

COMPUTER SCIENCE REPORTS

Report 03/13

September 2013

12. GI / ITG
FACHGESPRÄCH SENSORNETZE

Jörg Nolte

Faculty of Mathematics,
Natural Sciences and
Computer Science

Institute of Computer Science

Computer Science Reports
Brandenburg University of Technology Cottbus
ISSN: 1437-7969

Send requests to: BTU Cottbus
 Institut für Informatik
 Postfach 10 13 44
 D-03013 Cottbus

Computer Science Reports
03/13

September 2013

Brandenburg University of Technology Cottbus

Faculty of Mathematics, Natural Sciences and Computer Science

Institute of Computer Science

Jörg Nolte
jon@informatik.tu-cottbus.de

http://www.tu-cottbus.de/fakultaet1/de/betriebssysteme/

12. GI / ITG
Fachgespräch Sensornetze

Computer Science Reports
Brandenburg University of Technology Cottbus
Institute of Computer Science

Head of Institute:
Prof. Dr. Ingo Schmitt schmitt@tu-cottbus.de
BTU Cottbus
Institut für Informatik
Postfach 10 13 44
D-03013 Cottbus

Research Groups: Headed by:
Computer Engineering Prof. Dr. H. Th. Vierhaus
Computer Network and Communication Systems Prof. Dr. H. König
Data Structures and Software Dependability Prof. Dr. M. Heiner
Database and Information Systems Prof. Dr. I. Schmitt
Programming Languages and Compiler Construction Prof. Dr. P. Hofstedt
Software and Systems Engineering Prof. Dr. C. Lewerentz
Theoretical Computer Science Prof. Dr. K. Meer
Graphics Systems Prof. Dr. D. Cunningham
Systems Prof. Dr. R. Kraemer
Distributed Systems and Operating Systems Prof. Dr. J. Nolte
Internet-Technology Prof. Dr. G. Wagner

CR Subject Classification (1998): C.3, J.7

Printing and Binding: BTU Cottbus

ISSN: 1437-7969

INHALTSVERZEICHNIS

SIMULATION, REALE MESSUNGEN UND ERFAHRUNGSBERICHTE

Real-world Bluetooth Master-Slave Bridge Deployment 1

Nicole Todtenberg, Paweł Kornecki

Wireless in The Woods: Experimental Evaluation of IEEE 802.11a/b/g in Forested Environments 5

Margit Mutschlechner, Patrick Baldemaier, Philipp Handle, Falko Dressler

Selbstorganisierende drahtlose Vernetzung in Photovoltaik-Kraftwerken 9

Stefan Lange

On the Comparability of Indoor Localization Systems’ Accuracy 13

Sebastian Fudickar, Sebastian Amend, Bettina Schnor

Towards Application-Centric Deployment of Low-Power Wireless Networks 17

Matteo Ceriotti, Alexandr Krylovskiy, Klaus Wehrle

PROTOKOLL- UND ANWENDUNGSENTWICKLUNG

The Crux of OMNeT++ on development for a specific Wireless Sensor Node Platform, A Progress Report 21

Oliver Stecklina, Andreas Krumholz

Semantische Annotationen für das IoT 25

Henning Hasemann, Alexander Kröller

Directed Link Utilization with Mahalle+ 29

Gerry Siegemund, Volker Turau, Stefan Lohs, Jörg Nolte

Sens4U: A Modular Approach Towards the Ideal Sensor Node Software and Hardware 33

Krzysztof Piotrowski, Jürgen Lösche

PLATTFORMENTWICKLUNG UND TESTBEDS

A GNU Radio-based IEEE 802.15.4 Testbed 37

Bastian Bloessl, Christoph Leitner, Falko Dressler, Christoph Sommer

Extending Wireless Body Sensor Networks Using Intelligent Implants 41

Thomas Basmer, Mario Birkholz

Optimization of Point-to-Point Communication in Wireless Sensor Networks 45

Tsvetko Tsvetkov, Alexander von Bodisco, Georg Carle

Weniger ist Mehr: Leichtgewichtige Metriken zur Erkennung von Denial-of-Service Angriffen in Drahtlosen
Sensornetzen

49

Michael Riecker, Matthias Hollick

Real-world Bluetooth Master-Slave Bridge
Deployment

Nicole Todtenberg, Paweł Kornecki
IHP

Im Technologiepark 25
15236 Frankfurt (Oder)

Germany
Email: todtenberg@ihp-microelectronics.com

Matthias Mahlig
lesswire AG

Rudower Chaussee 30
12489 Berlin

Germany
Email: mahlig@lesswire.com

Abstract—For Wireless Sensor Networks (WSN) the limited
number of active Bluetooth slaves in a piconet is a constraint.
Scatternet topologies are described in the Bluetooth specification
for use cases requiring many devices. However, scatternet related
aspects are not addressed in detail in the Bluetooth specification
and research work was primarily evaluated by simulation or
analytical analysis. In contrast, we implemented a real-world
scatternet topology providing the services HSP and A2DP. Our
experiments show that real-world scatternet deployment of time-
critical data is not straightforward.

Index Terms—Bluetooth, Scatternet, HSP, A2DP

I. INTRODUCTION

Bluetooth wireless communication standard is very popular
because of its claim of simplicity and compactness, its
interference resilience and power efficiency. For wireless
sensor network (WSN) applications the limited number of
seven active slaves in a piconet is a handicap. The Bluetooth
specification provides the scatternet mode for such use cases:
Several piconets can be connected to form a network. One or
more devices need to act as participants in multiple piconets
(PMP) [1] that need to apply time division multiplex [2].
Although the scatternet mode is described throughout the
specification possible challenges and scatternet related aspects
are not covered in detail [3].
A considerable amount of research effort was directed to
Bluetooth scatternets. Three challenges were addressed
primarily: Formation algorithms, traffic scheduling algorithms
and routing protocols. Reviews of scatternet formation
algorithms are given in [4], [5] and [6]. Different scheduling
strategies are categorized and summarized in [7], [8], [9],
[10], [5] and [11]. A review of scatternet routing protocols is
given in [12], [13] and [14]. One common aspect to all these
works is: The evaluation of the proposed concept is either
performed by simulation or analytical analysis. To gather
real-world experiences we implemented a scatternet topology
in order to investigate the performance of a PMP device.

Our scatternet conists of a headset, a mobile phone and a
proprietary PMP device. Headset and mobile are common con-
sumer class devices whose firmware was not changed during
our investigation. A development board (BlueSy, lesswire AG)

Fig. 1. Investigated scatternet topology. Graphic created with [15]. Headset
Icon [16].

acts as PMP device that forwards the payload from the mobile
to the headset and vice versa. The PMP device connects two
piconets: One piconet is built by the mobile and the PMP
device, the other by the headset and the PMP device (see
Fig. 1). Accordingly, the PMP device links two net segments
together and therefore is named BT Bridge hereinafter.
The Bluetooth Headset Profile (HSP) and the Advanced Audio
Distribution Profile (A2DP) are used as applications. HSP
provides telephony whereas A2DP offers high quality audio
distribution service. This selection enables the investigation of
both Bluetooth connection types Asynchronous Connection-
oriented (ACL) and Synchronous Connection-oriented (SCO)
on the basis of time critical payload data. Realization of these
services is a challenge concerning throughput and delay of
BT Bridge. Thus, these kinds of services are predestined to
evaluate the performance of the scatternet.

II. BLUETOOTH CHARACTERISTICS

A Bluetooth piconet is built by one device operating as
Master and at least one device acting as Slave [17]. The
communication topology of a piconet is a star - consequently
slaves are not able to communicate directly [17], [18]. The
Bluetooth master applies Time Division Multiplex (TDM) in
order to coordinate data transfers from and to its slaves [17].
Typically, one time slot has a duration of 625µs (1600 slots per
second) [19]. The master of a piconet polls its slaves [19], [20]
by sending a packet in a time slot t. Following slot (t+1) is
reserved for a response from that slave [18], [20]. Furthermore,
Bluetooth uses Frequency Division Multiple Access (FDMA)
in terms of Frequency Hopping Spread Spectrum (FHSS) [17].

1

One carrier frequency of a set of 79 frequencies is chosen
per packet [19] which results in maximum 1600 frequency
shifts per second [19]. In each piconet a unique frequency
hopping sequence is used [18]. Thus, devices that participate
in several piconets need to switch frequency hopping sequence
during operation. It is not possible to switch frequency hopping
sequence between two consecutive Bluetooth time slots [20].

A. ACL versus SCO

HSP is based on SCO connections for which fixed time
slots are allocated [18]. Therefore, SCO connections can be
regarded as circuit switching [18]. In contrast, A2DP uses ACL
connections that realize the concept of packet switching [21].
Furthermore, HSP and A2DP differ in means of data flow
direction: HSP payload data is sent from mobile to headset and
vice versa, whereas A2DP data is transferred from mobile to
headset only. An ACL connection is established automatically
if two Bluetooth devices get connected. This default ACL
connection is used for exchange of payload data as well as
signalling information [18]. SCO connections are not reliable
in contrast to ACL ones. Conceptually, SCO connections
are predestined for transport of time-dependent data whereas
ACL connections provide a reliable link that guarantees data
integrity [18], [21].

B. HCI

A Bluetooth product consists of a host and at least one
controller [17]. The physical layer, the link controller, the
baseband resource manager, the link and the device man-
ager are implemented in the controller [22]. In our case the
controller is a separate chip (BlueCore 4) of the BlueSy
development board. All layers below non-core profiles and
above the layers of the controller - namely Logical Link
Control and Adaptation Protocol (L2CAP), Security Manager
Protocol (SMP), Attribute Protocol (ATT)/Generic Attribute
Profile (GATT) and Service Discovery Protocol (SDP) - are
located in the host [17], [22]. In our use case the host is built by
the microcontroller of the BlueSy development board and the
Bluetooth functionality is provided by a software Bluetooth
stack. Host and controller implement an intermediate layer
in order to communicate with each other. This layer is the
Host Controller Interface (HCI). Considering Bluetooth HCI
specification all control messages sent to Bluetooth controller
are called commands whereas all received control messages
from Bluetooth controller are called events.

III. CONCEPT

BT Bridge acts as intermediate station between exactly two
user devices (see Fig. 1). Once the user initiates a call or
starts to play music all data of the mobile is transferred to
BT Bridge which forwards the information to the headset and
vice versa for HSP. All data BT Bridge receives is forwarded
at the level of HCI layer (see Fig. 2). Accordingly, BT Bridge
is fully transparent for user devices. Furthermore, complexity
of application logic of BT Bridge is kept to a minimum and
the device is not restricted to certain profiles. Due to the fact

Fig. 2. Bluetooth protocol layers of BT Bridge and its connected devices.

