Eingang zum Volltext in OPUS

Home | Suche | Browsen

Lizenz

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:kobv:517-opus-59820
URL: http://opus.kobv.de/ubp/volltexte/2012/5982/


Mösta, Philipp

Novel aspects of the dynamics of binary black-hole mergers

Neue Aspekte der Dynamik von Kollisionen binärer schwarzer Löcher

pdf-Format:
Dokument 1.pdf (11.444 KB) (SHA-1:b60c7352ccb55ded0274b6c27dbe0448ff2e76c4)


Kurzfassung in Englisch

The inspiral and merger of two black holes is among the most exciting and extreme events in our universe. Being one of the loudest sources of gravitational waves, they provide a unique dynamical probe of strong-field general relativity and a fertile ground for the observation of fundamental physics. While the detection of gravitational waves alone will allow us to observe our universe through an entirely new window, combining the information obtained from both gravitational wave and electro-magnetic observations will allow us to gain even greater insight in some of the most exciting astrophysical phenomena. In addition, binary black-hole mergers serve as an intriguing tool to study the geometry of space-time itself.
In this dissertation we study the merger process of binary black-holes in a variety of conditions. Our results show that asymmetries in the curvature distribution on the common apparent horizon are correlated to the linear momentum acquired by the merger remnant. We propose useful tools for the analysis of black holes in the dynamical and isolated horizon frameworks and shed light on how the final merger of apparent horizons proceeds after a common horizon has already formed. We connect mathematical theorems with data obtained from numerical simulations and provide a first glimpse on the behavior of these surfaces in situations not accessible to analytical tools.
We study electro-magnetic counterparts of super-massive binary black-hole mergers with fully 3D general relativistic simulations of binary black-holes immersed both in a uniform magnetic field in vacuum and in a tenuous plasma. We find that while a direct detection of merger signatures with current electro-magnetic telescopes is unlikely, secondary emission, either by altering the accretion rate of the circumbinary disk or by synchrotron radiation from accelerated charges, may be detectable. We propose a novel approach to measure the electro-magnetic radiation in these simulations and find a non-collimated emission that dominates over the collimated one appearing in the form of dual jets associated with each of the black holes. Finally, we provide an optimized gravitational wave detection pipeline using phenomenological waveforms for signals from compact binary coalescence and show that by including spin effects in the waveform templates, the detection efficiency is drastically improved as well as the bias on recovered source parameters reduced.
On the whole, this disseration provides evidence that a multi-messenger approach to binary black-hole merger observations provides an exciting prospect to understand these sources and, ultimately, our universe.

