Neogene seismotectonics of the south-central Chile margin : subduction-related processes over various temporal and spatial scales

Neogene Seismotektonik des süd-zentralen chilenischen aktiven Plattenrandes : Subduktionsprozesse in unterschiedlichen Zeit- und Raumskalen

  • The Andean orogen is the most outstanding example of mountain building caused by the subduction of oceanic below continental lithosphere. The Andes formed by the subduction of the Nazca and Antarctic oceanic plates under the South American continent over at least ~200 million years. Tectonic and climatic conditions vary markedly along this north-south–oriented plate boundary, which thus represents an ideal natural laboratory to study tectonic and climatic segmentation processes and their possible feedbacks. Most of the seismic energy on Earth is released by earthquakes in subduction zones, like the giant 1960, Mw 9.5 event in south-central Chile. However, the segmentation mechanisms of surface deformation during and between these giant events have remained poorly understood. The Andean margin is a key area to study seismotectonic processes because of its along-strike variability under similar plate kinematic boundary conditions. Active deformation has been widely studied in the central part of the Andes, but the south-central sectorThe Andean orogen is the most outstanding example of mountain building caused by the subduction of oceanic below continental lithosphere. The Andes formed by the subduction of the Nazca and Antarctic oceanic plates under the South American continent over at least ~200 million years. Tectonic and climatic conditions vary markedly along this north-south–oriented plate boundary, which thus represents an ideal natural laboratory to study tectonic and climatic segmentation processes and their possible feedbacks. Most of the seismic energy on Earth is released by earthquakes in subduction zones, like the giant 1960, Mw 9.5 event in south-central Chile. However, the segmentation mechanisms of surface deformation during and between these giant events have remained poorly understood. The Andean margin is a key area to study seismotectonic processes because of its along-strike variability under similar plate kinematic boundary conditions. Active deformation has been widely studied in the central part of the Andes, but the south-central sector of the orogen has gathered less research efforts. This study focuses on tectonics at the Neogene and late Quaternary time scales in the Main Cordillera and coastal forearc of the south-central Andes. For both domains I document the existence of previously unrecognized active faults and present estimates of deformation rates and fault kinematics. Furthermore these data are correlated to address fundamental mountain building processes like strain partitioning and large-scale segmentation. In the Main Cordillera domain and at the Neogene timescale, I integrate structural and stratigraphic field observations with published isotopic ages to propose four main phases of coupled styles of tectonics and distribution of volcanism and magmatism. These phases can be related to the geometry and kinematics of plate convergence. At the late Pleistocene timescale, I integrate field observations with lake seismic and bathymetric profiles from the Lago Laja region, located near the Andean drainage divide. These data reveal Holocene extensional faults, which define the Lago Laja fault system. This fault system has no significant strike-slip component, contrasting with the Liquiñe-Ofqui dextral intra-arc system to the south, where Holocene strike-slip markers are ubiquitous. This contrast in structural style along the arc is coincident with a marked change in along-strike fault geometries in the forearc, across the Arauco Peninsula. Thereon I propose that a net gradient in the degree of partitioning of oblique subduction occurs across the Arauco transition zone. To the north, the margin parallel component of oblique convergence is distributed in a wide zone of diffuse deformation, while to the south it is partitioned along an intra-arc, margin-parallel strike-slip fault zone. In the coastal forearc domain and at the Neogene timescale, I integrate structural and stratigraphic data from field observations, industry