Fig. 3. Functional structure of BT Bridge.

that BT Bridge forwards data packets at HCI layer it has to
differentiate received data. All Bluetooth HCI events have to
be sent to Bluetooth stack in order to maintain Bluetooth state
machine. In contrast, all data packets (ACL and SCO) have
to be handled by BT Bridge application itself (see Fig. 3).
This behaviour distinguishes BT Bridge implementation from
ordinary Bluetooth applications. Common Bluetooth software
design maintains well defined protocol stack layers so that user
data is sent and received solely through the Bluetooth stack.
Separate buffers are needed to ensure correct behaviour of BT
Bridge. This way data scrambling of both entities communi-
cating with the controller is prevented. Fig. 3 illustrates the
main data buffers and the data flow of BT Bridge software.
The operating mode of BT Bridge is freely configurable: It is

either able to operate as master for both user devices (piconet)
or to connect two individual piconets of device A and B (scat-
ternet). Current implementation supports master/slave bridge.
Theoretically, there could be a slave/slave bridge, too. But this
configuration would require a role switch during connection
establishment, and acceptance of role switch requests is not
mandatory [23]. Therefore, every other operating mode than
master/slave bridge could lead to a loss of interoperability.
Configuration of device pairs is static: There is a table of
configured device pairs in the permanent memory of BT
Bridge which can be modified through specific configuration
commands.

2

Fig. 4. Connection establishment procedures for ACL and SCO from BT
Bridge’s HCI perspective. Concept of both link types are different: Data
transfer for ACL is unidirectional whereas it is bidirectional in case of SCO.

A. Connection Establishment

BT Bridge establishes ACL and SCO connections to its
clients. When the application starts it initializes all hardware
and software components and goes to an idle state where it
waits for incoming connections.

1) Asynchronous Connection-Oriented (ACL): When an
incoming connection request from device A is received, the
internal device table is checked for existing entries. If A is
not present in database or it does not have a corresponding
device B the request is rejected. Otherwise a link to B is
created and the request from A is accepted afterwards. A
responses with a confirmation and devices are connected.
The described procedure is illustrated in left part of Fig. 4.
Further actions depend on user’s choice. For example, when
the user starts the music player the mobile can establish
a L2CAP connection to provide A2DP. In this case, since
all L2CAP commands and events are sent over an existing
ACL link BT Bridge application only forwards every packet
to the second device and no additional application logic is
necessary. If the mobile receives a call request it could initiate
SCO connections follow the steps below (III-A2).

2) Synchronous Connection-Oriented (SCO): The algo-
rithm for setting synchronous connections is similar to ACL
links, but data transfer is bidirectional. Thus, it is not possible
to ensure both connections are established before one device
begins to transfer data. From a device’s point of view its
connection is established first, data transfer could start im-
mediately. This device is not aware that it is connected to
an intermediate device. To deal with this situation BT Bridge
application drops the first SCO packets as long as the second
SCO connection setup is not finished (right part of Fig. 4). It is
assumed that no relevant information is lost and the user does
not perceive a loss in quality. Reason behind this presumption
is that there is no conversation without both links set up.

TABLE I
SCO HIGH QUALITY VOICE (HV) PACKET FORMATS [24].

Packet Type Size [bit] Payload [bit] FEC [bit]
HV1 240 80 160
HV2 240 160 80
HV3 240 240 0

Fig. 5. BT Bridge in scatternet mode as master/slave bridge. In piconet
composed by BT Bridge and Device A BT Bridge is master whereas it
operates as slave in the piconet that consits of BT Bridge and Device B.

B. Packet Type for SCO in Scatternet
For ACL links master arbitrarily chooses non-reserved time

slots for packet transmissions [21] whereas slot reservation
is static for SCO links [18]. For SCO connections a datarate
of 64 kbit/s is mandatory. SCO packet types and their char-
acteristics are listed in Tab. I. With respect to SCO datarate
one of two slots (64 kbit/s : 80 bit = 800 slots/s) has to be
reserved for SCO when using HV1 packets. Therefore all slots
are occupied due to the slave responding in the remaining
slots. If all slots of a device are occupied by SCO and that
device needs to transfer control information, SCO information
is discarded [21], causing a deliberate loss in quality. BT
Bridge needs to maintain two SCO connections. Accordingly,
it is not possible to use HV1 packets in the given scenario. For
HV2 packets every fourth slot and for HV3 packets every sixth
slot is needed for a transfer from the master to a slave. Traffic
of different piconets that cover the same area is separated by
FHSS with unique frequency hopping sequences per piconet.
Because it is not possible to switch the frequency hopping
sequence between two consecutive slots it is only possible to
use HV3 packets for SCO in scatternet mode. Two HV3 SCO
connections in scatternet mode lead to an occupation of all
available slots at BT Bridge (see Fig. 5).

C. Processing of received HCI packets
ACL and SCO packets are forwarded by BT Bridge at HCI

level. In order to forward HCI data packets to a remote device
it is necessary to change HCI connection handles. This is done
by swapping the connection handle in every received packet
with the connection handle of the corresponding device (the
device specified in the pair).

IV. RESULTS

We evaluated the feasibility of our concept with five dif-
ferent mobile phones ranging from low-budget to high-end
devices and two different headsets (see Tab. II). A2DP worked
with all mobile-headset combinations except for Nokia C1

3

TABLE II
RESULTS

Phone Headset A2DP HSP

iPhone 4 Nokia BH-503 yes no
Jabra BT530 yes yes

Samsung Nexus S Nokia BH-503 yes no
Jabra BT530 yes yes

Sony Ericsson p990i Nokia BH-503 yes no
Jabra BT530 yes yes

Sony Ericsson w580i Nokia BH-503 yes no
Jabra BT530 yes yes

Nokia C1 Nokia BH-503 no A2DP no
Jabra BT530 no A2DP yes

which does not support this profile. Nevertheless, the quality
of the transmitted information was moderate due to regular
short interruptions. In contrast, the sound quality of A2DP
was fine with all devices in piconet mode.
The performance of the telephony service via HSP was very
poor: It was not possible to establish the SCO connections
as described above with the Nokia Headset although the
profile should be supported. Furthermore, it was not feasible to
maintain SCO connections over an extended period with the
remaining combinations. After a few seconds the Bluetooth
links broke. We also analyzed HSP in piconet configuration.
The speech quality was even impaired in this case compared
to the direct communication of mobile and headset. This
observation led to the assumption that the integration of BT
Bridge in data flow infects the speech quality. We assume that
this degradation of performance is associated with integration
of additional delays. SCO slot allocation is fixed. That means
that the controller of BT Bridge needs to send or receive
data in every SCO slot. Degredation at BT Bridge in piconet
can only occur if data from host is not available in time.
Real-world SCO deployments are challenging even in piconet
mode but in scatternet operation we could not even manage
to maintain the SCO connections.

V. CONCLUSIONS

Our experiments show that Bluetooth scatternet operation
is still challenging. Even for a small network of simple
topology the real-world deployment of time-critical data is not
straightforward. The performance of different mobile phones
differed substantially for the analyzed services HSP and A2DP.
HSP and A2DP forced BT Bridge to operate near the upper
limit of performance and revealed the difficulties of a real-
world scatternet deployment. In our view it is not reasonable to
continue the work in this configuration. We observed different
phenomena whose causes cannot be determined due to the
end user devices that appeared as black boxes. Accordingly,
it would be necessary to replace consumer class end devices
by full accessible development boards in order to investigate
the reasons of degradation in detail.

REFERENCES

[1] Bluetooth Specification Version 4.0. Volume 2. Part B. 1 General
Description, Bluetooth SIG Std., 2010.

[2] Bluetooth Specification Version 4.0. Volume 1. Part A. 4 Communication
Topology and operation, Bluetooth SIG Std., 2010.

[3] V. B. Mišić, J. Mišić, and K. L. Chan, “Performance of adaptive bridge
scheduling in a scatternet with a slave-slave bridge: Research articles,”
Wirel. Commun. Mob. Comput., vol. 4, no. 1, pp. 85–98, Feb. 2004.

[4] S. Basagni, R. Bruno, G. Mambrini, and C. Petrioli, “Comparative
performance evaluation of scatternet formation protocols for networks
of bluetooth devices,” Wirel. Netw., vol. 10, no. 2, pp. 197–213, Mar.
2004.

[5] R. Roy, M. Kumar, N. Sharma, and S. Sural, “Bottom-up construction
of bluetooth topology under a traffic-aware scheduling scheme,” Mobile
Computing, IEEE Transactions on, vol. 6, no. 1, pp. 72–86, 2007.

[6] Z. Wang, R. J. Thomas, and Z. J. Haas, “Performance comparison of
bluetooth scatternet formation protocols for multi-hop networks,” Wirel.
Netw., vol. 15, no. 2, pp. 209–226, Feb. 2009.

[7] W. Priess, J. Rezende, and L. Pirmez, “Enhancing scatternets perfor-
mance via scheduling algorithm parametrization,” in Personal Wireless
Communications, ser. Lecture Notes in Computer Science, M. Conti,
S. Giordano, E. Gregori, and S. Olariu, Eds. Springer Berlin Heidelberg,
2003, vol. 2775, pp. 741–755.

[8] V. B. Mišić and J. Mišić, “Polling and bridge scheduling algorithms in
bluetooth,” Department of Computer Science, University of Manitoba,
Tech. Rep., 2003.

[9] V. Mišić, J. Mišić, and K. Chan, “Walk-in bridge scheduling in bluetooth
scatternets,” Cluster Computing, vol. 8, no. 2-3, pp. 197–210, 2005.

[10] J.-P. Sheu, K.-P. Shih, S.-C. Tu, and C.-H. Cheng, “A traffic-aware
scheduling for bluetooth scatternets,” Mobile Computing, IEEE Trans-
actions on, vol. 5, no. 7, pp. 872–883, 2006.

[11] G. Ramana Reddy, S. Bhatnagar, V. Rakesh, and V. P. Chaturvedi, “An
efficient algorithm for scheduling in bluetooth piconets and scatternets,”
Wirel. Netw., vol. 16, no. 7, pp. 1799–1816, Oct. 2010.

[12] C.-Y. Chang, P. Sahoo, and S.-C. Lee, “A location-aware routing protocol
for the bluetooth scatternet,” Wireless Personal Communications, vol. 40,
no. 1, pp. 117–135, 2007.

[13] X. Li, C. Men, M. Li, and L. Sun, “Hierarchical routing for large scale
bluetooth network,” in Networks Security, Wireless Communications and
Trusted Computing, 2009. NSWCTC ’09. International Conference on,
vol. 2, 2009, pp. 415–418.

[14] K. Persson and D. Manivannan, “Hybrid bluetooth scatternet routing,” in
Ubiquitous Intelligence and Computing, ser. Lecture Notes in Computer
Science, D. Zhang, M. Portmann, A.-H. Tan, and J. Indulska, Eds.
Springer Berlin Heidelberg, 2009, vol. 5585, pp. 163–177.

[15] yed graph editor. [Online]. Available: http://www.yworks.com/
de/products yed about.html

[16] License: GNU Lesser General Public License. [Online].
Available: http://www.iconarchive.com/show/oxygen-icons-by-oxygen-
icons.org/Devices-audio-headset-icon.html

[17] Bluetooth Specification Version 4.0. Volume 1. Part A. 1 General
Description, Bluetooth SIG Std., 2010.

[18] Bluetooth Specification Version 4.0. Volume 1. Part A. 3.3 Physical
Channels, Bluetooth SIG Std., 2010.

[19] Bluetooth Specification Version 4.0. Volume 2. Part B. 2 Physical
Channels, Bluetooth SIG Std., 2010.

[20] Bluetooth Specification Version 4.0. Volume 2. Part B. 8.6 Active Mode,
Bluetooth SIG Std., 2010.

[21] Bluetooth Specification Version 4.0. Volume 2. Part B. 4 Logical Trans-
ports, Bluetooth SIG Std., 2010.

