°- function and by the
considerations above, there is for each sy € V exactly one point (sg, Ao) € V' x Ry such that

Eh(SO, )\0) = Eo . (436)

Furthermore df)\’l (s0,Ag) > 0 for all (sg,Ag) € V x Ry by Lemma Thus by the Implicit
Function Theorem there exists for each sy € V' a neighborhood N (sg) C V and a ¢°°-function

X: N(so) — Ry, such that Ey(s, A(s)) = Ey for all s € N (s).
Since by construction Tg, (s) = (s, A(s)), i.e. Tg, = 1y XA, it follows at once that 7z, and the
associated map 7, are ¢*°-functions.

iii) Since the function X constructed above by use of the Implicit Function Theorem is €*°, it
follows at once, that

A a,b] — Ry, At) == Xo b oms(v(t), (1))



4.2. FINSLER FUNCTION ADAPTED TO A HYPERREGULAR HAMILTONIAN 71

is €', if v is regular. The function ¢; denotes the coordinate system associated to the point
(@), 3 ()]
ii) To show that ¢, g, : TM — R is a Finsler function on M. , we check the defining properties.
1) The regularity ¢}, g, € %OO(TM \ {0}) follows from the fact that h is hyperregular (then
Drh is a diffeomorphism), the function 7g, is €>° and the definition of G, as pairing.
2) To show the positive homogeneity of ¢, g,, i.e. that £, g, (z, \v) = M g, (x,v) holds for
all A > 0, we notice that by construction 7g,(z, \v) = 7g,(x,v) for any A > 0. Thus
(Dph) ™" o7g, is homogeneous of order zero in each fibre. Since G, (&, v) = &-v is bilinear,
it follows that
Uhog(, ) = Gy ((Dph)71 o T, (x, Av), )w) = \G, ((Dphf1 o Tg, (z,v), v) = M, g, (z,v)

and thus [ is positive homogeneous of order one in each fibre.
3) To show the strict positivity of ¢;, g, for v # 0, we define
ap = ApoDph : T*"M — R, ap(x,&) =& - vp(x, &) =& - Drh(x,§).

Since h was assumed to be strictly convex in each fibre, the associated fibre derivative
Drh(x,&) = Dh, (&) fulfills by (4.15]) for &,n € T;* M with n # £ the relation

(&—n) - (Drh(z,€) — Dph(z,n)) > 0.

Therefore choosing £ = —n and using that h is even in each fibre (and thus Dgh is odd),
yields

26 ’ (DFh<xa§) - DFh(xv _5)) = 4€ . DFh(l‘,f) = 4ah($,€) >0, for 6 7é 0.

Since h is even and strictly convex, it takes its absolute minimum at £ = 0 (see Remark
4.21)) and thus Dph(z,0) = 0. Since furthermore Dgh is a global diffeomorphism, we get

(Dph) ™" (z,v) # 0 for v # 0 and therefore
Ap(z,v) = ap(z, (Dph) ™" (z,v)) > 0 (4.37)

Setting 7g, (x,v) = (x,v), it follows from the fact that 7z, is strictly fibre preserving, that
there exists a A > 0 such that v = A0. Thus it follows from (4.37) and the linearity of G,
with respect to each variable, that for v £ 0

bhgy(z,0) = G ((DFh)*l(x,a),v):Gz ((DFh)*l(x,f)),Aa)
— G, ((Dph)_l (x,f)),f)) = A y(2,3) > 0.

and it is obvious by the definition of G, that {5 g,(x,v) =0if v = 0.
4) It remains to show that ¢} g, is not only positive, but absolute homogeneous of order one.
Since 7, was assumed to be strictly fibre preserving, 7g, (x,v) = (z, Av) where A > 0.
Since h is even in each fibre, the derivative Dgh is odd and the same is true for the inverse
(Dph)~". Thus for (z,v) € &,
ho (Dph) ™" (z,—v) = ho (=Dph) "' (z,v) = ho (Dph)~' (z,v) = Ey , (4.38)
where the second equality follows from the fact that h is even. From (4.38]) it follows that
(z,—v) € Eif (x,v) € &, i.e. each fibre &, of the energy shell is symmetric around v = 0.

Thus if Av € &, for A > 0 suitable and z € M fixed, then
TE, (—v) = A(—v) = = v = =7, (v) . (4.39)
By the fact that (D h) " is odd, the bilinearity of G, and we can conclude for any
fixed x € M
Oh,0(~0) = Gy (Dph) ™" 0 7, (—0), (=0)) = =G ((Deh) ™" (=75, (0)), )

=G, ((_ (Dph) "o %Eo(v)),v> -, ((Dph)_l o T, (U),v) = U (v) . (4.40)

From (4.40) it follows that ¢, g, is even in each fibre and thus the absolute homogeneity
follows from the positive homogeneity: for any A € R

éh»EU ('T?/\U) = Eh,Eo (‘Tv |>‘|U) = \/\|€h,Eo($,U) .
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4.3. Finsler Geodesics as base integral curves of the associated vector field

By Proposition each hyperregular Hamilton function on the cotangent bundle, which is
strictly convex and even in each fibre and is bounded from above for £ = 0, induces a metric
structure on the base manifold.

The following proposition establishes the connection between geodesics with respect to the
Finsler function ¢5, g, for a given hyperregular Hamiltonian h and the integral curves of the as-
sociated hamiltonian vector field X;. Our proof will use the Euler-Maupertuis principle (at least
implicitly). This part of the proof below is adapted from Abraham-Marsden [2].

PROPOSITION 4.18. For a hyperregular hamiltonian h € € (T*M) and Ey as in Proposition
4.1, let Uy, (:= Uy E,) denote the corresponding Finsler function on M as constructed in Proposition

4.15, Let o : [a,b] — M be a base integral curve of the associated hamiltonian vector field X, with
energy Eo (i.e. Ep(v0(t),Y0(t)) = Eo for allt € [a,b]).

Then ~yy is a geodesic on M with respect to {},.
Conversely if vo is a geodesic on M with respect to £, and energy Ey, then 7y is a base integral

curve of Xy, (i.e. (70,%0) s a solution of Lagrange s equation (4.29))).
Proof:

We denote the endpoints of vy by yo(a) = 1 and vo(b) = 2 and by Iy (1, 22) as introduced in
Definition [4.2) the Banach manifold of all regular curves joining z; and 2, which are parameterized
over the interval [a,b]. We set

D, o8] o) = (o) [a: [al] =B s €% Sa>0, a(w)=0,

v € Lo (21, 22) such that  Ep(y(a(t)),j(a(t)) = Ey forall tela,b]}, (4.41)

thus T'(z1, 22, [a,b], Eg) is the set of all pairs (v, «), where v is a regular curve on M joining the
points z; and x5 and « is a change of parameter. This change of parameter ensures, that the curve
(yoa,¥oa) € TM (which is not equal to the lifted curve (yoa, & (yoa))) lies on the energy shell
&= E; '(Ey).

As Ty p(21,22), the space I'(x1, 22, [a,b], Ep) is a Banach manifold. In fact, by setting A :=
{a:[a,b] > R| £ >0 and a(a) =0}, it is a subspace of I'q (21, 22) x A as pre-image of Ey
with respect to the map

f :Fa,b(xla'rZ) X AH%I([avb]vR) defined by f(’%a) = Eh('yoa770a) 5

thus we consider Ey € R as the constant function Eo(t) = Eo. Since E, = ho (Dph) ",
where Dph is a diffeomorphism with Dph(z,0) = (z,0), it follows from the assumption that
Eo > max__z; Ep(,0). Since furthermore h is strictly convex, it is clear that DEj,(z,v) # 0 for
v # 0. Thus from the regularity of the elements of v € T'y p(z1,22), i.e. since #(t) # 0 for all
t € [a,b] it follows that Ey is a regular value of Fj and by the definition of f it is regular value
of f. Thus the pre-image f~!(Ey) = I'(z1, 2, [a,b], Ey) is a submanifold of Ty (1, 22) x A. This
follows by the fact, that the Inverse Function Theorem holds in Banach spaces (see Hamilton [26]).

Step 1:
We start the proof of Proposition by constructing a diffeomorphism between T'y (21, z2) and
F(ml, Zo, [a, b]7 Eo)

By Proposition 4.15| there exists for any n € I'y (21, 22) a unique ¢*-function A : [a,b] — R,
such that

By o7, (n(t),1(t)) = En(n(t), A(t)n(t)) = Eo .
Set

a(t) ::/a ﬁds and y=noa ':|a(a),a(b)] = M,
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then o : [a,b] = R with & >0, «(a) =0 and from
(1) = S(0(t)) = Ha(t)) (1)
it follows that
En(y(a(t)), ¥(a(t)) = En(n(t),n(t)(a(t)) ") = Ba(n(t), \en(t)) = Eo , (4.42)

ie. (v,a) € I'(n(a),n(b), [a,b], Ey). Thus it follows that to each curve n € T'y (21, x2) on M there
exists a pair (v, ) € I'(n(a),n(b), [a, b], Ey), where n = yoa. The choice of the change of parameter
a (and thus the choice of the pair (7, «)) is unique by the condition «(a) = 0.

On the other hand, if we start with a pair (y,«) € T'(z1,22,[a,b], Ey), then by definition

En(v(s),5(s)) = Ep with s = a(t). If we set n:=~vyoa«: [a,b] = M it follows from (4.42)), that
7e, (1), (1)) = (n(t), (a(t))""9(t))  and thus A = (a(t) ™. (4.43)
We can conclude that there is a bijection
b, : Dap(z1,22) — D(71, 72, [0, b], Eo)

between the Banach manifolds given by
t

be,(n) = (noa™ @) with a(t) ::/ (A(s) ™" ds for 7, (n,1) = (1, M) . (4.44)

As described in Definition the tangent space of I'y (21, 22) at a point 7 can be constructed
using the notion of regular variations of 7 with fixed endpoints as

TyTap(x1,22) = {Ounslu=o |m5 is a regular variation of 7 with fixed endpoints} .
Along the same lines we construct the tangent space of I'(z1, 22, [a,b], Ep) at a point (v,«a). We
define a regular variation of (v, a) as a ¢*-mapping (v, a)s : (—6,8) — I'(x1, 2, [a,b], Ey) passing
the point (v, @) for u = 0, therefore

T('y,a)F(xh Z2, [CL, b]a EO) = {au(’% a)é‘u:O | (77 (1)5 : (_53 6) - F(Jfl, o, [CL, b]a EO)

is €% with (v,a)5(0) = (v,0)}.
The points in I'y (21, z2) and I'(x1, 2, [a, b], Ep) are curves on M and M xR respectively and vari-

ations of the curves on M and M xR are curves on I'y (21, z2) and I'(z1, 22, [a, b], Eo) respectively,
in particular the variation (7, «)s can be considered as a mapping

(v,)s : [a,b] x (=6,0) > M xR, (v, @)s(t,u) == (vs(as(t,u),u), as(t,u)) .
Therefore as described in Remarkthe tangent vectors at the points 7 and (7, ) respectively can
be considered as vector fields along the curves in M and M x R. Thus 0uns|u=0 € TyTap(z1,22)
can be identified with the mapping 9,7s|u=0 : [a,b] = TM and 9, (7, @)s|lu=0 € T'(21, z2, [a, b], Eo)
can be considered as mapping 9y, (7, @)s|u=o : [a,b] = T(M x R), given by

Ounalslunalt) = ( foulas(t 0.0 0.05(00) ) (4.45)

u=0

d
= (gt 00.05(t0) + 9,250, 0).0)ca, Bucs(t 1) o) -

Since the values of a variation (7, a)s =: (s, ) are assumed to be elements of I'(x1, x2, [a, b], Eo),
it follows that a5(a, u) = 0 for all u € (—d,J) and the variation s (which is not a regular variation
in the sense of Definition since the domain depends on the value of the variation as) has fixed
endpoints, i.e. ys(as(a,u),u) = v5(0,u) = 1 and vs(as(b,u),u) = xo for all u € (—0,d). This
leads to

d
@75(0, u) = Oyv5(0,u) + 9ys(0, u) - Oyas(a,u) =0 (4.46)

d
@75(055(177 U), U) = au75(a5(bv u)a u) + 8{)/5 (0[5(1)7 U), u) ! 8uoz5(b, ’LL) =0.

The bijection bg, defined in (4.44) is a diffeomorphism, if for all n € I', y(z1, x2) its differential at
the point 7
dbEO |77 : ana’b(xla ‘r2) - TbEO (U)F(xh T2, [(l, b]7 EO)

has no critical points, i.e. if dbg,|,(w) # (0,0) for w # 0.
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By definition

dbE, |n(Ounslu=0) = Oube, (Ns)lu=0 = Ou(n o a™t, )5 |u=0 (4.47)
and by the identification (4.45) of tangent vectors with vector fields along curves, we get using
that by definition oy ! (as(t, u),u) = t for all u € (=4, )

dbEg |7](au77<5|u:0 (t)) = (6u(77 © a71)5|u:07 8u046‘u:0) (t) (4'48)
d _
- memﬁmxmmwﬂmwmm%uwmﬂ)
= (aun6|u:Oa auO[(s|u:0) (t) .
Since this equality holds for all ¢ € [a, ] it follows immediately, that

dbEU |ﬁ(aun5‘u=0) = (07 O) = 8u776|u=0 =0 5

which proves (by contraposition) that the bijection bg, is a diffeomorphism.

Step 2:
We show that the critical points of the length functional sy, (7) defined in Definition are in
bijection with the critical points of the action integral

a(b)
I:T(x1,22,[a,b],Ey) =R, I(v,a):= /( ) Ap(v(s8),%(s)) ds , (4.49)

where A}, denotes the action with respect to h defined in (4.24). By use of the substitution s = a(t)
and with the notation &, (z,v) = (Dph) ™" (z,v), we get

a(b) a(b)
/ mM@MW®=/ En(v(s).4(s)) - 4(s) ds
o(a) a(a)

b
=/ En(v(a(t), ¥(a(t))) - y(alt))a(t) dt . (4.50)

By (4.43)) and the definition of ¢;, given in Proposition |4.15| the right hand side of (4.50)) is by the
substitution n(t) = v(a(t)) equal to

b b b
/@mmmmwm*wwﬁzj5mmmmmmw@w=/&%mmmmw:%mm

and thus I(7y,a) = s¢, (Yo ) for & = A1, Since yoa = bg; (v, @), it follows that
s¢, = I obg, andthus dsy, |, = dl\on (m © dbg, |y (4.51)

(the last equation follows from the fact that the chain rule is valid on Banach manifolds). Since
bg, is a diffeomorphism (and thus dbg, |, # 0 for all n € T'q (x1, x2)), it follows at once from
that the critical points of the length functional s,, (i.e. the geodesics with respect to the Finsler
function ¢5) are mapped by bg, bijectively to the critical points of the action integral I,

dse,|n =0 S dlppy () =0 . (4.52)

Step 3:

If o is a base integral curve of the hamiltonian vector field X}, with energy Ey, then E}, (yo(t),50(t))
Ey for all t € [a,b] and thus it follows immediately, that bg,(v0) = (70,1), where 1 : [a,b] — [a, D]
is defined by 1(¢) = t.

Thus by it remains to show, that for any base integral curve vy € I'y (21, 22) of the
hamiltonian vector field X} with energy Ep, the pair (v9,1) € I'(x1, x2, [a, b], Ey) is a critical point
of the action integral I (and thus a geodesic). If on the other hand (yo,1) € T'(z1, 22, [a,b], Ep)
(which implies Ep,(y0(t),40(t)) = Eo) is a critical point of I, then (vo,%) solves Langrange’s
equation and thus g is a base integral curve of X,.

We start analyzing the tangential of the action integral dI|(,,4) at a point (v, @) in the manifold
(a1, z2, [a,b], Ep).

Since A, = Ly, + Ep, by the definition of the Lagrange function Ly, it follows from the
definition of T'(x1, xe, [a,b], Ey), that

Ap, (75 (015 (tv u)a u)> Vs (Ozg(t, u)a u)) =1Ly (75(055(157 u)a u)7 ;75(045(757 u)a u)) + Ep , (453)



4.3. FINSLER GEODESICS AS BASE INTEGRAL CURVES OF THE ASSOCIATED VECTOR FIELD 75

thus the definition (4.49)) of I and (4.53)) yield

dI|(w,a) (Ou (7, @)slu=0) = Ol ((7s, @s)) lu=0
d as(byu)

= Ju (Lh(’yts(sau)a;yé(&u)) + EO) ds

as(a,u)

(4.54)

u=0
Since both the integrand and the interval, over which we integrate, depend on the variational
parameter u, we get using s (t,0) = v(¢) and a;5(t,0) = «a(t)

d as(bu)

0 (Lh('YE(Suu)7'.75(S=u)> +EO) ds

as(a,u) u=0

= [(La(v(a(t)), 4(a(t))) + Eo) - Buassluo(t)]]

a(b) d
[ a0 As(s )| ds. (459)
a(a) au u=0

For the remaining integrand on the right hand side of (4.55) we get

A Laa(s,u) A0l w)| = D1Lar(9),4(5)) - Oursluols)

u=0
+ Dy Ln(v(5), 7(5))Ouslu=o(s) ,  (4.56)
where we used again 7s(t,0) = y(¢). Since

8u'y6|u:0(3) = 6sau’75‘u:0(5) y

we get by partial integration with respect to the second summand on the right hand side of (4.56))
and since a(a) =0

ds = [D5Ly(7(3),4(5)) - 95 (s, )| uo]g

u=0

ad) 4
[ st

a(b) ) d )
—A (DMWM%MD+%%MW@m@OﬁWmJ@@.OMU
It follows from that
(D4 L (v(cu(t), () Duvs ((t), ) u=oll, = — [D3 L (v(a(t)), 4(a(t))) - H(ax(t)) Ducrslu=o (2]

(4.58)
Since by (27) we have Ax(v,9) = D3 Ln(7,4) - 4, we get by (E53)
. . b . b
= [DsLn(y(e(t)), ¥((t)) - H(a(t)dues|u=o(t)], = — [(Ln(y(e(t)), F(a(t))) + Eo) - 3ua6\u:o((t)]a ;
4.59
Thus the first summand on the right hand side of (4.55)) and the first summand on the right hand
side of (4.56) (i.e. the boundary terms) cancel and we get by inserting (4.58) in (4.57)) and the
resulting terms in (4.54))

AI|(y,0) (Ou(7; @)5|u=0)

a(b)
= [ (P93 ~ D565 ) - Burslucalsds . (1:60)
0

For (v, a) = (70, 1), the integrand is zero since (g, o) solves Lagrange’s equation and thus
dl|(yy,1) =0 and  dsg, |y, =0.

Therefore a base integral curve of X}, With energy FEjy is a geodesic with respect to £j,.

On the other hand, if 7 is a Finslerian geodesic with energy Ej, the integral is by
definition zero for each tangent vector 9,70s|lu=0. As described in Remark each tangent
vector 9yY0,6lu=0 € ToLTap(z1,22) can be considered as a mapping 0,70,6|u=0 : [@,b] — T M such
that au70,6|u=0(t) € T’yo(t)M and au’YO,&|u=0(a) = 8u’70,5‘u=0(b) =0.

Thus we are in the situation, that for a given continuous function f, the integral f; f(®)g(t)dt =
0 for all €?-functions g with g(a) = g(b) = 0. Then by standard arguments (for example contra-
position) it follows that f = 0.
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Thus it follows from the fact, that the integral on the right hand side of (4.60) is equal to zero
for all choices of the function 9,70 5|u=0, that the other factor in the integral must vanish and thus
(70, Y0) solves Lagrange s equation.

O

REMARK 4.19. In the setting of Proposition we use for a curve vy : [0,T] — M the
following notations for the associated curves in the tangent and cotangent bundle:

F(t) = Tyayy(8) = (v(8),7(8)) € TM
&(t) =Tr, () €€ CTM

3(t) :== (Dph) " 5(t) € T*M
cy(t) = (Dph) ™" e (t) € N (Ey) c T*M

The construction of the phase space curve cy lying in the energy shell h=Y(Ey) C T*M is schemat-
ically shown in the following diagram.

h™! (Eo)
oy (1) [ B
(Drh)
[0, 1] ™ ———— &

t —— 3(t) == (v(1),7(t)) —— & (1)

In particular, for fized Ey each parameterized curve v on the manifold M determines a unique
curve cy in the energy shell h=Y(Ey) C T*M. Thus the lift ¢y is uniquely determined by the base
curve and the assumption of energy conservation . By Remark the Finsler function l g, can
be written as Ly g, (x,v) = &y (x,0) - v, thus

/Olfh,Eo(ﬁ(t))dt = /c7 Edx .

4.4. Application to H. and the Eikonal (in)-equality

Now we are going to use the general constructions and definitions given up to this point for
the special case of a discrete Hamilton operator H. satisfying Hypothesis [£.20]

In particular Definition [£.1} Lemma [£:8] and Proposition [I.15] allow to define a metric adapted
to the Hamilton operator H. as follows.

HyPOTHESIS 4.20. Let H. = T. + V. be a self adjoint operator on £? ((5Z)d) with associated
phase space symbol he(x,&;¢€) == t(x,€) + ‘75 with the following properties:
(a) t € S9(1) (Rd X Td) is a periodic kinetic energy function in the sense of Definition .
Regarding t as a function on R? x R?, which is periodic with respect to &, we assume
furthermore that the function R? 3 € v t(x, &) is even and has an analytic continuation

to C%. In addition we assume that for all x € R? the Fourier coefficients a~(z) defined in
(12.20) satisfy the condition

a~(z) { § 8 }CZ; ;y i 8 and span{y € (¢Z)?|a,(z) < 0} =R?. (4.61)

(b) The potential energy V. is the lattice restriction of a function V. € € (R?), which has
an exrpansion

N
Vo(z) =) _e'Vi(z) + Ryya(wse),
=0

where Vy € € (R?). Furthermore Ryy1 € €°°(RY x (0,2¢]) and for any compact set
K C R? there exists a constant Ci such that sup, ¢ |[Ry41(z;€)| < Cre™V T
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(c) We assume that there exist constants R,C > 0 such that V.(x) > C for all |x| > R and
e € (0,e0]. In addition Vo(x) has exactly one, strictly non-degenerate, minimum at x1 = 0
with the value V;(0) = 0.
We denote by ho(z,€) = i(z,€) — Vo(z) : R** — R the phase function of order zero in e,
corresponding to the kinetic energy

t(x, &) = —t(x,i€) = z:anY ) cosh (iy . 5)

occurring in the eikonal equation (3.10).

REMARK 4.21. (a) The assumption on the analytic continuation on R? x (T4 4 iR%) im-
plies that the Fourier transforms a~ decay exponentially with respect to y; more precisely

it follows from Proposition[A.3 in Appendiz[A.]], that there exists a constant C' such that
I 6_%a_($)”g2((az)d) < C for any ¢ > 0 uniformly with respect to x € (¢Z).
(b) By the assumption ([£.61)), the kinetic energy t, :=t(z, .) : Rg — R is strictly convex with
respect to £. This can be seen as follows.
In order to be strictly convex, the Hessian D of t,, which is given by

D i= (D) = (G0, 1(x.0) = == | 3 ay(@)eosh () (vom) | -

vE(eZ)4

has to be positive definite. The strict convexity therefore requires
(v, Dv) —2 Zaﬁf ) cosh ( €§> (y-v)?>0, for all w e (eZ), v #0, (4.62)

what is surely fulfilled by (4.61) (see the proof of Proposition for details) .
This corresponds for & = 0 to the positive definiteness of the matriz B(x) introduced

in the Deﬁm’tion of a periodic kinetic energy (see (2.23))).
Since ty, is strictly conver and even, it follows at once that it has its absolute minimum

at the point € =0 and t,(€) > ,(0) = 0 for all £ # 0 and x € Re. In fact for all z € R?
- - (1 1 1 ~
L) =1, (364 3(-9) < 30 + 51(-0 = (O .

By the strict convezity, the point &€ = 0 is the only minimum of t,.

(¢) For the wide class of probabilistic operators introduced in Section the assumption
on the sign of a~ is always fulfilled. In this context, the assumption on the span of
the v with ay < 0 is an additional requirement on the transition matriz.

ProproSITION 4.22. The Hamilton function ho : R2 — R defined in Hypothesz's s hyper-
regular.

Proof:

By Proposition , it is enough to show that ho is hyperconvex in each fibre (i.e. with respect
to ¢ for each fixed z € RY). Thus we have to show that there exists a constant o > 0 such that

<v7 Dgﬁo(x,f)v> >alv)|®> forall z,&veR?. (4.63)

In the following considerations, we will skip the z-dependence of }Nlo, since we use only properties
of hg holding for all = € R?.
By Remark we have

<v Dgho(f > Z a~ cosh < 5) (y-v)?, &,veRe. (4.64)
~vE(eZ)4

By Hypothesis for each = € R?, the set of v € (¢Z)? with a,(z) < 0 span R, thus we can
choose a basis {7',...,5?} of R? with asi < 0. Since by assumption —a, > 0 for all v # 0, each
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summand in (4.64]) has positive sign and therefore

k

<Dh0 > Zakcosh< g)(Z-v)27 £veR?. (4.65)

We use the notion of as defined in (2.18) and set nt =

(then C' > 0 by the above considerations). Since cosh (n
yields

? (thus " € Z%) and C' = miny, (—a,x)
-€) > 1 for all £ € R?, equation ([4.65))

1si
€
k

<v, Dgﬁo(g)v> > ci(nk
k=1

The sum can take the value 0 only if v is orthogonal to nk for all k = 1,...d. Since the vectors
n',i = 1,...d are a basis, this is only the case for v = 0 (the matrix M = (C' Y, nfn}) has
maximal rank). Thus there exists a constant o > 0 (the lowest eigenvalue of M), such that

(v, DEho(&)v) = aflv]*.

DEFINITION 4.23. In the setting of Proposition we choose M = R?, Ey =0 and h =
ho =1 -V, (the energy phase function given in Hypothesis , which by Proposition 18
hyperregular.

Recall that by Hypothesis [{.20, the set of singular points with respect to the energy Eq = 0 is
given by S(0) = {0}. We define

Uz, v) = {é’_lo’()(z’v) ) i i](\)/[ =R\ {0}

Then £ : R?4 — R is continuous, since lim,_ o 7o(x,v) = (0,0).
The associated Finsler metric dg : R x R4 — [0,00) is given by

de(zg, 1) = inf / Oy (4.66)

Y€Lo,1(x0,21)

The following proposition permits to extend the solution ¢ of the eikonal equation ([3.10)
constructed in Section by the distance d(0, x), satisfying the eikonal inequality

t(x,iVe(x))+ Vo(z) > 0. (4.67)

outside of €2. To this end, we first notice that if dy is locally Lipschitz continuous, it is differentiable
almost everywhere in both arguments. This follows from the Rademacher Theorem (see [20]). In
fact restricted to a bounded domain ¥, the gradient Vd, is well defined in .£*°(X) as almost
everywhere limit of V(¢ * d¢) when € — oo, where (.(z) = e74((%£) € 65°(B(0,¢)) is a standard
mollifier. This construction is described for example in Helffer-Sjostrand [33].

PROPOSITION 4.24. Let ¢ denote the solution of the eikonal equation in a neighborhood
Q of 0 constructed in Section[3.3 Then in the setting of Definition
d°(x) := dg(0,2) = p(z), re. (4.68)
In addition for all x € R and R > 0 there exists a C > 0 such that for all v € (¢Z)¢ with |y| < R
and for all € € (0,¢eg]
|de(z,z+7)] < [7]C . (4.69)

Thus dy is locally Lipschitz continuous. At the points x € R?, where d° is differentiable, the eikonal
inequality

ho(z, Vd’(z)) <0 (4.70)
holds.
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Proof:

Proof of (4.69) and (4.70) (eikonal inequality):

By the triangle inequality and the definition of d;(z,vy), we have for any v € R? with |v| = 1 and
0>0

d(z +0v) —d’(x) < dx) +de(z,x + 0v) — d°(x) = de(z, x + 0v) (4.71)

= inf f dt < E dt
T WOy )

where 7o(t) = « + tov. For this special curve we get by the homogeneity of the Finsler function ¢
the estimate s
/ (A (t)) dt < sup L(z +tdv,dév) =6 sup €(z + tév,v) . (4.72)
0 te[0,1] t€[0,1]
Thus ogether with prove and dy is locally Lipschitz continuous.
By | 71) and -

0 _ 0
0yd’(z) = lim d’(z +6v) = d'(2) < lim sup £(z + tév,v)
6—0 o 6—0¢¢[0,1]

and thus we get for all v € R? with |v| = 1 the inequality 9,d°(z) = Vd°(x) - v < ¢(x,v). Since
both sides are positive homogeneous of order one with respect to v, we can extend the inequality
to all v € R? by multiplication of both sides with |v|, thus

Vd’(z) v < U(z,v), veR?, (4.73)

As described in Remark the Finsler function ¢ can be written as ((z,v) = &, (,?) - v, where
|

we used the notation & (z,7) = (tho) (x,0) and (x,?0) = To(z,v) (ie. (z,0) € €). It follows

from (4.73)), that

yielding

Vd°(z)-v < &y (2,0) v, for all (z,v) e TM,

(§;LO (2,0) — Vd°(2)) v >0, (x,v) € TM. (4.74)
Since ho(z, €) is differentiable, real valued and convex in each fibre (i.e. with respect to & for fixed
x), by (4.13)) the inequality
ho(,€) = ho(,m) + Dyho(z,1) - (€ = n)

holds for all z, &, € R Thus by setting £ = &, (,0) and n = Vd°(x), we get for all (x,v) € TM
the estimate

Bo(x,g,;o (z,0)) > ﬁo(m, Vdo(x)) + Dgﬁo(x, Vdo(x)) . (fﬁo (x,0) — vd°(x)) . (4.75)

The left hand side of (4.75) is by the definition of @ equal to zero. From the definition of the fibre
derivative and with the notation introduced in Remark [£.10] it follows that

Deho(x,Vd®(x)) = Dpho(z, Vd’(2)) = v (z, Vd’(z)) € R%.
Choosing (z,v) := (z, v, (z, Vd’(z)) in equation yields
0 > ho(z, Vd°(x)) + v - (&, (z, ) — Vd°(x))
Thus from the eikonal inequality follows.