reflection-seismic profiles and boreholes to emphasize the influence of climate-driven filling of the trench on the mechanics and kinematics of the margin. I show that forearc basins in the 34-45°S segment record Eocene to early Pliocene extension and subsidence followed by ongoing uplift and contraction since the late Pliocene. I interpret the first stage as caused by tectonic erosion due to high plate convergence rates and reduced trench fill. The subsequent stage, in turn, is related to accretion caused by low convergence rates and the rapid increase in trench fill after the onset of Patagonian glaciations and climate-driven exhumation at ~6-5 Ma. On the late Quaternary timescale, I integrate off-shore seismic profiles with the distribution of deformed marine terraces from Isla Santa María, dated by the radiocarbon method, to show that inverted reverse faulting controls the coastal geomorphology and segmentation of surface deformation. There, a cluster of microearthquakes illuminates one of these reverse faults, which presumingly reaches the plate interface. Furthermore, I use accounts of coseismic uplift during the 1835 M>8 earthquake made by Charles Darwin, to propose that this active reverse fault has been mechanically coupled to the megathrust. This has important implications on the assessment of seismic hazards in this, and other similar regions. These results underscore the need to study plate-boundary deformation processes at various temporal and spatial scales and to integrate geomorphologic, structural, stratigraphic, and geophysical data sets in order to understand the present distribution and causes of tectonic segmentation.show moreshow less
  • Die Anden sind eine einzigartige Gebirgskette entstanden aus der Subduktion von ozeanischer unter kontinentale Lithosphäre. Seit mehr als 200 Millionen Jahren bewirkt die Subduktion der ozeanischen Nazca- und Antarktisplatte unter den Südamerikanischen Kontinent eine stete Entwicklung des aktiven Plattenrandsystems. Entlang der Plattengrenze ändern sich die tektonischen und klimatischen Bedingungen in markanter Weise und machen dieses Orogen zu einem idealen natürlichen Laboratorium für das Studium tektonischer und klimatischer Prozesse und deren rückgekoppelte Wechselwirkungen. Der grösste Teil der seismischen Energie auf der Erde wird durch Erdbeben an Subduktionszonen freigesetzt, wie das spektakulärste Beispiel des Valdivia-Bebebens von 1960 im süd-zentral chilenischen Küstenbereich – mit Mw 9,5 das stärkste je gemessene seismische Ereignis, unterstreicht. Die Verteilungsmechanismen der Oberflächendeformation während und zwischen solchen gewaltigen Vorgängen blieben jedoch weitgehend unverstanden. Wegen seiner im StreichenDie Anden sind eine einzigartige Gebirgskette entstanden aus der Subduktion von ozeanischer unter kontinentale Lithosphäre. Seit mehr als 200 Millionen Jahren bewirkt die Subduktion der ozeanischen Nazca- und Antarktisplatte unter den Südamerikanischen Kontinent eine stete Entwicklung des aktiven Plattenrandsystems. Entlang der Plattengrenze ändern sich die tektonischen und klimatischen Bedingungen in markanter Weise und machen dieses Orogen zu einem idealen natürlichen Laboratorium für das Studium tektonischer und klimatischer Prozesse und deren rückgekoppelte Wechselwirkungen. Der grösste Teil der seismischen Energie auf der Erde wird durch Erdbeben an Subduktionszonen freigesetzt, wie das spektakulärste Beispiel des Valdivia-Bebebens von 1960 im süd-zentral chilenischen Küstenbereich – mit Mw 9,5 das stärkste je gemessene seismische Ereignis, unterstreicht. Die Verteilungsmechanismen der Oberflächendeformation während und zwischen solchen gewaltigen Vorgängen blieben jedoch weitgehend unverstanden. Wegen seiner im Streichen veränderlichen Eigenschaften bei ähnlich bleibenden plattenkinematischen Randbedingungen nimmt die Subduktionszone des Anden-Orogens eine Schlüsselstellung für das Studium seismotektonischer Segmentationsprozesse ein. Aktive Deformationsprozesse sind im zentralen Teil der Anden in grösserem Umfang untersucht worden, während der mittlere bis südliche Abschnitt des Orogens bisher weniger Bearbeitung fand. Die vorliegende Arbeit ist auf die seismotektonischen Prozesse des Neogen und Spätquartärs in der