Static and ultrafast optical properties of nanolayered composites : gold nanoparticles embedded in polyelectrolytes

Statische und ultraschnelle optische Eigenschaften von nanogeschichteten Kompositmaterialien. Gold-Nanopartikel in Polyelektrolytschichten.

  • In the course of this thesis gold nanoparticle/polyelectrolyte multilayer structures were prepared, characterized, and investigated according to their static and ultrafast optical properties. Using the dip-coating or spin-coating layer-by-layer deposition method, gold-nanoparticle layers were embedded in a polyelectrolyte environment with high structural perfection. Typical structures exhibit four repetition units, each consisting of one gold-particle layer and ten double layers of polyelectrolyte (cationic+anionic polyelectrolyte). The structures were characterized by X-ray reflectivity measurements, which reveal Bragg peaks up to the seventh order, evidencing the high stratication of the particle layers. In the same measurements pronounced Kiessig fringes were observed, which indicate a low global roughness of the samples. Atomic force microscopy (AFM) images veried this low roughness, which results from the high smoothing capabilities of polyelectrolyte layers. This smoothing effect facilitates the fabrication of stratifiedIn the course of this thesis gold nanoparticle/polyelectrolyte multilayer structures were prepared, characterized, and investigated according to their static and ultrafast optical properties. Using the dip-coating or spin-coating layer-by-layer deposition method, gold-nanoparticle layers were embedded in a polyelectrolyte environment with high structural perfection. Typical structures exhibit four repetition units, each consisting of one gold-particle layer and ten double layers of polyelectrolyte (cationic+anionic polyelectrolyte). The structures were characterized by X-ray reflectivity measurements, which reveal Bragg peaks up to the seventh order, evidencing the high stratication of the particle layers. In the same measurements pronounced Kiessig fringes were observed, which indicate a low global roughness of the samples. Atomic force microscopy (AFM) images veried this low roughness, which results from the high smoothing capabilities of polyelectrolyte layers. This smoothing effect facilitates the fabrication of stratified nanoparticle/polyelectrolyte multilayer structures, which were nicely illustrated in a transmission electron microscopy image. The samples' optical properties were investigated by static spectroscopic measurements in the visible and UV range. The measurements revealed a frequency shift of the reflectance and of the plasmon absorption band, depending on the thickness of the polyelectrolyte layers that cover a nanoparticle layer. When the covering layer becomes thicker than the particle interaction range, the absorption spectrum becomes independent of the polymer thickness. However, the reflectance spectrum continues shifting to lower frequencies (even for large thicknesses). The range of plasmon interaction was determined to be in the order of the particle diameter for 10 nm, 20 nm, and 150 nm particles. The transient broadband complex dielectric function of a multilayer structure was determined experimentally by ultrafast pump-probe spectroscopy. This was achieved by simultaneous measurements of the changes in the reflectance and transmittance of the excited sample over a broad spectral range. The changes in the real and imaginary parts of the dielectric function were directly deduced from the measured data by using a recursive formalism based on the Fresnel equations. This method can be applied to a broad range of nanoparticle systems where experimental data on the transient dielectric response are rare. This complete experimental approach serves as a test ground for modeling the dielectric function of a nanoparticle compound structure upon laser excitation.show moreshow less