[22] Bluetooth Specification Version 4.0. Volume 1. Part A. 2 Core System
Architecture, Bluetooth SIG Std., 2010.

[23] Bluetooth Specification Version 4.0. Volume 2. Part C. 4.4 Role Switch,
Bluetooth SIG Std., 2010.

[24] Bluetooth Specification Version 4.0. Volume 2. Part B. 6.5.2 SCO
Packets, Bluetooth SIG Std., 2010.

4

Wireless in The Woods: Experimental Evaluation of
IEEE 802.11a/b/g in Forested Environments

Margit Mutschlechner, Patrick Baldemaier, Philipp Handle, and Falko Dressler
Computer and Communication Systems, Institute of Computer Science, University of Innsbruck, Austria

{mutschlechner,dressler}@ccs-labs.org
{patrick.baldemaier,philipp.handle}@student.uibk.ac.at

Abstract—We study the feasibility of using IEEE 802.11a/b/g
in forested environments. Our particular interest is to identify
potential wireless communication technologies for spanning a
ground network in the woods to study the foraging and hunting
behavior of bats in the wild. We are working on ultra-low power
communication devices to monitor contact times and to localize
bats in their natural habitat. For collecting and aggregating the
received information, a stationary ground network is planned
but little is known about the signal attenuation due to shad-
owing and fading and the resulting packet error rates in such
environments. Thus, we experimentally studied selected wireless
LAN technologies in an extensive set of measurements. We report
our findings that also help selecting protocols and configurations
in other sensor networking applications.

I. INTRODUCTION

The use of Wireless Sensor Networks (WSNs) has become
more ubiquitous in the last years [1]. Under the umbrella of
Cyber Physical Systems (CPSs), many research activities are
going on investigating topology management, wireless access,
routing and data aggregation, security, and many others [2].
Still, many of the early findings in this domain have rarely
been applied in practical applications. In the scope of the
BATS research group, we explore the feasibility of using
sensor networking technology for tracking bats in their natural
habitats.1 State of the art technology for such observations
is still radio telemetry [3]. This, however, is extremely labor
expensive and allows to track single individuals with limited
localization accuracy. In order to study the animals’ behavior,
contacts and precise tracking would be beneficial.

To this end, we plan a stationary sensor network deployed in
a forest environment that collects and aggregates such contact
information. In a first step, we explore the feasibility of different
wireless communication technologies for this ground network.
Given that distributed real-time localization algorithms require
a certain (depending on the algorithm even very high) data
rate between the nodes, wireless LAN according to IEEE
802.11a/b/g might be a good candidate.

We realized that signal attenuation due to shadowing and
fading constitutes a substantial problem in forest environments.
To the best of our knowledge, there is no study comparing
the performance of IEEE 802.11a, IEEE 802.11b, and IEEE
802.11g in such environments. Thus, we experimentally studied
the applicability of the mentioned technologies in an extensive
set of measurements. In the following, we report our findings

1Dynamic Adaptable Applications for Bats Tracking by Embedded Com-
municating Systems, http://www.for-bats.de/

that also help selecting protocols and configurations in other
sensor networking applications.

II. RELATED WORK

In the literature, the performances of the IEEE 802.11a/b/g
standards has been discussed in depth for line-of-sight scenarios
as well as indoor and urban environments [4]–[6]. Yet, knowl-
edge about the behavior in the countryside and wilderness is
not fully understood, especially for forested surroundings.

Research on the impact of vegetation on wireless communica-
tion has been focused mainly on general radio wave propagation
and attenuation models, which have been either developed from
empirical data [7]–[11] or have been derived analytically [12].

Some studies have been focusing on the communication
through the canopy where one station is situated at a prominent
height over the coverage area [7], [13]. However, placing the
communicating nodes in or above the canopy would make
deployment and maintenance of our sensor network more
difficult, and, as bats are flying blow the canopy to hunt for prey
on the ground, this would influence communication negatively.
Hence, the decision was taken to place the nodes near the
ground.

Most models depend on the type of trees and on the used
frequency, even though only few studies have been conducted
in the ISM band. Therefore, most models are not applicable to
the IEEE 802.11a/b/g standards as they do not cover the used
frequencies of 2.4 GHz and 5.8 GHz, respectively [10], [11],
[14]–[16]. A model, that also covers the ISM band, is proposed
in [17]. The model is valid for frequencies of 1 GHz to 60 GHz
and is very accurate as it combines edge diffraction, ground
reflection and the signal going through vegetation. As it takes
into consideration the occurring tree species, tree height, tree
spacing and leaf dimension it can be applied only to a well-
structured and precisely describable environment, which is not
given in a naturally grown forest. Therefore, the model is not
applicable if the performance in more general scenarios is of
interest. The performance of the 2.4 GHz band in comparison
to the 5.8 GHz band is evaluated in [8], but only in two forest
types, an oak tree forest and an eucalyptus woodland.

The impact of pine trees on the communication using IEEE
802.15.4 has been studied in [18]. In a similar way, the
throughput and received signal strength of IEEE 802.11b/g
have been evaluated in a wooded area in [9]. However, to the
best of the authors’ knowledge, there is no study comparing

5

(a) Light forest (b) Dense forest (c) Light forest with
thick undergrowth

Figure 1: Pictures of the three environments

the performance of IEEE 802.11a, IEEE 802.11b, and IEEE
802.11g in various different forest environments.

III. MEASUREMENT ENVIRONMENT

Three different forested environments were chosen for the
measurement campaign: a light forest (cf. Figure 1a), a dense
forest (cf. Figure 1b), and a light forest with thick undergrowth
of about 2 meters height (cf. Figure 1c). As a reference, free
space measurements were performed on a grassland.

The light forest and the undergrowth environments consist
of conifers with an average height of 20 meters, a diameter of
up to 50 centimeters and no branches for the lower four meters.
In the dense forest, the large conifers were accompanied by
smaller trees. The light forest was free of ground vegetation,
opposite to the other forests.

The most appropriate environment in the scope of the BATS
research group is the light forest, as the lack of ground
vegetation is preferred by the bats according to [19]. The
other forests were included into the measurement campaign to
complete the picture.

In the light forest environment three different scenarios were
taken into account: line of sight, a few trees between the two
stations, and as many trees as possible between the two stations.
In the undergrowth and dense forest environments neither line
of sight nor a few trees between the stations was achievable.

Overall, we took measurements in six different scenarios, in
the remaining part referred to as free space, line of sight,
few trees, many trees, dense forest, and light forest with
undergrowth.

IV. MEASUREMENT SETUP

The measurements were performed using two measurement
stations, both serving as transmitter and receiver (in the
following called Station 1 and Station 2, respectively). We
used laptop computers (Ubuntu Linux 12.04) connected via
USB to a WLAN stick (Airlive X.USB dual band IEEE
802.11a/b/g/n USB WLAN stick with Atheros chipset,2) and
an omnidirectional antenna (VERT2450 dual band 2.4-2.5 GHz
and 4.9-5.9 GHz with 3 dBi gain3) attached to the top of a
pole (cf. Figure 2) to reduce ground level influences.

2Airlive X.USB, http://www.airlive.com/product/X.USB
3Ettus Research VERT2450 Antenna, https://www.ettus.com/product/details/

VERT2450

Figure 2: Measurement setup. We used two poles to mount
the antennas at a height of 1.6 m in a distance of 30 m, 60 m,

and 90 m

30m 60m 90m

Station 1
Station 2

−90

−80

−70

−60

−50

−40

−30

−20

si
g
n
al

 s
tr

en
g
th

 i
n
 d

B

(a) Bit rate of 1 Mbit s−1

30m 60m 90m

Station 1
Station 2

−90

−80

−70

−60

−50

−40

−30

−20

si
g
n
al

 s
tr

en
g
th

 i
n
 d

B

(b) Bit rate of 11 Mbit s−1

Figure 3: Results for IEEE 802.11b and the dense forest
scenario

One measurement station was placed on a fixed position,
whereas the other was moved according to the distance
to measure (30 m, 60 m, and 90 m). We used two different
modulations for each technology, one for the slowest supported
bit rate and one for a higher bit rate. The same frequency was
used for both modulations. Table I summarizes all the used
configurations.

Therefore, in total six measurements per distance and
scenario were performed. For each measurement run, both
stations alternated sending 900 packets of 256 B containing a
sequence number with a transmission power of 20 dBm. The
receiving station logged the received signal strength and the
sequence number.

V. EVALUATION OF THE RESULTS

In the following, we discuss the measurement results with
the aim to identify best suited technologies for the different
scenarios.

A. Impact of Distance

The first and obvious observation is the fact, that with
increased distance the received signal strength decreased and,
in some cases, not all packets were received. This effect can be
seen in Figure 3, which (as an example) shows the measurement
results for IEEE 802.11b in the dense forest. The difference
between the received signal strength for both stations is due
to the fact, that the forest is not really homogeneous.

Up to 60 m, we did not experience any packet loss (data not
shown), but at a distance of 90 m, when sending with a bit rate

6

Protocol IEEE 802.11a IEEE 802.11b IEEE 802.11g
Channel Channel 44 Channel 1 Channel 1

Frequency 5.220 GHz 2.412 GHz 2.412 GHz
Modulation BPSK-½ QAM16-½ DBPSK CCK BPSK-½ QAM16-½
Data rate 6 Mbit s−1 24 Mbit s−1 1 Mbit s−1 11 Mbit s−1 6 Mbit s−1 24 Mbit s−1

Table I: Configurations of IEEE 802.11a/b/g used in the measurements

Free

Space

Line of

Sight

Few

Trees

Many

Trees

Dense

Forest

Under

growth

Station 1
Station 2

−90

−80

−70

−60

−50

−40

−30

si
g
n

a
l

st
re

n
g
th

 i
n

 d
B

Figure 4: Results for IEEE 802.11a using a bit rate of
6 Mbit s−1 and a distance of 90 m

of 11 Mbit s−1, the receiver is not able to decode 25 % to 55 %
of the packets. When the bit rate is throttled down to 1 Mbit s−1,
the transmission is very stable and the loss rate is close to
0 %. A similar behavior can be observed for IEEE 802.11a and
IEEE 802.11g as well as for the other environments (data not
shown). The packet loss ratio for the largest measured distance
of 90 m increased to almost 100 % when the forest becomes
thicker and more impenetrably.

B. Influence of the Scenario

When comparing all six scenarios, we see a steady decrease
in the received signal strength as the environment becomes
thicker and more impenetrably. This trend is shown in Figure 4
for IEEE 802.11a, a bit rate of 6 Mbit s−1, and a distance of
90 m.

As we are interested in very sparsely crowded forests,
we are primarily interested in the differences compared to
the free space (grass land) measurements. We see that the
received signal strength slightly differs (this is for the two
leftmost scenarios in our figure). Although in both scenarios
the measurement stations had a direct line of sight between
each other, the received signal strength clearly decreases in
the presence of some trees. An explanation for this behavior
could be multipath effects, which are even more significant in
the light forest scenario.

The same trend of a decreased received signal strength as the
environment becomes thicker can be observed also for IEEE
802.11b and IEEE 802.11g as well as for other distances (data
not shown).

