Static and dynamic properties of soluble surfactants at the air/water interface

Statische und dynamische Eigenschaften von löslichen Amphiphilen an der Wasser/Luft Grenzfläche

  • Amphiphilic molecules contain a hydrophilic headgroup and a hydrophobic tail. The headgroup is polar or ionic and likes water, the tail is typically an aliphatic chain that cannot be accommodated in a polar environment. The prevailing molecular asymmetry leads to a spontaneous adsorption of amphiphiles at the air/water or oil/water interfaces. As a result, the surface tension and the surface rheology is changed. Amphiphiles are important tools to deliberately modify the interfacial properties of liquid interfaces and enable new phenomena such as foams which cannot be formed in a pure liquid. In this thesis we investigate the static and dynamic properties of adsorption layers of soluble amphiphiles at the air/water interface, the so called Gibbs monolayers. The classical way for an investigation of these systems is based on a thermodynamic analysis of the equilibrium surface tension as a function of the bulk composition in the framework of Gibbs theory. However, thermodynamics does not provide any structural information and severalAmphiphilic molecules contain a hydrophilic headgroup and a hydrophobic tail. The headgroup is polar or ionic and likes water, the tail is typically an aliphatic chain that cannot be accommodated in a polar environment. The prevailing molecular asymmetry leads to a spontaneous adsorption of amphiphiles at the air/water or oil/water interfaces. As a result, the surface tension and the surface rheology is changed. Amphiphiles are important tools to deliberately modify the interfacial properties of liquid interfaces and enable new phenomena such as foams which cannot be formed in a pure liquid. In this thesis we investigate the static and dynamic properties of adsorption layers of soluble amphiphiles at the air/water interface, the so called Gibbs monolayers. The classical way for an investigation of these systems is based on a thermodynamic analysis of the equilibrium surface tension as a function of the bulk composition in the framework of Gibbs theory. However, thermodynamics does not provide any structural information and several recent publications challenge even fundamental text book concepts. The experimental investigation faces difficulties imposed by the low surface coverage and the presence of dissolved amphiphiles in the adjacent bulk phase. In this thesis we used a suite of techniques with the sensitivity to detect less than a monolayer of molecules at the air-water interface. Some of these techniques are extremely complex such as infrared visible sum frequency generation (IR-VIS SFG) spectroscopy or second harmonic generation (SHG). Others are traditional techniques, such as ellipsometry employed in new ways and pushed to new limits. Each technique probes selectively different parts of the interface and the combination provides a profound picture of the interfacial architecture. The first part of the thesis is dedicated to the distribution of ions at interfaces. Adsorption layers of ionic amphiphiles serve as model systems allowing to produce a defined surface charge. The charge of the monolayer is compensated by the counterions. As a result of a complex zoo of interactions there will be a defined distribution of ions at the interface, however, its experimental determination is a big scientific challenge. We could demonstrate that a combination of linear and nonlinear techniques gives direct insights in the prevailing ion distribution. Our investigations reveal specific ion effects which cannot be described by classical Poisson-Boltzmann mean field type theories. Adsorption layer and bulk phase are in thermodynamic equilibrium, however, it is important to stress that there is a constant molecular exchange between adsorbed and dissolved species. This exchange process is a key element for the understanding of some of the thermodynamic properties. An excellent way to study Gibbs monolayers is to follow the relaxation from a non-equilibrium to an equilibrium state. Upon compression amphiphiles must leave the adsorption layer and dissolve in the adjacent bulk phase. Upon expansion amphiphiles must adsorb at the interface to restore the equilibrium coverage. Obviously the frequency of the expansion and compression cycles must match the molecular exchange processes. At too low frequencies the equilibrium is maintained at all times. If the frequency is too fast the system behaves as a monolayer of insoluble surfactants. In this thesis we describe an unique variant of an oscillating bubble technique that measures precisely the real and imaginary part of the complex dilational modulus E in a frequency range up to 500 Hz. The extension of about two decades in the time domain in comparison to the conventional method of an oscillating drop is a tremendous achievement. The imaginary part of the complex dilational modulus E is a consequence of a dissipative process which is interpreted as an intrinsic surface dilational viscosity. The IR-VIS SFG spectra of the interfacial water provide a molecular interpretation of the underlying dissipative process.show moreshow less
