Formation of astrophysical jets

  • Highly collimated, high velocity streams of hot plasma – the jets – are observed as a general phenomenon being found in a variety of astrophysical objects regarding their size and energy output. Known as jet sources are protostellar objects (T Tauri stars, embedded IR sources), galactic high energy sources ("microquasars"), and active galactic nuclei (extragalactic radio sources and quasars). Within the last two decades our knowledge regarding the processes involved in astro-physical jet formation has condensed in a kind of standard model. This is the scenario of a magnetohydrodynamically accelerated and collimated jet stream launched from the innermost part of an accretion disk close to the central object. Traditionally, the problem of jet formation is divided in two categories. One is the question how to collimate and accelerate an uncollimated low velocity disk wind into a jet. The second is the question how to initiate that outflow from a disk, i.e. how to turn accretion of matter into an ejection as a diskHighly collimated, high velocity streams of hot plasma – the jets – are observed as a general phenomenon being found in a variety of astrophysical objects regarding their size and energy output. Known as jet sources are protostellar objects (T Tauri stars, embedded IR sources), galactic high energy sources ("microquasars"), and active galactic nuclei (extragalactic radio sources and quasars). Within the last two decades our knowledge regarding the processes involved in astro-physical jet formation has condensed in a kind of standard model. This is the scenario of a magnetohydrodynamically accelerated and collimated jet stream launched from the innermost part of an accretion disk close to the central object. Traditionally, the problem of jet formation is divided in two categories. One is the question how to collimate and accelerate an uncollimated low velocity disk wind into a jet. The second is the question how to initiate that outflow from a disk, i.e. how to turn accretion of matter into an ejection as a disk wind. My own work is mainly related to the first question, the collimation and acceleration process. Due to the complexity of both, the physical processes believed to be responsible for the jet launching and also the spatial configuration of the physical components of the jet source, the enigma of jet formation is not yet completely understood. On the theoretical side, there has been a substantial advancement during the last decade from purely station-ary models to time-dependent simulations lead by the vast increase of computer power. Observers, on the other hand, do not yet have the instruments at hand in order to spatially resolve observe the very jet origin. It can be expected that also the next years will yield a substantial improvement on both tracks of astrophysical research. Three-dimensional magnetohydrodynamic simu-lations will improve our understanding regarding the jet-disk interrelation and the time-dependent character of jet formation, the generation of the magnetic field in the jet source, and the interaction of the jet with the ambient medium. Another step will be the combina-tion of radiation transfer computations and magnetohydrodynamic simulations providing a direct link to the observations. At the same time, a new generation of telescopes (VLT, NGST) in combination with new instrumental techniques (IR-interferometry) will lead to a "quantum leap" in jet observation, as the resolution will then be sufficient in order to zoom into the innermost region of jet formation.show moreshow less
  • populärwissenschaftlicher Abstract: Astrophysikalische Jets sind hochkollimierte Plasmaströmungen hoher Geschwindigkeit. Sie werden als allgemeines Phänomen bei unterschiedlichsten astronomischen Quellen gefunden - bei Objekten die sich sowohl in der Grössenskala als auch im Energieumsatz um viele Grössenordnungen unterscheiden. Jets werden beobachtet bei jungen stellaren Objekten (etwa TTauri-Sternen oder eingebettete IR-Quellen), bei sogenannten Mikroquasaren und bei aktiven galaktischen Kernen (etwa Radiogalaxien oder Quasare). So unterschiedlich die Jetquellen von ihrer Erscheinung sein mögen, zwei Tatsachen scheinen sie zu vereinen: Alle Jetquellen zeigen ebenfalls Hinweise auf die Existenz einer Akkretionsscheibe und von Magnetfeldern. Damit sind die wichtigsten Punkte einer Theorie der Jetentstehung schon umrissen. Sie muss sowohl die komplexe Struktur der Jetquelle berücksichtigen - ein System bestehend aus einem Zentralobjekt, der es umgebenden Scheibe, und dem Jet - als auch die magnetohydrodynamische Wechselwirkungpopulärwissenschaftlicher Abstract: Astrophysikalische Jets sind hochkollimierte Plasmaströmungen hoher Geschwindigkeit. Sie werden als allgemeines Phänomen bei unterschiedlichsten astronomischen Quellen gefunden - bei Objekten die sich sowohl in der Grössenskala als auch im Energieumsatz um viele Grössenordnungen unterscheiden. Jets werden beobachtet bei jungen stellaren Objekten (etwa TTauri-Sternen oder eingebettete IR-Quellen), bei sogenannten Mikroquasaren und bei aktiven galaktischen Kernen (etwa Radiogalaxien oder Quasare). So unterschiedlich die Jetquellen von ihrer Erscheinung sein mögen, zwei Tatsachen scheinen sie zu vereinen: Alle Jetquellen zeigen ebenfalls Hinweise auf die Existenz einer Akkretionsscheibe und von Magnetfeldern. Damit sind die wichtigsten Punkte einer Theorie der Jetentstehung schon umrissen. Sie muss sowohl die komplexe Struktur der Jetquelle berücksichtigen - ein System bestehend aus einem Zentralobjekt, der es umgebenden Scheibe, und dem Jet - als auch die magnetohydrodynamische Wechselwirkung zwischen diesen Komponenten. Die magnetohydrodynamischen Gleichungen für solch ein Problem sind derart kompliziert, dass sie meist nur numerisch, also nur mit dem Computer zu lösen sind. Zusätzlich sind viele vereinfachende Annahmen notwendig, da sonst auch der Computer überfordert waere. Im allgemeinen sind folgende Fragestellungen zu lösen: - Die Frage, wie ein Scheibenwind langsamer Geschwindigkeit beschleunigt wird und in einen Jet kollimiert wird ("jet formation"). - Die Frage, wie ein Ausfluss aus der Akkretionsscheibe überhaupt entsteht, d.h. die Frage wie die akkretierende Materie der Scheibe in den Scheibenwind umgelenkt wird ("jet launching"). - Die Frage, wie und wo das Magnetfeld, das zur Jetentstehung notwendig scheint, erzeugt wird. - Die Frage der Stabilität des asymptotischen Jets über weite Laengenskalen und die Rolle der Strahlungsprozesse. Die vorliegende Arbeit konzentriert sich auf die erste Frage. Der Versuch ihrer Beantwortung wird auf verschiedene Weise angestrebt. Zum einen durch Lösung der zeitunabhängigen Gleichungen, mit deren Hilfe das gesamte Jetentstehungsgebiet numerisch erfasst werden kann, zum anderen durch zeitabhängige Simulationen, die zwar nur einen Ausschnitt auflösen, dafür aber die zeitliche Entwicklung des Jets liefern koennen. Es werden relativistische und nicht-relativistische Lösungen diskutiert, Jets, die einen magnetisierten Stern im Ursprung haben und solche, wo dort ein schwarzes Loch existiert. Insgeamt sind grundlegenden Resultate aber allgemein gültig. Sie bestätigen die Vorstellung der magnetohydrodynamischen Entstehung astrophysikalischer Jets aus Akkretionsscheiben.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Christian FendtORCiDGND
URN:urn:nbn:de:kobv:517-0000733
translated title (English):Formation of astrophysical jets
Publication type:Habilitation Thesis
Language:English
Publication year:2002
Publishing institution:Universität Potsdam
Release date:2005/02/11
RVK - Regensburg classification:US 1080
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.