Characterization of ammoniumtransporters in Arabidopsis thaliana

Charakterisierung der Ammoniumtransporter in Arabidopsis thaliana

  • Nitrogen is often a limiting factor for plant growth due to its heterogenous distribution in the soil and to seasonal and diurnal changes in growth rates. In most soils, NH4+ and NO3 – are the predominant sources of inorganic nitrogen that are available for plant nutrition. In this context, plants have evolved mechanisms that enable them to optimize nitrogen acquisition, which include transporters specialized in the uptake of nitrogen and susceptible to a regulation that responds to nitrogen limiting or excess conditions. Although the average NH4+ concentrations of soils are generally 100 to 1000 times lower than those of NO3 – (Marschner, 1995), most plants preferentially take up NH4+ when both forms are present because unlike NO3– , NH4+ has not to be reduced prior to assimilation and thus requires less energy for assimilation (Bloom et al., 1992). Apart from high uptake rates in roots, high intracellular ammonium concentrations also result from quantitatively important internal breakdown of amino acids (Feng et al., 1998), andNitrogen is often a limiting factor for plant growth due to its heterogenous distribution in the soil and to seasonal and diurnal changes in growth rates. In most soils, NH4+ and NO3 – are the predominant sources of inorganic nitrogen that are available for plant nutrition. In this context, plants have evolved mechanisms that enable them to optimize nitrogen acquisition, which include transporters specialized in the uptake of nitrogen and susceptible to a regulation that responds to nitrogen limiting or excess conditions. Although the average NH4+ concentrations of soils are generally 100 to 1000 times lower than those of NO3 – (Marschner, 1995), most plants preferentially take up NH4+ when both forms are present because unlike NO3– , NH4+ has not to be reduced prior to assimilation and thus requires less energy for assimilation (Bloom et al., 1992). Apart from high uptake rates in roots, high intracellular ammonium concentrations also result from quantitatively important internal breakdown of amino acids (Feng et al., 1998), and originates in high quantities during photorespiration (Mattson et al., 1997, Pearson et al., 1998). Thus, NH4+ is a key component of nitrogen metabolism for all plants and can accumulate to varying concentrations in all compartments of the cell, including the cytosol, the vacuole and in the apoplast (Wells and Miller, 2000; Nielsen and Schjoerring, 1998). Two related families of ammonium transporters (AMT1 and AMT2), containing six genes which encode transporter proteins that are specific for ammonium had been identified prior to this thesis and some genes had partially been characterised in Arabidopsis (Gazzarrini et al., 1999; Sohlenkamp et al. 2002; Kaiser et al., 2002). However, these studies were not sufficient to assign physiological functions to the individual transporters and AMT1.4 and AMT1.5 had not been studied prior to this thesis. Given this background, it was considered desirable to acquire a deeper knowledge of the physiological functions of the six Arabidopsis ammonium transporters. To this end, tissue specific expression profiles of the individual wildtype AtAMT genes were performed by quantitative real time PCR (qRT-PCR) and promoter-GUS expression. Modern approaches such as the use of T-DNA insertional mutants and RNAi hairpin constructs were employed to reduce the expression levels of AMT genes. Transcript levels were determined, and physiological, biochemical and developmental analysis such as growth tests on different media and 14C-MA and NH4+ uptake studies with the isolated insertional mutants and RNAi lines were performed to deepen the knowledge of the individual functions of the six AMTs in Arabidopsis. In addition, double mutants of the insertional mutants were created to investigate the extent in which homologous genes could compensate for lost transporter functions. The results described in this thesis show that the six AtAMT genes display a high degree of specifity in their tissue specific expression and are likely to play complementary roles in ammonium uptake into roots, in shoots, and in flowers. AtAMT1.1 is likely to be a ‘work horse’ for cellular ammonium transport and reassimilation. A major role is probably the recapture of photorespiratory NH3/NH4+ escaping from the cytosol. In roots, it is likely to transport NH4+ from the apoplast into cortical cells. AtAMT1.3 and AtAMT1.5 appear to be specialised in the acquisition of external NH4+ from the soil. Furthermore, AtAMT1.5 plays an additional role in the reassimilation of NH3/NH4+ released during the breakdown of storage proteins in the cotyledons of germinating seedlings. It was difficult to distinguish a specialisation between the transporters AtAMt1.2 and AtAMt1.1, however the root and flower specific expression patterns are different and indicate alternative functions of both. AtAMT1.4 has a very distinct expression which is restricted to the vascular bundels of leaves and to pollen only, where it is likely to be involved in the loading of NH4+ into the cells.The AtAMT2.1 expression pattern is confined to vascular bundels and meristematic active tissues in leaves where ammonium concentrations can reach very high levels. Additionally, the Vmax of AtAMT2 increases with increasing external pH, contrasting to AtAMT1.1. Thus, AtAMT2.1 it might be specialised in ammonium transport in ammonium rich environments, where the functions of other transporters are limited, enabling cells to take up NH4+ over a wide range of concentrations. The root hair expression ascribes an additional role in NH3/NH4+ acquisition where it possibly serves as a transporter that is able to acquire ammonium from basic soils where other transporters become less effective.RNAi lines showing a reduction in AtAMT gene mRNA levels and NH4+ transport kinetics, grew slower and flowering time was delayed. This indicates that NH4+ is a crucial and limiting factor for plant growth.show moreshow less