  • Im Rahmen dieser Arbeit wurden Gold-Nanopartikel/Polyelektrolyt Multischichtstrukturen hergestellt, strukturell charakterisiert und bezüglich ihrer optischen Eigenschaften sowohl statisch als auch zeitaufgelöst analysiert. Die Strukturen wurden mithilfe der Dip-coating oder der Spin-coating Methode hergestellt. Beide Methoden ermöglichen das Einbetten einzelner Partikellagen in eine Polyelektrolytumgebung. Typische Strukturen in dieser Arbeit bestehen aus vier Wiederholeinheiten, wobei jede aus einer Nanopartikelschicht und zehn Polyelektrolyt-Doppellagen (kationisches und anionisches Polyelektrolyt) zusammengesetzt ist. Die Stratizierung der Gold-Nanopartikellagen wurde mittels Röntgenreflektometrie-Messungen im Kleinwinkelbereich nachgewiesen, welche Bragg Reflexionen bis zur siebten Ordnung aufzeigen. Das ausgeprägte Kiessig Interferenzmuster dieser Messungen weist zudem auf eine geringe globale Rauheit hin, die durch Oberflächenanalysen mit einem Rasterkraftmikroskop bestätigt werden konnte. Diese geringe Rauheit resultiert ausIm Rahmen dieser Arbeit wurden Gold-Nanopartikel/Polyelektrolyt Multischichtstrukturen hergestellt, strukturell charakterisiert und bezüglich ihrer optischen Eigenschaften sowohl statisch als auch zeitaufgelöst analysiert. Die Strukturen wurden mithilfe der Dip-coating oder der Spin-coating Methode hergestellt. Beide Methoden ermöglichen das Einbetten einzelner Partikellagen in eine Polyelektrolytumgebung. Typische Strukturen in dieser Arbeit bestehen aus vier Wiederholeinheiten, wobei jede aus einer Nanopartikelschicht und zehn Polyelektrolyt-Doppellagen (kationisches und anionisches Polyelektrolyt) zusammengesetzt ist. Die Stratizierung der Gold-Nanopartikellagen wurde mittels Röntgenreflektometrie-Messungen im Kleinwinkelbereich nachgewiesen, welche Bragg Reflexionen bis zur siebten Ordnung aufzeigen. Das ausgeprägte Kiessig Interferenzmuster dieser Messungen weist zudem auf eine geringe globale Rauheit hin, die durch Oberflächenanalysen mit einem Rasterkraftmikroskop bestätigt werden konnte. Diese geringe Rauheit resultiert aus den glättenden Eigenschaften der Polyelektrolyte, die die Herstellung von Multilagensystemen mit mehreren Partikellagen erst ermöglichen. Die Aufnahme eines Transmissionselektronenmikroskops veranschaulicht eindrucksvoll die Anordnung der Partikel in einzelne Schichten. Durch photospektroskopische Messungen wurden die optischen Eigenschaften der Strukturen im UV- und sichtbaren Bereich untersucht. Beispielsweise wird eine Verschiebung und Verstärkung der Plasmonenresonanz beobachtet, wenn eine Goldnanopartikellage mit transparenten Polyelektrolyten beschichtet wird. Erst wenn die bedeckende Schicht dicker als die Reichweite der Plasmonen wird, bleibt die Absorption konstant. Die spektrale Reflektivität jedoch ändert sich auch mit jeder weiteren adsorbierten Polyelektrolytschicht. Die Reichweite der Plasmonenresonanz konnte auf diese Art für Partikel der Größe 10 nm, 20 nm und 150 nm bestimmt werden. Die Ergebnisse wurden im Kontext einer Effektiven Mediums Theorie diskutiert. Die komplexe dielektrische Funktion einer Multilagenstruktur wurde zeitabhängig nach Laserpulsanregung für einen breiten spektralen Bereich bestimmt. Dazu wurden zuerst die Änderungen der Reflektivität und Transmittivität simultan mittels der Pump-Probe (Anrege-Abtast) Spektroskopie gemessen. Anschließend wurden aus diesen Daten, mithilfe eines Formalismus, der auf den Fresnelschen Formeln basiert, die Änderungen im Real- und Imaginärteil der dielektrischen Funktion ermittelt. Diese Methode eignet sich zur Bestimmung der transienten dielektrischen Funktion einer Vielzahl von Nanopartikelsystemen. Der rein experimentelle Ansatz ermöglicht es, effektive Medien Theorien und Simulationen der dielektrischen Funktion nach Laserpulsanregung zu überprüfen.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Mareike Kiel
URN:urn:nbn:de:kobv:517-opus-61823
Supervisor(s):Matias Bargheer
Publication type:Doctoral Thesis
Language:English
Publication year:2012
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2012/08/16
Release date:2012/10/04
Tag:Anrege-Abtast Spektroskopie; Dielektrische Funktion; Nanopartikel; Polyelektrolyte
dielectric function; nanoparticles; polyelectrolytes; pump-probe spectroscopy
RVK - Regensburg classification:UP 7800
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.