Proof of (eikonal equality):
By the construction of ¢ in Section the outgoing manifold can be parameterized as Ay =
{(z,Vp(z)) |z € Q}. Thus for a given z € Q there exists a bicharacteristic curve 7y = (79, Ve (70)) C
Ay of the hamiltonian vector field Xj, , parameterized by [—o0,0], such that 7(0) = (z, V(z))

and limy—, o 70(t) = (0,0). Since 7p is an integral curve of Xj , it follows from Hamilton’s
equations (4.28) that

4o = Deho (0, Vo(70)) = Drho (70, Veo(0))
and therefore

&, (0, 90) = (Dﬂbo)_1 (70, ¥0) = Veo(70) -
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Thus d .
@90(’)’0) =Vy o= (DFhO) (70,%0) * Yo - (4.76)
Since 7 is an integral curve, (vo(t), 40(t)) lies on the energy shell £. Therefore 7o(y0,50) = (Y0, Y0)

and it follows at once from (4.76) and the definition of the Finsler function ¢ (see Definition [4.23)
and Proposition |4.15)) that

d .

2 #(0) = £(70, %) (4.77)
The point z = 0 is a singular point of the Finsler manifold (R%,¢) (since ho(0,0) = 0), thus the
base integral curve o : [-00,0] — 25 0 of Xj, is not a regular curve on a Finsler manifold in

the sense of Definition To avoid this difficulty, we restrict the curve vy to [—T,0] and set
yr = Y(=T). Then for each T € R, the points yr and z can be joined by the integral curve
Yolj=7,0) of X i, and therefore by (4.77)

0

(@) — olyr) = / U (), Aot)) dt (4.78)

-T
By Propositionthe integral curve ~yy of X i, 18 @ geodesic with respect to the associated Finsler
function ¢ (i.e., the integral f_OT £(7y,%)dt is extremal for v = 7). Thus it remains to show, that
~o is minimal geodesic with respect to £, i.e., the right hand side of is minimal for variations
over all curves in I'_7 o(y7, ). Then the length of -y is by Definition equal to the distance dy(yt, ).

To show that the geodesic 7y is minimal, we use Abate-Patrizio [1], Theorem 1.6.6 (see also
Bao-Chern-Shen [6], Thm. 6.3.1). One of the conclusions of this Theorem is, that geodesics,
which are short enough, actually minimize the curve length among all ¥"*°-curves with the same
endpoints. Thus the length of any short geodesic joining x and y is equal to the Finsler distance
d@ (I, y) :

The main ingredients of the proof of this theorem are the Euler equations , the Fundamen-
tal inequality and the Gauss-Lemma on the orthogonality of radial geodesics and geodesic
spheres with respect to the metric g.

For @ small enough (with respect to d° and thus by Lemma with respect to Euclidean
distance) it follows from [I], Thm.1.6.6, that

0 0
(@) — olyr) = / o) Ao(t)) = inf / (1), 4(0)) dt = dylyr, @) . (4.79)

Y€l —r,0(yr,x) J_T
Since £ and ¢ can be continuously extended to the point 0, it follows that

Am (o(2) = ¢(yr)) = lm de(yr, ) ,
leading to the result

p(z) = de(0,z) = do(x) .
O

REMARK 4.25. The eikonal inequality (4.70) is valid not only for de(x,0), but in general for
de(z,y), where y is fized. In fact we have
de(x + 0v,y) — de(z,y) < de(2,y) + de(z, 2 + 6v) — de(z,y) < do(, 2 + 0v)
which can be inserted in (4.71)) to give by the same considerations as above V  do(x,y) v < £(z,v).
This leads to the inequality (ffm (2,0 —Vade(z,y)) v >0 and thus almost everywhere for any fized
y € R? to the eikonal inequality

ho(z, Vyde(x,y)) <0. (4.80)



CHAPTER 5

Weighted estimates for Dirichlet eigenfunctions

The aim of this chapter is to find estimates for the weighted £?-norm of eigenfunctions of the
Dirichlet operator associated to H. with respect to a neighborhood of one potential well.

These estimates show the exponential decay of the eigenfunctions of the low lying spectrum
of H. with a rate controlled by the Finsler distance constructed in Chapter [} To analyze eigen-
functions concentrated at the potential minimum x; = 0, we introduce a bounded region ¥ C R¢
including z; and its lattice restriction X := £ N (eZ)<.

DEFINITION 5.1. Any function u € £2(X.) can by zero extension, i.e. via u(z) =0 for z ¢ X,
be embedded in (*((Z)?). If we denote this embedding by is_, we can define the space K%E =
is. ((3(2:)) C €%((cZ)?) and the Dirichlet operator

H> =15, H€|52>:E : f%s — (225 . (5.1)

We think of HZ as having Dirichlet boundary conditions on the boundary 93.

5.1. Preliminary Results

The first step to weighted estimates for eigenfunctions of HZ is contained in the following
lemma, which gives a useful expression for the scalar product of H. conjugated with an exponen-
tial weight e .

LEMMA 5.2. Let H. be an operator on (> ((SZ)d) satisfying Hypothesis . and let ¢ be a real
valued function on (¢Z)?, which is constant outside some bounded set. Then for any real valued
v e D(H,)

(FHee %) v, v)p, = (Vo4 VE)v, v)p
_% > ay(x)cosh (W) (v(z) —v(z+7))?,
z,vE(eZ)?
where

VA= Y aweost (Lpte) - pla b)) (5.2)

~yE(eZ)4

Proof:
By use of the symmetry of 7. and since v and ¢ are assumed to be real valued and e v € P(H.),
we have

gy

g

<(€%T56_%)U,U> =

P “fwv, et v>€2 + <e_% v, T.e* v>€2}

N~ N~
—
~
~

Z av(m) (e%(@(l‘)—iﬂ(w-l-’)’)) + e—%(g&(w)—cp(w-{-’)’))) ’U({E + ’)’)U(J’J)
z,vE(eZ)?
= Y ay(@)cosh (2p() — pla+ 7)) vz +)o(@).
z,v€E(eZ)4

81
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Since v(z +y)v(z) = v(z)(v(z + ) — v(z)) + v?(z) it follows from the definition and symmetry of
V¥ that

((FTee %) v, v = D ay(@)cosh (2p(@) = p(z + 7)) v(z) (v(z +7) = v(z))

z,YE(Z)?
+ Y ay(@)cosh (p(x) = p(x +7))) v(x)® (5.3)
z,vE(eZ)?
1
=—3 > ay(@)cosh (L(p(z) — p(z +7))) (2v(x)” = 2v(x)o(z +7)) + (VEv, v)
z,v€E(eZ)4
Again by the symmetry of T, which yields a(z) = a_~(x + ), together with the fact that cosh
is even, we have by use of the substitutions z’ = z + v and ' = —y
> ay(@)cosh (L(p(z) — p(z +7)) v(@)?
z,vE(eZ)4

= 3 ala o eosh (el +9) — o)) o’ + )
z’/ v €(eZ)?
= D ay(@)cosh (Hp@@) — (@' +9)) vl +7)?
o' ' €(eZ)d

Thus by use of this transformation for one of the two terms multiplied with v(x)? on the right
hand side of (5.3) we get

<(65T567§) v, v>€2 =

- % > ay(@)cosh (2p(x) — ez +7)) (v(2)? = 2v(z)v(z +9) + v(z +7)%) + (VEU, 0)p
z,vE(eZ)?
= —% > ay(@)cosh (p(x) — ez +7))) (v(z) — v(@+ 7))+ (VEV, 0)p .
z,v€E(eZ)?

Since V. commutes with e~ <, the lemma follows.
O

For the Dirichlet operator H> conjugated with the weight function e, where ¢ denotes a real
valued phase function, Lemma leads to the following norm estimate, which will be used later
on to prove the main theorem.

LEMMA 5.3. Let ¥ C R denote a bounded region (or ¥ = R% respectively) and let for any fized
e € (0,e9] denote by B. = XN (¢Z)? the restriction of . to the e-lattice. Let HZ be the associated
Dirichlet operator on K%E as defined in , where H. satisfies Hypothesis . Denote by V7
the multiplication operator on (?((¢Z)?%) defined by (5.2) and, for E > 0 fized, let Fy : ¥ — [0, 00)
be a pair of functions such that F(x) := Fy(z)+ F_(z) > 0 and

F2(z) - F2(2) = Vo(z) + VE(x) - E, z€X. (5.4)

Then for a function ¢ on ¥ and v € 6225 (orv e P(H.) and ¢ constant outside some bounded set
respectively), both real valued, the estimate

2
k2l _¥
IFollf: < 4|3 (e* (HE - B)e %) o|| | +8IFvl. (5.5)
holds.
Proof:
First we state the algebraic inequality
1FvlZ <2 (|1 Feollzz + 1F-vllz2) =2 (IFvll — [F-vlZ) + 41 F-vl7 (5.6)

and that by the construction of F and F_
1Evllf = [F-vll7 = (Ve + VZ = E)v, v)a - (5.7)
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Since the non-positivity of the coefficients a., for v # 0 assumed in Hypothesis yields
1 1 9
5 2 e eosh (Z(p(e) — plr +7)) ) (o) — (e +7)) 2 0 (53)
z,vE(eZ)2

and <(ef(H6 fE)e*§)v, v>22 = <(ef(H82 fE)e’f)v, v>€2 for v € &_ (or for v € Z(H.)
respectively), it follows from Lemma that

(Ve4+V#E —E)v,v)p. < <(e§(H§—E)e_f)v,v>£2, (5.9)
(5.7) together with (5.9)) yield by use of the Cauchy-Schwarz inequality

IN

2 ([1Fpoll7 — 1 F-vlZ) 2((ef(HZ = E)e %) v, v), (5.10)

@ @ 1
k2 ) _e
|5 (e 2 = Bye* ) o, S5 F0le

2 1 F 9
Vol + Il

IN
)
S

IN
[N}
=
/N
@
ol
=
|\l
|
S|
~—
CU‘

By inserting (5.10) in (5.6) we get
|Folf <2|| (e (HE - E)e”

k2
€

2 1
)“Hp + Sl + 4 FovlZ
and therefore 2
IFoll < 4| (c* (HE = B)e %) o | +8IF-vl .

5.2. Weighted Estimates

We are now in a position to give estimates for the ¢2-norm of weighted eigenfunctions of the
Dirichlet operator HZ. We will show, that semiclassically they decay exponentially at a rate con-
trolled by the Finsler distance d°(z) of = to the well at the origin.

THEOREM 5.4. Let ¥ C R? be a bounded region including the point O such that d° € €*(%),
where d°(z) := d¢(0,x) denotes the Finsler distance to the origin defined by and denote for
any € € (0,e0] by Be = XN (eZ)? the restriction of . to the lattice.

Let E € [0,eRy] for Ry fized, assume Hypothesis and let HE denote a Dirichlet operator

as introduced in .

Then there exist constants eg, B,C > 0, such that for all € € (0,e0] and u € E%E real valued

—B 0
H(1+ ds—o) ed?u

Proof:

(1+‘i—0>_Bed?0 (HE - E)u

<C {51

. + |u||g2:| . (5.11)

2 14

We partly follow the ideas in the proof of Proposition 5.5 in Helffer-Sjostrand [33].
First we notice that the symbol > defined by

Sx T3 (2,8) — t5(2,8) = Y ay(a)e ¢ (5.12)

~E(ez)@
z+yED

is associated to the kinetic part T of the Dirichlet operator HZ in the sense that
T>u(z) = Opgd (2 u(z) for any we (3 .

In the following we write for simplicity d(z) := d°(z).

Let x € ¢>(Ry,[0,1]), such that x(r) = 0 for r < 1 and x(r) = 1 for » > 1. In addition
we assume that 0 < x/(r) < 2,3 (this is possible, because by construction x'(r) > 2+ 46 for § > 0
arbitrary small).

We define g on ¥ by:
g(x) :=x <> , xEN, (5.13)
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: B
where B will be chosen later. Then g(x) = 1 for d(z) > Be and g(x) = 0 for d(z) < 5F. Let

- Be B Be 2d(x)
O(x) :=d(x) 7log <2> g(x)210g< Be > . (5.14)
For any B we choose € < ep small enough, such that
Vo(z) + t(z,iVd(z)) =0, reXNd ([0,Be)) = {y € $|d(y) < Be}, (5.15)

ie. {y € X|d(y) < Be} C Q, where @ denotes the region, where the eikonal equation (3.10) holds.
By the definition of g

Vo(z) = Vd(x) {1 - 25(2)" (‘g?) - %X' <d§?) log (23;(:))} . (5.16)
Step 1:

We will analyze the term Vy(z) + t(x,iV®) in the different regions.

Case 1: d(x) < %
Since x(z) = x'(z) = 0 and the eikonal equation ([3.10]) holds, we get
Vo(z) + t(z,iVO(x)) = Vo(x) + t(x,iVd(z)) =0, zexnd (o, ). (5.17)

Case 2: d(xz) > Be
Since x'(z) = 0 in this region, we have by (5.16)

Vo(z) = Vd() (1 - 25(;))

and thus
B
Vo(z) + t(z, iVO(z)) = Vo(z) + ¢t (xJVd(:v) (1 - Qd(‘f)» . (5.18)
x
From the convexity of ¢ with respect to ¢ for fixed z it follows that t(z,i¢) = —#(x, ) is concave
and therefore for all £, € R¢
t(z, M€ + (1 — A)in) > M(x,i€) + (1 — Nt(z,in) for 0<A<1. (5.19)
In the mentioned region, 0 < (1 — 25(2)) < 1, thus with the choice A = (1 — 25(2)) and n = 0 in
(5.19) and since t(z,0) = 0 for all € (¢Z)¢ we get by (5.18) the estimate
B
Vo(z) + t(z,iVO(z)) > Vola)+ (1 - 2d(§:)> t(z,iVd(z)) >
Be
> 1—-({1- =
= it (1= (1= 577))
Be
~ @y

where for the second estimate we used that by Proposition[4.24]the eikonal inequality ¢(z,iVd(z)) >
—Vo(z) holds. It follows from the expansions of Vs and of ¢ at zero (which equals d in
a neighborhood of zero), that d(z) = O(|z|?) and Vy(x) = O(|z|?) for |z| — 0. Since the region
was assumed to be bounded, it thus follows that there exists a constant Cy > 0 such that

1 Volx) _
1~ 0 < 1
Gy _2d(x)_co’ xz€XNd ([Be,o0))
and we finally get
B
Vo(x) + t(z,iVO(z)) > —¢, a€Xnd *([Bs,x)). (5.20)

=
Case 3: B2 < d(z) < Be

We define
5692 5 (1)t = e (4 g (12

such that by (5.16)

V&(r) = Vd(z)(1 - fi(z) — fa(2)) . (5.21)
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2d(z)

Since 1 < 5= < 2, both functions are non-negative and therefore 1— fi (z)— fo(x) < 1. In addition
it follows that 0 < fi(x) < 1 and by the assumption x'(r) < 2,3 we get 0 < fo(z) < 1,15log 2.
Therefore 0 < f1(x) 4+ fa(z) < 1,15log2 + 1 < 2 and thus the estimate

1= fi(z) = f2(z)] <1 (5.22)
holds. Setting

o= st = (-85 ( (42) -4 (¢ (420) e (242)
it follows from and (5.22), that
VO(z) = \Nx)Vd(z)  with |[Mz)|<1 2zeR?. (5.23)

Thus again from (5.19) (the concavity of t) together with (5.23)) and the fact that ¢ is even with
respect to £ it follows that

Vo(z) + t(x,iVE(x)) = Vo(z) + t(x, iA(x)Vd(x)) > Vo(x) + |A(x)|t(x,iVd(x)) . (5.24)

Since by assumption the eikonal equation (5.15)) holds for d(xz) < Be, the positivity of V; and
(-29) yield

Vo(z) +t(z,iVe(x)) > Vo(1 - [A(@))) >0,  zeXnd '((4=, Be). (5.25)

Step 2:

In the second step, we analyze the operator V. + V.2, where V® := V. denotes the multipli-
cation operator defined in Lemma [5.2
To use Lemma we have to find estimates not only for the zero order term Vj + t(z,iV®), that
we analyzed up to this point, but for the complete sum V. + V®. The idea is, to write

Vo(z)+ V() = <‘75(x) - Vo(x)> + (V®(2) = t(2,iV®())) + (Vo(x) + t(x,iVE(x)))  (5.26)

and to find estimates for the differences in the first two brackets on the right hand side. By
Hypothesis and since X is bounded, there exists a constant C; > 0 such that

Ve(@) = Vo(z) > —Cre, az€X. (5.27)

The aim is now to show, that the difference between t(x,iV®(x)) and V'® is at least of order .
In the following considerations, we will use

LEMMA 5.5. Let g: ¥ — [0,1] be defined by , Let k € N and d € €%. Then there exists
a constant C > 0, such that for all € € (0,e0) and for any a = (aq,...,aq) € N4 |a| <k

0°g(z)| < Ce~5,  zey.
Proof:
For || = 0, this follows directly from the definition. Thus we assume |«| > 1. Then the derivative
is by the definition of the cut-off function supported in the region % < d(z) < Be and by the
Leibnitz and chain rule

)= X Corpt (G2 ) o7 (vatw)” (5.28)
PRE T,

Since on the support of Vg the eikonal equation holds, it follows from Proposition [£:24] that
d(z) = ¢p(x). Therefore by the expansion (3.12) of ¢ it follows that d(z) = (z, Az) + O(|z|3)
for some d x d-matrix A and  — 0 and therefore Vd(z) = O(|z]). Thus in the region with
Be < d(z) < Be (on the support of Vg), we have |z| = O(y/€), yielding Vd(z) = O(y/€). The
higher derivatives of d are by (3.12)) bounded by a constant. Therefore the summands on the right
hand side of (5.28) are of order £* with k = —|8|+ 2 max{0, |3| — |7|}. Thus for |3 > |7 it follows
that k = —|8| + w = —‘%l and for |8 < |y| we have k = —|3] > —%. Thus the leading

[

terms are of order e~z . O
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In the next step, we estimate the difference between V?® and t*(x,iV®) defined by (5.12).
Since t is an even function with respect to £, we analyze the modulus

V(@) = % (2, —iVE)| = | Y avﬁﬂ{amh(icﬂx)—4%m+v»>——amh(—ivV@@w)}
SN

< 3 ool eosh (L(0(0) - 0o )] — cost (- 1570

vEZL(x)

. zex, (5.29)

where Y/ (z) := {y € (¢Z)? |z + v € ¥}. By the mean value theorem for the function cosh z with
zo = —17V®(z) and 2y = 1(®(2) — ®(z + 7)), we get from |sinhz| < el®l

cosh C(@(x) — ®(z + 7))) — cosh (—iW‘P(w)) ‘

1
< sup el (@@ -2 (@tm)t— Ve (2)(1-0)}| g{(CI)(x) —®(z+7)) +7Ve(x)} . (5.30)
te[0,1]
By Proposition [4.24} (4.69)) and the definition ([5.14)) of ® there exist constants ¢y, ca > 0 such that
|®(z) = (z+7)| < cily| and [yVO(z)| < c2ly|, 2 €X,v€EX(a).

Since t € [0,1] in , there exists therefore a constant D > 0, such that the exponential term
on the right hand side of (5.30)) can be estimated as

e%{(<1>($)7<I>(w+v))t+vv‘i>(w)(1*t>}’ <eehl, (5.31)

By second order Taylor-expansion, the remaining factor on the right hand side of (5.30) can be
estimated as
d

1 1
2 1(0) = B +9) 49V € s 2D add B e m)] . (53
telo, v,p=1
By the definition (5.14)) of ® we have
B 2
0,0,0(0) = 0,0,(2) - 0,0, (s(e) 5 o (252 ) ) = BL0sa(e) (5.33)

~{0.0.9) @5 108 (252 + 0,9)(0) 5 Oud) ) + (Gus) )

Be ((0,d)(x)(0,d)(x) )
2d() ( dwy @O )>}

We will show, that this term is bounded uniformly in . To analyze the different summands, we
introduce a constant § > 0 such that {x € ¥|d(z) <} C Q and 6 > eoB.

Since ¥ is bounded, all derivatives of d are at least bounded by a constant independent of ¢,
thus the first summand is bounded.

The next three summands include a derivative of ¢ and are therefore supported in the region
Be < d(x) < Be. Thus 1 < 2%(:) < 2 and from the expansion of the solution of the eikonal
equation ¢, it follows that 9, d(x) = O(y/€) as described in the proof of Lemma Together with
Lemma this yields the boundedness of these three terms.

For the last term, we analyze the regions d(x) < ¢ and d(z) > § separately.

Case 1: d(x) < 0:
By Proposition d coincides with the solution ¢ of the eikonal equation, thus by the expansion
of ¢, we have d(z) = (x, Az) + O(|]z|?) for some d x d-matrix A and  — 0 and thus
0yd(z) = O(|z|) and 0,0,d(x) = O(1). Thus that there exists a constant M > 0 such that

(0,d)(x)(9,d)()
% d(x)

—g(x)

+1(0,0,d)(x)] < M for § small enough.

Since in addition the for d(x) > % (on the support of g), the term Z¢ is bounded by 1, the

2d
summand is bounded by a constant independent of ¢.
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Case 2: d(x) > 0:
In this region, we use that the derivatives of d are bounded on ¥ and that d=!(x) < § 1.
Thus we have shown, that there exists a constant C' > 0 such that for all € € (0, &¢]

10,0,%(z)| < C.

Therefore by (5.32)) there exists a constant C3 > 0 independent of the choice of B such that for all
e € (0,e0]

1 C
(@) = 2z +7)) +9Ve(@)| < (5:34)

By Hypothesis the coefficients a., decay exponentially fast in v, i.e. et a(z) € 2 (( )d)

for any A < oo Wlth respect to summation over . We therefore can conclude by (5.29 - and
(15.34))

VE@) 1, VB < 3 e 2l Zn Cpp.

YETL ()
Thus for A big enough A — D = D’ > 0 and we get with y =1 € 7% the estimate

|V‘I>($c) — t(z, —iV®(x))| < Z |'Y|C3 v)? <e Z e WP Cyly? < eCy . (5.35)
yeXL(x) yEZ
By (5.27) and (5.35| - we get for all x €
V(@) = Vo(z) + VE(2) — t(z,iVP(z)) > —Cie — Cye = —Cse (5.36)

with Cy independent of B.

Inserting (530) in (5.26), we get by (5:17) and (5:25)

Ve(z) 4+ V®(z) > —Cs e for d(z) < Be (5.37)
and by
Vo(z) + V2 (z) > (50 - C5> for d(xz)> Be. (5.38)
Step 3:
Now we are in the position to use Lemma to get the stated estimates.
We require
(5)—05>5—E25, Ec0,eRy], (5.39)

thus we set B such that it fulfills the condition B > Cy(1+ Ro + C5), i.e. B depends on the choice
of the upper bound for E (in particular B increases with increasing Ryp).
Let
O_ i ={zeX|Vx)+V®@)—E<0} and @, :=%\0_, (5.40)
then from (5.39) it follows that @_ C {d(x) < eB} and by (5.37) together with the definition of
D_

[Vo(z) + V®(x)| < e max{Cs, Ry}  forall zeO_. (5.41)
We define the functions Fy : ¥ — [0,00) by
Fy (@) = /2 Lay<pey (@) + (Va(@) + VO () — E) 1o, (2) (5.42)
and
Fo(@) = \/2 Lay<pey (@) + (B = Vo(@) = VE(2)) 1o_() . (5.43)

Then Fy are well defined and furthermore there exists a constant C' > 0 such that
F:=F,+F._>Cye>0, F.=0(e) and F2-F2=V.+V®-E. (544)
With the choice v = e%u Lemma thus yields the estimate

2 2 s |2
|Fetul| , < 4|kt (HZ—E)u| ,+8|Feta] | . (5.45)
2 2 e
The weight function et is by definition given by
®(2) aw) (B 2d(x) ~39@)
s =ec: | —= . 5.46
et (3) (%) =
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By the construction of the cut-off function g there are constants C,C,C’,C” > 0, such that

_B
o1, 4@ ) G, dey<Be | BT (2d()) TR
/T ()7, dwzBe [ \2 Be
and
_B
e <B)}23 (2d(x)>gg(z) < (%) i d(x) < 5 <c <1 + d(ac)>123
= d -3 = -
2 Be ( (Ex))  d(w) > B €
Thus by (5.46) we have the estimate
_B _B
o (1 + d(:)> <t <t (1 + d(:)> : (5.47)
By (5.47) and (5.44) the left hand side of (5.45)) is bounded from below by
2 _ B 2
Fetul > Ce||(1+ )77 eu (5.48)
2 2
and the first summand on the right hand side of (5.45) is bounded from above by
2 B 2
-1 dy~z2 ¢ )
|#e® (HZ = E)u|, <ce7 |1+ 9) = et (BZ - B) . (5.49)

Since @_ C {d( ) < Be} it follows from the definition of F_ that (EI) < C on its support.
Therefore by (5.47) and (5.44) there exists a constant C' > 0 such that the second summand on
the right hand Side of (5.45)) is bounded from above by

e |2 2
HF,eeuHZZ < Ceull . (5.50)

Inserting (]5.48[), (]5.49[) and (]5.50[) in equation , yields with B:= %
2 2

<e!

-B 4
(1+4) "ecu

(1+4) et (H - E)u

&€

Ce

KZ
This proves the theorem. O

A direct consequence of Theorem is the following result about the decay of the eigenfunc-
tions of HZ.

THEOREM 5.6. Let u € (% be a normalized eigenfunction of the Dirichlet operator HE defined
in (5.1) with respect to the ezgenvalue E €[0,eRp). Then there exist constants B,C > 0, such that
for all € € (0,¢e0]

Proof:

Using the normalization of u for the second term on the right hand side of (5.11]) and the fact
that for the eigenfunction with eigenvalue E, the first term on the right hand side vanishes, the
stated result follows at once from Theorem [5.41 O

It follows immediately that there exists a constant My € N which can be chosen depending
only on the upper bound Ry for the eigenvalue E (see (5.39)), such that

eéuH(z2 =0 (M) (5.51)

This estimate will be used in Chapter [6] to compare the WKB-expansions computed in Chapter [3]
with the exact eigenfunctions in the case of several wells.



CHAPTER 6

Interaction between multiple wells

In the situation described in Chapter [2, where the potential energy is allowed to have a finite
number of wells, we are now going to analyze the interaction between different wells and the
tunnelling effect.

For a fixed spectral interval we will show that the difference between the exact spectrum and
the spectra of Dirichlet realizations of the Hamilton operator at the different wells is exponentially
small and determined by the Finsler distance between the two nearest neighboring wells.

6.1. Setting

In order to use the results given in the previous chapters, we have to combine the setting of
Chapter [2| where the potential energy may have not only one but a finite number of wells, with
some of the additional assumptions, which we made in Chapter [3 and [4]

For the WKB-expansion of the eigenfunctions and the weighted norm-estimates for the Dirich-
let eigenfunctions, it was essential, that there was only one singular point of the potential V. Thus
it will furthermore be necessary to define regions around the wells, which exclude all other wells.
Then the associated Dirichlet operator fulfills the assumptions in the preceding chapters.

HYPOTHESIS 6.1. Let H, = T, + V. be a self adjoint operator on (> ((EZ)d) with associated
phase space symbol he(x,&;€) = t(z,§) + V. with the following properties:

(a) t € S§(1) (R? x T?) is a periodic kinetic energy function in the sense of Definition .
Regarding t as a function on R? x R?, which is periodic with respect to &, we assume
furthermore that the function R? 3 € v t(x,&) is even and has an analytic continuation
to C%. In addition we assume that for all x € R? the Fourier coefficients a~(x) defined in
(2.20) satisfy the condition

a(z) { § 8 }CZ: :}Y/ i 8 and span{y € (¢Z)?|a,(z) < 0} =R?. (6.1)

(b) The potential energy V. is the lattice restriction of a function V. € € (R?), which has
an exrpansion

N
Ve(z) = ZElVl(J?) + Byia(z3€),
1=0

where Vy € € (R?). Furthermore Ryy1 € € (R? x (0,e0]) and for any compact set
K C R? there exists a constant C such that sup, ¢ |[Ry+1(z;e)| < Cre™M Tt

(¢c) We assume that there exist constants R,C > 0 such that V.(x) > C for all |x| > R and
e € (0,e0]. In addition Vo > 0 and it takes the value Vo(x) = 0 only at a finite number of
strictly non-degenerate minima {xy};" ;.

(d) Let dy denote the Finsler distance associated to ho introduced in C’hapter Definition
[4.23 Then we assume that there exists an n > 0 and a constant C > 0 such that for all

7 € (eZ)" we have [la,(@)e™ 5 @2y < C.
B Y

REMARK 6.2. (a) As already discussed in the previous chapters, the analyticity of t with
respect to & implies for its Fourier coefficients a~, that for all B > 0 there exists a constant
C such that for all x € R?

Bl.|

= a.(v)|leensy <C . (6.2)

e

89
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This leads to an estimate of the sup-norm of a., since we get that for all B > 0 there
exists a constant C > 0 such that for all x € R?

S Jay (@) e < C.

Y

This yields in particular

sup |ay(z)| < Ce™ 7= (6.3)

zERC

and by use of (4.69) it follows that for any B > 0 and any bounded region ¥ C R? there
exists a constant C > 0 such that

d( +"r)
Z HG”Y Hloo(z S C. (64)
lvl<B

6.1.1. Definitions and Notations. In order to analyze the problem of multiple wells and
tunneling, we have to introduce several notations and some further hypotheses.
We denote by

ho(z,€) == #(z,€) — Vo(x) : R* - R (6.5)

the phase function of order zero in e, corresponding to the kinetic energy
- 1
t(x,€) := —t(x,if) = Z a~(x) cosh (57 . 5) (6.6)

occurring in the eikonal equation ([3.10).