  • Ammonium stellt die von Pflanzen bevorzugte Aufnahmeform anorganischen Stickstoffes dar. Neben dem natürlichen Vorkommen im Boden, wird Ammonium während des Aminosäurestoffwechsels und der Photorespiration innerhalb des Pflanzenkörpers freigesetzt. Um Ammonium aus diesen Quellen zu assimlieren und zwischen den einzelnen Zellen zu transportieren hat die dikotyle Samenpflanze Arabidosis thaliana sechs veschiedene Ammoniumtransporter (AMT) evolviert. Zur Charakterisierung der spezifischen Funktionen der AMts wurden Expressionsprofile der jeweiligen Gene innerhalb der Wurzeln, des Sprosses und der Blüten unter verschiedenen Nährstoffbedingungen mittels quantitativer real-time PCR (qRT-PCT) und Promotor-GUS Expression erstellt. Weiter wurde die Fähigkeit zur spezifischen Regulation der einzelnen Transportergene in Abhängikeit des Stickstoffbedarfes der Pflanze analysiert. Zur Reduktion der mRNA Level der AMTs wurden RNA-Interferenz (RNAi) Mutanten erzeugt und um den Effekt des Verlustes einzelner AMTs zu studieren wurden T-DNAAmmonium stellt die von Pflanzen bevorzugte Aufnahmeform anorganischen Stickstoffes dar. Neben dem natürlichen Vorkommen im Boden, wird Ammonium während des Aminosäurestoffwechsels und der Photorespiration innerhalb des Pflanzenkörpers freigesetzt. Um Ammonium aus diesen Quellen zu assimlieren und zwischen den einzelnen Zellen zu transportieren hat die dikotyle Samenpflanze Arabidosis thaliana sechs veschiedene Ammoniumtransporter (AMT) evolviert. Zur Charakterisierung der spezifischen Funktionen der AMts wurden Expressionsprofile der jeweiligen Gene innerhalb der Wurzeln, des Sprosses und der Blüten unter verschiedenen Nährstoffbedingungen mittels quantitativer real-time PCR (qRT-PCT) und Promotor-GUS Expression erstellt. Weiter wurde die Fähigkeit zur spezifischen Regulation der einzelnen Transportergene in Abhängikeit des Stickstoffbedarfes der Pflanze analysiert. Zur Reduktion der mRNA Level der AMTs wurden RNA-Interferenz (RNAi) Mutanten erzeugt und um den Effekt des Verlustes einzelner AMTs zu studieren wurden T-DNA Insertionsmutanten dieser Gene isoliert. Von den mutanten Linien wurden die Transkriptionsraten durch qRT-PCR bestimmt und die NH4+ Transportleistungen durch 14C-Methylammonium (14C-MA) und Ammonium-Aufnahme Experimente analysiert. Weiter wurden Wachstumsanalysen der Mutanten auf verschiedenen Nährmedien durchgeführt und ihre vegetative und generative Entwicklung charakterisiert. Von den isolierten T-DNA Insertionsmutanten wurden Doppelmutanten aller Kombinationen hergestellt und phänotypisch analysiert.Es zeigte sich, daß der an der Plasmamembran lokalisierte AtAMT1.1 in allen Organen in hohen Konzentrationen exprimiert wird und unter Stickstoffmangelbedingungen vermehrt gebildet wird. Vermutlich dient er der generellen Assimilation von internen Ammonium und dessen Transport vom Apoplasten in den Symplasten. AtAMT1.3 und AtAMT1.5 sind in den Wurzeln und hier besonders in den epidermalen Wurzelhaaren exprimiert, die unter anderem der Aufnahme externer Nährsalze dienen. Beide unterliegen starker Regulation durch den internen Stickstoffbedarf der Pflanze. Es ist zu vermuten, daß sie primär der Aufnahme von Ammonium aus dem Boden dienen. AtAMT1.2 wird überwiegend an den vaskulären Geweben und den Blattparenchymzellen exprimiert. Überlappende Expressionsmuster mit AtAMT1.1 machen es schwierig eine spezifische Funktion zu identifizieren. AtAMT1.4 wird ausschließlich im männlichen Gametophyten exprimiert und dient hier vermutlich der Versorgung des Pollen mit Nährsalzen. AtAMT2 wird u.a. in den Wurzelhaaren exprimiert. Seine steigende Affinität zu Ammonium in basischem Milieu, umgekehrt zu AtAMT1.1, läßt vermuten, daß er der Pflanze die Ammoniumaufnahme bei steigendem pH ermöglicht. Im oberirdischen Sproß ist er überwiegend in Meristemen aktiv. Die in der Ammoniumaufnahme beeinträchtigten RNAi-Linien zeigten langsames Wachstum und blühten später als der Wildtyp. Es sind die ersten beschriebenen Ammoniumtransportermutanten, die einen solchen Phänotyp zeigen.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Arne Schäfer
URN:urn:nbn:de:kobv:517-opus-5937
Supervisor(s):Michael Udvardi
Publication type:Doctoral Thesis
Language:English
Publication year:2005
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2005/11/01
Release date:2005/11/16
Tag:AMT; Ammonium; Ammoniumtransporter; AtAMT1.1; AtAMT1.2; AtAMT1.3; AtAMT1.4; AtAMT1.5; ÁtAMT2
AMT; AtAMT1.1; AtAMT1.2; AtAMT1.3; AtAMT1.4; AtAMT1.5; ammonium; ammoniumtransporter; ÁtAMT2
GND Keyword:Ammonium; Ammoniumassimilation; Pflanzenernährung
RVK - Regensburg classification:WC 4460
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.