Kurzfassung in Deutsch

Schwarze Löcher gehören zu den extremsten und faszinierensten Objekten in unserem Universum. Elektromagnetische Strahlung kann nicht aus ihrem Inneren entkommen, und sie bilden die kompaktesten Objekte, die wir kennen. Wir wissen heute, dass in den Zentren der meisten Galaxien sehr massereiche schwarze Löcher vorhanden sind. Im Fall unserer eigenen Galaxie, der Milchstrasse, ist dieses schwarze Loch ungefähr vier Millionen mal so schwer wie unsere Sonne. Wenn zwei Galaxien miteinander kollidieren, führt dies auch dazu, dass ihre beiden schwarzen Löcher kollidieren und zu einem einzelnen schwarzen Loch verschmelzen. Das Simulieren einer solchen Kollision von zwei schwarzen Löchern, die Vorhersage sowie Analyse der von ihnen abgestrahlten Energie in Form von Gravitations- und elektromagnetischen Wellen, bildet das Thema der vorliegenden Dissertation.
Im ersten Teil dieser Arbeit untersuchen wir die Verschmelzung von zwei schwarzen Löchern unter verschiedenen Gesichtspunkten. Wir zeigen, dass Ungleichmässigkeiten in der Geometrie des aus einer Kollision entstehenden schwarzen Loches dazu führen, dass es zuerst beschleunigt und dann abgebremst wird, bis diese Ungleichmässigkeiten in Form von Gravitationswellen abgetrahlt sind. Weiterhin untersuchen wir, wie der genaue Verschmelzungsprozess aus einer geometrischen Sicht abläuft und schlagen neue Methoden zur Analyse der Raumzeitgeometrie in Systemen vor, die schwarze Löcher enthalten.
Im zweiten Teil dieser Arbeit beschäftigen wir uns mit den Gravitationswellen und elektromagnetischer Strahlung, die bei einer Kollision von zwei schwarzen Löchern freigesetzt wird. Gravitationswellen sind Wellen, die Raum und Zeit dehnen und komprimieren. Durchläuft uns eine Gravitationswelle, werden wir in einer Richtung minimal gestreckt, während wir in einer anderen Richtung minimal zusammengedrückt werden. Diese Effekte sind allerdings so klein, dass wir sie weder spüren, noch auf einfache Weise messen können. Bei einer Kollision von zwei schwarzen Löchern wird eine grosse Menge Energie in Form von Gravitationswellen und elektromagnetischen Wellen abgestrahlt. Wir zeigen, dass beide Signale in ihrer Struktur sehr ähnlich sind, dass aber die abgestrahlte Energie in Gravitationswellen um ein Vielfaches grösser ist als in elektromagnetischer Strahlung. Wir führen eine neue Methode ein, um die elektromagnetische Strahlung in unseren Simulationen zu messen und zeigen, dass diese dazu führt, dass sich die räumliche Struktur der Strahlung verändert. Abschliessend folgern wir, dass in der Kombination der Signale aus Gravitationswellen und elektromagnetischer Strahlung eine grosse Chance liegt, ein System aus zwei schwarzen Löchern zu detektieren und in einem weiteren Schritt zu analysieren.
Im dritten und letzen Teil dieser Dissertation entwickeln wir ein verbessertes Suchverfahren für Gravitationswellen, dass in modernen Laser-Interferometerexperimenten genutzt werden kann. Wir zeigen, wie dieses Verfahren die Chancen für die Detektion eines Gravitationswellensignals deutlich erhöht, und auch, dass im Falle einer erfolgreichen Detektion eines solchen Signals, seine Parameter besser bestimmt werden können.
Wir schliessen die Arbeit mit dem Fazit, dass die Kollision von zwei schwarzen Löchern ein hochinteressantes Phenomenon darstellt, das uns neue Möglichkeiten bietet die Gravitation sowie eine Vielzahl anderer fundamentaler Vorgänge in unserem Universum besser zu verstehen.

Freie Schlagwörter (Deutsch): schwarze Löcher , elektromagnetische Strahlung , Allgemeine Relativitätstheorie , Gravitationswellen , Raumzeitgeometrie
Freie Schlagwörter (Englisch): black-holes , gravitational waves , electromagnetic counterparts , general relativity , space-time geometry
RVK - Regensburger Verbundklassifikation: UH 8700 , US 2200
Institut: Institut für Physik und Astronomie
Fakultät: Mathematisch-Naturwissenschaftliche Fakultät
DDC-Sachgruppe: Astronomie
Dokumentart: a Dissertation
Hauptberichter: Schutz, Bernard (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 02.02.2012
Erstellungsjahr: 2011
Publikationsdatum: 23.07.2012
Bemerkung: PACS-Klassifikation: 97.60.Lf , 95.30.Sf , 04.30.Db
Lizenz: Dieses Werk ist unter einer Creative Commons-Lizenz lizenziert.
Lizenz-Logo  Creative Commons - Namensnennung, Nicht kommerziell, Weitergabe zu gleichen Bedingungen 3.0 Deutschland


Home | Leitlinien | Impressum | Haftungsausschluss | Statistik | Universitätsverlag | Universitätsbibliothek
Ihr Kontakt für Fragen und Anregungen:
Universitätsbibliothek Potsdam
powered by OPUS  Hosted by KOBV  Open
Archives Initiative  DINI Zertifikat 2007  OA Netzwerk