Let C := {1,2,...m} denote the set of numbers of the wells of V. For each critical point
zj, j € C, we denote by p;(e) a lattice point such that Vo(p;) < Vi(p) for all lattice points p in a
small neighborhood of x;. Then |z; — p; ()| < vd

We suppose €¢ to be small enough to ensure, that p;(e) # pi(e) for k,j € C,k # j and for all
€ € (0,&0]. By Hypothesis[6.1]it is clear that V5(p;) > 0 and since the minima were assumed to be
non-degenerate, it follows that [V (p;)| = O(e?).

We write dy =: d, where dy is the Finsler distance defined in Chapter [d Definition [4:23] and
for each well z; € R?, j € C, we define &’ (z) := d(z, x;).

Let Sp := minj»t de(x;, 2;) denote the minimum over all Finsler distances between two differ-
ent wells and let 7 > 0 be small. Then for a fixed S €]0, Sy — 7, for each j € C the S-spheres at
Ly

B(z;,8) = {x € R? | dy(z,z;) < S} (6.7)

satisfy xy, # B(z;,S) for k # j.
In the following we give additional assumptions on the choice of M; and I..

HYPOTHESIS 6.3. (a) For B(xzj,S) defined in (6.7), we choose a compact manifold M; C

4 with €2-boundary such that B(x;,S) CM; and x & M; for k # j. Furthermore we
assume S to be chosen such that d7 € €*(M;).
We denote by HEMj the Dirichlet realization of H. on M. as defined in Chapter@
B
(b) Let I. = [a(e), B(g)] be an interval, such that a(e), (e) — 0 fore — 0. Furthermore there
exists a function a(e) > 0 with the property |loga(e)| = o (1), e — 0, such that none of
the operators He, HM1, ... HMm has spectrum in [a(e) —2a(e), a(€)[ or]|B(¢), B(e) +2a(e)].

Thus there should be no spectrum exponentially close to the spectral interval I.. It will be
seen later, that this assumption on the spectral interval can always be fulfilled by a small shift of
the ends of I..

The lattice subset associated to M is denoted by M, . := M; N (eZ)?. For ¢ sufficiently small
we can assume that pg(e) ¢ M; . for k # j.
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Let
spec(H.) NI. = {A1,..., AN}, uy, ..., uy € 2 ((e2)%) (6.8)
F :=span{uq,...un}
spec (HEMJ) NI ={pj1, s Mjn, }s Vj1yeeeyVjn, € 0?2 (M;.),jeC
Ej = span{vj1,...,Vjn,}, £ = @Sj

denote the eigenvalues of H. and of the Dirichlet operators HEM 9 in I, and the corresponding
orthonormal systems of eigenfunctions. F denotes the eigenspace spanned by the u; and &; the
eigenspaces spanned by v; .

We denote by V = ((viyk , vj’l>£2) the matrix given by the scalar products of the Dirichlet-
eigenfunctions.

6.1.2. Decay estimates for the Dirichlet eigenfunctions. Theoremyields for ¥ = M;
and d/ instead of d°

COROLLARY 6.4. Under the assumptions of Hypothesis and there exists a number

No € N, such that for all j € C and 1 < k < n; and for all € € (0, ]
al _
le vjkllez = O (7).

In the following we will in addition need an estimate for the £2-norm of weighted eigenfunctions
uy, of H. on the whole lattice (¢Z)? instead estimates only for the Dirichlet eigenfunctions as in
Theorem Therefore we introduce a new distance function d by replacing the Finsler distance
d in a €' way by a constant outside of some balls around the several wells.

Define for j € C and Cy > 0

Bj:={zeR|d(z) < ZCy} (6.9)

Rj:={zeR'| 2C, < d/(z) < ZCo}

By =R\ | J (B UR)) . (6.10)
jec

where Cy is chosen such that d/ € €%(B; U R;) and d’(z) = mingec d* () for x € B; U R;.
We define

' (x) ,x€ B, jel
d(z) = { Co [g ~ Lcos (zd;gw)} Jx€R;, jeC . (6.11)
Co(g—i—%) ,x € By
Then d € € (RY),
d(z) < d’(z) forall zeR%jeC (6.12)
and .
Vd! (x) ,x€B;, jel
Vd(z) = { Vd(z)sin (%) Jz€R;, jeC
0 ,x € By
Thus Vd is Lipschitz continuous and for all z € R? and j € C, there is a A, € [0, 1] such that
Vd(z) = A\ V& (2) . (6.13)

Furthermore we can define the second derivative of d almost everywhere by use of the Rademacher
Theorem (see Evans-Gariepy [20]) and it is bounded. Thus we can show the following result about
the decay of the eigenfunctions of H..

PROPOSITION 6.5. Let u € (2 ((EZ)d) be a normalized eigenfunction of an operator H. satis-

fying Hypothesz's with corresponding eigenvalue E € [0,eRp] and let d be defined by .
Then for any 0 < § < 1 there exists an g9 > 0 such that for all € € (0,¢eq]

lefulle =0 (ef) . (6.14)
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Proof:

Since Lemma is also valid in the case ¥ = R?, we may follow the proof of Theorem
Fix § > 0 and let ® := (1 — §)d, then by (6.13])

V.| < (1-6) \v (mine*) @

, a.e., (6.15)

where the gradient of mingee d*(z) is understood in the sense of the Rademacher Theorem for
Lipschitz-continuous functions.

Since t(x, i) is concave and even with respect to & with absolute maximum zero at £ = 0 and
0<(1-90)<1,it follows from that

t(z,iVO(z)) > (1 — )t(x,iV Iknelél d*(x)).

Since the eikonal inequality (Lemma [4.24)) is valid for each d’, j € C, we therefore get

Vo(z) + t(x,iVO(x)) > Vo(z)+ (1 —0)t (mv (r]?eigd’“) (x))

= Vo(z) = (1= 6)Vo(z) = 0Vo(x) . (6.16)
Thus with
Bs := {z ¢ R | d(z) < 6}. (6.17)
it follows from and Hypothesis that there exists a constant C' > 0 such that
Vo(z) + t(z,iVe(z)) > 6C, x ¢ By . (6.18)

To use Lemma we have to analyze the term IA/E +V®—E.

We analyze separately the regions |z| < R and |z| > R, where R is chosen such that ‘Z(x) >C
for some C > 0 and |z| > R. Furthermore we assume that {x € R?||z| > R} C By.

Case 1: |z| < R:
We write

Vae) + V(@) = (Valw) = Vo)) + (VE(2) = (e, iVB(2)) + (Vo(@) + 1, iV () (6.19)

and give estimates for the differences in the first two brackets on the right hand side of . To
show positivity of ‘//\; + V® outside of Bs, it is by sufficient to show, that their negative part
is at least of order e.
This is obvious for the potential term (the first brackets), since by Hypothesis [6.1](a4) there
exists a constant C such that
Ve(z) = Vo(z) > —Cre, zeR%|z|<R. (6.20)

The modulus of the difference inside the second brackets on the right hand side of (6.19) (the term
generated by the translation operator) is given by

V(@) = t(z, —iVO)| = | D ay(x) {cosh (i(@(x) — Oz + 7))> — cosh (ivV@(z)) }

vE(eZ)?
< Y ay(@)|
vE(eZ)?
As in the proof of Theorem we use the Mean Value Theorem to get that for all z and ~

cosh (i(@(m) _ oz + 7))) — cosh (i’yV@(m)) ' (6.21)

cosh (i(@(w) — Oz + v))) — cosh (—iW(ﬂ@) ‘

< sup elHE@-2@t-Te@ -0}

tefo,1]

1
€

{(®(z) — (x4 7)) +Wq)(x)}' . (6.22)

By the definition of d it is clear that there exist Cy,Cy > 0, such that
jd(z) —d(z+7)| < y[C1 and |ZWVd(2)] < |y|Ca  zeRY € (e2)". (6.23)
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Since on the other hand by (6.2)) we can deduce that for all z € R? and for any B > 0
lar (2)] e {(@@)—2@+))t Ve (2)1-0)} < =21 (6.24)

Second order Taylor-expansion yields for some s; € [0, 1]

d
H@@) ~ B +7) +1V8@) = 0 3 wpddudir + ) (6.25)

v,u=1
where 8“81,62 is understood in the sense of Rademacher.
The second derivative of d is bounded on B; U R; for all j € C and is zero for x € By. By

rescaling with y = I, we therefore can conclude by inserting (6.24) and (6.25) into (6.21)) that for
all € € (0, 0]

|V¢’(gc) — t(z, —iVP)| < Z e‘ghl%h\g <e Z e WBCs|y? <eCy zeRY x| <R.
YE(eZ)4 < yEZ?
(6.26)
Case 2: |z| > R:
In this region we have V®(x) = 0 and 176(:5) > C. Thus to show that V. + V¥ is positive, it is
enough to show that |[V®(z)| = O(¢). Since ® is constant in By, the difference ®(x) — ®(z + 7)
vanishes if |y| < r for some r > 0, thus we have

Ve (z)| = Z a(z) cosh (i(@(x)—@(m—i—’y))) < Z |, (z)|e* 2@ =2 @]

vE(eZ)? ve(ez)d
[yI>r

Since @ is bounded and || > r implies |a,(z)| < e~ for any B > 0 and for all 2 € R? (see (6.3)),
we have for some C' > 0

Ve (2) =0 (e*%) , zeRL|z|>R.
Thus by the positivity of V;, this yields
Vo(z)+ Va(z) >C, zeR%|z|>R. (6.27)
Thus by (6.16), (6.20)), (6.26) and (6.27)), there exist constants Cy,Cs > 0 such that
V.+VP—E>6Vy—Cie—E. (6.28)
and thus for € small enough it follows from that
V.+V*—E>Cy5, a¢Bs. (6.29)

We define functions F. : R — R by

Fy (@) = \/15,(2) + Lip, pya_ ooy (@) (Ve(@) + V2 (2) - B)

and

F_(x) = \[15,(2) + Lp, pyo_peoy @)(~Ve =V + E) .
Then F, is strictly positive for € small enough, F := F, + F_ > 0 and FE —F? = YA/E +V® - E.
Thus it follows from (6.29)) that there exist constants C,C > 0 such that for Bs. := Bs N (¢Z)?

2P (x) 2P (x)

1Fefull > [Frefull> Y e = @)+ > [Ve(@) + V(@) = Ble = |u(z)]® >
:L‘GB(;)E I¢38,5
2 92 2 9 22
> |le=ullpz(p,.) +0Ce=ullzzsy g,y = Clle=ul|” . (6.30)
Since F_ is by (6.29)) supported in Bs
£ (1—58)d
IFetulz = Fe® P g, < (6.31)

2(5—62)

2(6-5%) 25
e = ||F_u\|?2(36‘€) < Ce*~ .

By Lemma we get by (6.30) and (6.31)) with v = €= u, that, for any § € (0, 1]
"= ulle = 0 (%)
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for eigenfunctions u of H..
Since d(z) < Cy™2 := C, we get for some C > 0

a-

C@g > He aﬁ)du||€2 >e

proving (6.14)) for § := 6(1 + C).

cs 4
= llezulle

6.2. Distance of the Eigenspaces

To analyze the difference between the eigenfunctions of the operator H. acting on the whole
lattice and those of the several Dirichlet operators (with respect to a given spectral interval I..), we
have to compare F and &£ introduced in equation . For this reason, we introduce a distance
function dist between closed subspaces of a Hilbert space 7.

DEFINITION 6.6. Let 7 be a Hilbert space with closed subspaces £ and F and denote by Il¢
and Ilx the orthogonal projections on € and F respectively. Then we define the nonsymmetric
distance dist(E,F) between € and F by

dist(€, F) = |l — MxTle]] .

Then dist(€, F) = 0 if and only if £ C F. In order to get estimates on the distance of the

eigenspace of H. and the direct sum of the eigenspaces of aM 7, j € C, we use the following two
propositions, which are proven in Helffer-Sjostrand [33] (Prop. 1.4. and Thm 2.4).

PROPOSITION 6.7. Let di_ét(é', F) be the distance between closed subspaces € and F of a Hilbert
space € as introduced in Definition . Ifdist(€,F) < 1 and di_ét(]-", E) < 1, then the projections
Helr: F — & and x| : € — F are bijective with bounded inverse and dist(€, F) = dist(F, £).

PROPOSITION 6.8. Let A be a self adjoint operator in a Hilbert space 2 and I C R denote a
compact interval. Let p1,...,un €I and 1, ... 0N € F be linearly independent satisfying

Ay = pypj +r;
where ||r;]| < 4.

Let a > 0 and assume that spec(A)N((I + B(0,2a)) \ I) = 0. Denoting by £ the space spanned
by ¥1,...¢n and by F the eigenspace of A associated to spec(A) NI, then we have

VNS

where AJ™ denotes the minimal eigenvalue of the Gram-matriz W = ((¢;, k) ).

dist(€, F) < (6.32)

Thus if the spectrum of A in I is discrete of finite multiplicity and the right hand side of ((6.32))
is strictly smaller than 1, the operator A has at least N eigenvalues in [I.
Based on these rather general facts, we now return to the special case of £ and F given in .

THEOREM 6.9. Let H, Héwj, F, € and S be as described in Hypotheses and and

mn equation m . Let dist denote the distance between two subspaces of (? ((5Z)d) introduced in
Definition 6.6, Then for every o < S and for all ¢ € (0,¢)

el

dist(F, &) = dist(E,F) = 0 (™ %) .
Moreover there is a bijection

b:spec(H.) NI — U (spec(HM)N1I.) ,
j=1

such that
bA) —A=0 (e %) .
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Proof:

Step 1:
We start proving the estimate
dist(£,F) = 0 (e7%) . (6.33)
In order to use Proposition we have to estimate the remainder r; ;. for the approximate spectral
problem
Hevj e = W 1056 + 7jk 5
where v ;, are the eigenfunctions of the Dirichlet operator HEM 7 as defined . Therefore, we

decompose the Hamilton operator H. into its Dirichlet realization Hé\/[ =1 M; . Hely, . and a
remaining part. Since vjj is supported in M .

Hovjr(z) = Y ay(@)vjn(z +7) + Ve(@)v k(@)

vE(eZ)4
= > a@uaetnN+ Y e @l +7) + Vel@)va()
~e(ez)d ~e(ez)d
zHyEM; o, wEM; . THyEM; o,z M .
= HMup(@)+ Y ay(@vn(@+7)
yE(ez)?
THyEM; o, wEM; .
=1 11,105,k (2) + 75 8(2) - (6.34)
More general we can write
H5|5 = H, ]_M].’E |g = ].1\/[_7,,E H5|g -+ [HE, ]'Mj,E]‘g . (635)

Thus the remainder is given by

rik(x) = [He, 1ng, Jvjp(z) = Z ay(z)vjr(z+7), (6.36)

yE(ez)d
THyEM; o @M .

with the #2-norm

2 2
Ikl ey = D | D, av@urlz+y)| < D > ay (@) kle+ )|
rEMje | ve(en)d ¢ M; . ~e(ez)d
T+vEM; o z+yEM; o

To estimate this term, we use the fact, that by the definition of M;. there exists a constant
Sy € (S, So) such that for all x ¢ M; . we have d’(x) > S;. Therefore for ¢ M, .

_ @) d(x) _ 51
> la@usetl= X fo@e e )| <o i@, 60
yE(ez)d yE(ez)d
z+yEM; o T+YEM; o
where
dJ (z)
A(z) == Z ay(z)e = vjr(z+7)| , x ¢ M..
yE(ez)d
a:+’Y€Mj,E

By the triangle inequality d’(z) < d’(z + ) + d(z,x + 7), thus using the notation

e = VTP 3
we get for all « ¢ M; .

_dtn di(zty)

™ T e (e +9)

d(z,z+v) d+n
€ 2

")
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for any 1 > 0. The last sum can be understood as ¢'-norm with respect to 7, thus by the Cauchy-
Schwarz inequality

[
N

2

z,x 2 1 (x
Aw) < | Y fa @t ) > | et e
~ve(ez)d ~vE(ez)d
z+yEM; o z+YEM; o

< cl X ‘<v>”¥’ed o |, we M, (6.39)

~e(ez)d
z+yEM; ¢

where in the second step we choose 7 according to Hypothesis (d), such that the ¢?-norm of
av(:r)ed(zfm (y)(@+m/2 with respect to vy is bounded by a constant C' uniformly with respect to z.

Combining (6.37) and (6.39) and changing the order of summation yields for the ¢2-norm of r;

257 ~ _
Iy klleeezyey < e = C Z Z ()~ (&)

cEM; . ~e(ez)d

) 2
al (z+~)

e = vik(z+7)

A

z+yEM; o
. 2
251 ~ I (x4)
< e 0 Y )T S e T e +)
vE(eZ)d T+vEM; ¢
_ 251 ~, df _
< 0T vula Y ()T
© vE(ez)d

Calculating the last sum explicitly, we get by Corollary for some N e Nand all 0 < S < S
S N ol
750 le2 (ezpay = N[He, 1ag, Jvjellez(ezyey < e 5 CemVFD =0 (e7 %) . (6.40)
Proposition [6.8] therefore yields
VN e
———=Ce™ <,
a(2) /A

where a(e) has the properties described in Hypothesis Furthermore )\‘\S‘i“ denotes the smallest
eigenvalue of the matrix V = ((va , v),.) with o, 3 € J :={(j,k)|j € C, 1 <k < n;} and

dist(€, F) < (6.41)

7j=1

Using the notation j(a) = j for a = (j, k), we get (va, v3),2 = da,p if j(a) = j(B), because the

systems of Dirichlet eigenfunctions associated to a single well were supposed to be orthonormal.
If the eigenfunctions v, and vg belong to different wells, i.e. if j(a) # j(5), then at each

point z € (EZ)d at least one of the functions v,,vg is exponential small, because they decrease

exponentially (Corollary [6.4)).
In fact we use the triangle inequality for the Finsler distance (Lemma to get

O (z) + &P (z) = d(@j(0), 7) + d(@, 25(8)) = ATj(0), Ti(5)) = So

and therefore

B @i (@) (z) i () (z) _ aI(B) (z)  aiB)(z)
[(Va, vg)pe| = Z Vo (x)vg(x)| = Z e = e = uva(x)e” = e = wvg(x)
ze(eZ)? zE€(eZ)?

s
>
z€(eZ)?

By the Schwarz inequality and Corollary this yields for general o, § € J and any S; < Sy

(Var» V3) 2 = O + O (e—%) . (6.43)

a7 (@) (z) 43 (B) ()
€ €

e vo(T)e vg(w
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We now claim that there exists a Ny € N such that for all j € C

n; = #{/le,...,,ujnj} =0 (67N0) . (644)
Then (6.43]) implies that for each o < S

V=1 =0 (nje==) =0(c%)

and in particular

Apm=1+0 (e %) . (6.45)
We prove (6.44) by a comparison argument as described in Reed-Simon [49], vol.4 and Helffer
[29]. We compare H2" for j € C with the associated cut translation operator 7% on a cube

K. = [-N,N]¢ N (¢Z)%, which is chosen such that M;. C K.. Then K includes (g)d lattice

. . . d d .
points and any translation operator on K. can be written as a (g) X (g) -matrix. Thus 7K

can have at most (g)d eigenvalues. Since TEK < HEM 7, the number of eigenvalues of HEM 7 must be
smaller or equal to that of TX. Thus for a suitable number Ny € N, the number of eigenvalues y;
is of order e~ Mo,

Inserting (6.45) and (6.44) in (6.41) and taking into account the assumption on a(e) given in
Hypothesis yields (6.33)) for each o < S.

It follows from this estimate, that H. has at least as many eigenvalues in I. as the Dirichlet
operators M for j €C, i.e.

#{0, At =n>) ng (6.46)
jec
Step 2:
In the second step we prove the estimate
dist(F, &) = 0 (e7 %) . (6.47)

By Proposition and (6.33]) shown in step 1 it suffices to show di_ét(]-' ,E) < 1.
Let Bf := By U,c R; with Bj, R; and By defined in and (6.10) and u € F with
|lu]] < 1. Then there exists a constant C' > 0, such that

Leu=0(c") i (1)) (6.48)
and for all j € C
Holpu=Mput+0(e€) i £(E2)Y), (6.49)

where A denotes the eigenvalue of u.
In fact it follows from Proposition and the definition of Ba' , that

_d@) d@)
Igrulp = D Ju@P= ) le < e u@)f

z€B], z€BY,
< e et ullh
C1
< e =

proving (6.48) for any C' < Cy.
To see equation ((6.49)), we write

H&- 1Bj u = 1Bj HEU + [HE, 1Bj]u = A]-Bj u + [Hg, 1Bj]u
where
[He g, Ju(x) = [T, 1p,Ju(z) = > ay(z) [1p, (@ +7) = 15,(@)] ulz +7) (6.50)
vE(eZ)4
vanishing for  and x 4 v both inside or outside of B;. We divide the space into the regions B;,

Rj and R?\ (B; U R;) to get
I[Hz, 15;]ulle> = |[He, 15 Julle2(r, ) +II[He, 18 ulle s, )+ [He, 1, ulle2 (ez) 0\ (8, cUR,..)) (6.51)
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and analyze the three summands separately. For z € (¢Z)¢\ (B; U R;), the commutator is non-
vanishing only if z + v € B; and thus if the modulus of v in (6.50)) is at least Com/4(= Cs),
yielding

lHe 18l ey, om0y = | 22 @0 () (15, (+7) =18, ()] ul. +9)
vE(L)? 2((e2)?\(B;,.UR;..))

IN

> Nlar ()l ezyins,com, o ¢ 1l -
[v[=Cx
Thus by (6.3) and since u was assumed to be bounded

—C,

[[He, 1, ]ullez((czya\(B; .UR; ) = O (eTs) (6.52)

for any C5 > 0. To estimate the £>-norm inside the region R; (the first summand on the right
hand side of (6.51))), we use that d’(x) > ’Tfo for x € R;. In addition |y| < B for some B > 0,
since for « € R;, the difference of the characteristic functions (see (6.50)) vanishes, if x + ¢ B;.
Thus

IHe g Jullezr, = || Y ay(2) [1e,(- +7) = 15,()] ul(. +7)
YE(eZ)d 2(R;.)
< { dj;.) ed(r,:-kv) ’ ed?ju
oo . 22 Bj,s
li<B 12 (Rye) (B
<e Y Jlay (e T i (n, ) CeE < Ce L (6.53)
v<B

where we used (6.4) and Proposition To analyze the £*-norm inside of B; (the second summand
on the right hand side of (6.51))), we divide the sum over 7 to get

IHe1p)ulem,, < || S a(ul. +7) - S a(ul. +9)
~v€e(ez)d ~E(ez)d
THER; 2(Bj.) Il eHreEN@;UR) 02(B;.)
= A;+ A,

Then by Proposition [6.5 and since R; is a bounded region

d(zty) _ d(z+v)
A = Z ay(.)e = e T (. +7)

ye(ez)d

a:+'yER]- £2( js)

_ 7% d
< e Y flay()llesqryollet ulle:

[v|<C
< e Cet < e (6.54)
By the same arguments which lead to (6.52)), we get

4523 Nyl o lulle = 0 (7)) (6.55)

[v[>C2

Thus inserting (6.52)), (6.53)), (6.54) and ( into shows (6.49) for all C' < C, choose for
example C = mln{C’l, Cy4,Cs}.
Now the idea is to estimate the dlstance between multiples of 15; u and the eigenspace &; of

H: M; by use of Prop051t10n By and since B;j. C M ., we have
Hé\/[j 1Bj U = ].]\/[J.,6 H. 1Bj,a U = AlBj’Eu—i-O (6_?) .
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<

In the notation of Proposition the remaining term is r; = O (e* E ) and thus

P 1 el

We now claim that for some C
(1-Tlg,) 1p,u=0 (e €) . (6.57)

(6.57) can be shown as follows:
If |15, ul| < e~ %, then 1) is trivially fulfilled. If on the other hand || 15, ul| > e~ %, the
estimate ((6.56)) yields

- 1 .
dist(R1p, u,&;) < ZeTex =0 (e‘g) ,
a

where in the last step we used Hypothesis
Thus (6.57) follows by the definition of the distance.
Since IIg = >°}" , II¢, we have

I0e 1, ulle < [Te, 1, ulle + S T, 1, e (6.59)
oy
By the construction of B; it follows that d*(z) > % for x € BjUR; and k # j, thus by Corollary
for some Ny € N and C > 0

ko gk

_dk ak
e, 1B, ulle> = Hchvkle ces 1p;ullpe (6.59)
1

IN

e F e olly, Nullp < CemFeN =0 (%) .
Mk,s

Thus inserting (6.59) into (6.58) yields
e 1p,u=1lg, 15,u+0 (=) (6.60)

with respect to £2-norm. Therefore we get by (6.57), (6.48|) and ([6.60])

Meu = He|lpru+ 1pu :Zng1Bju+O(e—%)
=1 j=1
= lBO+u+ZIBju+O(efg>:quO(e*g), (6.61)
j=1

thus (1 —IIg)u = 0 modulo O (e%é> and by choosing u = IIzv for ||v|| = 1, we get by (6.61))

ARFE) = e~ Tellslo = sip (1T Te0]
vEI,||v||=1

< sup  ||[(1-TIg)ul]| =0 (e_%) ,
ueF,|lull<1

because u was an arbitrary element of F. Therefore di_ét(]-" ,€) < 1 for € small enough and by
Proposition [6.7]

dist(&, F) = dist(F, &) = O (e ) (6.62)
and

#{0, A =n=) n;, (6.63)
jec

i.e. the number of eigenvalues of H. with respect to I. equals the number of eigenvalues of the
several Dirichlet operators with respect to this spectral interval.

Step 3:
In the last step we show the existence of a bijection b between both spectra such that

b(A) = A =0 (e?) .
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o

For 0 < 0/ < S we set @ := e~ = and consider disjoint intervals K, such that I, C UleL K, where
K, =]y, ;] with 8; — oy = 2a. Let L C L be such that [ € L implies that K; includes at least one

cigenvalue of H. or HM', jeC.

Then by combining intervals Kj, K;1q with [, [+ 1 € l~/, there are intervals Iy,...Ig C I
covering the eigenvalues A1, ... AN, 41,1, -+, hm,n,,» Such that the distance between two different
intervals is at least 2a and by and there exists a constant My such that || =
O (e7Moq). By Proposition [6.7| and an adapted version of with I. replaced by I; it follows
that in each interval Ij, the number of A“s and s is equal.

Let b : spec(H:) NI, — U;nzl (Spec(Hé\/[j) N IE) be a bijection, such that A € I; — b(\) € I,
then
b(A)—A=0 (E_Moe_%) =0 (e %) .

6.3. The Interaction Matrix

In the next two sections, we are going to improve the result given in Theorem by explicitly
analyzing the error term up to order O (e%%) for any o < S, where S < Sy as introduced in

Hypothesis|6.3] To this end we will analyze the Hamilton operator H., restricted to its eigenspace
JF associated to a spectral interval I..

6.3.1. Construction of the Interaction Matrix. Modulo terms of order O (6%0), we

will determine the diagonal and non-diagonal part of the matrix representing H. |z with respect
to a fixed basis in F. The non-diagonal part describes the interaction between the different wells.

DEFINITION 6.10. For £ and F defined in , let Iy denote the projection onto £ along F*
in 02((Z)%).

Then

a

[Ty —Tel| = O (e™%) (6.64)

for every o < S and € small enough, where S < Sj as introduced in Hypothesis This can be
shown along the lines of Helffer-Sjostrand [33], Lemma 2.8:
For & small enough, we can write F = {z + Az |z € £} where A : £ — £ and by Theorem

it is clear that ||A]| = O (e%a) for all 0 < S. Then A* : £+ — & and Ft = {y — A*y|y € €*},
because for all 2 € £ and y € £+ we have Az € £+ and A*y € £ and thus we get

(A+A)z, (1= A)y)p = (T, Y)p + (AT, Y)pr — (v, A*Y)pr — (Az, A%Y)p = 0.

Let z=x+yforx €&, yec &L, then Igz = x and Iyz = & with & € £ such that & — 2z € F* by
the definition of ITy. Thus for some § € £+ we can write # — 2z = & — (z + y) = —§ + A*{, giving
the two equations T — x = A*j and y = . Thus it follows from the estimate on the norm of A

that ||z — 2| = O (e~ ||y|), which shows (6.64).
Moreover Iy = IjIl# and the inverse of Ilg|z : F — & is given by Hg|s : € — F. Since F
and F are stable under the action of H,, we have

IoH Il rv = IIgH, v forall veFE. (6.65)

By the identification of £ and F via |z and I x|e respectively, the operator H.|z corresponds
to the operator IIoH,|¢.

PROPOSITION 6.11. Let H,, £, S andv; i, j €C, k=1,...n; be as in the setting of Hypotheses

and and in . Let Ty denote the projection introduced in Definition [6.10, We write
o= (j, k) and j(@) = J.
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Then the matriz of IlgH|g in the basis {v11,...,Vmm,, } of € is for every o < S and for all
e € (0,e0] given by

H1,1 0
' + (waﬂ) + O (672?0) ,
0
Hmn,
where

Wa,3 = (Va, 78)p2 = O (67?) (6.66)

with rg defined as in (6.36]) by
r(x) = [He, 1a1, 5 |vp(2) = (1 — 1o, ) ) Tovp = > ay(z) va(z +7) . (6.67)

yE(ez)?

T HYEM(g), @EM(5)
Furthermore wq,g = 0 for j(a) = j(5).
Proof:

The eigenfunctions v, are a basis of £, which is not orthonormal for different wells (i.e. for
j(a) # j(B)), thus for any function u € ¢2((¢Z)?),we have a representation

Meu = Z Ca,3 (V3 W) p2Va (6.68)
a,B
where

an,[3<vﬁ, Uy) g2Va = Uy, Le. anﬂ@% v8) 2 = Oy -
o, 8

For V = ((va, vg),;2) we thus have C := (ca,g) = (V71)T. It was shown in (6.43) that V =
S

1+0 (e%) for any S < Sy and therefore

C=1+0 (e;s) . (6.69)

Defining
TU = Z (U, Va)p2Va (6.70)

[e3%

we get by straightforward calculation, using and dim & = O(e~N°) for some Ny (see (6.44)
-s o
|7 — | :o(e?), 7 — || :0(&) , (6.71)
where o < .S and we used ((6.64) for the second estimate.

