Eingang zum Volltext in OPUS

Home | Suche | Browsen

Lizenz

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:kobv:517-opus-26378
URL: http://opus.kobv.de/ubp/volltexte/2008/2637/


Schrohe, Elmar ; Seiler, Jörg

The resolvent of closed extensions of cone differential operators

pdf-Format:
Dokument 1.pdf (410 KB) (SHA-1: 04b4bb41eb2d71450edabc9588c245952bbcc7b1)


Kurzfassung in Englisch

We study an elliptic differential operator on a manifold with conical singularities, acting as an unbounded operator on a weighted Lp-space. Under suitable conditions we show that the resolvent (λ - A )-¹ exists in a sector of the complex plane and decays like 1/|λ| as |λ| -> ∞. Moreover, we determine the structure of the resolvent with enough precision to guarantee existence and boundedness of imaginary powers of A.
As an application we treat the Laplace-Beltrami operator for a metric with striaght conical degeneracy and establish maximal regularity for the Cauchy problem u - Δu = f, u(0) = 0.

RVK - Regensburger Verbundklassifikation: SI 990
Collection 1: Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2002
Collection 2: Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Institut: Institut für Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: c Preprint (Vorabdruck)
Schriftenreihe: Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Bandnummer: (2002) 19
Sprache: Englisch
Erstellungsjahr: 2002
Publikationsdatum: 11.11.2008
Bemerkung:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

Lizenz: Diese Nutzungsbedingung gilt nicht, wenn in den Metadaten eine modifizierende Lizenz genannt ist. Keine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht


Home | Leitlinien | Impressum | Haftungsausschluss | Statistik | Universitätsverlag | Universitätsbibliothek
Ihr Kontakt für Fragen und Anregungen:
Universitätsbibliothek Potsdam
powered by OPUS  Hosted by KOBV  Open
Archives Initiative  DINI Zertifikat 2007  OA Netzwerk