Applications of Galactic Microlensing

Anwendungen des Galaktischen Mikrolinseneffektes

  • Subject of this work is the study of applications of the Galactic Microlensing effect, where the light of a distant star (source) is bend according to Einstein's theory of gravity by the gravitational field of intervening compact mass objects (lenses), creating multiple (however not resolvable) images of the source. Relative motion of source, observer and lens leads to a variation of deflection/magnification and thus to a time dependant observable brightness change (lightcurve), a so-called microlensing event, lasting weeks to months. The focus lies on the modeling of binary-lens events, which provide a unique tool to fully characterize the lens-source system and to detect extra-solar planets around the lens star. Making use of the ability of genetic algorithms to efficiently explore large and intricate parameter spaces in the quest for the global best solution, a modeling software (Tango) for binary lenses is developed, presented and applied to data sets from the PLANET microlensing campaign. For the event OGLE-2002-BLG-069 the 2ndSubject of this work is the study of applications of the Galactic Microlensing effect, where the light of a distant star (source) is bend according to Einstein's theory of gravity by the gravitational field of intervening compact mass objects (lenses), creating multiple (however not resolvable) images of the source. Relative motion of source, observer and lens leads to a variation of deflection/magnification and thus to a time dependant observable brightness change (lightcurve), a so-called microlensing event, lasting weeks to months. The focus lies on the modeling of binary-lens events, which provide a unique tool to fully characterize the lens-source system and to detect extra-solar planets around the lens star. Making use of the ability of genetic algorithms to efficiently explore large and intricate parameter spaces in the quest for the global best solution, a modeling software (Tango) for binary lenses is developed, presented and applied to data sets from the PLANET microlensing campaign. For the event OGLE-2002-BLG-069 the 2nd ever lens mass measurement has been achieved, leading to a scenario, where a G5III Bulge giant at 9.4 kpc is lensed by an M-dwarf binary with total mass of M=0.51 solar masses at distance 2.9 kpc. Furthermore a method is presented to use the absence of planetary lightcurve signatures to constrain the abundance of extra-solar planets.show moreshow less
  • Thema der Arbeit ist das Studium von Anwendungen des Galaktischen Mikrolinseneffektes bei dem das Licht eines entfernten Sternes (Quelle) nach Einstein's Theorie der Gravitation im Schwerefeld eines sich hinreichend nahe der Sichlinie zur Quelle befindlichen massereichen kompakten Objektes (Linse) abgelenkt wird und Mehrfachbilder der Quelle erzeugt werden (welche jedoch nicht aufgelöst werden können). Die Relativbewegung von Quelle, Beobachter und Linse führt zur einer Änderung der Ablenk-und Verstärkungswirkung und somit zu einer beobachtbaren Helligkeitsänderung der Quelle (Lichtkurve), einem sogenannten Mikrolinsenereignis, welches Wochen bis Monate andauert. Der Schwerpunkt liegt in der Modelierung von Doppellinsen-Ereignissen, welche die einzigartige Möglichkeit bieten das Linsen-Quelle System vollständig zu charakterisieren und extra-solare Planeten um den Linsenstern zu detektieren. Unter Verwendung der Eigenschaft genetischer Algorithmen hoch-dimensionale und komplizierte Parameterräume effizient nach dem besten globalenThema der Arbeit ist das Studium von Anwendungen des Galaktischen Mikrolinseneffektes bei dem das Licht eines entfernten Sternes (Quelle) nach Einstein's Theorie der Gravitation im Schwerefeld eines sich hinreichend nahe der Sichlinie zur Quelle befindlichen massereichen kompakten Objektes (Linse) abgelenkt wird und Mehrfachbilder der Quelle erzeugt werden (welche jedoch nicht aufgelöst werden können). Die Relativbewegung von Quelle, Beobachter und Linse führt zur einer Änderung der Ablenk-und Verstärkungswirkung und somit zu einer beobachtbaren Helligkeitsänderung der Quelle (Lichtkurve), einem sogenannten Mikrolinsenereignis, welches Wochen bis Monate andauert. Der Schwerpunkt liegt in der Modelierung von Doppellinsen-Ereignissen, welche die einzigartige Möglichkeit bieten das Linsen-Quelle System vollständig zu charakterisieren und extra-solare Planeten um den Linsenstern zu detektieren. Unter Verwendung der Eigenschaft genetischer Algorithmen hoch-dimensionale und komplizierte Parameterräume effizient nach dem besten globalen Model zu durchsuchen, wird eine Modelier-Software (Tango) entwickelt, präsentiert und auf Daten der PLANET Mikrolinsen Beobachtungskampagne angewandt. Dabei konnte für das Ereignis OGLE-2002-BLG-069 zum zweitenmal überhaupt die Linsenmasse bestimmt werden, in einem Szenario bei dem ein G5III Bulge Riese, 9.4 kpc entfernt, von einem M-Zwerg Binärsystem mit einer Gesamtmasse von M=0.51 Sonnenmassen in einer Entfernung von 2.9 kpc gelinst wird. Darüberhinaus wird ein Verfahren vorgestellt mit dem man die Abwesenheit planetarer Lichtkurvensignaturen nutzen kann, um Aussagen über die Häufigkeit extrasolarer Planeten zu treffen.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Daniel Kubas
URN:urn:nbn:de:kobv:517-opus-5179
Supervisor(s):Joachim Wambsganß
Publication type:Doctoral Thesis
Language:English
Publication year:2005
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2005/05/23
Release date:2005/06/03
Tag:Gravitationslinsen; Mikrolinsen; OGLE; Optimierung; PLANET
OGLE; genetics; gravity; microlensing; planet
GND Keyword:Planeten; Gravitation; Milchstrasse; Genetik
RVK - Regensburg classification:US 1080
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.