By (6.34) and (6.40) we have for o < S and rg as in
H.vg(x) = pgog(z) +rg, ||Tﬂ||£2((ez)d) =0 (e%’) . (6.72)

Thus
My H.vg = Moy (pgvg) + Morg = pgvg +1rg + (o — 7)ra . (6.73)

and by and this yields in £2-norm
lyHevg = pgvg + 115 + O (e_Tza) .
By the definition of 7 in and of w,s in we get
IIoH.vg = pgug + Z (Va, 78) 2Va + O (e%%)
a

= pgvp+ Y Wapva + O (efg> :

This shows the matrix representation of IIop H, |¢ with respect to the basis of Dirichlet eigenfunctions
ve modulo terms of order O (e_T%), where the interaction matrix is defined by (6.66). The fact

that weg = 0, if the eigenfunctions v, and vg are supported near the same well, follows directly
from the representation of 7z by use of sums as given in , since in this case x & Mj(z) = Mj(q)
and thus v, (z) = 0.
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O
Defining the matrix
M = (mag) == (Hadap + Wap) (6.74)
it follows from Proposition [6.11} that modulo O (e_T%) (which we will denote by =)
<Ua ) HOHE’Uﬁ>€2 = <UOC’ Z'y m'Y/Bv'Y>€2 = (VM)aﬁ (675)
Comparing the operator IIpH, |z with the self adjoint operator g H,|s, we get
oH.|¢ — MeH.|g = O (ei) (6.76)
for o < 81, since by (6.72]) and (6.64)
=20
(o — Te) Hove = (o — e )ptava + (o — Me)ra = 0+ O (e : ) . (6.77)

Although this shows that IIgH,|¢ is nearly self adjoint (i.e. self adjoint modulo terms of order
O (e_T%> ), its matrix representation modulo O (e_T%> is not symmetric, since the basis of Dirichlet
eigenfunctions is not orthonormal (only the Dirichlet eigenfunctions belonging to the same well
were assumed to be orthogonal).

We will now replace the basis of eigenfunctions by its orthonormalization and expect the matrix
representing the “nearly self adjoint” operator IlpH,|¢ to be “nearly symmetric” with respect to

the new basis (“nearly” means modulo terms of order O 6_3(7)).
If we denote the basis of eigenfunctions in £ by ¥:= (v1,1,--.,Vm,n,, ), its orthonormalization
is given by &:= 7V~ 2, where V = ((vq , vg)2) = 14+L with L = (lap) = O (e_To). Thus € forms

an orthonormal basis in £.

Since by (6.72)) rz = (H: — pg)vg, the “lack of symmetry” wqs —wga can by and

be computed as

Wap — War = <7ﬁ5’ Ua>€2 - <TOéa ’Uﬁ>£2
= (Hevg, Va) g2 — (nsvs, Uoc)p — (Heva , Va) g + (HaVa Uﬁ>€2
= (ta —pp)(va, v8) 2 = (Ha — 1p) lap » (6.78)

since the eigenfunctions v, where chosen to be real and H, is self adjoint. Since by (6.74) and
(16.75) we have

o H, |¢7 = VM ,

the matrix of IIpH,|¢ in the basis € is modulo e given by

((ea: ToFlecs)s) = (FToHLle) = (V4T Hlerv )

VEVMVY T3 = (1+L)M(1+L)"2

(1 +%L)M(1 —%L) = ((ftabap) + (Wap)) + %[L» (Hadap)]

1
= (Habap) + (waﬁ t3 lap(pp — Na)) .

By (6.78) we can write

- 1 1 1
Wap = Wag + 5 lap(ta = 1p) = Wap + 5 (Wap — Wpa) = 5 (Wag +Wpa) - (6.79)

Since T is symmetric, the same is true for (@,g) and we have

PROPOSITION 6.12. In the setting of Proposition let V := ((va,v8),2) and denote by
&:= V™2 the orthonormalization of U.
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Then for o < S and for € € (0,e¢], the matriz of llgH.|¢ with respect to € is given by
Hi,1 0
+ (a8) + O ()

Hm,np,
where .
W = §(waﬁ +wga) =0 (e7%) .
and a5 =0 for j(a) = j(5).
Thus in the orthonormal basis, the nearly symmetric operator corresponds to a nearly sym-

metric matrix. The next theorem concerns the matrix representation of H. restricted to the space
F, spanned by the eigenfunctions {uq, ..., ux}, with respect to an orthonormal basis of F. We will

see, that it is identical to the matrix of IIo H.|¢ with respect to € modulo terms of order O (e_T%).
We denote by f the orthogonal projection of €'to F, i.e. fo, = Ilre,. Then the orthonormalization

g of f is given by g := fF z where F = ((fa , f[;}[z) denotes the Gram-matrix of f With respect
to the basis g, the self adjoint operator H. |z is represented by a symmetric matrix.

THEOREM 6.13. In the setting of Hypotheses and let {vi1,...,Umn,, } denote the
Dirichlet eigenvectors of H. with respect to the spectral interval I. and denote by V = ((Ua , U,@>ez)

its Gram-matriz. Let € = GV~ 2 be its orthonormalization and fa = llre, the orthogonal pro-
jection of € to the space F spanned by the ezgenfunctzons of H. with respect to I.. Denoting by
F= ((fa, fg}zrz) its Gram-matriz, we choose § := fF 3 as orthonormal basis of F.

Then the following statements hold for all € € (0,e0].
(a) The matriz of H.|F with respect to g is for all o < S given by

H1,1 0
| + (a8) + O (%)
0
/’(‘m7n'm
where L
Wa,p = 5(Wap + wpa) = O (%)
with

Wa,B = <’Ua ) (1 - 1Mj(ﬁ) Evﬁ Z Z aW(‘T)@ﬁ('T + 'Y)'Uot(x)

ze(ez)d ve(ez)d
eEMjg) =H1EM;(p)

and Wa.5 =0 for j(a) = j(6).
(b) There exists a bijection b : spec(Hc|r) — spec ((tadag + Wag)) such that [b(A) — A| =
0] (e_T%) forallo < S.

Proof:

(a) Let
M = (ﬁlag) = (/La(sag +@a5) . (680)
We will proceed in two steps. First we show, that the matrix representation of H.|z with respect

to fis modulo O (e_T%) equal to the matrix representing IlopH.|¢ with respect to €, i.e. equal to

M. Then we show that the difference between the matrix representations of H, |7 with respect to
f and to g is again of the same order.

As mentioned below Definition the eigenspaces £ and F can be identified by the pro-
jections I1z|¢ and Ilg|#. Furthermore IIxIIy = II, because both projections are along F* (i.e.
ker [Ty = ker [T = F*). The invariance of F under the action of H. yields IIzH, = H.IlF, we
therefore get for any v € £

HEH]."U = H]:HE”U = H]:H()HE’U
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and thus by Proposition [6.12
Haf,g = Heny:eg == H]:H()Heeﬁ ==

- Ib:<§:ﬁmgal+()(eé?)> _
> agfa+0 (7).

In the last step we used, that the projection is bounded and therefore does not change the order
of the perturbation term.

To see that replacing the basis f by g = fF*% changes the matrix representation of H.|x only
by terms O (e_TM>, we write eq = fo + 7o Where f, € F and r, € F*. From the representation

Tq =€q — fa = (Hf) - H]:Hg)@a,
together with Theorem and ||eq || = 1, it follows that
Irall = I(Te = Tl el < Mg — Mrlle | = dist(€, F) = O (¢ =) . (6.81)
Moreover since f, and rg are orthogonal for all a, 8 by construction, we get
5aﬁ = <eo¢ 5 €,8>p - <fa +ra7 fﬁ +Tﬁ>gz - <fom fﬁ>g2 + <Ta 5 rﬁ)gz .
Therefore by (6.65)) and the Cauchy-Schwarz-inequality
—20
Faﬁ = <fom fﬁ>ez = 5aﬁ +0 (eT> .

and thus

I _2\\"2 oz _2¢

G=fFi=f(1+0(e¥)) " =Fro(e¥).
Since H. is bounded on F, this yields for f, = g4 + 1o with ||lo| = 0(6_270) the estimate

Hefa = Hs(ga + la) = Zmﬁaga +H.lo+ 0O (6_2?0) = Zﬁlﬁaga +0 (6_2{) ) (682)
B B

where M = (Map) denotes the matrix representing H.|z in the basis §. On the other hand

Helrfoa =) Mpafs =) ipalgs+1s) = mMpags+ R, (6.83)
B B B
where by the boundedness of the matrix elements g, and by the norm of I3 the norm of the

remaining term R is of order O (e%%). Combining (6.82) and (6.83) and multiplying with g,

yields the postulated result, namely Mg, = Mg, + O 6_27”)

(b) To show the second statement of the theorem concerning the spectra of H.|z and M, we have to
estimate the relation between the eigenvalues of two symmetric operators on a finite dimensional
space in terms of their difference. The assertion thus follows from the subsequent Theorem of
Lidskii proven in Kato [44] (Thm 6.11, chapter 2).

THEOREM 6.14. Let A, B symmetric operators on a finite dimensional vector space and denote
by C := A — B their difference, which is assumed to be finite. Denote by c;, B;,7v; fori=1,..., N
the repeated eigenvalues of A, B and C' respectively in ascending order. Then for any convex
function @ : R — R, the following inequality holds:

> (Br—an) <D () - (6.84)

Thus choosing the convex function ®(z) = 2%, Theorem shows, that the difference be-

tween the eigenvalues of H.|x and M is again of order O (e%%), showing the last statement of

Theorem [6.13
O

Idea of the Proof of Theorem [6.14}



6.3. THE INTERACTION MATRIX 105

The idea of the proof of this theorem is to define a family of operators T'(s) = A + sC for
0 < s < 1. Then it can be shown, that the repeated eigenvalues p,(s) are continuous and
piecewise holomorphic functions of s with p,(0) = a,, and u,(1) = B, and that in the interval
[0, 1] are only a finite number of points, where the derivative of y,, may be discontinuous. For each
value s, a complete orthonormal system of eigenvectors ¢, (s) can be chosen, such that the ¢,, are
piecewise holomorphic in s. Differentiation of the spectral equation for T'(s) gives

(C = () n(s) + (T(s) = pn(5)) ¢ (s) = 0.
Taking the inner product with ¢,,(s) and using the symmetry of T'(s) yields u!, (s) = (¢n(s), Cdn(s)).
This can be integrated to give

1
8= = (1) = 0) = [ (60(6). () s
If {«;} denotes an orthonormal basis of eigenvectors of C', then

(dn(s), Cnls Z% (Dnls), z;)|?

and thus

—Q; = Z 0i575 »
where Zj Oij = Zz O35 = 1 and Oij 2 0.
A square matrix (o;;) with these properties lies in the convex hull of the set of all permutation
matrices.
O

COROLLARY 6.15. If there is only one well zy and Sy denotes the distance of the well to the
boundary of a bounded region M C R%, then with S < Sy there exists a bijection b : spec (H.|x) N

I. — spec (HM) N I, such that for all o < S and € € (0,0] we have [b(A) — A| = O (eifa).

REMARK 6.16. In the case of one well, the interaction matriz is of order O (e_T%) , as follows

directly from Theorem[6.13. Furthermore the discussions up to now are also valid in the case, that
the operator H. on (¢Z)? is replaced for some compact subset M of R%, by a Dirichlet operator on
M. = M N (eZ).

6.3.2. Examples and Interpretation. Let us consider the case of two wells x; and x5 each
having only one Dirichlet eigenvalue pq and po respectively inside of the given interval I, for fixed
€. Then d(xy,75) = Sy and by Proposition and Theorem the eigenvalues of H. with
respect to I are for all o < S € [0, Sy — 7] given by

+ 1 20
Ay =1 Mzi\/4(ﬂlﬂ2) +w12+0(e : ) -

2

The difference between these eigenvalues is thus
~ =20
A =] =\ — )2 + 40, + 0 (7).

If the difference between pq and ps is larger than e~ for some 0 < §p < Sp, then H. admits two

eigenvalues Ay = fiy and A_ = jis and the difference between them is at least of the order e 2
Computing formally the coordinates of the eigenfunctions b, and b_ of IIoH.|¢ associated to Ay
and A_ with respect to the basis {ej, ea} yields

(Ml ;M + \/i(ul — p2)? + ﬁ’%z) bi1 = Wiobs o .

— ((7 50) .
=0 ( : ) and expanding the square root we get

Thus by setting wi, : (Mfwﬁ)z
|b+1|<C’e |b+2| and |b_2|<C'e |b_1|

Thus the corresponding eigenfunctions by and b_ are located modulo exponentially small error at
the wells x5 and x; respectively. Thus the tunnelling effect does not change the basic properties
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of the eigenfunctions and the wells are almost independent (or non resonant). The concept of non
resonant wells will be introduced later in more detail for the general case.

These considerations lead us later on to the assumption, that the difference between two eigen-
values attached to different wells is exponentially small, such that the effect of tunnelling is not
negligible.

The tunnelling effect is relevant in the case of a symmetric double well, where p; = ps = p.
Then

At = pE£ W2

and thus the splitting is of the same order of magnitude as the interaction term w;2. In the basis

{e1,e2} defined in Theorem [6.12} the normalized eigenfunctions of H, are modulo O (e%‘g) given
by

up = —=(e; +e2) and wug =

(1 - e2)
—(e1 —e9) .
NG NG 1 2
Therefore uq + uo is localized near x7 and u; — us is localized near xs.

V, was defined as restriction of a function on R? independent of the scaling parameter . Thus
the position of the wells z; for j = 1,...m is fixed with respect to the underlaying space R?. Nev-
ertheless the change of the ¢ will change the interaction of the wells. So it might occur that two
wells are resonant for some values of € and non-resonant for others or that they become more and
more resonant for ¢ — 0. This behavior can be traced back to three different effects. The first lies
in the change of the higher order terms Y -, ¥V}, in the expansion of the potential energy, giving
rise to a change of the whole scenery of the potential energy and in particular of the depth of the
wells and thus of the low spectrum. The second effect is produced by the change of the position of
the lattice points with respect to the underlying space R? and thus to the potential wells. There-
fore the minimal potential energy at the wells is different from the minimal potential energy at a
neighboring lattice point. This fact does not change the WKB-expansions for the eigenfunctions
and eigenvalues at one fixed well as noticed in Chapter |3| but since the difference between the
eigenvalues must be exponentially small, this effect might change the resonance property. A third
point lies in the fact, that the spectral interval itself depends on the value of ¢.

Now we come to a slightly more general case, where there might be more than two wells, but
for fixed € only two of them have an eigenvalue (and exactly one) in the spectral interval I.. Again
the tunnelling effect is relevant only, if the difference between these eigenvalues is exponentially
small.

Let 0 < a < Sy, Sp + a < 2S5 and assume that for all 6 > 0

—(a=5)
ua—,ug:O(e : )

Since by (6.43)) we have (vq , vg),. = O (e%s) for S < Sy suitable, it follows from (6.78|) that

—(Sg+a—s) )

Wap = Wgo mod O (e c
If d(z(a),j(3)) > So +aorif j(a) = j(B), then
Wep =0 mod O (6450?75)) . (6.85)

For j(a) = j(B) this is a direct consequence of Theorem In the case d(zj(a), Tj(3)) >
So + a, the estimate (6.85) can be seen as follows. By the triangle inequality for the distance
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function d

lwasl = | Y D ay(@)up(z +)val)

ze(cz)?  ve(en)d
eEMjp) =H1EM;(p)

B (@) aIP) (a) i@ (@) i) (a)
= g E ay(x)e = e = wvglz+ye = e = wv.(x)
ze(e2)d  ~e(ez)d
IQZ\/IJ(B) w+’y€1\lj<ﬁ)
_ =) i) alB () a9 ()
< E E ay(x)e E e = wvglz+y)e = vu(z)
zE(EZ)d 'yE(EZ)d
eEMj(z) »H1EMj(p)
By the assumption on d(x;(q),*;(g)), this yields
_ (Sg+a) 3 (B) (a) a9 (@) (z)
|wag| < e g E ay(z)e = wvg(x e = Ua(x) (6.86)
z€(e2)d  yE(ez)d
eEMj(p) THIEM;(p)
_ (Sg+a) a3 (@) (z) a3 (B) ()
< e = E e = va(x)‘ E ’aﬂ,(x)e = wvg(z+7)
z€(e2)d yE(ez)?
=EMj(p) = HYEM;(6)
_ (Sg+a) dd (@) (z)
= e = E e = va(z)A(2)
ze(ez)d
=EMj(5)
Again by the triangle inequality d/(®)(z) < d(z,x +v) + d?(®(x +7), thus for all 2 ¢ M; .
d(z,aty) a3 B (atq)
A@) < Y @ e 1)
Ve (ez)d
s+vEM ()
d(@,x+) d+2 _dy2 d P (i)
S X [a@ TR [ e e )|
yE(ez)®
zHYEM; ()
By the Cauchy-Schwarz inequality, we get
(1/2) (1/2)
. 2
d(@.aty) , | dt2 |2 _at2 P (i)
Aw) < | Y |a@e Ty > |t R e
vE(ez)d vE(e2)?
T EM(p) eHrEM(8)
(1/2)
_dt2 B (i) 2
< C > (M2 e = sz +) , x ¢ M., (6.87)
vE(ez)@
=+YEMj(5)

where by Hypothesis (d) the last estimate is uniform with respect to z. Inserting (6.87) into
(6.86)) and using the Cauchy-Schwarz inequality again for the summation over z, we get

(1/2)
_ (So+a) ,1]'(0‘)(7,) _d+2 di(ﬁ)(m+7) 2
wagl <€ C Y e 7 wa(a) > (M~ 7 e = vz +)
z€(ez)d ~v€E(ez)d
“EM;(8) eHrEM(0)
1 1
2 2

2
e

. 2 .
_ (So+a) a7 (o) _dt+2 P (aqy)
Sl I D ) DD DI S R

ze(ez)d ze(ez)d ~e(ez)d
@@ M (g wgMj(g) =+VEM (g
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By Theorem there exists Ny € N, such that the first sum is of order e~° and by inverting the
order of summation in the second sum, this yields

(1/2)
_(Sta) —(d+2) 4B (z++) 2
lwap| < e e Cem e > () > le ¢ usletn)
e (ez)d ze(ez)d
z+VEM(5) &M (p)
Again by Theorem we get
(1/2)
—Gota)  _N, —(d+2) FEAGACER) 2
lwagl < e Ce™° E (v g e E vg(z+7)
~ye(ez)d ze(ez)d
THYEM; () =& M)
(1/2)
_ (So+a) _ _ _ _(Sota) ~ _
< e = Ce No E <,y> (d+2)€ 2Ny <e = (e 2N1
ve(ez)d
zHYEM; ()

_ (Sg+a—9)
- o(e Bote=d) )

for some Ny € N and any § > 0. This proves (6.85)).
The estimate (6.85) leads us to the assumption, that d(z;(.),z;(g)) < So + a.

HYPOTHESIS 6.17. Assume that only two wells have an eigenvalue (and exactly one) in the spec-
tral interval I.. We denote the eigenvalues by i, g and the corresponding wells by xj(q), Tj(3)-
Let 0 < a < So, So +a < 28 and assume that d(x;(a), Tj3)) < So + a and that for all § >0

—(a=5)
ua—,ug:O(e : ) . (6.88)
Consider the closed “ellipse” defined by
Euop = {z e RY| & (z) + P (x) < Sy + a} , (6.89)

such that Eqp C]\}j(a) U ]\O@(g). We choose Q C R such that Tja) € Q58 & Q and furthermore
ENQ C]\OJj(a) and ENQ° C]\ofj(ﬁ).

The next lemma concerns the support of the commutator of H, with the characteristic function
with respect to a fixed set.

LEMMA 6.18. Let A C R? and denote by OA its boundary. For any § > 0 we define §A =
{r e RY |3y € OA: |v —y| < &}, thus §A is an arbitrary small neighborhood of OA. Let § > 0 be
fized, then in operator norm for any C > 0 and for all € € (0, &)

—c
[Ha,lA] :16A[Ha;1A] 154 +0O (BT) . (6.90)
Thus the commutator of H. with the characteristic function of a set A is supported modulo
exponentially small error near the boundary of A.

Proof:

The potential energy V. commutes with the characteristic function 1,4, we therefore can write
by use of a partition of unity

[Hey1a) = 154[Tc,14) 154+ (1 — 15a) [Te,14] 154 + + 154[T2,14] (1 — 154) +  (6.91)
(1 — 15,4) [TE, ]—A] (1 — 15,4) =K i+ Ko+ Ks+K,.
For any u € ¢?((¢Z)%) we have by the definition of 7.

[T, 1aJu(z) = ay(x) Qa(z +7) — 1a(@) u(z +7) -
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The difference between the characteristic functions in each summand is given by

-1 z€A (v+v)¢ A
Qa(z+7)—1a(z)) = 1, ¢ A (z+y)€eA . (6.92)
0o , sonst

Thus K, K3 and K, defined in (6.91)) are nonzero only in the following cases:

r+vy€A°NdA if zeA\JA
r+v€ANGA if zeA°\JA
x € A°NJA if v+y€A\dA
r€eANJA if x4+veA°\ A
x € A\ A if x+ve€A\dA
x e A\JA if v4+y€A\0A

Ky #0 = (x€(dA)and (z+v) €0A) and {
K3;#0 = (zxe€dAand (x+7) € (6A)°) and {

K,#0 = z,(x+7) € (§4)° and {

Thus for all these terms the sum over v is reduced to the terms with |y| > § and we have the
estimate

I([He, La] = LsalH, La] Lsa)ulle <3| Y ay(@)u(z +7)| (6.93)
[v[>6 02

By the exponential decrease of a, discussed in Remark we get for any C' > 0

Y a@ua+n| <03 e jule (6.94)

[v|>6 2 Iv|>6
and therefore we can conclude by (6.93)) for any C' > 0
(1He, La] = LsalHey 1] 1) o = O () (6.95)

By use of Lemma [6.18] we can now show the following proposition.

PROPOSITION 6.19. Under the assumptions of Hypothesis and with the notation gf(c) =
sQNQI NE, the elements wag of the interaction matriz are for all 6 > 0 and e € (0,e] given by

—(Sqta=9%)
Wap = <[Ts,1g]1Eva71Ev5>22+o(e : )

—(Sgta—9)
= <15’f~va7TslngU[3>£2*<Tslgfcva, lgfvg>€2+0(6 B > .

Proof:

The interaction matrix can by and (6.67)) be written as wag = <11a , [He, 1M_7,(ﬂ)]vﬂ>p,
thus in the setting of Hypothesis by considerations similar to those leading to (6.85]), it follows
that

—(Sg+a=9)
Wap = <1E () [H€,1M~(5)] lE Uﬁ>€2 + O <e 05 ) .

J

In the following we write = for equality modulo O (ew) Lemma |6.18| shows, that modulo
0] (e

construction is included in €, thus

—(Sg+a—9)
e

the commutator [He, 1,

J(B)] is supported near the boundary of M;g), which by

(15 1aeva, [He, 1ns, ) 15 ”ﬁ>52 =0
and
(1pva, [He, 11,5 1E]Uﬁ>@2 = (1plova, (He a5 = a5 H.)1g “ﬁ>g2 :
Similar to the proof of (6.85) it follows, that all contributions from E° to the scalar product are

— (S a75) . . .
zero modulo O (e or ), thus modulo terms of the same order, it is possible to commute H.
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and 1p within the scalar product. Since v, C M;(, we get

<1E 1o va, (HE Lng ) = 1) HE) 1g ”5>e2
= (1n, 5 1 H- 19 0o, 15 Uﬁ>22 — (e lava, g lEvs) e
= (1glo Hva, 1pvg) e + (1p[H: 10Jva, 1E V) ;e — (1E 1o Vo, g 1EVE) )2 -

Now we use Q2 C Mj(,) and the assumption (6.88) on pq — pp together with (6.43) and the fact
that we can commute H. and 1 to proceed as

(1g 1l Hova, 1Evg) e + (1e[He, 10Jva, 1EVg) e — (1E 10 Va s g 1EVE) 2 =
= (1ploly,,, Hoa, 1g vg>£2 +([H:,10]1E 00, 15 08) 2 — (L 1o a, a1l vg) e =
= ([H:, 1)1 00, 1Evg) 2 + (1E 1o va, v8) 2 (Ha — pg) = ((He, 1a] 15 Vo, 1E V) -
This shows the first equality of Proposition [6.19] since the potential energy commutes with the
characteristic function 1¢.

To get the symmetric term claimed in the second equation, we use again Lemma to get
with T =60QNOQNE

([He, 1] 1pva , 1Ev8) 2 = (1s0[He, 1] 1s0 1E Vo, 1EVg), = (6.96)
(T: 155 va, Lo 15 0g) . — (Te Loo 1pva s 155 05) s -

Substituting 150 1p = 155 + 15, which holds by definition, the terms with 155 on both sides of
the scalar product cancel and we can conclude

Wag = <TE 15 vq, 15pe Ug>€2 — <TE lspe Vo, 15p 1}5>€2

and thus by the symmetry of T, the second equation in the proposition is shown.
O

The symmetric version of the interaction matrix given in Proposition[6.19|is quite similar to the
case of a Schrédinger operator on R?, where under analogue assumptions, one gets for I' := E NS

ov ov
=p2 B e
waﬁ_h/F(vaé‘n vﬁan>d5’.

The normal derivative in the integral is replaced by the translation term, where the translation
passes the boundary 0€2. The reduction to a surface integral over the boundary of 2 in F has its
analogue in the reduction of the sum to an arbitrary small (but e-independent) neighborhood of
this boundary.

As last example we consider the case, that the difference of the eigenvalues is only polynomially
small, i.e. that for all N € N we have pio — g =0 (EN). Then along the same lines as in the last
example it can be shown that if d(z (), zj(3)) > So, then for all N € N

-
wep =0 mod VO (eio)

Heuristically we can use the symbolic calculus introduced in Appendix [B] to see directly, that

the commutator of H. and 1g and thus the interaction matrix is supported in a arbitrary small

neighborhood of the hyperplane I'. By Lemma[B.6]and Lemma[B.7] the symbol of the commutator

(which can be defined only in the sense of distributions, because 1q is not differentiable at I") is

given by

ie)led
tenta(o] ~ 1ol + 3 ST (08.6) 08 10() - a6 - 0~
. |a|>0 (iE)Q )
~ e ) (0,0 (@6 (Or, 1) () + 25 3T (0 t) (08 (%0, 10) ()4

Thus all summands include derivatives of 1q, i.e. §-distributions at the hyperplane I'. Furthermore
the first order term is the expectation value of the derivative of the kinetic energy at I'. The choice
of  (and thus of I') was quite arbitrary (except from the assumption that it should include one
of the wells and exclude the other).



6.4. THE “SPECTRUM” OF ONE WELL 111

This together with the form of w.g given in Proposition suggests the interpretation of a
physical current between the two wells, flowing through any separating hyperplane. This leads to
the conclusion, that the proximity of eigenvalues (in this case p, and ug) causes a probability for
the tunnelling from one well to the other.

6.4. The “Spectrum” of one well

In Hypothesis M; was not defined directly, but described by some properties. Thus there
is still some freedom in the choice of M;. We show, that the results of the preceding sections are
independent of this special choice.

Then we compare the spectrum at one well with a fixed eigenvalue of H.. For this point, we
have to introduce a sphere of influence for the given well with respect to the eigenvalue and its
eigenfunction. Then in a ball around the well, the eigenfunction is determined by the well.

PROPOSITION 6.20. Let My, M| denote compact sub-manifolds with €?-boundary at the well
x1 as described in Hypothesis and M , MLE their restrictions to the lattice. Let S1 < S(l) =
ming1 d(z1,2) and a(e), I. be as defined in Hypothesis [6.3 Choose c(¢) €]0,a(e)] such that
logc(e) = 0(L) and let B(0,c(e)) denote the ball of radius c(e) at zero.

Then for € sufficiently small there exists a bijection

b:spec (HM) N 1. — spec (HEM1/> N (IE + B(Om(s))) )
such that for all o < Sy

b(A) —A| =0 (e‘f") :

Proof:

This proof follows directly Helffer,Sjostrand [33], Proposition 2.15.

Without loss of generality, we can assume that M; C Mj (by introduction of a third domain
M\l). Let J. be an interval with the properties described in Hypothesis 6.3| for H., H* and Héw{
and such that I. + B(0,2a(e)) C J.. Then it follows from Remark [6.16 that Héw{ can be inter-
preted as the full operator for a one well problem and by Corollary [6.15] there exists a bijection
b: spec(HaMl/) N J. — spec(HM1) N J. with [b(A\) — A\| = O (e%o). The proposition follows from
restricting b to spec(HM) N I..

a

By Proposition [6.20] we are now able to define the “spectrum” of one well.

DEFINITION 6.21. Let spec(z1), the spectrum of the well x1, be defined by the collection of the
spectra spec(HM1) N (I. + B(0,c(¢)) for any M fulfilling Hypothesis

Proposition and Definition [6.21] are valid and chosen respectively in the same way for the
other wells.

DEFINITION 6.22. For ¢ € (0,¢0], let u. € ¢2((eZ)?) denote a normalized eigenfunction of H.
to the eitgenvalue Ac.

(a) Let ) denote the mazimum of all functions ¢ on RY, such that for all e € (0, o]
i) l¢(z) — ¢(y)| < d(x,y) for all z,y € RY.
ii) ||€%u5||[2(Ka) =0 <€§> for all 6 > 0 and K C R? compact, where K. = K N (¢Z)%.
(b) For j € C we define aj :=p(x;) > 0 and S(j) := mingec pzj & (x1).
Then for B(zj,r) = {z € R?||x — x| < r} we set

rj :=max{r € [0,5;)] |z € B(zj,r) = ¥(z) = a; + &' (x)} . (6.97)
REMARK 6.23. (a) In Definition [6.29(a), the function 1 is well defined. This follows

from the fact that for two functions satisfying (a)i) and (a)ii), the pointwise maximum of
them also does. Furthermore at each point x € (eZ)?, the family of the values of functions
o(x) satisfying (a)i) and (a)ii) is bounded, since by (a)ii) each ¢ must be bounded for
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some points (because u is localized by Pmposition and normalized) and thus by i) it is
bounded for all x € R?.

