Eingang zum Volltext in OPUS

Home | Suche | Browsen

Lizenz

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgende
URN: urn:nbn:de:kobv:517-opus-25381
URL: http://opus.kobv.de/ubp/volltexte/2008/2538/


Gilkey, Peter

The heat content asymptotics for variable geometries

pdf-Format:
Dokument 1.pdf (185 KB) (SHA-1: cfa36ff7293bdecb64c543ed6f009d2f0ccdf0bd)


Kurzfassung in Englisch

We study the heat content asymptotics on a compact manifold with boundary dened by a time dependent family of operators of Laplace type.

RVK - Regensburger Verbundklassifikation: SI 990
Collection 1: Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Collection 2: Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 1998
Institut: Institut für Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: c Preprint (Vorabdruck)
Schriftenreihe: Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Bandnummer: (1998) 26
Sprache: Englisch
Erstellungsjahr: 1998
Publikationsdatum: 03.11.2008
Bemerkung:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

Lizenz: Diese Nutzungsbedingung gilt nicht, wenn in den Metadaten eine modifizierende Lizenz genannt ist. Keine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht


Home | Leitlinien | Impressum | Haftungsausschluss | Statistik | Universitätsverlag | Universitätsbibliothek
Ihr Kontakt für Fragen und Anregungen:
Universitätsbibliothek Potsdam
powered by OPUS  Hosted by KOBV  Open
Archives Initiative  DINI Zertifikat 2007  OA Netzwerk