Hauptkordillere und dem Küstenbereich der südlichen Zentralanden konzentriert. In beiden Strukturzonen kann die Existenz bisher nicht bekannter aktiver Störungen belegt werden und es werden Abschätzungen der Deformationsraten sowie der Kinematik präsentiert. Diese Daten bilden desweiteren die Basis, um Aussagen zu grundlegenden gebirgsbildenden Prozessen, der Verformungsverteilung und der gross-skaligen Segmentation zu treffen. Für das Neogen im untersuchten Abschnitt der Hauptkordillere sind strukturelle und stratigraphische Geländebeobachtungen durch publizierte Isotopendaten ergänzt worden, so dass vier Hauptphasen mit jeweils spezifischem tektonischen Stil und Verteilungsmustern von Vulkanismus und Magmatismus unterschieden werden können. Auf der spätpleistozänen Zeitskala sind die Geländebeobachtungen mit seismischen und bathymetrischen Seeprofilen aus der Lago-Laja-Region kombiniert worden, die sich nahe der Wasserscheide der Anden befinden. Diese Daten belegen extensionale holozäne Störungen, die das Lago-Laja-Störungssystem bestimmen. Im Gegensatz zum dextralen Liquiñe-Ofqui-System im Süden, wo holozäne, dextrale Blattverschiebungen allgegenwärtig sind, besitzt dieses Störungssystem keine signifikante Blattverschiebungskomponente. Dieser Kontrast entlang der Kordilliere fällt mit einer markanten Änderung der Störungsmuster im Forearc zusammen. Im Norden verteilt sich die randparallele Komponente der schrägen Subduktion auf eine breite Zone diffuser Verformung, während sie im Süden entlang einer Intra-arc- und randparallelen Blattverschiebungszone partitioniert auftritt. Im Küstenbereich werden Struktur- und stratigraphische Daten aus Geländebeobachtungen mit reflektionsseismischen Profilen und Bohrlochmessdaten verbunden, um Information zum Einfluss einer klimatisch-gesteuerten Auffüllung des Grabens auf die Mechanismen und die Kinematik des Randes während des Neogen zu erhalten. Es zeigt sich, dass Forearc-Becken im Segment bei 34–45° S eozäne bis frühpliozäne Dehnung und Subsidenz aufzeigen, denen spätpliozäne und noch aktive Hebung und Verkürzung folgten. Das erste Stadium kann mit tektonischer Erosion infolge hoher Plattenkonvergenzraten und geringerer Grabenfüllung erklärt werden. Das nachfolgende Stadium hingegen ist mit Akkretionsprozessen zu erklären, die durch geringe Konvergenzraten und gesteigerte Grabenauffüllung nach dem Einsetzen der Patagonischen Vereisung und klimagesteuerter Exhumierung vor etwa 6–5 Ma verursacht wurden. Auf der spätpleistozänen Zeitebene werden seismische Profile mit der Oberflächenentwicklung aus deformierten, 14C-datierten, marinen Terrassen der Isla Santa María integriert und gezeigt dass die Küstenmorphologie und die Segmentation der Oberflächendeformation von Aufschiebungen kontrolliert werden. In diesem Gebiet zeichnet ein Cluster von Mikrobeben eine dieser Störungen, die vermutlich die Plattengrenzfläche erreicht, deutlich nach. Desweiteren zeigen Berechnungen der koseismischen Hebung während des Erdbebens von 1835 mit M>8 nach Aufzeichnungen von Charles Darwin, dass diese aktive Verwerfung mechanisch an die Subduktionszone gekoppelt war und durch das Ereignis von 1835 aktiviert wurde. Diese Erkenntnisse haben grosse Bedeutung für die Abschätzung der seismischen Gefährdung in der Region. Die gewonnenen Ergebnisse dieser Arbeit unterstreichen den Bedarf an integrierten Untersuchungen der Deformationsprozesse an aktiven Plattenrändern in verschiedenen Zeit- und Raumskalen, ebenso wie die Notwendigkeit, diese mit geomorphologischen, strukturellen und geophysikalischen Datensätzen zu verknüpfen, um einen Beitrag zum Verständnis der gegenwärtigen Verteilung und Ursachen der tektonischen Segmentation sowie der Gefährdungsabschätzung zu leisten.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Daniel MelnickORCiDGND
URN:urn:nbn:de:kobv:517-opus-12091
Supervisor(s):Manfred Strecker
Publication type:Doctoral Thesis
Language:English
Publication year:2007
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2007/01/16
Release date:2007/02/02
Tag:Chile; Seismotektonik
Chile; neogene; seismotectonics
RVK - Regensburg classification:TF 04999
RVK - Regensburg classification:TP 08875
RVK - Regensburg classification:TG 04130
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.