(b) The positivity of a; defined in Definition (b) follows from the fact that the distance
function d defined in has the properties (a)i) and ii) (as will be shown later on)
and thus (z;) > d(z;) = 0.

The fact that d satisfies (a)ii) follows directly from Proposition .

To see the inequality (a)i), we have to analyze the different regions defined in
separately. In all cases we use together with the fact that the inequality is by use
of the triangle inequality valid for each distance function as.

1) 2,y € By = |d(z)—d(y)|=0<d(z,y) )
2) y € Bj forsome j€C = d(z) <d/(z) <d(y)+d(z,y) =d(y)+d(z,y).
3) y,x € R; for some j € C and assume without loss of generality d’(x) > d’(y):

Setting z1 = Qdégy) and zo = %ﬁx) it follows from the definition of R; that 5 <

z; < m and we have

& (x) — d(y) — J(z) + J(y) = %(22 +coszy — (21 +coszy)) =: g(z2) — g(21) s

where we set g(z) = %(z + cosz). Then in the considered interval ¢'(z) = %(1 —
sinz) > 0 and therefore g(z2) — g(z1) > 0 and therefore
d(z) — d(y) < & (z) — & (y) < d(,y) . (6.98)

4) y € R; and x € Ry, for j # k and we assume without loss of generality d(z) > d(y):
We set z = %ﬁy) (then T < z < m) and we notice that d’(z) > 3= and d(z) <
% + % to get

& (x) — d’(y) — d(z) + d(y) > %(77— 1—z—cosz)=: f(z).

Then f(m) = 0 and f'(z2) = —1 +sinz < 0 and therefore f(z) > 0 for T < z < m,
yielding .

5) y € R; for some j € C and x € By:
Then d?(z) > d’(y) and d(z) = %(g +1) > d(y). Furthermore d’(z) > <% and

, 2
setting z := %ﬁy) gives 5§ < z <. Thus

& (z) — d (y) — d(z) + d(y) = & (x) — %(z—i— 1+cosz) > %(ﬂ—z— 1—cosz) = f(z)

and by the same considerations as for the previous case we get (6.98).

By (a)i) it follows at once that |a; — ag| < d(x;, k).

Since by Proposition [6.5] the eigenfunction wu. is localized at some of the wells and it is assumed
to be normalized, there is by (a)ii) at least one well ; with a; = 0 and the eigenfunction u. is
localized at those wells x, for which ar = 0. At all the other wells, it is exponentially small.

Since the number r; is defined with respect to 1, it depends by (a)ii) on the eigenfunction u.
(and thus on the eigenvalue A.;). It describes radius of the sphere of influence of the well z; with
respect to u. For a; = 0 we have r; > %So with equality if for the well z) with d;(z;,zx) = So
we also have ay = 0. If 7; > 0, then inside of the ball around x; with radius r; the eigenfunction
u decreases exponentially with a rate controlled by the distance d? to the well [} Take j € C such
that r; > 0. Then for k # j and « € 0B(x;,r;) we have by (a)i) the estimate a; +r; —ap =
V() —p(ar) < di(x, ) = d¥(z) and thus a; +7; < ax, +di(z) and a; +2r; < ag +d;(z) + di ().
By a variation over € 0B(z;,r;), we get

a; +2r; < ap +d(z;, x) forall k#jkeC.

To show the estimates on e = lluclle2(B(x,.r;)) given in Lemma we need the following hypoth-
esis on the function .

IIn this sense one might say that for r; > 0 the eigenfunction u. “feels” the well z;, having at x; a little bump.
For a; > 0 this bump is on an exponentially small level
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HYPOTHESIS 6.24. We assume that the function ¢ given in Definition [6.29 remains the maz-
imal function satisfying (a)i) and (a)ii), if we replace the interval (0,e0] by any subset J C (0, g
with accumulation point zero.

LEMMA 6.25. In the setting of Definition choose x; such that r; > 0 and assume that
Hypothesis holds. Let B.(xj,r;) := B(x;,r;) N (eZ)%.
Then for any § > 0 there exists a constant Cs > 0 and €9 > 0 such that for all € € (0, &)

1 s 23 s
ae c<e g ||u5||g2(36(wj’rj)) < Cses . (6.99)

Proof:

For simplicity we supress the e-dependance of w, writing u = u,.
The second inequality in follows directly from property (a)ii) in the definition of ¢ and r;,

since _
a;+d?
e = u

» s

= ’ esu =0 (es) .
2(Be(a;,m5) G (Be(2jry))

The first inequality in is valid, since v was chosen to be the maximal function with the
properties given in Definition a)i),ii) even for a subset of (0,ep) with accumulation point 0.
This can be seen by contradiction. The formal contradiction of the statement leads to statement
holding for all C' and €y. Thus we assume that there exists a dg > 0 such that for all n € N* there

exists a &, < 5> such that

a5
e lullee(p. 25,r)) <

S0

ay 1
esn ||u||gz(35(xj7.,.j)) < Ee en (6100)

It follows from the definition of €,, that (6.100) holds for all ¢ € J := {e,|n € N*}, where
J C [0,&p) with accumulation point zero.

Setting for &y := min{dp,r;} and Bs, := B(x;, %0)

~ o aj—i—%o, 56’6350
Vo) = {w(x), z € (eZ)*\ Bs,

we have 1(z) > 9(z) for all z € R? and (z) > 9 (z) for x € Bs,. We get by (6.100) and the fact
that ¢(x) = a; + d’ () for x € B, that for all n € N* there exists &, < £2 such that

This yields for any compact set K C R? for any § > 0

B S0 %5
esn U — e2¢n ecn
ez(Béo,a)

1 _ 0
u”ZZ(B(SO,s) < ﬁe Zen |

i _Jo i
< Cheen + Che™ 2en < Ceen .
£2(Bsy,e)
showing property (a)ii) in Definition for 1, if [0,e0) is replaced by the subset J. To see (a)i),
we have to analyze the different regions separately.

(a) z,y € By, = |’Q/~J(£L') - 1/3(?/)' =0< d(x,y).

(b) z,y & Bs, = |¥(x) —¢(y)| = [¢(x) —¥(y)| < d(z,y) by the definition of ¢.

(c) z € Bs,,y ¢ Bs,: We use the fact that for all z € 9Bs, we have d(z,y) < d(x,2) +d(z,y)
and there exists a constant r > 0 such that d(x,z) > r. The distance d(z,y) = d;(x,y)
was defined in Definition [£.23] as the infimum of the curve length s; of all regular curves
joining = and y with respect to the Finsler function [, thus there exists a regular curve ~,
such that s;(v) < d(x,y) + 5. Denoting by (to) := 20 € 9Bs, the point of intersection of
~ with the boundary of By,, it follows that

K3 K
< |lesn u [

£2(Ke:)

@
e=n

|
ZQ(KE\BJO,E)

d(w,y) + 5 > (. 20) +d(z0,) = 7 + d(20,)

and therefore we have d(z,y) > d(z0,y). Since by definition ¥ (z) = 1 (z0) it follows

[9(x) = D(y)| = [ (20) = ¥ (y)| < d(z0,y) < d(,y) .

Thus the function ¢/ has the properties (a)i) and ii) at least on a subset J C [0,&0) with
accumulation point zero and is larger than 1, which is a contradiction to the definition of
1) as maximal function with these properties satisfying Hypothesis This shows the
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first estimate in .
O

The next proposition concerns the difference of the spectrum at a given well to the fixed eigen-
value A of H. subject to the value of ;.

PROPOSITION 6.26. For e € (0,¢¢] let ue denote a normalized eigenfunction of H. with asso-
ciated eigenvalue \. satisfying Hypothesis and choose j € C such that r; > 0, where r; is the
radius of the sphere of influence of x; as given in Definition ,

For a(e) and I. as defined in Hypothesis let c(e) €]0,a(e)] such that loge(e) = o (L) and
B(0,c(e)) denote the ball of radius c(g) at zero.

Then for any § > 0

A(A., spec(z;)) == min{uszHNSpeC(Hyj)ﬂ(Iﬁw)}O(emga)> |

where M7 is chosen such that B(z;,7; —0) C M.
Proof:

For the sake of simplicity, we set u = u. and for a set Q C R? we write ¢2(€2) instead of £2(9.),
where Q. = QN (¢Z)%.
Let § > 0 be fixed and set

BT.:B(xj,rj(s) and u:= 4
I 2

— (6.101)
ullez(s,,)

(l]‘+(§ ~
such that [|@[/,2(p, ) = 1. By we have ||ul|¢2(p, y > Ce™ "= for any § > 0 and therefore

lulleens _ o, 2t
lullez(s,,)

Since by (6.97) (the definition of r;) we have ¥ (x) = &’ (z) + a; for x € B(xj,7;), it follows by the
properties of 1) given in Definition together with (6.101]) and (6.102)) with 6 = % that

@l e2((ezy2) = (6.102)

a.;

EERS e % » ri
lle u”fz(B(mj,rj)) = WH@S UHZ2(B(zJ-,r]~)) =0 (625) . (6.103)
Let v := 13”, i, then
—(r;=9)
Hov=Xv+0 (e c ) in (*(B,,). (6.104)

This can be seen as follows. Since
H, 1Brj U= 13” H.u+ [Hg,lBTj]a =M+ [H,1p ;

we have to analyze the £2-norm of the commutator, which is given by

|#:.15, Ji

. > (s, ~1s, )0

"9 YE(eZ)4 02 (B'r‘j )

= X a0 (18,47 =18, () @l +7)
~E(eZ)?

2(B,))

Since for z € B, we have

15,,(.+7) 15, () =

0 for z+~v€B,
-1 for z+~v¢B,,,



6.4. THE “SPECTRUM” OF ONE WELL 115

it follows by the triangle inequality that

1,15, 1

i

(B,,)

> a(al-+7)

IN
S
=
=
+
2
_|_

ve(ez)d ~ve(ez)d
e+v€B (e, mj)\Br; ©(B,.) z+y¢B(zj,75) 02(B,..)
T J
= S1+58. (6.105)

We will analyze S; and Sy separately.
For z € B,, and v +v € B(xj,7;) \ By, it is clear that |y| < B for some B > 0, thus by (6.103)
and the Holder inequality we have

7dj(-+'y) dJ (47) -
S = E ay(Je” e e = al.+7)
~e(ez)d
z+y€B(zj,rj)\Br; 02(B,..)
7
< Y ao “a
e~ 2 Ay || oo es1
= g (BU')H
22(B(zj,r;
eemd (B(z;,73))
lvI<B
(rj—9)
< Ce T (6.106)

To estimate Sy we use the exponential decay of the coefficients a, as assumed in Hypothesis @
(see Remark [6.2) together with (6.102). Since B,, is bounded and |y| > 3 for z € B,, and
x4+ & B(x;,r;), we get for any A > 0 by the Hélder inequality

- _As 9iFd
Sy < Z ||av||l°°(BTj) @]l g2((ezyay < Ce™2ee™<
Iv1>$
and thus, choosing A big enough,
Sy <Ce 7 . (6.107)

Thus inserting (6.106) and (6.107) in (6.105]), the statement (6.104)) is proven.
Let &; denote the eigenspace to spec(HEM 7)Y N I, as introduced in Hypothesis Then by
(16.104) we can use Proposition to get

- —(r;—=9)
dist(v,&;) = O <65>

and thus
—(r;—5)
||H5].'U||g2(Brj) = ||’UH@2(BTj) =1 modulo O (e < ) . (6.108)
In addition we have
H.Ilg,v =g, 1B,«j H.u+ g, [H., 13Tj]ﬂ = IIg, Ao 4 Ig, [TL, 1BTJ_]’L~L . (6.109)
But since
e u(x) = (u, vk) pvk(x) |
k
where {v; } is an orthonormal basis for &; as described in Hypothesis we get
Mg, (T2, 1p, Ji(z) =) <[Ta, 1p, u, Uj,k>62vj,k($) (6.110)
k
where
<[Ta, 1p, ]a, 'Uj,k>€2 = > ay (Y)vjk(y) [IBW (y+7) -1z, (y)} u(y+7). (6.111)

y€(eZ) vye(eZ)d
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The following considerations are similar to the proof of Proposition and (6.104). We notice
that the summands vanish if y and y + v are both inside or outside of B, more precisely
0 for y,y+y€ B, or yy+v¢DB,
1p, (y+7) — 15, (y) =41 for y¢ B, y+v¢eDB,
-1 for yeB,, y+v¢ B, .

Thus by (6.111])

(Totp i vin), == Y Y a@u@iy+0)+ Y. Y a@uua@ily+9).
YEDB, . ~e(ez)d y& B, - ~e(ez)d
’ y+’Y€Brj Z'J+'Y€B7'j

By use of B(xj,r;), we can split both sums again to get

(Tetp, i vin), = = 2 Y e Wsy)aly +7)

yeBTj ~e(ez)d
y+v€B(z;,7mj)\Br;

- > Y a sy +7)

YEBr; ve(ez)?
y+vE€B(z;,75)

+ > > ayWvkW)iy +7)

yE€B(zj,rj)\Br. ~e(ez)d
"3 y+YEBr;

+ oY ey +9)

ygB(z;,75) 'YG(EZ)d

= 5 +SQ+S3+S4 . (6.112)
By the definition of B, and the triangle inequality, we get

1S = > >

yGBrj ~e(ez)d
y+v€B(zj,mj)\Br;

> X

YyEBr, v€e(ez)d
y+’Y€B(m]w""j)\Bv-j

_2dd(y+y)  2dI (y+w)

ay(Y)vje(y)e” = e (y+v)‘

_@rj=9) —5> d(y,y+7) A (y) I (y+r)

ay(y)e = vjk(y)e = e ¢ (y+7>‘~

Since for y € B, and y+~ € B(x;,7;) \ By, we get |y| < B for some B > 0, the Holder inequality
yields

_ =9 dlot) el dl
|51 < g > Hay : ‘ ij,kef . ‘ call <
<B 1> (Br; £2(By;) £2(B(z;,r5))
(2r;—6) 5 —2(r;—9)
< Ce 5 e Nez =0 <e g ) . (6.113)

The last estimate follows from Corollary (6.103) and (6.4).
To estimate the norm of Sy, we use that for z € B,, and =+~ ¢ B(z;,r;) we have |y| > 3.
Thus by use of the Holder inequality

1o = DY D @ity + )| <

yEBT]. ~e(ez)d
y+vEB(zj,75)

< Z ||a'y||zoo(BT;) ””j,k”zz(gr,) ||€L||e2((EZ)d) =
’YE(EZ)d ! ’
Iv1>3
+6
< Ce B = 0( ) (6.114)

for any C' > 0, where in the last step we used the exponential decay of a-, described in (6.3)
together with (6.102)). To estimate the third sum S35, we go along the same lines as for S;. By the
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triangle inequality for d7 and the Hélder inequality, we have for some B

1S3] = > >

yEB(xj,rj)\B,‘j ~ve(ez)d

_2d9(y) dIy) i (y)
£

ay(y)e e = vir(y)e = U(y+’y)’§

y+“rEBrj
_(@r;-9) d(y,y+vy)  dI(y) I (y+v)
= e > S layme T e TE vik(ye - U(y+’y)‘ <
yE€B(2;,r;)\Br; y’fw(ézB)(:]
(27;—9) d;(.,.47) J J
< e Z ‘any(.)elsiw ijCed* , ‘ 0 , .
HI<B 1°(B(x;5,75)\Br;) £2(B(x;,75)) £2(Br;)
Thus by use of Corollary (6.103)) and (6.4)), we get
(2r; —48) —2(r;—96)
1S5] < Ce™ 5 e Nogze =0 <e : > : (6.115)

With the same arguments as in the estimate of Sy (i.e. in particular by the exponential decrease
of ay), we get for Sy

Sl

SN > e @vie@aly + )l <

y¢B(zj,rj) ~ve(en)d
I y+’Y€B7‘j

< Nvikleezysy Do lolleezym e,y l#lles,,) =
yE(ez)d
\i\z%
_c
- O(e : ) (6.116)

for any C' > 0. Inserting (6.113)), (6.114]), (6.115) and (6.116) into (6.112)) gives

—2(r;—9)
(1m, 1. 00) =0 (<)

and thus we have by (6.110))

—2(r;—9)
ng[TE,lBTJﬁ:O (6 € ) . (6117)

Inserting (6.117) into (6.109) gives in ¢*(B,,)

—2rj+6
H.Ilg,v = Mlg;v + O (e < )

and thus

—2r,+5
HYMg,0 = Ly, Holleyo = Allg,u+ 0 (¢4 )

Since &; is the eigenspace of HM with respect to I., we have on the other hand H2" Hg,v = pllg,v
for some p € spec(x;), therefore

A= wllgv=0 (e 2035)) .

Thus by (6.108|) the proposition is shown.

It follows from Proposition that if for a well z; one has for all 6 > 0

1
A(X, spec(zj)) > =€ <,
Cs
then 7; = 0. As described above Proposition one might say that the eigenfunction v does not
“feel” the well x;, or in other words the existence of the well at z; has no influence on the decay

of u. Such a well is called non-resonant with respect to the eigenvalue .

oo
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6.5. Comparison of exact and asymptotic Dirichlet eigenfunctions

To relate the asymptotic sums constructed in Chapter [3|with the eigenfunctions of the Dirichlet
operator, we fix one well z; and choose coordinates centered at x; (i.e. we set 1 = 0). As
discussed in Remark [3:2] this special choice can be done without loss of generality. We consider
the normalized eigenfunctions v; ; associated to the eigenvalue jiq 5 for 1 < k < nq, where p; 1 €
I. = [0, Rye] and Ry is not an element of the spectrum of the harmonic oscillator K as introduced
in Chapter

The analysis of the distance between the spectra of the operators H. and HEM 7 in the preceding

subsections, especially Corollary combined with Theorem for the case of one well (i.e. if
m = 1) lead to the following result, where H' is defined in (2.48).

COROLLARY 6.27. There ezists a bijection b : spec(HM) N I. — spec(H') N I. and a constant
Co > 0, such that for all e € (0, &)

b(A) = A < Coet .

HYPOTHESIS 6.28. We denote by 1, the eigenspace of HM for the interval I.(Eo) = eFy +
B(0, Cosg), where Ey is an eigenvalue of the harmonic oscillator K defined in Theorem , Let
Ny denote the dimension of €1,0. Let {vi1,...,v1,n,} be an orthonormal basis of eigenfunctions
of E10 and {p1,1,- .- p1,N, } the associated eigenvalues.

Let @' C My be an open sufficiently small neighborhood of 1 as described in Chapter[3 and
X € 65°(RY) a cut-off function, which is supported in @' and equal to 1 in @. For the (realizations

of ) asymptotic sums ay p, and ELk defined in (3.92) and (3.93)) let
171,]‘ = E%a17]‘€7f}(, 1 Sk‘SNO
and denote by &1 o the span of {t11,...,U1n,}-

By use of Theorem and Corollary the next corollary follows from Proposition
(with 6 = O(e®), a=* = O(¢~%) and N = Ny)).

COROLLARY 6.29. For &1 and ENLO defined in Hypothesis we have
dist(E1,0,E10) = O (%) .
The eigenvalues of HM' in I.(Ey) are given by eEy j + O (£).
It follows from Corollary that there is an orthogonal matrix (c;k(€)), < <, Such that

No

vij =Y cixiing+ 0 (), (6.118)
k=1

where (¢; 1) can be chosen such that ¢;j, = 0 if £ j, is not asymptotically equal to u; ;. If all E j
have different expansions, then (c; ;) may be chosen as identity matrix.

In Bao-Chern-Shen [6] it is shown, that short geodesics minimize the distance and are unique
up to reparameterization . We call a geodesic between two points minimal, if its length equals
the metric distance between these points. By Lemma together with the construction of ¢ in
Section we can choose a subset © of M, such that the following statements hold.

HYPOTHESIS 6.30. Let @ C M containing 0(= x1), such that the following holds.

(a) For d'(z) := d(z1,) let Ay = {(z,Vd(z)) | * € O}, then we assume that !X (z,£) C
Ay forallt <0, (x,€) € Ay and e'Xa(z,€) — (0,0) fort — —o0, i.e. that Ay is equal to
the outgoing manifold defined in Section[3.2

(b) The base integral curves of the Hamiltonian vector field X, joining any two points in
Q\ {0} realize the minimal geodesics with respect to the Finsler distance d as introduced
in Definition [{4)

The restriction of @ to the lattice is denoted by O..
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By Proposition the base integral curves on R?\ {x1,...z,,} are geodesics with respect

to d. Since it is shown in Abate-Patricio [1], Thm. 1.6.6., that short geodesics are minimal, as-
sumption (b) holds for 2 sufficiently small.
The same is true for assumption (a), since by Proposition for @ small enough d° = ¢ on O,
where ¢ denotes the solution of the eikonal equation (3.10). The fact that (a) holds for d' replaced
by ¢ follows from the construction of ¢ in Section for @ sufficiently small. Since ¢ € (1),
the same is true for d'.

LEMMA 6.31. Let X, denote the Hamilton vector field defined in (3.14) and for xq € 2 let
x¢(xo) denote the base integral curve of X, given by

] —00,0[> t — M et (xg, Vd' (x0)) =: 2¢(). (6.119)
Let yo € @ such that yo ¢ {0} U {zi(x0) | — 0o <t <0}, then
d*(zo) < d*(yo) + d(yo, o) -
Proof:

By the triangle inequality the statement is true for < instead of <. The idea of the proof is to
show, that equality may only occur, if yy lays on the integral curve of X, with starting point xg.
Let 7o : [0, 1] — O be the curve along the segment {0}U{x:(xg) | —oo < t < 0}, parameterized
such that 79(0) = x¢ and vy(1) = 0. Thus =y, is by construction and Hypothesis a minimal
geodesic between 0 and xg. In Bao-Chern-Shen [6], Thm. 6.3.1, it is shown that minimal geodesics
are unique up to reparameterization. Equality in the lemma would contradict this uniqueness,
because this would mean that there are two different curves from 0 to xy, which minimize the

curve length and are thus minimizing geodesics.
O

By a standard compactness argument, we have the following

COROLLARY 6.32. Let Ky, Ko C @ be compact and assume that Ko is disjoint from 1?1, the
compact union of all minimal geodesics from all points of K1 to 0.
Then there exists 0 > 0 such that for all x € K1, y € Ko

d'(z) < (1—6) (d'(y) + di(y, z)) .

The main purpose of this section is to compare for one fixed well, which we choose to be 1,
the asymptotic eigenfunctions derived via WKB-procedure with the exact eigenfunctions. To get
approximate eigenfunctions, which are defined in @ , we replace the phase function ¢ by the Finsler
distance d! associated to the well and solve the transport equations globally. Then the functions
U, constructed in Section satisfy for z € @. In consideration of the different normal-
ization factors in .#2? and ¢2, we multiply the factor €% to the original version of the approximate
eigenfunctions constructed in Section [3.5.2}

THEOREM 6.33. Let @ CC M; satisfying Hypothesis . For a1 given in Theorem
and x € €5°(R?) with x(z) = 1 for x € @, let
1
Uy, =ctar e <x, 1<k<N (6.120)

and define vy ; := ), ¢j U1k, where (cj 1) is the matriz determined by .
Then for every compact set K C @, for every N € N and for all € € (0,eq

| ~0 (=),

at /
[ (’UL]C — Ul,k)

£(Ke)
where K. := K N (¢Z).
Proof:
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For w := vy — v’l,k, we set
(HM = By)or — (HM = Bp)oy e = (HM = Byw =7

Since the first term on the left hand side vanishes exactly on @ and the second is by Theorem

1
Ne=% for any N € N, we get for any compact K C ) the estimate

_ N
| R CICOR (6.121)

In addition, from the definition of the functions v} ; and Corollary it follows that for some
Ny €N

of order ¢

at
eesr

dl
- =0 (M) . 6.122
ey = O (6.122)
By (6.118) we have vy, = v} ; + O (¢*), thus for any N € Nand K C O
wllezx.) = O (V) . (6.123)

For a fixed compact set K C ), we denote by K the union of all minimal geodesics from 0 to
points in K. In order to use Lemma we have to consider functions u, which are supported on
the bounded region . Therefore we choose a compact set G such that K CC G C Q and define
@ := 1gw. Then by (6.121)) and (6.122) we have for all N € N and some Ny € N

IA

Hﬁ(Hgil — B

1
HedT 1g(HM — Ep)w

1
+ Hed?[Hng, lg]u)

2(0.) 2(G.) 02(5G.)

= O0(N)+0((e ™), (6.124)
where for the estimate of the second summand we used in addition the boundedness of the com-

mutator and Lemma Here we choose § such that §GN K = (). In order to take the estimates
in the different regions into account, we define for N € N the phase function

Uy (z) := min{®y(z), U(x)}, (6.125)
where for the phase function ® defined in (5.14) in the proof of Theorem and 0 > 0 as in
Corollary we set

Oy (z) = ®(x) + Ne logé and U(x) = yle%fG (y) + (1 —d)d(x,y) . (6.126)

Then for some neighborhood W of K and for each N there is an ¢ ~ such that for all € < en
Uy(z)=Pn(x), reW. (6.127)

This can be seen as follows. We have B := {d(z) < Be} C W for € small enough, ®(z) < ®(y) for
x € B,y ¢ B and ® is monotonically increasing with d for z ¢ B, i.e. ®(z) > ®(y) if d(x) > d(y).
Therefore we can restrict the discussion to the case d(x) > Be, where the function g is equal to

one. It follows from Corollary that ®(z) < (1 —6)(®(y) + d(z,y)) for € K and y € 6G,
leading to the estimate

On(r) < inf —6(y) + Ne logé +@(y) + (1 —0)d(z,y) < ¥(z),
Yy

where the second estimate holds for € small enough to ensure that Nelog % < Sfb(y) for all y € §G.

This shows (6.127)).

Furthermore for x € §G it is clear that ¥(z) < ®(z) and therefore
Un(z) =9(z) < ®(x), x € 6G. (6.128)
Since ¥y was defined as minimum, we have in addition
Upn(z) < Pn(z), r€eD. (6.129)

Now the proof goes along the lines of the proof of Theorem Thus we start to give estimates
for V. + V¥~ where V¥ is defined by (5.2).
It follows at once by the definition of V®~ and of ®y, that V®* = V®. Thus we have by

(5.37) and (5.38) the estimates
Vo(x) +VE¥(2) > ~Cse  for d(x) < Be (6.130)
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and
Ve(z) + VEN (2) > (5 - cg) e for d(z)> Be. (6.131)
0

To analyze V. + V¥, we first notice that ¥ is upper-¢2 on G in the sense of Rockafellar-Wets [51]
and thus Lipschitz continuous. It follows at once from [51], Theorem 10.31, that

v - U -
LY(zx) := limsup [¥(an) = U(zs)| = max(1 — 0)|V.d(z,v)|, ze@,
T1,To—T |$1 - (EZ‘ yEY,

where Y, := {y € 0G| ¥(z) = ®(y) + (1 — d)d(x,y)}. Furthermore is follows from [51], Theorem
10.31 and Theorem 9.7 that ¥ is differentiable almost everywhere (Theorem of Rademacher) and
that [V¥| = LW. Thus V¥ = maxycy, (1—98)|V.d(z, y)| almost everywhere and by the generalized
eikonal inequality it follows that for some a > 0

Vo) + t(z, —iV¥(z)) > Vo(z) — (1 — 8)Vo(x) = dVo(z) > a, z¢W. (6.132)

Similar to the proof of Theorem it is necessary to estimate V. + V¥, thus by use of ([5.26)) and
(5.27)) it remains to find an estimate for V¥ (x) — t(x, —iV¥(x)). We have

V)~ o0 = | X ar(o) {eosh (20(0) - 0o ) - ot (- L9ve(0)) |

yE(ez)d
z+yEQN

< Y lay(2))

YEQ,

cosh (i(‘l/(a:) e+ 7))> — cosh (—i’yVT(m‘)) ’ . 2e0, (6133)

where Q. (x) := {y € (¢Z)? |z + v € @}. As in the proof of Theorem [5.4, we get by the Mean
Value Theorem

cosh C(\p(x) U 7))) _ cosh <—iw\1/(x)) ‘
1
€

< sup el HT@-T(@+)t-1V¥(@)(1-}]
T tel0,1]

{(T(x) = V(z+7)) + W\IJ(a;)}’ . (6.134)

Since W is Lipschitz continuous and the region is bounded, we have for some C,C
WVO(@) < Chl and [¥(2) — Wz + )| < C (6.135)

for all z, where ¥ is differentiable and for all v € @”(x). Thus there exists a constant D > 0,
such that the exponential term on the right hand side of (6.134]) can for almost all x € @, for all
v € @L(z) and for all € € (0,£¢] be estimated as

eé{(\I,(x)_\ll(x+fy))t+’yv®(x)(1—t)}‘ < ee (6.136)

By second order Taylor-expansion, the remaining factor on the right hand side of (6.134)) can be
estimated as

d
1 1
(W (@) = W(a +9)) + V()] < w2 > 00,8 (z + ty) (6.137)
telo, vp=1

Again by Rockafellar-Wets [61], Thm. 9.7 and Thm.10.31, the modulus of the second derivative of
U at a point z is equal to the the second derivative of d(x,y) for some y € 6G, which is bounded
for all x € . Therefore we get for some C3 > 0

él(‘l/($)—‘1/(x+v))+vv\l'(x)\ < %lvlz, (6.138)

yielding to
V¥ () — t(z, —iV¥(2))| <eCy . (6.139)

for some Cj by the same arguments as in the proof of Theorem
Thus we have by (6.130]), (6.131)), (6.132), (5.27) and (6.139))

Vo(z) + VI (z) > —Cg e for d(x) < Be (6.140)
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and B
Ve(z) + VI (z) > <C - 06> e for d(z)> Be. (6.141)
0
We now choose B such that B
(a—Cg)s—Ek >e

and define for
O_:={xecO|V.(x) +v¥(2) —Er <0} and O, :=0\0Q,
the functions Fy : @ — [0,00) by

Fi(z) = \/5 ey« ey (@) + (Va(@) + VIS (2) — E}) 10, (2) (6.142)
FL (@) = /2 Lagay <oy () + (i — Valw) — VI () To._(2) (6.143)
Then Fy are well defined and there exists a constant C' > 0 such that

F:=F,+F.->C\e>0, F_-=0(e) and F2-F2=V.+V" —FE;. (6.144)

Furthermore by ((6.140)) and ((6.141])

supp F_ C {d(z) < Be} . (6.145)
Now we are going to use Lemmaa yielding for v = e 1c w the estimate
vy 2 2 vy 2
HFeT 1w 4Hf ~ By 1lgw +8HF,6? 1w . (6.146)
£2(9¢) £2(9e) £2(9e)
Since e 2 = 2N , we have by (6.127)), (6.144) and ([5.47) for some Ny € N
LN 2 LN 2 dl
Fe i1 H > HF 2 H > CeltNoN % 6.147
H R PTG | TP e wlec (6:147)

and by (6.145) and (6.123)

2

2 LN
= ||F_ e~ < Ce' N w|? =0(1). (6.148
2. H € iy S O IWleqa@<pa ) = O0) - (6.148)

Furthermore by (6.128)), (6.144) and (6.129)

HF_e\pTN low

2

2

\'
H%QTN (" = Bi) Lo w||, er T o (H - B wl, +H ® [ 6] 2 (5G.)
N . 2 . ?
< Celt NH“ (H2" = i) w e?(G5)+H% A" 1] w 2(56.)
_ O(l) +O(€_NO) , (6149)

where in the last step we used (6.124]). Thus inserting (6.147), (6.148]) and (6.149)) in (6.146) yields

1
leS wllez(x.) = O (V)

for all N € N, proving the theorem.