C. Comparison of the Communication Standards

In order to help taking decisions which wireless LAN stan-
dard to choose in which scenario, we finally compare the results

802.11a 802.11b 802.11g

6
Mbps

24
Mbps

1
Mbps

11
Mbps

6
Mbps

24
Mbps

Station 1
Station 2

−90

−80

−70

−60

−50

−40

−30

−20

si
g
n

a
l

st
re

n
g
th

 i
n

 d
B

(a) Light forest with a few trees
between the stations

802.11a 802.11b 802.11g

6
Mbps

24
Mbps

1
Mbps

11
Mbps

6
Mbps

24
Mbps

Station 1
Station 2

−90

−80

−70

−60

−50

−40

−30

−20

si
g
n

a
l

st
re

n
g
th

 i
n

 d
B

(b) Light forest with many trees
between the stations

802.11a 802.11b 802.11g

6
Mbps

24
Mbps

1
Mbps

11
Mbps

6
Mbps

24
Mbps

Station 1
Station 2

−90

−80

−70

−60

−50

−40

−30

−20
si

g
n

a
l

st
re

n
g
th

 i
n

 d
B

(c) Light forest with undergrowth

802.11a 802.11b 802.11g

6
Mbps

24
Mbps

1
Mbps

11
Mbps

6
Mbps

24
Mbps

Station 1
Station 2

−90

−80

−70

−60

−50

−40

−30

−20

si
g
n

a
l

st
re

n
g
th

 i
n

 d
B

(d) Dense forest

Figure 5: Comparison of the protocol standards in various
environments at a distance of 60 m

according to the different technologies and configurations.
Figure 5 gives an overview of the most expressive results
regarding the comparison of the standards. Here, we fixed the
communication range to 60 m. As can be seen, none of the
three standards is definitively outstanding.

In all four graphs a slightly better performance of IEEE
802.11b and IEEE 802.11g can be observed. This is most
probably due to the fact that shadowing and fading have a
stronger impact with increasing frequency. In the light forest
with a few trees between the stations, many trees between the
stations, and a thick undergrowth (cf. Figure 5a, Figure 5b, and
Figure 5c, respectively), the difference between the two protocol
standards sending in the 2.4 GHz band and IEEE 802.11a is
negligible. As can be seen, the trend increases as the forest
becomes thicker and more impervious. In comparison with the
results from the dense forest, the received signal strength of
IEEE 802.11a is reduced by 10 dBm to 20 dBm (cf. Figure 5d).

A rather unexpected behavior can be observed when taking
into consideration the percentage of received packets. As with
increased distance the packet loss becomes a more and more
considerable issue, we focus on the largest measured distance
of 90 m, shown in Figure 6. For the sparser scenarios, we
experienced almost no packet loss (at least 90 % reception rate),

7

802.11 a @6Mbps
802.11 a @24Mbps
802.11 b @1Mbps
802.11 b @11Mbps
802.11 g @6Mbps
802.11 g @24Mbps

F
re

e
S

p
ac

e

L
in

e
o

f
S

ig
h

t

F
ew

T
re

es

M
an

y
T

re
es

D
en

se
F

o
re

st

U
n

d
er

g
ro

w
th

0

20

40

60

80

100
re

ce
iv

ed
 p

a
ck

et
s

in
 %

Figure 6: Percentage of received packets at a distance of 90 m

independent of the protocol standard and bit rate. However,
this is not the case for the two scenarios dense forest and
undergrowth. Comparing the percentage of received packets
for IEEE 802.11a with a bit rate of 6 Mbit s−1 with the received
signal strength shown in Figure 4, we see that the two measures
do not coincide. Although the received signal strength of the
two scenarios is in the same range, we experience a huge drop
in the number of received packets in the dense forest scenario.
A similar behavior can be observed for the other protocol
standards and bit rates (data not shown).

VI. CONCLUSION AND FURTHER WORK

In order to evaluate the performance of the different
IEEE 802.11 protocol variants in forested environments, we
performed measurement campaigns in three different forests as
well as in a grassland scenario. The evaluation of the packet
loss rate and the signal strength shows that the performance is
influenced by distance as well as the density of the forest. In
particular, the environment has an even bigger impact. Slightly
moving a node (e.g., one meter to the side) can influence the
performance even more than changing the distance between
the stations.

It turned out that there is no clear winner when looking at
IEEE 802.11a/b/g. Depending on the scenario, the performance
of the protocol variants changes substantially. The results
clearly show that the upper bound for the distance between
the two communicating stations in a forested environment is
about 90 m, or, depending on the scenario and standard, even
below. In the scope of our BATS project, this finding makes it
necessary to deploy a rather dense ground network.

We can also conclude that further investigations have to
be performed to get deeper insights about the influence of
different kinds of forests on IEEE 802.11a/b/g. This could lead,
for example, to some best practices definition for optimally
placing nodes in the woods.

VII. ACKNOWLEDGMENTS

This work was supported by the German Research Founda-
tion (DFG) under grants no. FOR 1508 (subproject TP4).

REFERENCES

[1] F. Wang and J. Liu, “Networked Wireless Sensor Data Collection:
Issues, Challenges, and Approaches,” IEEE Communications Surveys
and Tutorials, vol. 13, no. 4, pp. 673–687, November 2011.

[2] F.-J. Wu, Y.-F. Kao, and Y.-C. Tseng, “From wireless sensor networks to-
wards cyber physical systems,” Elsevier Pervasive and Mobile Computing,
vol. 7, no. 4, pp. 397–413, August 2011.

[3] C. Drescher, “Radiotracking of Myotis myotis (Chiroptera, Vespertilion-
idae) in South Tyrol and implications for its conservation,” MAMMALIA,
vol. 68, no. 4, pp. 387–395, 2004.

[4] D. Cheung and C. Prettie, “A Path Loss Comparison Between the 5
GHz UNII Band (802.11a) and the 2.4 GHz ISM Band (802.11b),” Intel
Labs, Technical Report, January 2002.

[5] A. Doufexi, S. Armour, B.-S. Lee, A. R. Nix, and D. R. Bull, “An
Evaluation of the Performance of IEEE 802.11a and 802.11g Wireless
Local Area,” in IEEE International Conference on Communications (ICC
2003). Anchorage, AK: IEEE, May 2003, pp. 1196–1200.

[6] D. B. Faria, “Modeling Signal Attenuation in IEEE 802.11 Wireless
LANs,” Computer Science Department, Stanford University, Technical
Report TR-KP06-0118, July 2005.

[7] ITU-R, “Attenuation in vegetation,” Recommendation P.833-7, February
2012.

[8] I. Cuiñas, J. A. Gay-Fernández, A. V. Alejos, and M. G. Sánchez, “A
comparison of radioelectric propagation in mature forests at wireless
network frequency bands,” in 4th European Conference on Antennas and
Propagation (EuCAP 2010). Bacelona, Spain: EurAAP, April 2010, pp.
1–5.

[9] K.-C. Wang, G. Venkatesh, S. Pradhananga, S. Lokala, S. Carter, J. Isen-
hower, and J. Vaughn, “Building Wireless Mesh Networks in Forests:
Antenna Direction, Transmit Power, and Vegetation Effects on Network
Performance,” in 3rd ACM International Workshop on Wireless Network
Testbeds, Experimental Evaluation and Characterization (WiNTECH
2008). San Francisco, CA: ACM, September 2008, pp. 97–98.

[10] J. A. R. Azevedo and F. E. S. Santos, “An Empirical Propagation Model
for Forest Environments at Tree Trunk Level,” IEEE Transactions on
Antennas and Propagation, vol. 59, no. 6, pp. 2357–2367, June 2011.

[11] S. Phaiboon and S. Somkuarnpanit, “Mobile Path Loss Characteristics
for Low Base Station Antenna Height in Different Forest Densities,” in
1st IEEE International Symposium on Wireless Pervasive Computing
(ISWPC 2006). Phuket, Thailand: IEEE, January 2006.

[12] L.-W. Li, T.-S. Yeo, P.-S. Kooi, M.-S. Leong, and J.-H. Koh, “Analysis of
Electromagnetic Wave Propagation in Forest Environment Along Multiple
Paths,” Progress In Electromagnetics Research, vol. 23, pp. 137–164,
1999.

[13] J. Richter, R. F. S. Caldeirinha, M. O. Al-Nuaimi, A. Seville, N. C.
Rogers, and N. Savage, “A Generic Narrowband Model for Radiowave
Propagation through Vegetation,” in 61st IEEE Vehicular Technology
Conference (VTC2005-Spring). Stockholm, Sweden: IEEE, May 2005,
pp. 39–43.

[14] D. Dence and T. Tamir, “Radio Loss of Lateral Waves in Forest
Environments,” Radio Science, vol. 4, no. 4, pp. 307–318, April 1969.

[15] T. Tamir, “Radio Wave Propagation Along Mixed Paths in Forest
Environments,” IEEE Transactions on Antennas and Propagation, vol. 25,
no. 4, pp. 471–477, July 1977.

[16] N. Savage, D. Ndzi, A. Seville, E. Vilar, and J. Austin, “Radio wave
propagation through vegetation: Factors influencing signal attenuation,”
Radio Science, vol. 38, no. 5, October 2003.

[17] N. C. Rogers, A. Seville, J. Richter, D. Ndzi, N. Savage, R. F. S.
Caldeirinha, A. K. Shukla, M. O. Al-Nuaimi, K. Craig, E. Vilar, and
J. Austin, “A Generic Model of 1-60 GHz Radio Propagation through
Vegetation - Final Report,” Radiocommunications Agency, Project Report
QINETIQ/KI/COM/CR020196/1.0, May 2002.

[18] J. A. Gay-Fernández, M. G. Sánchez, I. Cuiñas, A. V. Alejos, J. G.
Sánchez, and J. L. Miranda-Sierra, “Propagation analysis and deployment
of a wireless sensor network in a forest,” Progress In Electromagnetics
Research, vol. 106, pp. 121–145, 2010.

[19] B.-U. Rudolph, A. Liegl, and O. Von Helversen, “Habitat Selection and
Activity Patterns in the Greater Mouse-Eared Bat Myotis myotis,” Acta
Chiropterologica, vol. 11, no. 2, pp. 351–361, 2009.

8

Selbstorganisierende drahtlose Vernetzung in
Photovoltaik-Kraftwerken

Stefan Lange
IHP

Im Technologiepark 25
D-15236 Frankfurt(Oder)

E-Mail: lange@ihp-microelectronics.com

Abstract—Drahtlose Sensornetze (Wireless Sensor
Networks/WSN) sind Gegenstand breit angelegter Forschung.
Zahlreiche theoretische und praktische Arbeiten im Bereich
des Netzaufbaus, des Routing und der Weiterleitung von Daten
sowie der Datenverarbeitung in WSN wurden veröffentlicht.
Berichte über den konkreten Einsatz dieser
Forschungsergebnisse z.B. in Industrieanlagen sind jedoch
selten. In dieser Arbeit soll diese Lücke für die
Forschungsergebnisse des Projekts SolarFlex geschlossen
werden. Es wird über den Einsatz eines WSN in einem
Photovoltaik-Kraftwerk berichtet. Der Text gibt einen
Überblick, wie beginnend mit Forschung über die
Produktentwicklung, Feldtests bis hin zur ersten Installation
eine im industriellen Umfeld einsatzbare WSN-Lösung
entsteht.