  • Amphiphile Moleküle vereinen zwei gegensätzliche Strukturelemente. Sie bestehen aus einer polaren oder ionischen Kopfgruppe und einem unpolaren Molekülteil, häufig einer Kohlenwasserstoffkette. Die vorliegende molekulare Asymmetrie bewirkt eine spontane Adsorption der Amphiphile an der Wasser/Luft Grenzschicht. Als Folge verändern sich Oberflächenspannung und Grenzflächenrheologie. Amphiphile Moleküle werden benutzt, um die Eigenschaften flüssiger Grenzflächen zu verändern und begegnen uns z.B. in Form von Seifen oder anderen waschaktiven Substanzen im täglichen Leben. Der erste Teil dieser Doktorarbeit widmet sich der Verteilung von Ionen an geladenen flüssigen Grenzflächen. Adsorbtionsschichten ionischer Amphiphile bieten Modellsysteme zur Untersuchung dieses klassischen Bereiches der Kolloid- und Grenzflächenforschung. Durch die Adsorption der Amphiphile in der Grenzschicht werden definierte Oberflächenladungen erzeugt, welche durch die angrenzenden Gegenionen in der Sublage kompensiert werden. In dieser Arbeit wird gezeigt, dassAmphiphile Moleküle vereinen zwei gegensätzliche Strukturelemente. Sie bestehen aus einer polaren oder ionischen Kopfgruppe und einem unpolaren Molekülteil, häufig einer Kohlenwasserstoffkette. Die vorliegende molekulare Asymmetrie bewirkt eine spontane Adsorption der Amphiphile an der Wasser/Luft Grenzschicht. Als Folge verändern sich Oberflächenspannung und Grenzflächenrheologie. Amphiphile Moleküle werden benutzt, um die Eigenschaften flüssiger Grenzflächen zu verändern und begegnen uns z.B. in Form von Seifen oder anderen waschaktiven Substanzen im täglichen Leben. Der erste Teil dieser Doktorarbeit widmet sich der Verteilung von Ionen an geladenen flüssigen Grenzflächen. Adsorbtionsschichten ionischer Amphiphile bieten Modellsysteme zur Untersuchung dieses klassischen Bereiches der Kolloid- und Grenzflächenforschung. Durch die Adsorption der Amphiphile in der Grenzschicht werden definierte Oberflächenladungen erzeugt, welche durch die angrenzenden Gegenionen in der Sublage kompensiert werden. In dieser Arbeit wird gezeigt, dass eine Kombination aus linearen und komplexen nichtlinearen optischen Methoden, die experimentelle Bestimmung der Verteilung der Gegenionen an geladenen Grenzflächen ermöglicht. Unsere Messungen zeigen ionenspezifische Effekte, die sich nicht in Reihenfolge des Periodensystems ordnen lassen. Insbesondere wurde ein Phasenübergang in der Verteilung der Gegenionen von einem Zustand, in dem sich die Ionen in der Sublage befinden, zu einem Zustand bestehend aus direkt kondensierten Ionen beobachtet. Dieser Phasenübergang geschieht innerhalb einer geringen Erhöhung der Oberflächenladung und lässt sich nicht mit klassischen Theorien beschreiben. Der zweite Teil dieser Arbeit widmet sich der Stabilität von Schaumlamellen. Eine Schaumlamelle ist ein dünner Wasserfilm, der durch die Adsorption von oberflächenaktiven Molekülen an beiden Seiten stabilisiert wird. In Zusammenhang von Schäumen muss zwischen zwei Prozessen unterschieden werden: Der Schaumbildung und der Schaumstabilität. Die zugrundeliegenden Mechanismen der Schaumbildung sind weitestgehend verstanden, die der Schaumstabilität jedoch noch nicht. Um die Stabilität von Schäumen zu untersuchen, müssen Nichtgleichgewichtszustände erzeugt und die anschließende Relaxation in das Gleichgewicht beobachtet werden. In dieser Arbeit wurde ein neues Verfahren entwickelt, welches es ermöglicht, das Elastizitätsmodul von Grenzflächen in einem Frequenzbereich von 1-500 Hz zu bestimmen. Dies bedeutet eine Erweiterung um zwei Dekaden gegenüber herkömmlichen Methoden. Die Idee ist denkbar einfach: In einer mit Flüssigkeit gefüllten Kammer wird über die Bewegung eines Piezos eine Luftblase in Schwingung versetzt und mit einem in der Kammer befindlichen Drucksensor die Schwingungsantwort der Blase aufgezeichnet. Unsere Untersuchungen zeigen, dass die Voraussetzung für die Ausbildung einer stabilen Schaumlamelle das Vorkommen einer intrinsischen Oberflächenviskosität ist. Eine anschauliche Erklärung verdeutlicht dies: Eine viskose Oberfläche ist in der Lage, eine eingehende Störung lokal zu dämpfen, im Gegensatz zu einer komplett elastischen Oberfläche, wo sich die Störung über die gesamte Schaumlamelle verbreiten kann. Untersuchungen mittels der IR-VIS SFG Spektroskopie ergaben, dass die Struktur des Wassers bei der Beschreibung der Schaumstabilität auf molekularer Ebene eine entscheidende Rolle spielt: Die Oberflächenviskosität ist mit einem dissipativen Vorgang innerhalb der Grenzschicht verbunden. Dieser dissipative Vorgang konnte auf molekularer Ebene durch das Aufbrechen von Wasserstoffbrückenbindungen identifiziert werden. Ausschlaggebend war dabei der Austausch der adsorbierten Amphiphile in der Grenzfläche und der angrenzenden Sublage.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Patrick Kölsch
URN:urn:nbn:de:kobv:517-opus-5716
Supervisor(s):Helmuth Möhwald
Publication type:Doctoral Thesis
Language:English
Publication year:2005
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2005/08/01
Release date:2005/08/29
Tag:Hofmeister; Ionenspezifisch; Schaumbildung; Schaumstabilität; Summenfrequenzspektroskopie
Hofmeister; NLO; SFG; SHG; foam; ions
GND Keyword:Nichtlineare Optik; Ellipsometrie; Schaum; Tensidlösung; Tensidschaum; Tensid; Ionisches Tensid
RVK - Regensburg classification:UP 1080
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.