6.6. Asymptotic eigenfunctions and the interaction matrix

Theorem enables us, to analyze the elements wq,g of the transition matrix by use of the
approximate eigenfunctions @; ; in the case of two wells as introduced in Hypothesis

Since in Chapter [3] the well was assumed to be at zero, we have to translate the asymptotic
expansions 1, and g to the wells x;(,) and x;(g) respectively.

HYPOTHESIS 6.34. In the setting of Hypothesis we simplify the notation by writing x; and
xy, for the wells, uj;, py for the Dirichlet eigenvalues respectively and E := E,g for the "ellipse”.
In addition we assume the following:

(a) There are neighborhoods Q; and Qy, of the points x; and x), respectively, such that Hy-
pothesis is fulfilled for the distance functions &’ and d* in Q; and Qy, respectively.
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(b) The assumptions on E and ) given in Hypothesis hold for A}j(a) and ]\c/)[j([;) replaced
by Q; and .

(c) The Finsler distance between the two wells is minimal, i.e. di(xj,x) = Sy and there is a
unique geodesic ;i of length Sy joining them, which is included in @; U Oy,

(d) For yjr € vjr NQ; N Oy choose the neighborhood @ defined in Hypothesis such that
I':=00NENQ; Dy defines a smooth hypersurface intersecting v;i transversally at yi
and having no other intersections with ;i (here 0O denotes the boundary of ).

(e) For AC R and § > 0 we deﬁne SA:={r eR¥ Iy cdA: |z —y|l <3} Then we set

5T = 50N Q© N E and 5T = 5T 1 (e2)7.

With the assumptlons in Hypothesis [6.34] it is by Theorem [6.33] possible to replace modulo
terms of order e~ = £ the Dirichlet eigenfunctions, which are needed to compute the interaction
matrix wj, by their approximating WKB-expansions.

PROPOSITION 6.35. If Hypothesis [6.5 holds, then for
~ 4 _d .
up=ciqe < x, l=jk,

where a; denotes the asymptotic expansion (3.92) at the well x;, the elements of the interaction
matriz are given by

So
e —_ A. —_— = J— — /\- — T oo — e
Wi = <16FEuJ’T516F§uk>€2 <T816F§u3’161“5uk>e —|—O(s e s)
k
_ e I () k(@ ty)
= > D aw) Yy, Y et (j,l(l")e = agm(z e -
23T, veend I>—N; m>—Nj,
x4+ ESTE

- @@t _db@ _Sq
—a;(z+vy)e e - Q,m(x)e” = > +0 (e < e ) .

The constants N; and Ny, depend on the energy u; and py. If p; and pg are both principle
eigenvalues for the Dirichlet operators, then N;j = N = 0.

Proof:

Since by Hypothesis [6.17] each of the two wells has exactly one eigenvalue within the spectral
interval I, we have ’u;- = u; in the setting of Theorem We denote by = equality modulo
0] (e‘s?oe‘x’). Setting

A= 1 Te 151:2 — 131:: Telg (6.150)
we have by Proposition to estimate the difference
~ ~ ~ ~ —(Sgta=9)
{wjk — (uy , Auk>62| = |<vj, Avg) o — (U, Auk>éz| +0 (e e )

—(Sgta—9)
€

)(6.151)

where v}, v;, denote the exact Dirichlet eigenfunctions. We have by (6.150), the triangle inequality
and since d’(z) + d*(z) > Sy for all z € E

IN

(0 = @y, Avk) | + (T, Al = W) | + O (e

(5 =5, Avdal = | D 3 (15 () Lge (@ +9) = 1 (0) 1g_(2 + )]

z€(e2)? vE(eZ)?

xe e (uy(2) - B (a)) ay (@)e e T u(a + )

H d(,.+v)
k Z a :
£2(3T.USTS) 7€

lvI<B

P(@) @) . a* @) _ dF () ‘

ak
=

a4

<e = e (v —vj)

£2(5T . USTS) ‘KW(M“U(SF )

In the last step we used @; = v} and that for some B > 0 we have |y| < Bifz € oT. and T+ € 5FC
and vice versa. Therefore by Theorem m, Theorem |5 m and . we have

(0; — 1, Avg)pa| = O (6_375"0) . (6.152)
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The second summand on the right hand side of (6.151)) can be estimated similarly, which proves
the first equation in Proposition To get the second equation, we only use the definition of u;
together with the asymptotic expansion of a; constructed in (3.92]).

O

6.6.1. Estimates for the interaction-matrix for finite step kinetic energy. In the set-
ting of Hypothesis , i.e. if we have only two wells inside a specified region with eigenvalues
inside of an exponentially small interval, we are now going to estimate the interaction matrix in
the case, that the step length of the translations caused by the the kinetic energy operator is
finite and scaled by ¢, i.e., a, vanishes for |y| > Ne for some N. Furthermore we will restrict the
discussion to energies, which belong to the ground state with respect to the two wells. In this case,
the constants IV, N, occurring in the expansion of the interaction matrix w;j in Proposition W
are both equal to zero (see Remark .

HYPOTHESIS 6.36. We assume that there exists a N € N such that a, = 0 if |y| > eN. We

associate to each pair (x,x+7) € gI\’E X Efz, which occurs in the formula for the interaction matrix
element wjy, in Propositionl@, a point Yz € I' as the point of intersection of I' with the straight
line between x and x + . Then we set

I :={y ey =ya, IGEFE,er’}/EéAFZ}
and ., .
ST (y) :={y € (eZ)| Iz €T : y = yur} -
Then we define for y € I'* and & € T?
P 7€
Py, == Y ayye= .

YEST(y)
We denote by = equality modulo O (e_%e‘”).

By Hypothesis the symbol #° is hyperconvex with respect to & (see Remark [4.21)).

THEOREM 6.37. Under the assumptions given in Hypotheses and and for v} as
defined in Theorem[6.33, the elements of the interaction matriz are for § = Ne given by
wjk = Z v (), () (f‘s(x,Vdj(x)) — (2, Vd (2)) + O(e)) . (6.153)

"Degfs

If v;- and v}, are both strictly positive in 5/1:5, we have modulo O (Eooe_ieo>

> (@) (@) Vel (¢, Va* (2))(Vd (2)) — Vd* (x))
IEJ/I\‘E
Swip < Y V(@) (2) Vel (z, Vd (2))(Vd (2)) — Vd¥(z)) . (6.154)
:1:631:5
Proof:

We start proving that Proposition holds for § = Ne for some N € N. This is a direct
consequence of the assumption a, = 0 for |y| > Ne¢, since then right hand side of (6.94)) is equal
to zero for 6 = &N and therefore we get

N[ 1) = LsalHe, 1al Toa) =0 (6.155)

leading at once to Proposition [6.19] and Proposition for this choice of 6.
By Proposition we have

a _di@) _dF ety _dI(zty) _dk@)
wik= Y, Y a0 (aj(x)e Tapw e —aj(wty)e o ag(z)e e )

z€oT, vE(En)?
z+~y€ESTE




6.6. ASYMPTOTIC EIGENFUNCTIONS AND THE INTERACTION MATRIX 125

By (3.9) and v = O(e), Taylor expansion at the points x € 511 yields

J (= k(@ ty j : ~
Y ay@ai(@)e T aplaty)e T T = —ag(@)ar(e)e” F @ OHEE)NB (2, T (2) +0(e)) -
ye(ez)d
wfﬂx(e?fg

(6.157)
Inserting (6.157)) in (6.156f) yields
Wik = Z E%aj(x)ak(x)e_é(dj(m)+dk(x)) (tN‘S(x,Vdj(x)) — 0(z, Vd* (z)) + O(e)) .
wegfg

Since by the assumptions v; = 4;. where @; is defined in Proposition equation ([6.153) is
shown.
To show (6.154)), we use that for any convex function f on R¢

VImE=n) < fE) = fn) <VFEE-m, néEeR.
Thus for vg and v;, both positive in 6T , (6.159) follows from the convexity of #°.
O

Now we restrict ourselves to the case, that Ey describes the ground state of the system with
respect to z; and x. Then it is possible to give the leading order term with respect to e.

THEOREM 6.38. Under the assumptions given in Hypotheses and [6.3]], we assume that
Ey is the principal eigenvalue of the harmonic oscillators at x; and xy. Then

fwir] = O (e ) . (6.158)

If vg and vy, are both strictly positive on T' and T' is transversal to all geodesics from x; and xj, to
y € I', we have for some C >0

1
Cet < —wje™ < et (6.159)
If furthermore there exists a constant C' > 0 such that
. 1
d (y) + d"(y) > So + adQ(y, Yir) (6.160)
we get for some C' > 0 the estimate
1 s 1 .

Proof:

To show (6.158)), we analyze the Taylor expansion at the points y,, € I'* as introduced in
Hypothesis [6.36] We get

k
Wik =Y Y ay(@)e? a(Yen)ak (e e S W) T W) (6.162)
zE€ST. ve(en)?
Ty ESTE

% o= (V& (4o ) +V A" (42r)) (2= Yary) ( — 1V (Yar)Y _ o IV (ay)Y 4 0(5)) _

By the boundedness of the region o , the fact that the product ajax(ya-) is of order zero in € for
the ground state and the estimate (z — y) = O(e) = =, which follows from the assumption that
there are only finite steps allowed, it follows

‘w]k‘ < 052 Z e dJ(y)+dk(y)) .
yel'*

This sum can be estimated via the integral over the hypersurface I'. By the scaling of the sum
with respect to &, we get a factor e~ (?~1 | since the codimension of I' is one. Thus we get

o] < Gel4 / OO go(y). (6.163)
N
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By Hypothesis we have for some C' > 0

So < d(y) +d*(y) < So + Cd®(y,yjn),  yeT. (6.164)
Inserting (6.164) in (6.163]) we can use of the method of stationary phase (see for example Grigis-
Sjostrand [24]) to analyze the integral on the right hand side of (6.163)). This leads to an additional

factor = and thus to the estimate (16.158)).

For (6.159), we have to analyze the terms in (6.162)) more detailed. By assumption, a;(y)ax(y) > 0
for all y € I'. Since I' was assumed to be transversal to all geodesics from x; and zy, it follows

by the construction of @, including x; and excluding zj, and from the definition of 6T and 6T in

Hypothesis that Vd*(y)y < 0 and Vd’(y)y > 0 forally € ',y € SI\“;(y) Thus there exists a
— —/

constant C' > 0 such that for all y € T',z € 6T, v € 4T (y)

1 .
& S ajar(y)e = TEOITED (emsv - emivrn) < 0 (6.165)

Since by Hypothesis @ the coefficients a- are negative and bounded, we get by inserting the first

estimate in (6.164) and (6.165) in (6.163)

—wjp < fe -2 ¢ Y1, (6.166)
yel'*

and by inserting the second estimate in (6.164)) and (6.165) in (6.163)

2
Ce~Let Z e_cM < —wj - (6.167)
yel™*
In both equations, the sum over I'* can be estimated via the integral over I'. By the scaling of
the sum with respect to e, we get a factor e~ (?=1 since the codimension of T is one. Therefore

(16.166|) yields

So

1
—wjy < 56*?51*% . (6.168)

The integral that we get in (6.167) can be estimated again by the method of stationary phase,
yielding the additional factor 5. Thus we get by (6.167]) together with (6.168) the equation
6.160)

(6.159). This statement can be improved by an additional assumption (6.160). Then we get
instead of (6.166|) the estimate

l(yyjk)
—wjp < —e 652 E e ,

yel*

yielding (6.161]) again by the method of stationary phase.
O

Thus at least for the principal eigenvalue and under quite strong assumptions it is possible to
find the exact order of wj;, with respect to €. It coincides with the values in the case of Schrodinger
operators on R? as described in Helffer [29] and in Helffer-Sjéstrand [33].



APPENDIX A

Technical details and supplementary computations

A.1. The discrete Fourier transform
We show some properties of the discrete Fourier transform introduced in Chapter

Equation (2.5):

We show this equation for u € I, ((¢Z)?), the summable functions with compact support, in order
to check the scaling factors. The generalization to ¢2 ((¢Z)?) can be done by the usual density
arguments, as described in Reed, Simon [49]. By definition

(Z-F ) (x) = (\/127>d/[ M]de*%fé(ﬁglu)(g) d¢ =

= 1 ’ *1935 1 ¢ iz’ & / _
= <\/ﬂ> /[ﬂ-m-]d e « (M) Z e Eu(x )df -

z' €(eZ)?

d
1 ) ! / i¢(a'~a)
= u(z) ee dg .
(27T [—m,m]d

x'€(eZ)?

d
1 / P —2) g _ 1 for z= ;v:
21 [—,m]d 0 for z#x

and therefore equation ([2.5) is shown for u € . ((Z)%).
Equation (2.6):

Let g(z) := e~ and f € 2, (Td) the polynomials of trigonometric functions. Then

Since % € Z, we have

F (g2 1) (©) Y et i) (Ff)(x) =
x€(eZ)?
m7E Y et (2m) e (¢ g =

xe%;,)'i /[Wx”]d

= (2m) 22 g(1) de’ =
/[‘“'777] xe(;z)d

— (2m)°# / FENFg)(E— &) de,
[~

where we used, that g is a Schwartz function and f € & to interchange integration an summation.

If we now start with g,(z) := g(az) = ¢’ for which lim,_g g(ax) =1 and with .Z_} f(¢) =
\/%d '€ (acz)d e:%'€g(x"), for which lim, o Z. 4 f(§) = F~'f(£) in the sense of a Riemannian

sum, we get with n = %

F T f)(€) = (2m)7" /[ &) S e Ogaag =

z€(eZ)?

= e[ e Y e Ogaa =

z'€(acZ)?

- <2w>3/[ JE+an)(FoLg) () dn.
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In the limit a — 0, the last integral is equal to

76 em [ P tgtmidn = JOFAF )0 = 1(0).

Since on the other hand
d

lim (2m) 7% Y et g(an)(Fof) (@) = (0T (F)(E).

z€(eZ)?
we are done. As in the previous assumption, we refer to Reed, Simon [49] for the generalization
to f € L%(T?).

Equation (2.7):
For u,v € I, ((¢Z)?), we have by the definitions and .

(v, upp = Y ﬁ(w)u(fﬁ)=

: ing g1,
= Fe0)(§) dEu(x) =

ze(gz)d \/%d /[—W,Tr]d e=( v)(&) d§ u(x)
Z 62”5 z)dE =

z€(eZ)?
- [T e ke -
=(F v, ﬁZE_lu>T.

The change of integration and summation is possible, since the integral is taken over a compact
range.

= / (ﬁ;
[=m,m]d \/ﬂ

LEMMA A.l. For fized x € (eZ)* let f, € (2 ((¢Z)?) not depending on the choice of €, i.e. we
assume that there exists a function f, : 29 — R such that f.(y) = f$(g) Furthermore we assume
(Fefz) € € (T?).

Then there exists a constant C, > 0, such that for all N € N and for alle >0

Cy
|fe(V)] < W )

If F.f, is bounded with respect to x, then the estimate holds uniformly in x, i.e., there exists a
constant C' > 0 such that for all N € N;e >0

C
sup |fz(7)] < E— Y VD
z€(eZ)? 1+ (u)

€ (e72)?. (A1)

€ (ez)?. (A.2)

o2

Proof:
By the Fourier inversion formula, we have for fixed z € (¢Z)?

poy =t [ e he @) @

The operator L := > has the property Le™ £7€ = ¢~ %€ Thus we can introduce L into the

integral and get by partlal integration

() = (27r)‘5/[_”]d (E¥e ) (721 12) () de

= (2m)” 3’(1+'”) /[_ ]de—%%a—Ag)N (Z1 ) (€) dE . (A.3)

Since the last integral is bounded by assumption, (A.1l) follows from the triangle inequality.
If #Z71f, is bounded with respect to z, the same is true for f, by the compactness of the torus.
Thus taking the supremum over all  on both sides in (A.3)) shows (A.2).
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LEMMA A.2. Letge€l, ((EZ)d) with g(y) =0 for |y| > A and such that g does not depend on
the value of € in the sense of Lemma[A]]
Then (?E_lg) can be continued to an entire analytic function. Using the notation ¢ = £ +1in, then
for & € [—m,m]¢ there exist a constant C' > 0, such that for all N € N

B Ce2inl
790 < v
(9
Proof:
Since g € I, ((¢Z)?), the function

_ _d i
FgQ)=0@2m)7F D e="yg(v)
vyE(eZ)?
is well defined and analytic for all values of 1, because we can differentiate each summand of the
finite sum. To use partial summation similar to the proof of Lemma [2:13] ¢, we introduce the
operator
1-¢2A
L. := = © e ,
1+ 1(2—2cos(y)

where A, is the discrete Laplacian defined in (2.60]), which is symmetric with respect to the £2

scalar product. Thus L. obeys this symmetry property too and in addition L.e<7¢ = e£7¢ by
construction. Therefore

Fl90) = emE Y (et ) g(n) =

YE(eZ)?

d —N
(2m)7% (1 + ) (2 2cos Cu)> e (14 ?A)Ng(7)
v=1 YE(eZ)d

and from g(y) = 0 for |y| > A, it follows that

Y A gl < [HEW] N [t @A)yl s etile . (A
vE(eZ)d vE(eZ)?

Furthermore
—2cos(,| =12 —2cos&, coshn, —isiné, sinhn,| =
2—2 2—2 hn j si inhn
1
= ((2 —2cos&, coshny,)? + (2sin g, sinhn,)?)* =

N|=

=2 (1 + cos? &, cosh? Ny, — 2cos &, coshn, + sin® {“,,(cosh2 My — 1)) =
1
=2(1+ (cos? &, +sin €,) cosh? i, — 2 cos &, coshn,, — sin? &)’ =

1
=2 (cos® &, — 2cos &, coshn, + cosh? m)? =
= 2(coshn, —cos&,) ,
where for the last equality we used that coshn, > cos§,. With the estimates

2
Coshnl,21+n2—”, 7r2(17cos§y)2§3 for n, €R, &] <,

we can conclude

Ub n o & Ly 2 [
2(coshmn, — cos§,) > 2 (1 + 5 = cos§V> >2 (2 + 7r2> > 2; (77, +§V) =
We thus get for |£,| < 7 the estimate
|2 —2cos (| > oy 1<v<d. (A.5)

T2
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Combining (A.4) and . IA.5) yields

d —-N

1+ 2(2 —2cos(,)

v=1

Ce2lnl Ce2linl
<
2N
(1ex,18)" 7 1y (1)

|Z79(0)| < (2m)7F Y eF (14 2A)Ng(y)| <

yE(eZ)d

IN

which proves the lemma.

PROPOSITION A.3. For f € (2 ((5Z)d) the Fourier-transform (ﬁglf) has an analytic contin-
uation to the set K, := {¢ € C*||S(¢| < a} with the property that (F1f) (- —in) € L*(T) for
each n € R with |n| < a and that for any b < a

sup, I1(ZZ1f) (- —in)|lpa < o0,
nl<

if and only if €2V f € (2 ((ez)?).

Proof:
!
For any g € l. ((¢Z)*) we have by
> s = [ ET@Es e, (A.6)
YE(eZ)? [=m.m]?

Since by Lemmam A.2| and by assumption .# ~1g and .Z. ! f can be continued analytically to the set
K,, the Cauchy Integral Theorem gives for || < a

/[ Q@ N - T m@ PO dc+ A7)
[T e [ / M ETE @ d =0,

The Fourier transforms of lattice functions are 27r—periodic in £ for each fixed value of 7, since for
he 2 ((cz))

(F0) (r—im) = (2m) 7% Y eEeRh(y) = (2m)7F Y (—1)F eF ()
vE(eZ)4 vE(eZ)4
and
(Z2h) (o —im) = 2m) 72 3 e ey = 2m) 7 YT (1) F et i)
YE(eZ)? YE(eZ)?
Therefore the last two integral terms in cancel each other and
[ ET0E - Y eI NG de =
[~m.m]d [—m]d ve(en)?
= [ emt Y e g2 e - ind =
[ ve(eZ)4
:/ )72 D erEmg(y)(FNf)(E — in) dE =
[=,7]¢ ~E(eZ)?
= [ T e i de (A8
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Defining hy, (&) := (F 1 f)(€ — in), we get by (A.6) and (A.8) and since g € I. ((cZ)?)
> G = [ EE inhy(©)de =

~E(eZ)d [—m,m]d

The function g was arbitrary, we therefore get almost everywhere

(Feha)(7) = e="f(7) -
Since h,, € .2 (T9) for each fixed 7, this yields ez f(v) € (2 ((¢Z)?).

<=: Since e%\v\f € 12 ((€Z)d), we can perform the Fourier-transform to get

_ b 1 A b
Fo (6E|vlf) — d Z eE1 €t f(y) =
V2m v€E(eZ)d
1

- év'(é—ib)f —
\/ﬁd WG%W ) "
ﬂsilf(g - 'Lb)

Thus .. ! f has a continuation to Kj and is bounded for each fixed ¢ € T<. O

A.2. Simultaneous diagonalization of two quadratic forms

In Chapter [2| we need only the diagonalization of the kinetic energy for x fixed at a critical
point z;. Since each symmetric matrix B(z;) can by use of two orthogonal matrices P and P* be
diagonalized by P'B(z;)P =: Bp, where Bp is diagonal, we have

(€. B(;)¢) = (€. Bo€) = (BAE, Bpe) = (€', €.
Then for 2’ = B%IL‘
(', Ax’) = <B%x, AB[%)x> = <337 B%AB%.Z‘> =: <x, /Nlac>
In Chapter [3] we assumed that the kinetic and potential energy are diagonalized simultaneously,

if there is only one well 1 = 0. This can be done as follows.
The symbol of the quadratic part of the kinetic energy at = = 0 is given by

tqo(§) = (&, BE),

where B := B(0) is a symmetric positive definite matrix. The harmonic part of the potential V'
takes the form
%1 = <‘Ta A:Z:>,

where the matrix A is symmetric as well. This setting can be reduced to the case, where the
quadratic term of both operators is diagonal, as treated in Chapter [3| Since B is symmetric and
positive definite, (z, y)z = (z, By) defines a scalar product for which t4 is already diagonal.
Denoting by C*' the matrix for which (Cz, y) 5 = <x, CTy>B and by C? the transposed matrix of
C, we get CT = B~'C'B. To be orthogonal with respect to the B-scalar product, C therefore has
to satisfy the relation C~! = B~'C*B. Since the harmonic part of the potential given above is a
quadratic form with form matrix A, we can find another matrix Ap representing this form, which
is symmetric with respect to (., .) 5 and which therefore can be diagonalized by conjugation with
a B-orthogonal matrix C'. We thus have

(x, Apz)g = <:c, CTAdC’:c>B =(Cx, AgCx)p = (2’ , Aax') 5
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where Ay := CTApC denotes the diagonalized matrix and 2’ := Cz is an element of the trans-
formed lattice C'(cZ)?. By this transformation of the a-variable, we get the related transformation
¢ = (CT)=1¢ = C¢ for the momentum variable, which preserves the B- scalar product. Expressed
in the new variables, we therefore have
d
tqo(gl) = (¢, §/>B and Vj, = (2, Ad$I>B = Z)‘Exf )
v=1

where )\f, j=1,...d, are the eigenvalues of Ay. Since C does not depend on ¢, the estimates given
in these notes are not changed by these transformations. For x # 0, the kinetic energy is of course
not diagonal with the chosen transformation.

A.3. Kinetic Energy as translation operator

At first we determine the inverse Fourier transformed of the translation operator 7.., to a
neighboring lattice point. We have

1 &
(95_1756,,15)(5) = q Z e Tee, u(z) =
\/ﬂ z€(eZ)e
1

€ 1 . 3
_ TS _ i(y—eey,) > _
= 7] E e Eu(aché?eu) = 7 E e Eu(y) =
vV 2 z€(eZ)d vV 21 yE(EZ)d

—i&, iyt (y) = e & (F!
e eVeiu(y) = e "> (Fu)(€),
\/27Td yeé)d )

from which the form of the symbol ¢ in subsection [2.3] follows. Any translation 7, can be written

as linear combination of these elementary translations, i.e. 7 = 25:1 ekye, for k, € Z, thus the
form (2.20) of T as translation operator follows from the form (2.17)) of the associated symbol.
Since in particular

(27T ] ye(ez)d
]- _i ]. i
— B g U(:Z? — ’y)/ e a"/Et(x7€) df = 5 a Z T_—y/ e a"/gt(l’75) df ’U(I),
( 7'(') ~e(ez)d [—m,m]e ( 7T> ~e(ez)d [—m,m]d
we have )
() = —— —E (2, £) dE . A9
a ’Y(I) (27T)d Aw,w]de (zvf) 6 ( )
Thus a_, = #.t, i.e., a, is the Fourier transform of the symbol ¢ € €>°(T?) and it follows by

Lemma that |v|%a7 is square summable with respect to v for each fixed x € (¢Z)?. If we
assume in addition that the symbol ¢ has an analytic continuation to C¢ (as we do in Hypothesis
4.20) and is bounded in the region {z = (£ +in) € C?||n| < b}, then a, decreases for |y| — oo

[v[b
€

exponentially, i.e. e = a, € *((¢Z)?) as shown in Proposition

A.4. Unitary Transformation

To show the unitary equivalence of H7, given by (2.48)), to K as defined in Theorem m
we define the unitary operators

(TO)k)(x) = k(z=b), (D(e)k)(x) :=e

Sk(ex), ke L2RY).
Then

D (5_% T (5_%1‘]‘) e K;T (—5_%3:]-) D (5%> k(z) =D (5_%) T (e_%xj) eKjeik (e_%x + xj> =
=D 5_%) € (—EA + ZAil (x - 5_%xj)k (sc - 5_%xj)l +W (ZCJ)> ik (5_%:10) =
kl

= (8 A+ A (@ — ), (v —x;), + eV (mj)> k(x) = Hk(x)

kl
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and the assertion is shown.

A.5. Direct computation of w,3 — wga

We compute directly the difference between the matrix elements w,g and wg, without using
the microlocal calculus.

Vo —wpa =34 Y S ay(@)usle + vale)+

TEMi()\Mj(5) oyt

+ ) > a~ (2)vg(2)va (T +7)—

TEMID) ventjia) \M ()

- Z Z a(z)vg(x)va( +v)—

TEM;(5)\Mj(0) wyreM; i

_ Z Z ay(z)vg(x + 7)va(x)

TEMj(qa) z+'y€Mj(L)\]\/Ij(u)

The combination of the first with the fourth and the second with the third summand yields

Wop—wga =39 > a@alesle+a)-

TEM () \Mj(8) wpyent; (g nn;(ay

- ) S o @al@)vsle + 1)+

E€M(5)NMj(a) z+'y€Mj(’YB)\]\4j(a>

+ Y a@us(@)vale +9)-

TEMi 3 OM(@) o pyen; oy \M;y(s)

2 > ay(z)vg(z)va(z+7) p . (A.10)

TEM;(5)\Mj(0) apnyen; iy

Since v, is an eigenfunction of the associated Dirichlet operator, we have

(o = V)va, v5)pe = Z Z a~(z)vg(x)va(z + ) (A.11)

PEM(e) WMi(8) 4y,

and therefore we can rewrite the first and third term in (A.10) to get

Wap = Wpa = 3 > > ay (2)va(2)0s(x +7) = (15 = V)V Va) 2+
2€M;j(a)\M;

N =

>
(€] THyEM (o) M3y

+ > > ay(2)va(2)vp(2 +7) + ((Ha = V)Va s v5)p —

z€Mj(3)NMj(a) ,T+~,6Mj<l)m\4j(5)

- > > ay(z)vg(z)valz +7) —

ze€M;(3)NMj(a) IMEM].&)QMJ(B)

- > Y e @)us(@)vale+ )

TEM;(5)\Mj(a) winyent;(nyn; s
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Combining the first with the third and the fifth with the sixth term, this yields

2 =)l et Y Y ay(@a(use+) -

TEM(0) opyent; (yndy )

- ) ay(2)vg(@)va(z +7) o - (4.12)
z€M(g) a:+'Y€Mj(’zYw)mMj([")

By the substitution £ = z + v and 4 = —~ in the last two terms and by using the symmetry
relation a~(x) = a_,(z + 7), the term (A.12) is equal to

Sl w, v+ Y Y as@op(ualE+A) -

TEM ()N M;(p) H%ij

- > > ay(@)va(@)vsE +79) -
TEM;(5)NMj(a) H%LJ_(B)
Using again , we therefore can conclude
Wap — Woa = (Ha — 1) (Va s V) -
A.6. Direct proof of Lemma |2.12

Lemma [2.12] can also be proven without using the symbolic calculus introduced in Appendix
in the following way.
Proof:

(a):

Since by definition, Y2 x3 is a partition of 1, we can split H. as
1 m 1 m m 1 m
H. = > X H-+ S He S3=Y Ho+ 3 > I b He - (A.13)
J=0 §=0 =0 =0

To show the assertion, we thus have to estimate the double commutator. By the action of T, as
translation operator in £% ((¢Z)?) as described in (2.20), we calculate

D6 Do 7] = X7 4+ X = 2x7x = (X = (7)) %7 -
Thus for v € ¢2((cZ)?)