Keywords—Deployment; Real World Scenario; Photovoltaic

I. EINLEITUNG
Die Überwachung großer Gebiete ist das

Hauptanwendungsgebiet drahtloser Sensornetze (Wireless
Sensor Networks/WSN). Die einzelnen Knoten erfassen vor
Ort Messdaten über ihre Sensoren und versenden diese über
das Netzwerk an eine Datensenke. Die Knoten im Netz
haben dabei folgende Aufgaben:

 Die von den Sensoren empfangenen Daten codieren
und an die Datensenke weiterleiten. Ist die
Datensenke nicht direkt zu erreichen, müssen die
Daten über Zwischenstationen in einem Multi-Hop-
Verfahren an die Senke versendet werden.

 Datenpakete von anderen Sensorknoten
entgegennehmen und in Richtung Datensenke
weiterleiten.

Photovoltaik-Kraftwerke bieten ein passendes
Einsatzszenario für WSN. Die Kraftwerke bestehen aus einer
großen Anzahl von über große Flächen verteilt aufgebauten
Photovoltaik-Modulen, die aus der Energie des Sonnenlichts
eine Gleichspannung erzeugen. Diese Gleichspannung wird
von Wechselrichtern in Wechselspannung umgewandelt, die
schließlich am Netzeinspeisepunkt dem Verbundnetz
übergeben wird. Die Wechselrichter erfassen dabei die unter
anderem für die Abrechnung benötigten Ertragsdaten. Diese
Ertragsdaten müssen an zentraler Stelle erfasst und
gespeichert werden. Die Wechselrichter sind dazu über ein
Ethernet-basiertes Netzwerk mit einem Gateway mit dem
Internet verbunden. Über das Internet fragt der erfassende

Rechner die Daten der Wechselrichter einzeln ab.
Üblicherweise verwaltet dieser Rechner mehrere Anlagen.
[1] Die Datenübertragung auf der Anlage zwischen den
einzelnen Wechselrichtern und dem Gateway zum Internet
erfolgt dabei drahtgebunden. Im ZIM-Projekt SolarFlex
wurde diese Datenübertragung unter Einsatz eines
selbstorganisierenden Bluetooth[2]-Netzwerks drahtlos
realisiert.

Der nachfolgende Text ist wie folgt gegliedert. Im
Anschluss an die Einleitung wird zuerst die im Projekt
verwendete Sensorknotenplattform in Bezug auf Hardware
und Software beschrieben. Darauffolgend werden die zu
beachtenden gesetzlichen und privatrechtlichen Regularien
erläutert. Im anschließenden Abschnitt werden die einzelnen
Entwicklungsschritte von der Algorithmen-Entwicklung in
der Simulationsumgebung bis hin zum Aufbau der ersten
Pilotinstallation erläutert. Ein Fazit und ein Überblick über
weitere realisierte Sensornetze schließen die Arbeit ab.

II. SENSORPLATTFORM
Die Sensorknoten wurden von unserem Projektpartner –

der Fa. lesswire AG – entwickelt. Da die Knoten durch die
Photovoltaik-Anlage mit Energie versorgt werden, konnte
leistungsfähigere Hardware eingesetzt und auf
energiesparende Maßnahmen verzichtet werden.

A. Hardware

Der Sensorknoten verfügt über einen ARM9-basierten
Mikrokontroller der Fa. Atmel. Der Mikrokontroller stellt
eine Ethernet-Schnittstelle, die der Sensorknoten als
Datenschnittstelle verwendet, bereit. Als Bluetooth-Model
kommt das BlueBear-HCI[3] zum Einsatz. Das Modul
kombiniert den Bluetooth-Chip BlueCore04[4] von CSR mit
einem hochempfindlichen Eingangsverstärker, so dass die
Eingangsempfindlichkeit von -94 dBm liegt. Bei einer
Ausgangsleistung von 20 dBm liegt die Reichweite bei über
500 m.

B. Software

Als Betriebssystem wurde Embedded-Linux gewählt.
Embedded-Linux beinhaltet den vorzertifizierten Bluetooth-
Protokoll-Stack BlueZ[5], der die benötigte Treiber- und
Protokollunterstützung bereitstellt.

9

C. Zulassung und Zertifizierung

Im akademischen Umfeld spielen Zulassungsfragen im
Allgemeinen keine Rolle, da die Sensorknoten innerhalb der
Einrichtung verbleiben und nicht „in Verkehr gebracht“
werden. Sollen die Sensorknoten jedoch verkauft und in
Wohn- und/oder Industrieanlagen eingesetzt werden, sind
gesetzliche Vorschriften zu beachten. Das Gesetz über
Funkanlagen und Telekommunikationsendeinrichtungen
(FTEG), das die EU-Telekommunikations-Richtlinie
1999/5/EG umsetzt, regelt die Zulassung von Funkanlagen in
Deutschland. Für jedes Produkt muss dessen
Inverkehrbringer eine Konformitätserklärung zur Erlangung
des CE-Zeichens erstellen und unterschreiben. Mit diesem
Dokument bestätigt er, dass das Produkt den geforderten
Normen entspricht. Auf ein Bluetooth-basiertes Gerät sind
folgende Normen anzuwenden:

 EN 60950-1 für die elektrische Sicherheit,

 EN 300 328 für die elektromagnetische
Verträglichkeit,

 EN 301 489-17 für die Einhaltung der Anforderungen
an Funkanlagen, die das Frequenzband 2,4 GHz
verwenden.

Verwendet ein Produkt Bluetooth und soll es als
Bluetooth-fähig gekennzeichnet werden, ist eine Listung des
Geräts bei der Bluetooth-SIG(Special Interests Group)
notwendig. Dazu muss die Interoperabilität des Geräts mit
anderen Bluetooth-Geräten nachgewiesen werden. Der
Nachweis erfolgt für jedes vom Produkt unterstütztes
Protokoll des Bluetooth-Protokoll-Stack unter Anwendung
standardisierter Testpläne. Die Bluetooth-SIG stellt ihren
Mitgliedern eine Software zur Verfügung, die aus Menge der
durch das zu zertifizierende Produkt unterstützten Protokolle
einen Testplan erstellt. Zur Vereinfachung des
Zertifizierungsprozesses kann auf die Testergebnisse von
bereits zertifizierten Komponenten zurückgegriffen werden.
In diesem Projekt z.B. waren der Bluetooth-Chip BlueCore4,
das Bluetooth-Modul BlueBearHCI und der Bluetooth-
Protokoll-Stack BlueZ bereits zertifiziert, so dass nur wenige
Tests zum Nachweis der korrekten Integration der einzelnen
Komponenten durchzuführen waren. [6]

III. PROJEKTABLAUF

A. Simulation des Netzaufbaus

Im ersten Schritt wurde der in [7] beschriebene
Netzaufbaualgorithmus im Netzwerksimulator entwickelt.
Aus Mangel an Bluetooth-Unterstützung durch die
verbreiteten Netzwerksimulatoren OMNeT++ und NS3,
wurde eine eigene ereignisorientierte Simulationsumgebung
eingesetzt. Die Implementierung des Algorithmus erfolgte
so, dass derselbe Quelltext ohne Anpassung im Simulator
und auf der Sensorplattform eingesetzt werden kann.

B. Routing und Forwarding

Die Kontrolldaten des Scatternet-Algorithmus werden
über RFCOMM[8]-Verbindungen übertragen. Um eine
saubere Architektur zu realisieren, sollte der Scatternet-
Algorithmus nicht das Routing und Forwarding der

Anwendungsdaten übernehmen. Die Netzknoten sollen über
ihre Ethernet-Schnittstellen die Funktionalität eines Ethernet-
Switch bereitstellen. Im Projekt wurde das erreicht, in dem
parallel zu jeder Kontrollverbindung eine Datenverbindung
unter Verwendung des Protokolls BNEP [9] aufgebaut
wurde. Die Endpunkte dieser Verbindungen werden unter
Linux als virtuelle Netzwerkgeräte realisiert. Unter
Verwendung der Linux-Software-Bridge werden alle BNEP-
Netzwerkgeräte und das lokale Ethernet-Netzwerkgerät jedes
Knotens über einen Software-Switch gekoppelt.

C. In-House-Entwicklungs- und Testnetz

Parallel zur Entwicklung des Netzaufbaualgorithmus
produzierte unser Projektpartner lesswire AG die ersten
Sensorknoten. Mit den ersten zur Verfügung stehenden
Knoten wurde ein In-House-Entwicklungs- und Testnetz
aufgebaut. Die Knoten wurden im Institutsgebäude verteilt
und so konfiguriert, dass sie ihr Betriebssystem über
Ethernet-Verbindungen von einem zentralen Server
beziehen. Das ermöglicht den einfachen Austausch von
Software-Komponenten während der Entwicklung und
beschleunigt den Entwicklungsprozess.

Abbildung 1 zeigt die Sensorknoten für das In-House-
Testnetz im Probebetrieb. Um die Knoten auf dem engen
Raum betreiben zu können, wurden die Antennen der Knoten
mit Dämpfungsgliedern versehen, um die Übersteuerung der
Eingangsstufen zu verhindern.

Abbildung 1. Die Knoten des In-House-Testnetz im Labor vor dem
Deployment.

Abbildung 2 Deployment und Topologie des aufgebauten Scatternet des In-
House-Testnetzes.

10

Für das Deployment im Institutsgebäude wurden die
Dämpfungsglieder entfernt. Abbildung 2 beschreibt die
Verteilung der Knoten über zwei Gebäudeteile und zwei
Etagen. Gezeigt wird ein Ausschnitt des Grundrisses des
Institutsgebäudes. Eingezeichnet sind die Knoten als
nummerierte Symbole. Quadrate stehen für Knoten in der
ersten Etage, Kreise für Knoten in der zweiten Etage.

Die Sensorknoten ermöglichen das Tracken von anderen
Bluetooth-Geräten wie z.B. die Smartphones der
Angestellten und die Aufzeichnung derer Bewegungsprofile
[10]. Folglich wäre für die Errichtung des Testnetzes die
Zustimmung des Betriebsrats notwendig gewesen [11]. Um
dies zu umgehen, verwenden die Sensorknoten des Testnetz
statt des Generic Inquiry Acces Code(GIAC) einen
Dedicated Inquiry Access Code(DIAC) für den Inquiry-
Prozess. Von Standard-Bluetooth-Geräte können so nicht
mehr per Inquiry ermittelt werden, die Netzknoten können
sich nur untereinander finden.

D. Installation auf einer Testanlage

Mit der Verfügbarkeit zertifizierte Hardware und eines
stabilen Netzaufbaualgorithmus erfolgte die erste Installation
in einer realen Photovoltaik-Anlage, die als Testumgebung
neuer Wechselrichter-Firmware dient. Die PV-Module der
Anlage sind auf den Dächern zweier Werkshallen montiert;
die Wechselrichter befinden sich geschützt im Innern einer
Werkhalle. Dort wurden auch die Netzknoten installiert.

Die Anlage besteht aus 30 drahtgebunden mit dem
Firmennetz verbundenen Wechselrichtern. Von 29
Wechselrichtern wurde die drahtgebundene Verbindung zum
Firmennetz getrennt und durch einen Netzknoten ersetzt. Ein
30. Netzknoten wurde als Gateway an das Firmennetz
angeschlossen. Der 30. Wechselrichter diente als Referenz
zum Test der Netzwerkverbindung zur Testanlage.

Die verbauten Netzknoten speichern die Firmware im
Flash-Speicher. Updates und das Herunterladen der Log-
Dateien erfolgten über FTP- und Telnet-Zugang auf den
einzelnen Knoten unter Verwendung des aufgebauten
Scatternet. Der Zugriff auf Knoten, auf denen der Scatternet-
Algorithmus versagte, wäre weder über das Funknetz noch
über das drahtgebundene Netzwerk möglich gewesen. Um an
die Log-Dateien dieser Knoten zu gelangen, wurde
zusätzlich ein 31. Knoten, auf dem der Scatternet-
Algorithmus deaktiviert war, an das drahtgebundene Netz
angeschlossen. Von diesem Knoten aus wurden manuell
Bluetooth-Verbindungen zu „abgestürzten“ Knoten
aufgebaut, um die Log-Dateien zur Analyse herunterzuladen.

Der Testbetrieb zeigte, dass der entwickelte Scatternet-
Algorithmus häufig versagte, wenn die Netzknoten nicht
gleichzeitig sondern erst nach und nach booten. Dieser
Effekt tritt in den PV-Anlagen bei Sonnenaufgang auf, da
das Licht der aufgehenden Sonne nicht alle PV-Module
gleichzeitig erreicht. Grund war die ursprüngliche
Initialisierungssequenz der Netzknoten. Die Knoten wurden
bereits kurz nach dem Start für die Knoten in ihrer
Umgebung sichtbar, konnten aber noch keine Verbindungen
entgegennehmen, was im Scatternet-Algorithmus nicht
vorgesehen war. Zur Lösung des Problems wurde die

Initialisierungssequenz angepasst, so dass der Knoten erst
sichtbar wird, wenn die Initialisierung abgeschlossen ist.
Außerdem wurde der Scatternet-Algorithmus erweitert, um
den Fall stabil weiterarbeiten zu können.
Ein weiteres Fehlverhalten wurde ausgelöst, wenn ein
Knoten plötzlich abgeschaltet wurde, wenn z.B. der
Wechselrichter nicht mehr ausreichend Energie liefert. War
der Knoten z.B. gerade dabei, sich ins Netz einzuhängen,
verblieb das Netz nach Ausfall des Knotens in diesem
Zustand. Um dies zu verhindern, wurden sämtliche Zustände
des Scatternet-Algorithmus mit Zeitgrenzen versehen. Wird
eine Zeitgrenze überschritten, wird die aktuelle Aktion als
fehlgeschlagen gewertet und der Algorithmus geht in einen
definierten Ausgangzustand zurück. Weiter zeigte sich, dass
das gewählte Verfahren für Routing und Forwarding
praxistauglich ist. Im Laufe des Testbetriebes wurde der
Algorithmus sukzessive verbessert bis schließlich ein
fehlerfreier Betrieb möglich war.

E. Pilotinstallation

Nachdem der Betrieb auf Testanlage mehrere Monate
zuverlässig lief, wurde ein Photovoltaik-Kraftwerk mit
Knoten ausgestattet. Bei der Anlage handelt es sich um eine
mehrere Hektar umfassende Freifeldanlage, auf der im
endgültigen Ausbau 39 Knoten installiert wurden. Plan und
eine beobachtete Netztopologie sind in Abbildung 3 zu
sehen.

Als wesentliches Problem stellte sich die Installation der
Antennen der Netzknoten heraus. Die Netzknoten wurden in
der Nähe der Wechselrichtern, die sich wie in Abbildung 4
zu sehen unterhalb der PV-Module befinden, installiert.

Sind die Antennen unterhalb der PV-Module installiert,
werden die Funksignale durch PV-Module abgeschattet.
Funkverbindungen können nur parallel zu den Modulreihen
aufgebaut werden. Überragen die Antennen die PV-Module
zu weit, kann es auf benachbarten Modulreihe zu
Schattenwürfen durch die Antenne und zu Ertragseinbußen
kommen.

Abbildung 3 Deployment der Knoten auf der PV-Anlage. Die Pfeile stellen
die aufgebauten Bluetooth-Verbindungen da.

11

Abbildung 4 Position der Wechselrichter zwischen den PV-Modulreihen in
der Pilotanlage.

Nach anfänglichen Versuchen mit SMD-Keramikantennen,
die auf Grund ihrer ungünstigen Ausbreitungscharakteristik
nur schlechte Ergebnisse lieferten, kommen jetzt
Stabantennen, die maximal 20 cm über die Modelkante
herausragen, zum Einsatz. [12]

IV. FAZIT
An Hand des Beispiels einer drahtlosen

Vernetzungslösung für Photovoltaik-Anlagen wurde
aufgezeigt, wie die Entwicklung eines industriellen
drahtlosen Sensornetzes erfolgte. Schwerpunktmäßig wurden
die praktischen Probleme, die während des Projekts auftraten
und die dafür gefundenen Lösungen dargestellt.

V. VERWANDTE ARBEITEN

A. Great Duck Island

Die Knoten des drahtlose Sensornetzes auf der Insel
Great Duck Island erfassen das Brutverhalten der Inselvögel
und das Mikroklima auf der Insel. Die Daten werden an einer
Basisstation gesammelt. Über das Internet können
verschiedene Forschungseinrichtungen auf die erfassten
Daten zugreifen. [13] Die Quelle enthält keine Informationen
über den Zulassungsprozess der Sensorknoten. Jedoch ist im
Gegensatz zum EU-Raum in den USA eine
Konformitätserklärung des Inverkehrbringers nicht
ausreichend. Die Zulassung muss bei der FCC (Federal
Communications Commission) beantragt werden. Zu den
einzureichenden Unterlagen gehören neben Messprotokollen
über Abstrahlungen des Produkts und Produktbeschreibung
auch die vollständigen Stücklisten und Konstruktionspläne
des Produkts. Weisen die eingereichten Unterlagen die
Konformität des Produkts mit den Regularien der FCC nach,
wird dem Produkt eine FCC-ID zugeteilt. Alle eingereichten
Unterlagen werden von der FCC auf ihrer Web-Seite
http://www.fcc.gov/ veröffentlicht. Will ein Hersteller die
Veröffentlichung von Stücklisten und Konstruktionsplänen
verhindern, muss er seinen Unterlagen einen Antrag auf
Vertraulichkeit hinzufügen. [6]

B. WSAN4CIP

Im Rahmen des Projekts WSAN4CIP wurde die
Frischwasserleitung der Wasserwerke von Frankfurt(Oder)
mit eine Kette von Sensorknoten, die entlang der Rohrleitung
installiert sind, überwacht. Die Sensorknoten lösten die
Überwachung mittels eines kostenintensiveren
Glasfaserkabels ab. [14] Die Quelle nennt ebenfalls keine
Details über die Zulassung der Sensorknoten. Es kommen

jedoch dieselben Vorschriften wie für im Projekt SolarFlex
zur Anwendung, wobei entsprechend Frequenzband und
Einsatzumgebung der Sensorknoten andere Normen
nachzuweisen sind.

DANKSAGUNG
Diese Arbeit wurde durchgeführt ZIM-Projekts SolarFlex

gefördert vom Bundesministerium für Bildung und
Forschung (BMBF) unter der Referenznummer
KF2123403DF9. Die Netzknoten sind eine Entwicklung der
Fa. lesswire AG.

REFERENZEN

[1] "Photovoltaik-Wechselrichter-Programm," ed: REFUsol, 2013.
[2] "Specification of the Bluetooth System 2.1+EDR," ed, 2007.
[3] "BlueBear - Industrielles Long Range HCI-Bluetooth® 2.0

Modul mit EDR," lesswire AG, Berlin, Data sheetApril 2009.
[4] BlueCore4-External Product Data Sheet, 2005.
[5] BlueZ - Official Linux Bluetooth protocol stack. Available:

http://www.bluez.org/
[6] Bluetooth SIG Homepage. Available: http://www.bluetooth.org/
[7] M. Methfessel, S. Peter, and S. Lange, "Bluetooth Scatternet

Tree Formation for Wireless Sensor Networks," in MASS, 2011,
pp. 789-794.

[8] "Part F:1 RFCOMM with TS 07.10 Serial Port Emulation," in
Bluetooth Specification Version 1.1, ed: Bluetooth SIG, 2003,
pp. 393 - 424.

[9] "Bluetooth Network Encapsulation Procotol (BNEP)
Specification," Bluetooth SIG2003.

[10] M. Haase and M. Handy, "BlueTrack - Imperceptible Tracking
of Bluetooth Devices," Ubicomp Poster Proceedings, 2004.

[11] § 87 Abs. 1 Nr. 6 BetrVG - Einführung und Anwendung von
technischen Einrichtungen, die dazu bestimmt sind, das
Verhalten oder die Leistung der Arbeitnehmer zu überwachen.
Available: http://www.kanzlei-hessling.de/de/inhalte-
Betriebsratsratgeber/_87_Abs_1_Nr_6_BetrVG_technische_Ar
beitnehmerueberwachung/

[12] Technisches Datenblatt REFUconnect [Online]. Available:
http://europe.refusol.com/fileadmin/user_upload/pdf/products/T
echnisches_Datenblatt_REFUconnect_DE.pdf

[13] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J.
Anderson, "Wireless sensor networks for habitat monitoring,"
presented at the Proceedings of the 1st ACM international
workshop on Wireless sensor networks and applications,
Atlanta, Georgia, USA, 2002.

[14] S. Peter and G. Weber, "Monitoring and Control of a Drinking
Water Pipeline - An Application of Secure Wireless Sensor and
Actuator Network," EURESCOM mess@ge - The Magazine for

Telecom Insiders, vol. 1, p. 15, 2011.

12

http://www.fcc.gov/
http://www.bluez.org/
http://www.bluetooth.org/
http://www.kanzlei-hessling.de/de/inhalte-Betriebsratsratgeber/_87_Abs_1_Nr_6_BetrVG_technische_Arbeitnehmerueberwachung/
http://www.kanzlei-hessling.de/de/inhalte-Betriebsratsratgeber/_87_Abs_1_Nr_6_BetrVG_technische_Arbeitnehmerueberwachung/
http://www.kanzlei-hessling.de/de/inhalte-Betriebsratsratgeber/_87_Abs_1_Nr_6_BetrVG_technische_Arbeitnehmerueberwachung/
http://europe.refusol.com/fileadmin/user_upload/pdf/products/Technisches_Datenblatt_REFUconnect_DE.pdf
http://europe.refusol.com/fileadmin/user_upload/pdf/products/Technisches_Datenblatt_REFUconnect_DE.pdf

On the Comparability of Indoor Localization
Systems’ Accuracy

Sebastian Fudickar, Sebastian Amend, Bettina Schnor
Institute of Computer Science

University of Potsdam, Germany
Email: [fudickar, samend, schnor]@cs.uni-potsdam.de

Abstract—While indoor localization is gaining increased rel-

evance, the comparability of localization systems’ accuracies is

rarely given due to variations of the evaluation environments and

evaluation methods. To overcome this limitation, the article at

hand proposes a simulator for indoor localization systems that

assures their comparability and optimization under recorded,

realistic conditions. The practicability of the proposed approach

is shown by optimizing the parameters and algorithms of a

model-based indoor localization system, which achieves lower

error-distances and higher success rates than the model-based

RADAR system as shown by evaluation.