(W, I [xg, Hell )2 = <1/1, D ore(ezyr Ay (X5 — (TVXJ))277¢>€2 <
< Y llagllso s = (xa) % 107 - (A14)

vE(eZ)4

Using the Taylor expansion to first order with the notation x,(z) = ¥;(¢~#z) and the fact that

|Z—‘ is integer, we have with a suitable € (0,1)

d

D (0% (@ + )

v=1

) = xsta+ )P =<8 ()

The coefficient % € Z is not bounded, because the transitions are allowed to be of any length.
To estimate the right hand side of (A.14]), we thus have to include the decrease of a.(z) in 7. It

follows from the smoothness of ¢, and the form 1) that a-(x) decreases faster than (1+ @)’N
2
. Thus the series ) ay(z) (m) is convergent

for increasing |y| and for all N € N (Lemma|A.1

I
and

6
S Nyl s = sl 902 = O (8 1wl
yE(eZ)4
Then

I b b T2 1 = 0 (%)
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2

and point (a) of the lemma is proven.
(b):
By a splitting similar to (A.13]) we have

T+ V7 = Op™ (o) (T: + V2) Opr’ (o) + OpT" (1) (T + V) Op™ (1) +
1
#3508 @, 00F G0, (T + )] (419
k=0

We first consider the double commutator {(bk, [(bk, 1Vjﬁ ]|. The constant term keeps constant

under the conjugation and therefore commutes with D By (2.4) we have

. d -
(FVID)(E) = — > <e‘i€w ZA,i#xquw@)).

d
\% 2w z€(eZ)4 v,u=1

Ex

Using the identity Gge_ﬁ = —éxe_éf”” we can continue

d
Al (—€) (e, D¢, 675" 2/2(50)) = —¢’ AL 0,0,(FZ1)(E)
where for the last equality we changed summation and differentiation. We have
[6(6), [6(€), 0,0,]) = 6* ()00, + 0, 0u6% (€) — 26(6) D0, d(€) =
= 20%(£)0, 0, + 26(£)D, () Dy + 20()0ub(€)Dy + 2(006(€)) (0 P(€)) + 26(€) (D10, 6(€))—
— 2(8,8,9(€)) — 26(€) (80 $(€)) Dy — 26(€)(8,(€))Dy — 26%(€)9,8,0 = 2(8,6(€))(9.9(€)) ,

With ¢y (€) =: qﬁk(e’%f) we thus can deduce for ¢ € £2((¢Z)?) that

<9;1w<5> . [6: B (9;1@95)}] FE), = (A.16)

T

T

Z W(Z710(E) (0,00 0,00 F0(O)) .

Since the derivatives of ¢y, are bounded by definition, it follows by (A.16) that

[0, (B0 (Z VI 2.)]] = 0 (7).

To treat the double commutator [ék(g), [(ﬁk(f),TE]}, we have by Lemma [B.10| to analyze the

commutator with a.(¢D¢). To this end, we write a,(eD¢) = a1,eD¢ + az,e°Df + O(DE). For
the first term

[1(),[61(6), a1,De] = & (7(6) De — 201(€) Dedn(€) + Ded(€) ) = 0.

For the second term, the estimates are the same as for f/aj and for higher orders of derivatives they
are even better. Therefore by (A.15) the assertion (b) of the lemma is shown. O

A.7. Valuation on IC%

Let ve : K1 — R{ be a real-valued function, defined by v.(k) := e" for k = Y. - e/k; and
i€

>2
v:(0) := 0. To be a valuation on K1, v, must have the following properties for all k,Jl €y
2 2
1) v.(k) =0 if and only if k =0,
2) ve(k 4+ 1) < max{v:(k),ve(1)},
3) ve(kl) = ve(k)ve(1).
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These properties of v. can be verified by direct calculation.
We call v, the e-adic valuation on K 1 and define the e-norm on V by

1
Iplly = (({p, p)y))?,  pEV. (A.17)
The e-norm has the properties of a norm, i.e.

(a) llplly = 0:
ve(k) > 0 for all k € IC%.

(b) |lplly = 0 if and only if p = 0:
1) and ((p, p), =0 p=0).
(c) lkplly = ve(k)lplly for all k € Ky, p € V:

from the definition of the scalar product in V we get ||kp|y = (ve(k*(p, p>v)%. By 3) this

is equal to (ve(kK2)v-((p, p)y))? = v(k)||pllv-
(d) llp+qlly < llpllv + llglly for all p,q € V.
By the linearity of the scalar product and 2)

lp+ allv = (w((p, P)y + (0 @)y + (@, D)y + (2. @)y))? <
< (max{v:((p, p)y),ve((p, @)y),ve({q, P)y,), v=((q, Q>v)})% (A.18)
From the definition of the scalar product we get
min{ve((p, p)y,), v=({q, @)y)} < v=((p, @)y),v=({g, p)y,) < max{v-({p, p)y), v({g, O)y)}-
Thus the last term in equation (A.18) is equal to

max{v-((p, P)y) %, v:((a, a)y) ¥} = max{|pllv, [alv} < [plly + llallv-

For an operator 7' on V we define the e-norm by [Ty := sup,cy HHI;ZI’“LV

the properties of a norm, we can deduce that M : V x V — R, defined by
1
M(u,v) := (ve((u—v, u—w0)y))*,

is a metric on V, which therefore is a metric space.

. Because || .||y obeys all



APPENDIX B

Symbolic Calculus in the discrete setting

We introduce the notion of symbolic calculus including the small parameter € € (0, 1], where
the symbols are allowed to include € not only directly but also as scaling parameter, as described
n [16]. Since the phase space is given by (¢Z)? x T, the relation between the operators and their
symbols is given by use of the discrete Fourier transformation defined in ,.

For the general theory of microlocal analysis, we refer to [24], [50] and [41], where symbol spaces
and spaces of associated pseudo-differential operators are introduced.

The calculus introduced in the following sections allows, to given norm estimates of the difference
between 7T, and the approximating operator 1,; defined in for each fixed potential minimum
ij.

B.1. Pseudo-differential operators on the lattice (¢Z)?

DEeFINITION B.1. (a) A function m : R x T — [0,00) is called an order function, if
there exist constants Cy, N1 > 0, such that
m(z,€) < Colw —y)Vm(y,n),  x,yeR EneT?,

where we used the notation (x) := /1 + |z|?.
(b) For an order function m on R? x T, the symbol space S(m) (R? x T¢) consists of all
a € € (R x TY), for which for all a, 3 € N there is a constant Ca.3 such that

|8§“8§a($,§)| < Cqpm(z,§), reRY £eT?,

where as usual 9y := gt ... 03¢, We often write S(m), if the underlying space is clear.
(¢) The Fréchet-Semi-Norms of a symbol a € S(m) are defined as

6l p o= sup 020/ a(, )|
T e ml9)

(d) If the symbol a(z,&;€) depends on a small parameter e € (0,1], a is said to be in S(m), if
a(-;€) is uniformly bounded in S(m) for € varying in (0,1]. Let S¥(m) := £*S(m) describe
for k € R the space of symbols of the form e*a(x,&;¢) for a € S(m). For § € [0,1], the
space S¥(m) (Rd X Td) consists of functions a(x,&;¢) on RY x T x (0,1], belonging to
S(m) (R? x T¢) for every fized e and satisfying

10207 a(x, & €)| < Cogmiz,&)e"0UeHIE) = 5 e RY ¢ e T,

(e) Let a; € S(I;j (m),k; /" oo, then we write a ~ Z;io aj if a — Zé\;o a; € S§N+1(m) for

every N € N.
(f) A pseudo-differential operator Opgd (a) : K ((e2)*) — K’ ((eZ)?) is defined by
Op! (a)u(z) = 2m) ™4 Y / 2w, e )u(y) dE (B.1)
[_Wvﬂ]d

y€E(eZ)?
where a € S§(m) (R? x T¢),
K ((e2)*) == {u: (eZ)* — C | u has compact support}
and K' ((eZ)?) denotes its dual with respect to (., . ).

In the following, some properties of the symbols and operators of definition are collected.

137
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LEMMA B.2. Let a € S§(m) (R? x T?) and

s ((e2)?) := { u: (e2)* — (eZ)" | ulla = Sup Z ’x u(z)| < oo, € N¢
z€(eZ
We consider on s the natural topology T associated to the family of semi-norms || - ||a.

Then the operator A associated to a defined in (B.1)) is continuous : s ((¢Z)?) — s ((cZ)?) with
respect to 7.

Proof:
We start proving, that A : s((eZ)?) — 1°°((eZ)?), where [°° ((¢Z)?) denotes the bounded

functions on (¢Z)?. By use of the operator
1-— EZAE 1-— E2A5

Ty —2f (a2 (B2)

Ll(y - xvé-) =

for which Ly(y — ,&)et (=98 = ¢:(=2)¢ we have for u € s ((ez)?) and a € . (R x T?) (the
space of Schwartz-functions on R? x T9), by repeated partial integration

) = (e S [ (1 gel ) a ety de

y€E(eZ)?
es(y z)€ &
< ety / e (12200 ol € eu(y) de
y€e(ez)d m,m)d
_ uly
< c(2m)7t D e '_(x)>|2k/ m(, §)] d€ -
yE(eZ)d Y [—m,m]d

In the second step, we used that the boundary terms vanish, since a(x, . ;¢) is 2w-periodic. By
definition there exist C, Ny > 0 such that

m(z, &) < Cly — )N (y)Nom(0,0).

We therefore can conclude with the substitution vy’ =y — x

Ca [u(y)| mlx
Al < g 3 o [ im ol

y€e(ez)d

< Y, )luly)|(y — @)
y€e(eZ)?

< hosp (V) Y 6 [ M
yE(EZ)d y,G(EZ)d [_Wvﬁ]d

< Ca,s sup ||u||a

aeN
lal <Ng
for k big enough. Therefore sup,¢ .z« [Au(z)| < oo and A is uniformly continuous s (Z)%) —

1°° ((eZ)?) for a varying in a bounded set in S9(m) and by a density argument for a € S9(m).
To show that A : s ((eZ)?) — s ((¢Z)?), we estimate for u € s ((¢Z)?)

(@) Au(z)| = 3 (2m) / 0DV (€ culy) d

yE(eZ)d [—m,m]d
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If the supremum of this term is finite, we can deduce that Au € s ((¢Z)?). By definition we have

for a € SY(m) (R? x T¢)

‘8& ((ac)la(x,f;a))‘ = Z (8;Yil(x>l) (G;riﬁa(a:,f;a))

m/+m!' =p

< e Pm (x,&)er{x Zs m wﬁchx

i<p k<l

< Cyml & ().

With the new order function my(x,&) = m(x,&)(x)!, this yields (z)la(z,&e) €
S9(my) (Rd X ']I‘d). Since the boundedness was shown for all order functions m, we can conclude
by induction Au(z) € s ((¢Z)?). Furthermore for any a € N, there exists Cy, N, such that

[ Aullo < Ca S lullg, wes((e2)?).

>NV

Thus the mapping is continuous.
O

In order to prove the subsequent lemmata, we introduce the convolution and §-distribution in
22 ((ez)?) and £* (T%). We denote by

u ke v(x) = Z u(y)v(z —y), u,v € 0% ((c2)%) (B.3)

y€(ez)?

the convolution on (¢Z)? and by
froo® = [ swge-min,  fge 2 (m) (B.4)

the convolution on the d-dimensional torus. In addition we introduce é-distributions adapted to
the discrete calculus. Let

0 ={ 5 garwie ®3
Then }°, ¢ (.zys u(z)ds(x) = u(0) and we can represent this distribution by
el = om [ enia, (1.6)
as can be seen by direct calculation. The distributio;l 0 defined by the relation
en [ s dni= 50), (5.7

can be written as

ST erm (B.8)

z€(eZ)?

by use of % F.F. 7 =1.

LEMMA B.3. Let u,v € (2 ((5Z)d) and f,g € £? (']I‘d), Let . and *, as defined in and
. Then

(@) ((Fef) *e (Feg))(@
(b) (/s(f *7\' g))(
(¢) (#.~ u*g v)
(d) ((9} #

5
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Proof:

B. SYMBOLIC CALCULUS IN THE DISCRETE SETTING

((9&‘.}0) *e (9‘59))(1‘)

= > (FHW(Fg9)(x—y)

ye

(e2)?

= 3 (en) / iU f() d

y€E(eZ)?

—~

[~ x4

o ff

- /[ ]de‘g””ff(f)g(f) s

= (2m): (Z(f g

ot [ dn f(n) /[

—m,m,]4

) ()

dé e 2@ g () dny

[_ﬂ-vﬂ]d

On(n — &) dnd§ =

dpe™ =714 g (1)

‘g/[ }jne‘é’”"f(n)/[ ]gue‘?”“g(u)

y€E(ez)?

“ant X e S
z€(eZ)? yE(ez)?

=@2m)7F > u(y) Y eFFFy(y)
y€E(eZ)? z€(eZ)?

=m0 uly)

€(
= (2m)% ((Z. ") - (1)) (6)

Vo= [ an

y€E(eZ)?

= (2m)"¢ d e I"u
(2r) /[] n Y
—d Z

ye(eZ)t xe(eZ)4

S oul@) Y wy)er oy — x)

y€(ez)?

xz€(eZ)?

> e

ze( sZ)d

(2m)% (7

5\—1
€

z€(eZ)?

Z u(z)v(y)

(u-v)) (€.

et ¥t Z eézgv(z)
z

eZ)?

F

Slu)(n)(F ) (€ - )

Z eéy(f—n)v(y)

yG(EZ)d

/ et WeH@—vm) gp
[=mm]?
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B.2. Stationary phase and applications

The following lemma describes the method of stationary phase in a special case, which is an
important tool in the subsequent proofs.

LEMMA B.4. Denote D, = —id,(= —iVy), then for any N € N there exists a constant Cy,
such that, for any e € (0,&0], u € 65° (R? x T?),

N-1
iam 1
Z / dne <Fy(z,m) = (2m)? Z @ ((ieD. - Dy)*u )(z,n)\:;g + Sn(u,e)
2€(eZ)4 ™) k=0
with
C N o nB N
Sx(me)l < 17 S 02050 -0, ull
T JatB<2d+1
where || . ||y == . ”ll((sZ)d)xffl(T[‘)'
Proof:

For the function f(u,y) := e~ ¥ the Fourier transform is given by

(FeponFey ) (2,m) = =551, (B.9)

Ey—n

since by definition

d

(FepenZrh o f) () = (2m) / dpemt3 Y ermetun
[—m,m]

y€e(eZ)
—en [ et 3 e —en [ e e = e,
[_ﬂvﬂ]d yE(EZ)d [_ﬂ-’ﬂ']d
In addition for Schwartz-functions u and v
> / Apv(py) (Tl Fepyu) (1Y) (B.10)
yE(eZ)d w4
_ —d <% B
= (2m) Z /[Tm]dduv,uy Z e* /[_T”T]ddne Yu(z,n)
y€(eZ)d 2€(eZ)4 ’

Similarly to the usual Fourier transformation in R% one can show

Feny(n-u)(2,y) = —eDy(Fep_yu)(z,y) and (B.11)
Ttz w)(p,n) = eDy(Fl u) (mym) . (B.12)
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Using Lemma we can define and deduce for f polynomially bounded
F((=€Dy), (eDe))ulx, &) = Fuy L e (f((—eDx).y) - (Fegyut) (x,9)) (€) (B.13)
= (2m) 7% ((Fehef) (—£Da), ) % u(z, ) ()
— (2m)4 /[] n (ot f) (~D2), mu(z, €~ )

= (277)_5/[ AN Feppw ((Fey L f) (om) - (Feilu) (1,6 = 1)) (@)

— e

=) [ (PP ) ) e 0) @)

=0 [ a S (B d) Gt =26

2€(eZ)d
and therefore with -

) / A (- ) (Fe yPeyyt) (1) = QO DDy ulzm)| oo . (B14)
ye(ez)d ? [=mm?
Together with the Taylor expansion for the exponential function, which gives for real ¢
N—-1 N
it (@t)* _ ™
e = > WS NT
k=0
it follows that
N-1
Z / dne B nu (z,nm) = (2m)? E (teD. D)) (ZaTI)|ng + Sn(u,e),
2€(eZ)4 ] k=0 "
where
Sx@al £ et X[l (B Fep) ()
y€E(eZ)? ™)
ceN o8 N
< Y 10005000, Vull
la+B8|<2d+1
O

By use of the method of stationary phase it is possible to prove the following lemma concerning
the map e?*P=P¢, This will be used later to define the symbol associated to the composition of two
operators as a special product between the symbols of the single operators.

LEMMA B.5. Let 0 < § < % and m be an order function. Then e**P=Ds . S5 (m) (]Rd X Td) —
S5 (m) (RY x T?) is continuous. If § < %, then
, =1 .
e eP=Dep(g €) ~ = ((ieDy - D¢)? b) (z,€)
¥l
7=0
in S5(m) (R x T). If we write ¢**P=Pep = Z;V;Ol M b+ Ry(b,e), the remainder Ry is

an element of the symbol class SN(l 26)( ) and it depends linearly on the derivatives of b with
respect to x and & of order j for N <j<N+2d+1.

Proof:

Step 1: We start with the asymptotic sum in the case § < %
We restrict the proof to r = 0, the case r # 0 is then obvious.

Using equation (B.13) with f((—eD,), (D)) = e*P="P¢ and (B.9)), we have
(2m) TP Dep(g &: ¢) / Z e =Mb(x — 2, —m;e)dn. (B.15)

zE(sZ)d
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To analyze the integral given by , we introduce a cut-off-function ¢ € K ((€Z)d) localized
in a neighborhood of 0. This allows to split the symbol into the two summands b; and by by
multiplication with 1 —((z) and ((z) respectively. The aim is now to show b; € S°(m) and
by € S§(m) having the required asymptotic expansion. We start by analyzing b;. By use of the
operator

2
—e“A,

La(z,m) := BEE (B.16)

which is well defined on the support of 1 — ((z) and has the property Lg(z,n)e_ﬁz" = e £, we
have by partial integration

b, ge) = 3 / (Lheme e )(1—<<z>>b<m—z,5—n;e>dn

z€(eZ)4

= [ e e i s

z€(eZ)?
Since b € S§(m), the integrand is for some C' > 0 bounded from above

CEZk(l—&)m( : ;f 1) < Ce2h(1-0) <(> §)< Vo

This term is integrable and summable for k& big enough yielding
bi(z, &) = 20710 (m(x, €)) -
The derivatives can be estimated similarly, because
0%’ PePepy (g &1 e) = P Pegop(z, & ¢) .

Since this holds for every k € N, we have b; € S°°(m).
For by the method of stationary phase described in Lemma [B:4] leads to

b2($7 57 5) = Z / e_éz.nC(Z)b(r - 276 -1 5) d77 (B17)
z€(eZ)? [—,m]d
= (ieD, - De)?
= (27T)d Z :Z| < ({E gv ) + RN(bv C?E)
7=0

with

IRn(b.C.e)| < Cne™ >0 [0205(0: - 0y)V¢(2)b(z — 2,£ —mie)|h (B.18)
la+8|<2d+1

< C}Vm(x,§)5(1_25)N_5(2d+1)_d.

Derivatives of this term are of the same order multiplied by &9, Therefore

Ry € S§1725)N76(2d+1)7d(m). Furthermore it follows directly by the formula , that only
derivatives of order between N and N + 2d 4+ 1 contribute to the remainder and the dependance
of the derivatives of b is linear.

Splitting the remaining term Ry into an explicit sum, in which the summands are elements of
Sév(lfzé) (m), and a second remaining term Rp; with M = (1 — 25)(N + k) —6(2d+1) —d >
N(1 — 26) for k € N big enough, it follows that Ry € S’év(k%) (m). Since the Fréchet norms
of e®®P=Deq(x, & e) in S9(m) depend only on a finite number of Fréchet norms of a(z,&;¢e), the
mapping is continuous.

Step 2: The continuity for 6 = %
We choose a cut-off function in z and in 7, which is e-scaled, i.e. we split the integral -

by multiplying with ¢ ( NG f) and 1 —( ( NG f) The first integral is thus by the substitution
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bi(z,6) = > /{mdeéz-n (1—C<Z€,\Zg>>b(x—z,§—n;s)dn

z€(eZ)4
4 /[ T (1 —((2,7)) b(x — VEZ, € — Ve e) diy

ze(\/ z)4
To analyze this integral, we use the differential operators

—A-

La(2,7) := ' and
~ fsAf
4(Za ) = d N
2d -2 ZV:l COS(\/ET]V>
where
1 d
—AYE = - <2d > (Tze, + T_ﬁeu)) (B.19)
v=1

denotes the discrete Laplacian on the y/e-lattice (compare the definitions and arguments in the
proof of Lemma, M(c)) Then

b(n,8)= > ¢ / (L3(Z,mIL5(Z, e T) (1=((2,7)) x

ze(Ver)d =
blar — V/EE. — V/ET <) di

-1
(Li G ) Ly(Z e ) <2d - Z 2 COS(@%)> g

S {1 —CE+ Veer, D) ba — VE(E + Vee,), £ — Veie)+
+ (1 _C(é - \@eua 77)) b($ - \@('g - \@%;),5 - \Eﬁ»f)})} dﬁ (BQO)

By Taylor expansion, the last term is equal to

-1
DR / (LY~ (2, M) Ly (2, 7)e” =) <2d— 22608(\/57%))

ze(venye Vo

>

v N
VE
(t —vE)P2, {(1—C(Z +tey, D)) bz — Va(Z + te,), € — Ve e)+
+ (1 _C(Z - tewfi)) b(fL‘ - \/5(2 - teu)’§ - \@’FLE)} dtdn.

Iterating this argument k times gives with the notation (f(a + b, c))s = fla+b,¢)+ f(a—10,c)

-k
/,L - (2,7)e 1) <2d chos fm))

ze(fZ)d vevel

w\m.

bl(l',f) =

Z / dty .. / dtkagyl...c’);k{(l—c(zwleyl+...+tkeyk,ﬁ))><

l/kl
k

Xb(x = VG + trey, + ...+ tren ) & — Veie)} Tt - vE) di.

i=1
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Integrating by parts with L3 similar to the first part of the proof and taking the norm, the integrand
can be estimated by

SINEREDY

|| <l

X

(1—C(5,7)
Q(x *Dﬁ
( >{<2d—z 2cos<¢ém>>’“}
d

Ve Ve
X Z / dtl.../ dtkH|t—\f|{mm— Z"‘tleul+’~~+tk€yk),f—\£ﬁ)}s
0

V17...,I/k:1

(B.21)

To estimate the derivatives of (23" (1 — cos(y/z7,))) ™%, we introduce the notation

Py (cos(v/zt), sin(v/et)) := ay cos® (y/zt) sin' (v/et)

with k,1 > 0 and ag; > 0. Then

9y Pi,y (cos(v/zt), sin(v/zt)) = veaw (—kcos™ 1 (y/et) sin' 1 (v/et)+
+lcos* T (/et) sin' T (Ver))
= Ve {Pu—1),(+1) (cos(vEet), sin(Vet)) + Py, -1y (cos(vet), sin(vet)) }
and for the function

Py (cos(y/et), sin(/et))
(1= cos(vah)™

f(t) =

we therefore get
B Pe—1),1+1) (cos(v/et), sin(v/et)) + Pry1),a-1) (cos(v/et), sin(y/et))
8tf(t) - \/g{ x (1 _ COS(\ﬁt;—)m o
 Pyasy (cos(v/Et), sin(y&t)) }
(1= cos(Va) 1 J

Using the estimates 72(1 — cos(y/zt)) > et? and |Py (cos(v/2t),sin(v/et))| < Pr.(1,|v/zt]) for
[Vet] <, we get

a2t
0] < P

where Q;(t) denotes a Polynomial in t of order s and

ak—1),0+ D IVEL' T+ agerny,a-n VLT ag g lVELTT
0. f(t)] < Ve -

=0 (F7) Qi-am(lt)

(e (Ve
= 0 (5577”“) Qir1-2m([t]) + O (5%7m> Qi-1-2m([t]) -

Derivatives of functions of the form f(¢) lead therefore to sums of the same form and leave the
order in £ unchanged. Since (1 — cos(y/et))™™ is of the form of f(¢) with &k =1 = 0 and the order
in |¢| increases with each derivative at most by one, (B.21]) can be estimated by

E%_kO(l) <(2> E) Cil(>|ﬁ|)<\fz N12k Z H/ ‘t —\[H\[t €V1>

LVE 1=1

< 530(1)W<ﬁ5>m

since each integral with respect to t; is smaller or equal to ce. We thus finally get

)

d

b1 (2, €)] < Cm(z, ) 2/[ 272 QD) (vez)™ di, (B.22)

ze(fZ) Ve f]d

which is O(m(z,£)) for k,l big enough. By arguments analogue to the case § < % for derivatives,
b € Sg (m)
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The second integral can be estimated directly, using again the substitution z = ﬁ and n = %,
by

ba(,6)| = Sl e e — VEEE — VeiRe) di| <
fz)d avaa
< COmfz,) Y, e C(Z, ) (VER) Y (V)N dif
se(venye I ve RN

Therefore by is also O(m(x,€)) and by the same arguments as above is an element of S9(m) and
the mapping is continuous. O

The following corollary concerns the composition of symbols.
COROLLARY B.6. The map
¢ (R x T%) x € (R* x T) 5 (a,b) — a#b € €= (R? x T¢)
with
(a#b)(z, & ) == (e7*PvPea(z, & e)bly, ms¢))
has a bilinear continuous extension :
S5t (ma) (R? x T?) x S52(mg) (R? x T?) — 51772 (mymy) (R? x T?)

s (B.23)

for all 6, € [0, ] k =1,2 and all order functions mq, ma, where § := max{d1,d2}. For §; < 3
j=12
ie)ledl o o
(@#D)a2) ~ 3 S (@Falegi0) @200 659) (B.21)
aeNd ’

mn S”J”“2 mims) (R* x T4) for all a,b € S (m;) (R x T, j = 1,2. Writing a#b(x,&;¢) =
oy \1yj

lei‘ - (i) ! (8 a(z,&; )) (09b(x,&;€)) + Ry(a,b,e), the remainder Ry is an element of the

e
symbol class S5 (1=d1= 62)(m1m2) and it depends linearly on a finite number of derivatives of the

single symbols a and b. Furthermore it depends only on derivatives of a and b with respect to &
and x respectively which are at least of order N.

Proof:
By the Leibnitz rule, the map

Ssl(m1) x S52(m2) > (a,b) —a-be S5 (myms)

is continuous, since each Fréchet-norm of the product depends only on a finite number of Fréchet-
norms of a and b. The same is true for the restriction map. The main part follows by Lemma
by doubling the dimension of the space.

O

The next lemma relates the #-product of symbols with the composition of the associated
operators.

LEMMA B.7. Let a € S§*(my) (R? x T4), b € S52(my) (R? x T¢) with 0 < &, < 3,k = 1,2
and u € s ((E-IZ)d). For a#b given by ,
(OpX"(@)) o (0pI" (1)) = OPZ" (ast)
in L (s ((e2))).

Proof:
Denoting by K 4(x,y) the kernel of the operator Oplrd (a), i.e.
d
<v, Op! (a)u>€2 = (vXu, Ka)py e, (B.25)
(B.1) gives

<Ua Op!" ( > Z Z y)o(x)(2m) " /[_ y es WDz ¢ ¢) dE

z€(eZ)? ye(eZ)4
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and therefore

Ka(z,y;e) = (2m)~° / 00,65 0) dE = (2m) 7 F (Fremooya) (w2 —yi2) . (B.26)
[_Wvﬂ]d
Since by definition
Cu(z) = OpT" (a) 0 OpT" (b)u(x) = Op™" a3 / A (2 £ culy) de
y€E(eZ)? m,md
CURDY / T me) 37 / SEOTIN reyuly) dedn.
y€E(eZ)? T

z€(eZ)?
the kernel K¢ associated to the operator C as defined in (B.25)) takes the form
Kowyie) = @m0 S0 [ etemomiom 0 i eyp(a, i< dedn.
2€(eZ)4 [—,m]¢
Thus by (B.26]) the symbol associated to the operator C is given by
S eFETWY R (e, (x —y)ie)  (B27)
(z—y)€(eZ)?
e (Gt W= g (3 n: £)b(z, £ ) dédn .

clz,vie) = (277)% (95&1_1/)_,”]((,‘) (x,v;e) =

— Z e;($ y)v 271_ —2d Z

(z—y)€E(eZ)4 z€(eZ)4 [— 7]

With the substitution x — y = r, this leads to

2r2 Y% // LVt @=r=2)0) (1 e (2, € ¢) dEdy

d
re(eZ)d z€(eZ)4 7]

ey [ e 5’2/ ¢ (i, € — i e)(o — 2, € <) ded.

re(ez)d ™\ z€(eZ)4 ™)
Equation (B.15) gives
(2m)2 3 / > / e¥¥a(z,€ — n;e)b(x — 2, €) ddn
[_Wvﬂ]d

re(eZ)? m,md Z€(eZ)?
S / e =8 (e P Dna 3,y 2)b(z, & €)) | = dE

d
re(ez)? ]

and by the representation (B.8) and definition (B.7) of 4, we have

(2m) Z / eir(v=9) (e P=Dna(z,m;€)b(2, & €))| - o= d¢

re(ezyd ? I=mm
=07 [ 00 (et b 9) s
= (e *®P*Pra(z,n;e)b(2, v;¢)) i (B.28)
Inserting (B.28) in ) therefore shows
(B.29)

c(z,vie) = (e *P=Pra(z,n;e)b(z, v;¢))

n=v

Together with the Lemmata and this proves the assertion.
O
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B.3. Norm estimates for operators on (¢Z)? in microlocal approximation

To prove Proposition we need in addition the following proposition, which is an adapted
version of the Calderon-Vaillancourt-Theorem.