I. INTRODUCTION

Smart phone applications (such as navigation, information
or social-applications) can be enhanced with location aware-
ness. While outdoor localization-technologies such as GPS or
cell-tower communication are not applicable for indoor envi-
ronments due to radio-signal shielding, the radio frequencies
of 2.4 GHz (as used by WiFi) or Sub GHz (such as 868 MHz)
are well suited for indoor localization and apply the following
mechanism. Beacons are placed within buildings and regularly
transmit messages. Mobile devices estimate their current po-
sition from the received messages typically via the received
signal strength (RSS). A challenging aspect of RSS based
localization is the influence of the radio wave distribution
and environmental noise - resulting in varying localization
accuracies (typically measured as error-distances) for different
setups and buildings. Therefore, a meaningful comparison of
the quality of specific algorithms requires the exclusion of
factors such as the influence of the radio wave distribution
and environmental noise (e.g. by testing the systems under
identical conditions or recorded measurements).

The article at hand proposes a simulator that enables the
comparison of RSS-based localization algorithms with prere-
corded radio-traces, to overcome these drawbacks and enable
a meaningful comparison of localization algorithms and their
optimization.

Section II gives an overview of current indoor localization
systems and evaluation techniques. The simulator is discussed
in section III and the new indoor localization system which’s
parameter settings and algorithms are optimized for optimal
accuracy with the simulator is proposed in section IV. As
shown in the evaluation in section V, the developed localiza-
tion system achieves a median error distance of up to 4.14 m
in the unoptimized nursery home, which is more than 25%
more accurate than the RADAR localization system [1].

II. RELATED WORK

Existing radio based indoor localization systems (as summa-
rized in Table I) typically use either model-based or empirical
localization algorithms that estimate the position based on
large-scale variations of the RSS instead of applying distance
measures and triangulation (as used by GPS). Therefore, the
RSS of multiple router is matched with a radio-propagation
map of the building which is either generated by empiri-
cal measurements or modeled based on the position of the
transmitting nodes. Empirical algorithms are more common
since achieving lower error-distances than model-based ones
as shown by the RADAR indoor localization system [1], while
the primer requires initial laborious empirical measurements
in each supported building.

However, the comparability of localization algorithms’ ac-
curacy is challenging since the error-distances are significantly
influenced by the following varying measurement conditions
The node densities among the evaluations of these systems
typically varies significantly (ranging from 0.4 to 0.003 nodes

m

2).
Denser node placement increases the probability of line of
sight transmissions (and thereby are more accurate). Also
the size of evaluated areas, which is typically smaller than
1000 m2 are chosen heterogeneously. The maximal error dis-
tances are equidistant to the size of the evaluation area and
thereby affect localization runs.

Aside, the heterogeneous specification of the resulting error
distances (e.g. by median or average) is as well challenging
for a meaningful interpretation of the influence of specific
algorithms and radio frequencies on the localization accuracy.
Most evaluations determine only the error-distance and do not
investigate other relevant metrics such as the availability and
floor error rate.

The EvAAL competition [2] offers a normed benchmark
of indoor localization and tracking systems and evaluates the
complexity of deploy and configuration, the user acceptance,
the interoperability, availability and accuracy within a specific
environment. The applied metrics cover the essential criterion
for the applicability of indoor localization systems, but the
participants have free hand in preparing the environment
(e.g. by selecting random and undocumented node densities).
Thereby, the accuracy is not related to a specific node density
and can not be used for direct comparison of localization
algorithms’ accuracy.

13

TABLE I
LOCALIZATION ACCURACY

Localization system error-distance Precision Node-density Nodes Size Year Type Transceiver
(m) (m2)

ITRI 2.13 - 7.17 average 0.0125 5 400 2005 Empirical Wi-Fi
Ekahau 3.72 average 0.04 5 108 2009 Empirical Wi-Fi

RADAR [1] 2.94 median 0.003 3 980 2000 Empirical Wi-Fi
RADAR [1] 4.3 median 0.003 3 980 2000 Model based Wi-Fi

n-Core Polaris 0.97 average n.a. n.a. 70 2011 n.a. ZigBee
Compass 1.65 average 0.028 9 312 2006 Empirical Wi-Fi

Horus 1.4 90% 0.011 21 1766 2005 Empirical Wi-Fi
IIS-Frauenhofer 2.5 n.a. 0.1 8 80 2005 n.a. 868 MHz

OWLPS 4.52 average 0.007 5 690 2010 Empirical Wi-Fi

III. SIMULATION ENVIRONMENT

The proposed simulator enables the meaningful comparison
of localization systems regarding their accuracy and availabil-
ity. By using recorded RSS readings of tracks (track records)
and specific positions, the influence of unintended factors
(such as node-density) is excluded and even a validation
for multiple buildings can be achieved. Furthermore, specific
localization algorithms can be optimized by automatic testing
of parameter levels. Aside of the optimization and comparison
of localization algorithms, the simulator can optimize pathloss-
models (for several buildings at once) by multi variance testing
based on steady records.

Steady records consist of RSS measurements, taken at
various specific positions with the measurement device facing
to the four cardinal points (to cover influence of human
shielding). These recordings are used to optimize the pathloss
models by parameter tuning. The records specify the utilized
radio frequency, the measurement time, the orientation and the
position (as x and y coordinates and the floor).

Aside, Track records contain RSS readings of surrounding
nodes, which are collected while walking on predefined paths.
To identify a measurement position, tracks consist of straight
lines that connect so called checkpoints, where the proband
confirms its arrival and departure, which are recorded for
later position estimation. The RSS readings are stored with a
timestamp and the ID of the transmitting node. These records
have precise check-point positions annotated to achieve accu-
rate positioning. The track passed a straight line between two
checkpoints with a steady speed and the position is interpo-
lated during simulation from the time of recording and the
arriving at the next checkpoints. Consequently, passing a path
element in steady speed is essential for accurate interpolation
results.

A. RSS record collection process and Environment

The simulator evaluates localization systems based on RSS
records which were recorded under the following setups.

The recordings took place in the computer science faculty
building at Potsdam University and a nursery home (see Table
II). The records of the nursing home were collected during
representative daily activities, while the records in the faculty
building were collected on a weekend with low activity.

The node placement based on practicability - without inter-
rupting the daily work.

The recorded RSS samples were collected by a TinyOS
application (running the B-MAC protocol) and the Sub GHz
(CC1101) transceiver of the Efficient Mobile Unit (EMU)[3].
Mica2 nodes transmitted with 0 dBm over 868 MHz and
are placed at a height of ca. 1 m in the building. In both
measurement setups, the EMU is worn at the hip and is
connected via USB to a laptop that is worn at the shoulder (to
minimize the influence on signal distribution). The laptop runs
a measurement controller in which the current position is spec-
ified (for steady records) and arriving or leaving checkpoints
is confirmed (for track records). The controller also triggers
recording on the EMU.

Aside of track-records, steady records were collected at a
grid of one m

2 for accessible areas. For each position and
direction 10 seconds of Sub GHz messages were recorded
(which let in average to 11 Sub GHz messages in the nursing
home and 13 Sub GHz messages and 50 Wi-Fi messages in
the faculty building).

B. Simulator

The simulator consists of two separate modules for the
evaluation of path-loss models and for the evaluation of the
localization systems’ accuracy.

The pathloss-model simulator evaluates the accuracy as
the distance between the modeled signal strength in [dBm]
and the average of the received signal strength measurements
for each measured position and transmitter. Furthermore, an
accurate pathloss model can be calculated by linear regression.

The localization system simulator encapsulates the evalu-
ated localization system and operates event-based to represent
the recorded conditions realistically. It can either optimize
parameter settings and algorithms or determine the accuracy
of localization systems.

Therefore, track records are loaded and the included RSS
measurements are precisely timed handed to the localization
system. Aside of the RSS measurements, the building informa-
tion (specifying wall and node positions) and the configuration,
which specifies either concrete parameter settings or parameter
levels (for multi variant tests) are loaded.

Once the localization system has generated the radio-
propagation model based on the building information, the

14

TABLE II
CHARACTERISTICS OF THE ENVIRONMENTS AND RECORDS

Building Size m2 Floors Sub GHz Positions Tracks Average Track Track
(incl. outdoors) nodes (in rooms) duration (minutes) distance (m)

Faculty Building 3110 3 26 (0.008) 166 (10.2%) 6 13.78 355
Nursing Home 2627 (3532) 2 18 (0.007) 121 (5.8%) 5 17.88 443

simulation starts and events for each RSS readings are for-
warded to the localization system. Localization requests are
sent from the simulator to the localization system according
to the configured localization interval. These requests initiate
localization runs which estimate the current position based
on the recently forwarded RSS readings. The position that is
estimated by the localization algorithm is then stored aside
with the calculated position of the recording unit at this time,
for later processing at the end of a simulation run. Both
positions consist of the floor level and the x, y distances from a
point of origin. The estimated position may be null, indicating
a failed localization run.

Poscur = Posn�1+
(Posn � Posn�1)

(T imen � T imen�1)
⇤(T imecur�T imen) (1)

The measurement position Pos

cur

at a timestamp Time

cur

is calculated based on the previous Pos

n�1 and the upcoming
checkpoint Pos

n

. If both checkpoints are identical, they
represent the measurement position. Otherwise, the position is
interpolated by the time of departure from the last checkpoint
and the time of arrival at the next checkpoint as shown in
Equation 1.

After simulating all track records the results of all localiza-
tion runs are evaluated. The accuracy is evaluated regarding
the following metrics:

• Localization errors occur if a localization did not return
any position and thereby was unsuccessful.

• Floor errors occur if the localization estimated building
floor is incorrect.

• The error distance is calculated for successful localiza-
tions, that determined the correct floor, as the Euclidean
distance between the estimated and interpolated positions.

With this simulator the localization system that is described
in the next section was optimized for these metrics.

IV. LOCALIZATION SYSTEM

The indoor localization system runs on mobile devices
and estimates the device positions via the RSS of messages
that were received from surrounding beacons. A model-based
approach was chosen to overcome the laborious collection of
empirical data. As shown in Figure 1, the device’s position is
estimated by matching the RSS values to a radio-propagation
model, which is generated (during system initialization) by
a pathloss-function from a building-map that specifies the
position of beacons and walls. The pathloss can be calculated
with several pathloss-functions (see Table III), which i.a.
vary regarding the considered attenuations (e.g. absorption of
walls and floor). The modeled signal strength is calculated by

subtracting the calculated pathloss from the beacon’s trans-
mission power and for each beacon at a position-grid which’s
granularity can be configured.

Once the initialization phase is completed and the radio-
propagation model is generated, localization runs are started
regularly (e.g. every 20 seconds), which consist of the follow-
ing processing steps (see Figure 1).

The received messages are transmitted regularly (e.g. with a
maximal frequency of 1 Hz) by neighboring beacons according
to a transmission interval and are considered by the localiza-
tion for RSS TTL. The message fields specify i.a. the beacon
ID, a building ID and after reception are extended by the RSS.

Messages with a RSS below a threshold (of minimal
strength) and from other floors are omitted. Furthermore, the
amount of considered messages per beacon is limited to the
last maximal messages.

The floorlevel of the beacon with the strongest RSS is used
for localization.

The remaining RSS values per beacon are combined to a
single RSS value by a signal model, which might consider
the distance passed by the mobile device between message
receptions.