PROPOSITION B.8. Let a € S§(1) (R? x ']Td) with 0 < § < Then there exists a constant
M > 0 such that, for the associated operator OpE ) given by (i/ the estimate

d
10pL (@)ulle2((ezyay < Me"||ullo2 ez

holds for any u € s ((EZ)d) and e > 0. Opgd (a) can therefore be extended to a continuous operator:

2 ((ez)?) — 2 ((eZ)?) with || Opl_rd(a)HOO < Me". Moreover M can be chosen depending only
on a finite number of Fréchet semi-norms of the symbol a.

Proof:
We have to show for all u,v € s ((¢Z)%) the estimate

d
(s 0pZ (@) || < Me"[lulzlJoll e (B.30)

holds, where M depends only on a finite number of Fréchet semi-norms ||8§‘8? a|lco- By use of the
Fourier transformation defined in 1} and 1) and with the substitution z = % for z = x,y,n, &,
which symmetrizes the e-dependance between configuration and momentum space, we have

(w067 @), =0 3 @) 3 [ dee et g2ty

z€(eZ)4 y€(ez)4
(2m) ¥ 3 / dne= 7 (7. 7a) () Y / dg e~ Da (0, € )o(y)
e€ (L)Y _7 7 YE(eL) Y _7 pya
= (27‘()_%5(1 Z // d77d§ ) (Ven)e —i((&—9)E+E7) o
§,2E€(\/EZL)? % %

a(VEE, Vek;e)u(VED)

Introducing a cut-off-function ¢ (|§~ + 7]|) supported in a neighborhood of zero, the integral splits
into two parts, i.e. <u, Opgd (a)v>22 = I + I; (compare the proof of lemma .

To analyze the part multiplied by (1 —¢(|€ 4 7|)), which we denote by I, we use the operators

1 7A§~

) = RV and

La( =9

N

]

- ga
—5Af
2d—2%, cos(\/g(gu + 1)) ,

where A%/E denotes the discrete Laplacian defined in 1} Since Lg and Ly leave the exponential
function occurring in the integral invariant, we have by summation by parts

Y| / o3 (15§13 .6 40700
y7$€(\fZ)d -2,

><( ~la) (Ven)(1 - <|£+nl)) (xfa?,ﬁf;a)v(ﬁﬂ)
— Y //7 dnd§ LL(& — §,€)e (G- y£+xn)>

§,2€(\/e2)4 % \Lf

X (%.718) (VEnu(vED) LCer i) (—eny?) a(vEz vaG o).
(24— 2%, cos(VEE, +71.)))

Lo(#,E+17) =

0

—~
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which leads by integration by parts to

L = (2n) %l dFdE e~ E=)E+E) v(vey)
Lo Eﬂie;fz)d//[}}]ng (7719) (Ve g >

< 3 QuDy) LRI b Dy (~eaf?) " a(vER va ).
la| <21 (2d—2z cos(\/E(fl,—kﬁl,)))

lea("f,g) = Ejd/ G_ZIU( )(\[”7)@04( ) 1_C(|§+f]|~) k X
Var' i 2 (24~ 25, cos(vE(&, + i)
k ~
x P, (D) (ngf) a(VEE, VE€;e) dij  and (B.31)
F(36) = et pi€ VVED). B.32
l(aj 5) \/ﬁd ge(%g:z)d < y> ( )
we have
nL=@n"t Y dE e F(7,€) S Girali,€). (B.33)
ze(vezye’ U2 7= o <21

By use of the Schwarz inequality, we can now estimate the (2 ((y/Z%) x 2 ((T/y/€)*)-norm of
F; and Gy, separately, to get an estimate for the given integral. Since

F(2,6) = Zo @m% and
3 (I + %)
Gia(Z,8) = Fep e (#. 'a) (1M Qa(Dg) L

(2025, cos(vEE, + )’
< Po(D) (~e0Y7)" a(vE, vEG:2),

we have by (2.8)

1B eztyzrvon = / ILENR

se(venye ' =75 ]

_ / JAG SR =t Y S R, AP
fz)d [—,m]¢ ze(Ver)d ye((ez)?)

_d d [u(y)?

< Z = ) froam

Y N4l
i€ (VEL)? ye((2)?) v

and thus for [ big enough with t =% — ¢

d o~
1E2 (ezyay w2 yvmy S olBeemyay D €207 < Cillvlizaezya - (B.34)

te(Vez)d
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On the other hand by ({2.7))
€ > |Gua(@ )

1GkallZ2((2zyy x 22 (¢t vm)t) = r
=727 zeveny)

~ xr ~ ~ X nd
S R D SN [l F a2 OF
=77 ze(enyr) kv i
2
12 - 1€+ &)
<[ alEwl [ de.o VA
[=mm] =7 7= (Qd —2% cos(ve& + 77V)>
k 5 2
x |Pa(Dy) (~eAY") " al(vEi, V/EEi2)
Since by assumption
(B.35)

0207 a(V/EE, VEE; 5)‘ < NerH(3=0)lal+8)

sup

we can use the arguments given from equation (B.20) to (B.22)) concerning the discrete Laplacian

~ -1 ~
and the derivatives of <2d — 2% cos(ve(& + ﬁl,))) ,to get with 7 =&+ 17
2

1 _l Ck
M2 HG=0)(lal42k)+5) 12 / a
E(EDh supp(1 ( |\/>7_|2k
(B.36)

IN

1Gikallie ((yezytyx2(arvere)

< O Me2r+al+2k)(5-9) ullZe ez

for k big enough. Inserting (B.34]) and in - yields

T (0% 1_
L] < Z Cira Me™ 1RG0 1y o zy0) V]| 2 (2

lal<21
CueMe"|ulle2((czya)llvllez 2y - (B.37)

IN

To get an estimate for the modulus of I, which denotes the integral over the support of (, we use

L5(‘% - ga£)7 SO

L=(@n ¥t Y //7L didé (Lh(z — 3,9 EDED)

gae(vezya” - vEl"

X (#2718 (VEC(E + il)a(VER, VEE 2)o(vE]) =
v(Vey) ddf e (DD
//[_7, L4 3 (7:"'a) (Vei)x

9,ZE(VEL)? Ve’ \/E

< (1-0¢) CUE +ia(ver, VE€ie)

(B.38)
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We get by 1D the substitution 7 = £ +7) and the isometry of the Fourier transform in ¢2 ((EZ)d)
1 2
Gz zzyeyx 22ty vayey < /[ ]ddn [(Z-"1a) ()] x

></[7r dé Z <Qa(Dg)C(|g+ \75)) (Pa(Dg)a(\/EaE, JEE: a))
2

< IIUIlfz((EZ)d)/[ di | Y Cae™™27001Qq(Dz)¢(I7])

]d
o <21

< Cie"[ullZ2(ezya - (B.39)

for | big enough. Inserting (B.34)) and (B.39) in (B.38) leads via the Schwarz inequality to

[Ia] < Cre"[Julle2((zzy) 1Vl o2 ((ez))

and therefore we finally get
d
(s 0PI (@) || < Me"[ullezqezyo) [Vl ey -

Since s ((¢Z)?) is dense in % ((¢Z)?), the operator Opgd (a) is continuous in ¢2 ((¢Z)?) with the
operator norm
d
10pz (a)llos < Me".
O

We are now in the position to introduce the Hamilton operator analyzed in Chapter [2| and to
find the norm estimate of this operator in microlocal approximation.

PROPOSITION B.9. Let T. be a translation operator on the lattice (¢Z)¢ as described in Hy-
pothesis with the symbol t and let T 4 ; denote the quadratic approzimation of 1., associated
to the symbol t, 4 ; defined in . Let xj,e, 1 < j<m and ¢o be the cut-off-functions defined
in and respectively. Then

d  ~ d  ~ I3
15,6 0Pz (90,6) (T2 = Tr,q5) OPL (G0.6)Xeel oo = O(e7).

Proof:

To use Proposition we have to find the symbol associated to the operator we want to estimate.

Because the operator is a composition of several operators, this will be done by use of Lemma [B7}

First we remark that for two symbols a,b € S§(m), 0 < %, where b has compact support, and a

function 1 € 6§°(R? x T) with ¢ (z, &) |supps = 1, we have
a#tb(w,,2) = abfth(z, £,2) + O (=) . (B.40)
(B.40)) follows directly by (B.24)) for the asymptotic expansion, yielding
ic)lel
i€ o o
(ath) — (avtit) ~ 3" g0 - avop,

|al!
a€eNg

since on the support of b

0¢(a—ap) =0ga(l—¢)+ Y 0fadly=0.
By
1<|BL VIS ]

Thus (B.40) holds and the operator associated to a#b is equal to A o B modulo terms of order
.
Introducing the cut-off-functions

o~ ~ 13 N T
$0(&) = o, <3 and  X;(7) == Xje (g) )
which are equal to 1 on the support of &075 respectively x; ., this allows us to analyze the symbol

B, €52) = (et Doe(t — trg ) bo%itho.ctinse) (@, €:€)
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instead of p := (Xjﬁs#qgoys#(t—tqj)#QNSO,E#XJ-VE), which by Lemmacorresponds to the considered
operator.

The aim of the proof is to show p € S (1), since the proposition then follows directly from

Proposition [B-8
To this end, we determme the symbol class of (t—tr 4,; )%X; With the notation x;(z) =: ):(\j (e~3z)

and similar for ¢0, let o, B, a, B; € N& for i = 1,2 and |as| + |az| = |a| as well as 81|+ |B2| = |5,
then

= | S et (0200 (1 — 1)) (0700) (02°%,) | - (BAD)

ai,az,81,082

030 (t — trg)B0X;

The scaling of the support of the cut-off-functions with respect to ¢ yields |z — x| = O (s%> = [¢],

therefore
o (0 b e60)
z Vg Tq,] » Sy
|§|€supp( )|I|ESUPP(X])
= s s (20006 (Bl - Bl + 0 (1)
€| esupp(d,) 1Z1€5uPP(X5)
< Cet-IBlE—lald (B.42)

Inserting (B.42) in (B.41)) shows

020 (¢ = tr.q.1) 0% (2,&3 )| < Ca,pet 311D
and therefore (t —tr q; )%Xg € S (1). The cut-off-functions ;. and @o. are both elements of

S9 (1), thus by Lemma m we get p’ € S (1)(R?% x T?). The estimate of the norm of the associated
5

operator in (2 ((¢Z)?) results by use of Lemma
|

The following lemma, which gives the resulting symbol class of double commutators, is an
application of the Lemmata [B.6| and [B.7}

LEMMA B.10. Let x(z) € €°(RY) and ¢(&) € €>(T?9) be multiplication operators in the
configuration respectively momentum space with symbols in Sg! (m1)(RY x T?), §; < % Let H be

an operator on £*((eZ)?) associated to the phase space symbol h(x,&) € 552 (ma)(R? x T9), 5, < i
For a € S5 (mq)(R? x T%) and b € S5*(mp)(R* x T4) let

[a,bly := a#b — b#a
denote the commutator in symbolic calculus.
Then for a,ar, a0 € N with |a] > 2 and ay + as = o with |ag| > 1,k = 1,2 and for § :=
max{dy,d}:

(@) [, [x, hlels € 5'2 2(61+52)(m1m2) and it has the expansion

[x<x>,[x(x>,h<m,f>]#}#~2(T)' (02h) (2.6) 3 (02x) (2) (022x) (x)

(b) [9(&), [9(&), h(w,&)]4]x € 52 2(81+62) (m2my) and it has the expansion
|

lox
60, [6(€). (. O]y ~ 3 0 @) (60 3 (0870) © (0876) (©).

|af!
Q1,02

(c) the symbol associated to the operator [A, B] is given by [a, b4

1,02

If we split the asymptotic series given in (a) and (b) in the finite sum of terms with 2 < |a] < N—1
and a remainder Ry, the remainder is an element of the symbol class Sév(1751752)(m%m2) and it
depends linearly on a finite number of Fréchet semi-norms of the single symbols. Furthermore it

depends only on the derivatives of h, which are at least of order N and of the product of derivatives
of the cut-off functions of order N1 and Ns, such that Ny + Ny > N.
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Proof:
(a):
The double commutator is given by
[X(2), IX(@), h(z, )] ply = x#x#h(@, &) + h#x#x (@, §) — 2x#h#x(@, x) - (B.43)
By Lemma these terms are given by
X#xH#I(@,&) = x - x - h(=,§)
(ig)le!

hixtx(z,§) = ) W(a?h) (92X%) (2,€) + R (, &5
oSN
ie)lal -
= X SO 050 0.6 + Rao o).

lalpha|<N—1

where Ry, Ry € Sév(lfélfdz)(m%mg). The terms with || = 0 and |a] = 1 cancel in lj
Furthermore all terms with 2x;0%x; cancel. Thus it remains by use of the Leibnitz formula with
a1+ as =« and |ag| > 1,k = 1,2 the expansion

(@), X@), (@, lule = > ) (9gh) > m(am<a;*2x><m,s>+RN<x,s;s>
e n o1 p2EN

with Ry € Sév(lf‘;l*&z)(mfmg). The statement on the symbol class follows at once from this
expansion, since each summand is at least of order e2(1=%1-92) and by use of the Leibnitz rule.

(b):

As above the double commutator consists of the terms

[0(£), [¢(6), hlw, )]s = dH#O#I(x, §) + htdp#d(x,§) — 20#th#d(x, X) (B.44)

and the summands have the expansions

ie)lel
oot 6 = S UL @en) (0262) (2,) + Ry (o, 52)

]!
la|<N-—1
i)l
X#h#xX () = ) (ie)

af!
aeNd |
al|<N-1

la|<

where Ry, Ry € Sév(l_él_%)(m%mg). Therefore in 1) remains as discussed in (a) with aq +
as =aand |ag| > 1,k=1,2

¢ (93h) (99) (x,€) + Ry (x,&¢) ,

ie)lel
[6(), [6(6), bz, gl ~ > “;)uwsh) > (92%0) (9226) (2.6) + Ru(2.&:2)
penfn arezet

with Ry € Sév(l_él_%)(m%mg). The statement on the symbol class follows from this expansion
as discussed in (a).
(c): This is a direct consequence of Lemma

The additional properties of Ry follow immediately from the properties of remainder in Corol-

lary [B-6]

O

B.4. Definition of Pseudo-differential Operators on .Z?(R?)

We follow the definitions of h-scaled symbol classes and associated pseudo-differential operators
given in Dimassi-Sjostrand ([16]) and Robert ([50]). These definitions are analogue to the lattice
case and for several results on the composition of symbols and the Calderon-Vaillancourt Theorem,
we refer to the books just mentioned.
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DEFINITION B.11. (a) A function m : R™ — [0,00) is called an order function, if there
exist constants Co > 0 and Ny > 0, such that

m(z) < Colx — y)NOm(y) , T,y € Rd,

with the notation (z) := /14 |z|2.
(b) For an order function m on R™, the symbol space S(m) (R™) consists of all a € €>°(R™),
for which for all o € N¢ there is a constant Cy, such that

|0Sa(x)] < Coym(x), z e Re.
We often write S(m), if the underlying space is clear.

(c) If the symbol a(xz;€) depends on a small parameter € € (0,1], a is said to be in S(m),
if a(-;¢€) is uniformly bounded in S(m) for e Uarying in (0,1]. Let S¥(m) = e*S(m)
describe for k € R the space of symbols of the form e¥a(x;e) for a € S(m). For § € [0,1],

x(

the space S§(m) (R?) consists of functions a(z;e) on R x (0,1], belonging to S(m) (R?)
for every fized € and satisfying

|0%a(x; )| < Com(x, &)=l 4 e RY.
(d) Let a; € S(];j (m),kj /" oo, then a ~ 377 a; means that a — Z;V 0aj € SkN+1( ) for
every N € N.
(e) A pseudo-differential operator Op, : €¢° (R?) — (%5°)" (R?) associated to a symbol a €
Sk(m) (de) is deﬁned by

Op. u( et (x, & uly) dyde , w650 (RY) .

Rd R
Using the symbolic calculus introduced in Dimassi-Sjostrand [16], in particular Proposition 7.7,
Theorem 7.9 and Theorem 7.11, it is possible to show by similar considerations as in the lattice

case, that for f,fq\j defined in (2.30) and (2.33) respectively and the cut-off functions x;., ®x
defined in (2.41)) and (2.44) the norm estimate

1. (2) G0, (€D) (T2 = Tegy) b0, (D) s (@) |oo = O(e?) (B.45)

holds.

B.5. Analogue of the Persson Theorem in the discrete setting

In this section we will prove a theorem on the infimum of the essential spectrum of H. acting
in ¢2 ((5Z)d), which is similar to Persson’s Theorem for Schrodinger operators. The proof follows
the proof of Persson’s Theorem in the Schrodinger setting given in Helffer [30] and Agmon [3]
respectively.

THEOREM B.12. Let H. = T. + V. satisfy Hypothesis denote by oess(He) the essential
spectrum of H. and define

H
S(H.) = sup inf{<f¢’j’>f2|¢eco ((sZ)d\K)} , (B.46)
Kc(;f)d H‘b”ﬂ
where co(D) denote the space of real-valued functions on (eZ)® with compact, i.e. finite, support
in ((eZ)*\ D). Then

inf oess (He) = X (H.) .
The proof of Theorem [B.12]is divided in two Lemmata and the main part.

LEMMA B.13. For x € (¢Z)% and R > 0 let B,(R) := {y € (¢Z)?||x — y| < R} denote the ball
around x with radius R and

€T = in 7<HE¢’¢>ZQ' C
A, H.) = f{ S e O<BI<R>>}. (B.47)

Then for all § > 0 there exists a radius Rs > 0, such that for all R > Rs and ¢ € ¢ ((EZ)d)
(Heo, 9)e > Y (Ar(w,He) =)o) .

z€(eZ)?
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Proof of Lemma [B 13

Let p € 65° (R?) be real valued with p(z) =0 for |z| > 3 and [, |p(@)[* dz =1 and define

Y
Py,R =P R .

Then py ro € co (By (%)) and therefore by the definition of Ar
<H5Py,R¢, Py,R¢>z2 > A%(yaHS)pr,RQﬁHl% .

Since By (£) C By(R) for |z —y| < & and thus A%(y) > Ar(x), we get the estimate

<H6py,R¢» Py,R(b)gz > Z AR(xaHE)(py,R¢)2($) . (B'48)

xz€(eZ)?

To analyze the scalar product we use that 7% is self adjoint and ¢, p are real valued, yielding
(Tepys, pynd)s = g (Tepynd pund)s + (. Tepynd) ) =
— % (<T5¢>, Pz 5®) o T (T2, Py, R® s Py, RO) 2 + (3 1D s Te®) o + (Py,RO, [Te,py’R]@p) —
= (1.6, P + 5 ([T P10, Pyl + (ot [Tyl s)
Since [T¢, py,r)* = —[1-, py,r] it follows that

1
<Tspy,R¢a py,R¢>[z = <T5¢, P27R¢>£z + §<(Py,R[Ts,Py,R] - [Tea Py,R}py,R)va ¢>£2

and since V. commutes with py g, we therefore get

1
<HE¢), pz,R¢>g2 = <H€py,R¢a Py,R¢>g2 - §<[py,Ra [Tsapy,R]]¢a ¢>g2 . (B'49)

To analyze the double commutator, we use the symbolic calculus introduced in Appendix By
Lemma [B.10} the symbol associated to the operator [py g, [T-, py,r]] is given by

Py,R(z)v [t(z7 f)a py,R(l’)}#]# =
(ig)lel

- Zd W(a?t) (€,8) > (02 py.r) () (0%py.R) (@) + Ry (t,pyr), (B.50)
aeN aq,x
2<|a|<N Jog |+|ag]=]al

where Ry depends of a finite number of derivatives of p, r, which are at least of order V. By the
scaling of py, g, it follows that |V,p, r(z)| < % for C suitable. Since all terms in the finite sum in
(B.50) and the remainder Ry depend on a product of two (at least first order) derivatives of p, g,
any Fréchet semi-norm of the symbol of the double commutator is of order #. By Proposition
B8] the same statement follows for the operator-norm of the associated operator, thus there is a

constant C' > 0 such that

C
ey r: (7o py.Rlllloe < 23 (B.51)
By the Cauchy-Schwarz inequality, we get by inserting (B.48]) and (B.51)) in (B.49)
C
(Het, 0 o) > Y An(aHoloyro(@) = 25 D 1o(@)®. (B.52)
z€(eZ)4 x€By(R)
We remark that by setting z = 5%
/ py r(®)dy = R? / p*(2)dz = R? (B.53)
Rd R4
and
/ 1{|z—y\<R} dy = Rd/ 1{\z\<1} dz = CRd . (B.54)
R R

Thus integration of the left hand side of (B.52)) with respect to y yields by (B.53)

/]R (Hb, 018) oy = (Heb, oo £ y),, = RUHo, ) (B.55)
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If we integrate the right hand side of (B.52)) with respect to y and use (B.54])), we get

/]Rd Z AR(x»HE)Pi,R($)¢2($)_% Z 1{|fc—y\<R}‘¢($)|2 dy =

z€(eZ)4 z€(eZ)4

21 . (B.56)

ZRd Z AR(x’Hs)¢2(x)_% Z |¢({E)

z€(eZ)4 x€(eZ)4

The Integration of both sides of (B.52) with respect to y and division by R gives by (B.55) and
(B.56)

C
(6 o> 3 (Anto ) - 1 ) oGP (B.57)
z€(eZ)?
By choosing for § > 0 the radius Rs = %, the statement of Lemma |B.13| follows for all R > R;
by (B.57).
O

The family Ag(z, H.) describes the lowest eigenvalue of the Dirichlet problem with respect to
the ball B;(R). The next lemma relates this family with X(H,).

LEMMA B.14. Let Ar(z, H.) and 3(H.) defined in (B.47)) and (B.46) respectively, then
Y(H.) = Rlim liminf Ag(z, H,) . (B.58)

—+00 |z|—o0

Proof of Lemma [B.14t
We split the proof in two parts showing the two fundamental inequalities.

Step 1: Estimate from above

Y(H.) < lim liminf Ag(x, H.) (B.59)

T R—+o0 |z|—00

Let K C (¢Z)? compact and R > 0 fixed. Then B,(R) C (¢Z)¢\ K for |z| large enough and
thus

. <HE¢7 ¢>£2 <HE¢7 ¢>Z2
fo—r1 e NTEV s P2
" { 16]% 1612

This inequality is satisfied for all |z| large enough and the left hand side is independent of x, thus

oea(E)\K) | <int{ b€ (BAR)} (= Anlo 1)

H,
inf {W RSN ((5Z)d \ K)} < llir‘nianR(x,Hs) .
2 x| —00
The left hand side of this inequality is independent of R and the right hand side understood as a
function in R is monotonically decreasing and bounded from below, thus the limit R — oo is well

defined and

inf{w; € (({—:Z)d\K)} < hIJIrl l‘ir‘nianR(x,Hs) .
72 — 400 |z|—00

Now the right hand side is independent of the choice of K, thus we can take the supremum over
all compact sets K C (¢Z)% and by the definition of ¥(H.), this shows (B.59)).

Step 2: Estimate from below
Y(H:) > lim liminfAg(y, He) . (B.60)

~ R—+o0 |z|—00
By the definition of liminf, it follows that for all § > 0 and all R > 0 there exists an Ry such
that for all |z| > Ry

Agr(z, H.) > liminf Ag(z, H:) — 6 .

|| — o0
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It follows immediately that for all ¢ € ¢ ((EZ)d \ Boy (Ro))

Z Ag(z, H.)|o(x)|? > <1|igcmianR(x,Hg) —5) 9|7 - (B.61)

|—o0
z€(eZ)
By Lemma we know that for all § > 0 and ¢ € ¢ ((¢Z)?) there exists Ry such that for all
R > R;s
(Hed, $)pe > Y (Ar(x, He) = 0)|p(x)] . (B.62)

z€(eZ)?
Inserting (B.62)) in (B.61) it follows that for all § > 0 there exists Rs such that for all R > R;
there exists Ry such that for all ¢ € cg ((sZ)d \ BO(RO))

M > liminf Ag(z, H.) — 25 . (B.63)
Fdli? |z =00
By the definition of X(H,) it follows directly that
H.¢, ¢)pe SNETIRY
S(F.) > inf {W 6 € co((e2)"\ BO(RO))} . (B.64)
g2

The equation (B.62]) holds for all ¢ € ¢ ((EZ)d \ BO(RO)), thus we can take on the left hand side
the infimum over all these functions, which together with (B.64]) yields

Y(H:) > liminf Ag(x, He) — 20 . (B.65)

x| —o00
The left hand side is independent of R and since the relation holds for all R > Ry, it is possible to
take the limit R — oo, which yields for all § > 0

Y(H.) > Rlim liminf Ag(z, H,) — 26 .

— 400 \z|~>oo

Thus in the limit § the estimate (B.60) follows.

O
Proof of Theorem [B.12
We discuss the cases £(H.) = oo and 3(H.) < oo separately.
Case 1: 3(H,) < oot
As in the preceding proof, we conclude the equality by showing that both inequalities hold.
Step 1: Estimate from below
inf oess(He) > X(H,) (B.66)

As a function of R, the term liminf|,_,., Ar(z, H.) is monotonically decreasing, thus it follows
by Lemma that for fixed R > 0

Y(H.) < liminf Agr(z, H,)

|z]|— o0
and thus for all § > 0 there exists as such that for all x € (¢Z)¢ with |z| > as
0
Y(H,) — B < Ag(z,H,) . (B.67)
On the other hand denoting by o(H,) the spectrum of H, it is clear by the definition of Ag(z, H)
and the Min-Max-principle that
Agr(z,H.) > info(H,) . (B.68)

Since H. is bounded from below, it follows by and (B.68]|) that there exists a constant C' > 0
such that for all z € (eZ)?¢

AR(xaHs) > Z(Hs) -C. (B.69)
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We choose a function W € ¢ ((eZ)?) such that W (z) > C for |z| < a5 and W (z) > 0 everywhere.

Then for H, + W it follows by Lemma (B-67) and (B.69), that for ¢ € co ((¢Z)?)
)
((He + W), d)e > D (W(a) = Ar(a, He) — 5)l ()

z€(eZ)?
> > (S(H) - g)\cb(x)lz + > (W(2) + B(He) = 0)|(x)?
lz|<as |z|>as
> (S(H)-0) Y @)
z€(eZ)?
Thus it follows
infoess(He + W) > info(H. + W) > X(H.) — 0, (B.70)

where the first estimate follows directly by the definition of the spectra. The perturbation W is
compactly supported, thus each u € £2((¢Z)?) is mapped by W to a lattice function with compact
support, i.e. which is non-zero only at finitely many lattice points. Thus W is a finite rank operator
and in particular compact. This allows to use the Theorem of Weyl (see for example [30], [49]),
telling us that a perturbation of a closed operator by means of a relatively compact operator does
not change the essential spectrum. Since each compact operator is relatively compact to any closed
operator, it follows that
O'ess(HE + W) = Oess (Hs)
and since holds for all § > 0 the estimate is shown.

Step 2: Estimate from above
inf oess(He) < X(H,) (B.71)

Fix p < inf ocss(H,) and denote by II,, := II(_ ) the spectral projection to the eigenspace
of energies smaller or equal to p. Since p lies below the essential spectrum and H. is semi-
bounded from below, it follows that II,, has finite rank. Thus there exists an orthonormal system
of eigenfunctions 1, ..., ¥, € €% ((Z)?) such that

H,u = Z < s 7/’j>g2'l/)j
j=1
and for all 4 > 0 there exists an Rs such that
D )P <s.
|z|>Rs
Therefore (by the Cauchy-Schwarz inequality) for all ¢ € ¢o ((¢Z)* \ Bo(Rs))

Map@)ll7 = D> 1 by i)pl* <ol Y D [wi@)* < 8llelz - (B.72)
j=1 Jj=1|z|>Rs
By the definition of II,, and since there exists a constant C' > 0 such that H. > —C, we have
(Heop, ) e = p{(1=1Lu) ¢, (1 =1L)) e — C(I10, 11,0) s - (B.73)
Therefore
Y(H:) > inf {W | o € co ((EZ)d \ BO(R5))}
02
_ 2 2
1817 14
_ _ 1L, ][> d
= inf H (O + ,U,) H¢”2 |¢ € ¢ ((EZ) \BO(R5))
02
and by

Y(He) 2 p—(C+p)o.
The left hand side is independent of §, thus for § — 0 we get
Y(H:) > p
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for any p < inf o.s5(H:) and thus in the limit g — inf o.s5(H:) the estimate (B.71) follows and
thus Theorem is proven.

Case 2: X(H,) = oc:
By Lemma it follows at once that lim;|_. Ar(z, H:) = oo, because Ag(z, H.) is mono-
tonically decreasing with respect to R. Thus for all M > 0 there exists a ap; such that for all
x € (¢Z)? with |x| > aps the estimate Ag(x, H.) > M holds. On the other hand by and
the semi-boundedness of H, it follows that there exists a constant C' > 0 such that
Ar(z,H.) > —C, for all z € (eZ)¢.

We can choose a function W € ¢ ((¢Z)?) such that W (z) > C + M for |z| < apr and W(z) > 0
everywhere. Then

<(Hg + W)¢a ¢>gz > <(W+AR(7HE) - g)(bv ¢>52 > (M - g) H(b”l%"

and thus for all M > 0 there exists a function W € ¢g ((¢Z)?) such that
Oess(He + W) >o(H: + W) > M .

As in the case X(H,) < oo we have o(H.+ W) = o(H.) and therefore o.ss(H.) > M for all M >0
and thus oess(H:) = 0.
|
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