Fig. 1. Schematic of the localization-system

15

TABLE III
EVALUATED AND CHOSEN FACTORS AND LEVELS OF THE LOCALIZATION SYSTEM VERSIONS

Parameter Range Best Guess Radar Optimized

Pathloss function FreeSpace, Linear Attenuation, Log-Distance, Gahleitner, Devasirvatham, ITU with Walls ITU with Walls ITU with Walls
Log-Distance Zhao, KeenanMotley, ITU Indoor (with/without) Walls

RSS TTL 1 - 40 s 10 s 1 s 10 s
Granularity 0,5 - 5 m 1 m 1 m 4.5 m

Signal model Last, Best, Average, Weighted Average, Average Last KernelSmoother
Median, KernelSmoother, Linear Regression

Min strength -95 - -80 dBm, none none none -91 dBm
Max messages 1-10, all all all all

Transmission 1 - 40 s 1 s 10 s 1 s
Interval

Localiser Nearest neighbours (NN), Weighted nearest neighbors (WNN) NN NN NN
K-Neighbors 1 - 50 10 1 11

Distance metric Euclidean, Manhattan, Mahalanobis Manhattan Euclidean Euclidean
Other floors true, false true false true

For the identified floor, the distance (in dBm) between the
modeled and the summarized RSS is calculated by a distance
metric per beacon and position of the radio-propagation model.

Next, the device position is calculated by a localiser func-
tion such as the K-nearest neighbor algorithm, where the
positions of the K-Neighbours with the lowest RSS distance
are interpolated to estimate the final device position.

The localization system can be implemented with various
algorithms. E.g. various pathloss models and signal models
can be applied and various parameter settings can be adjusted
to optimize the accuracy. Therefore, the optimal algorithms
and parameter settings were identified via simulation.

V. EVALUATION

The accuracy of the optimized indoor localization system
is evaluated and compared with educated best guess settings
and the model-based RADAR localization algorithm (used as
reference) for the nursery home and the faculty building. In
advance, nine pathloss models were optimized and the optimal
accuracies per model are compared with each other for steady
records of both buildings. The identified optimal pathloss-
model and its configuration is used further on. The parameter
settings and algorithms of the localization system are opti-
mized for the faculty building (see Table III for the identified
optimal settings). Next, the accuracies (concerning the error-
distance, floor-error rate and localization-error rate) of the
resulting optimized version, a version based on educated best
guess and the reported settings of the model-based RADAR
system are evaluated for both buildings (see Table IV).

TABLE IV
ERROR DISTANCES OF THE LOCALIZATION SYSTEMS

Algorithm Building Error-distance (m) Floor Local.
errors errors

1.IQR 2.IQR 3.IQR avg

Best Guess faculty 3.27 5.61 8.8 6.56 4% 12%
Optimized faculty 2.62 4.40 7.19 5.50 4% 12%

Radar faculty 4.10 6.05 9.80 7.77 2% 40%

Best guess nursery 2.6 4.02 6.79 5.06 0% 6 %
Optimized nursery 2.58 4.14 6.28 4.71 6% 1%

Radar nursery 2.95 5.21 10.07 8.37 3% 16%

The optimized version has a median error-distance below
4.5 meters in both buildings. The error distances at the first
and the third inter quartile range (IQR) are both lower than
the ones of the RADAR system and the educated best guess.
Furthermore, the optimized version achieves a far better local-

ization error rate than the Radar algorithm. While the floor

error rate is (with up to 6%) slightly higher than the one of
the Radar algorithm it is still sufficient to prevent wrong esti-
mations by considering two consecutive floor interpretations.

Aside of the high accuracy in buildings with a low beacon-
density, the chosen model-based localization system is even
applicable to buildings (of similar types) without further
optimizations as indicated by the results of the nursery home.
By achieving a similar accuracies in this building, the deploy-
ment in additional buildings may be limited to installation of
beacons and the creation of a building map, but might exclude
manual recalibration, while achieving error-distances that are
sufficient for the localization in rooms.

VI. CONCLUSION

The article at hand proposes a simulator for the comparison
and optimization of RSS based indoor localization systems.
It enables the comparison of localization systems’ accuracy
under prerecorded conditions and enables reproducibility. The
simulator overcomes the necessity of regular test runs, while
assuring comparability of (intermediate) results. Furthermore,
the simulator (e.g. used on computing clusters) enables the
automated multi variant testing of large parameter sets.

The practicability of the simulator was shown by optimizing
and evaluating a new model-based localization system, which
achieves lower error-distances and significantly less localiza-
tion errors than the model-based RADAR algorithm under
identical conditions.

REFERENCES

[1] P. Bahl and V. N. Padmanabhan, “Radar: an in-building rf-based user lo-
cation and tracking system,” Proceedings IEEE INFOCOM 2000 Confer-
ence on Computer Communications Nineteenth Annual Joint Conference,
vol. 2, no. c, pp. 775–784, 2000.

[2] http://evaal.aaloa.org/; accessed May 1, 2013.
[3] S. Fudickar, M. Frohberg, S. Taube, P. Mahr, and B. Schnor, “An energy

efficient mobile device for assisted living applications,” in 2012 IEEE
Online Conference on Green Communications (IEEE GreenCom’12), Sep.
2012.

16

Towards Application-Centric Deployment of
Low-Power Wireless Networks

Matteo Ceriotti, Alexandr Krylovskiy, Klaus Wehrle
Chair of Communication and Distributed Systems (ComSys),

RWTH Aachen University, Germany
http://comsys.rwth-aachen.de

Abstract—Low-power wireless embedded networks have
reached the stage of being deployed in an increasing number of
application scenarios. However, despite the plethora of proposed
solutions, deploying such systems remains a challenging task.
In particular, there is still a clear discrepancy between having a
generically functional network and a system capable of efficiently
matching specific application requirements in the given scenario
at hand. In our current line of research, we aim at identifying a
deployment approach that accounts for application requirements
and the specificity of the scenario where the system is installed. In
particular, we identify the need to observe the network topology
during deployment and feed this information into a simulator
capable of exploring different application configurations. Here,
we introduce our approach and present some preliminary results,
highlighting our current research agenda.

I. INTRODUCTION

Low-power wireless networks, most commonly referred
to as Wireless Sensor Networks (WSNs) or Cyber Physical
Systems (CPSs), have been proven to be effective solutions
in several applications. They can be employed as scientific
instruments in harsh environments, e.g., volcanos [1], as well
as industrial products in operational systems [2]. As a result,
low-power wireless networks are slowly being deployed in
various scenarios, ultimately at the benefit of society at large.

In contrast to this trend, the deployment of operational
networks is still a tedious task, which mostly relies on the
experience of the people installing the system. As different
environments have clearly different impacts on the deployed
network [3], even the acquired experience has limited appli-
cability: minor changes in the environment will result most
likely in a different system behavior. Due also to the inherent
complexity of these networks, systems are currently deployed
with rule of thumb, ultimately resulting in an undependable
fulfilling of the intended application requirements.

By looking at the typical application life cycle, we can
approximately identify the following steps: 1) the software and
hardware is developed, debugged, and validated in controlled
scenarios, e.g., laboratories; 2) the system is deployed in the
operational scenario and let run; 3) the application require-
ments are evaluated over a long period of time, as application
data are gathered; 4) upon failure or clear discrepancy between
the deployed network and the application needs, the system
configuration is adjusted. By looking at this process, we ask
ourselves: why do not we guide the system configuration by
evaluating the application requirements during deployment?

We identify a possible approach to address such a challenge
by incorporating application requirements in the deployment
process. We describe the expected system performance as an
application profile composed of several metrics, e.g., through-
put, latency, and lifetime. We then simulate the deployed
system by taking as input the observed network topology of the
installed network. Currently, we are working on minimizing
the gap between the simulated and the real network, so that
the simulation can reliably reproduce the running system.
Afterwards, we aim at identifying the application profiles that
a deployed network can support, exploring possible system
configurations and highlighting network bottlenecks. With this
information, we will be able to guide the system reconfigura-
tion during deployment to reliably support the user needs.

II. MAIN APPROACH

We aim at evaluating application requirements as early as
possible in the deployment process, enabling the estimation
of the target application performance in the network under
deployment. With such information, decisions can be made
on resources to add or replace; furthermore, the system con-
figuration can be optimized to best satisfy the expected usage.

To support this vision, we need primarily to acquire exten-
sive information about the deployed network so that a reliable
and accurate model of its behavior can be built. This is a
challenge in itself, as monitoring protocols running in parallel
to the actual application in the real system impact the observed
behavior. Therefore, such type of observations are typically
severely restricted in the amount of information they collect,
resulting in overall insufficient visibility on the internal system
functioning. Similarly, many different configurations may need
to be tested to explore the available application tradeoffs,
which would require an increasing time and deployment effort
if explicitly tested in the operational network.

We address these challenges by reproducing the behavior
of the network in simulation. In particular, we (i) accurately
measure the network topology, by observing the complete
network connectivity graph and characterizing each link of
the deployed system. We use this information to (ii) build
accurate link models for the target network in the simulator
and (iii) simulate individual nodes, their energy consumption,
and the overall network behavior. With this information we
are finally able to (iv) evaluate the satisfiability of application

17

Fig. 1. Smartphone connected to a TelosB, gathering connectivity informa-
tion; on the smartphone, link qualities are visualized through semaphores.

requirements in a controllable environment, so that many
simulations can be run and different configurations tested.

The resulting architecture takes as input both the application
requirements and the network connectivity measurements.
Through a device interfaced with a smartphone, the user can
conveniently gather data and visualize network connectivity
while the system is deployed; a dedicated monitoring protocol
runs on each device to observe link characteristics. With such
information, we run network simulations in COOJA [4]; with
MSPsim [5], it is possible to accurately emulate the behavior
of MSP430-based platforms, such as the common TelosB [6].
We are currently addressing the discrepancy between the be-
havior of the real network and the simulated one. In our future
work, we aim at using this set of tools to provide the user
with information about application requirements satisfiability
and critical network areas while deploying the network.

III. OBSERVE THE NETWORK TOPOLOGY

Obtaining accurate measurements of link characteristics in a
running system is challenging. In particular, we need to gather
complete information about the connectivity graph in order
to correctly analyze the impact of possible interferences hap-
pening in the wireless broadcast shared medium. Therefore,
each link needs to be probed in isolation, avoiding the impact
of concurrent accesses to the channel in the same collision
domain. This requires a careful scheduling of collision-free
probing messages to measure each link. Moreover, during
the deployment process, we cannot rely on the presence of
any sink, asking for fully decentralized solutions. Finally, we
would like to expose such information conveniently to the user.

To observe the links, we use Reins-MAC [7], a fully-
decentralized TDMA protocol that schedules collision-free
access to the medium and dynamically adjusts the schedule de-
pending on the devices in the same collision domain. Follow-
ing the created schedule, nodes can efficiently and accurately
measure the link characteristics, building a local view of all the
available incoming links and their statistics (over a sliding time
window). At the same time, nodes can use the communication
schedule to spread in the network the gathered information
about the neighborhood. Nodes periodically transmit their own
local view of the network, and also forward the information

0 2 4 6 8 10 12

Time [Minutes]

0.0

0.2

0.4

0.6

0.8

1.0

Li
n
k

Q
u
a
lit

y
 I
n
d
e
x

Link 1 -> 2

Link 2 -> 3

Link 3 -> 4

Link 4 -> 5

Link 5 -> 6

(a) 5m links

0 2 4 6 8 10 12

Time [Minutes]

0.0

0.2

0.4

0.6

0.8

1.0

Li
n
k

Q
u
a
lit

y
 I
n
d
e
x

Link 1 -> 3

Link 2 -> 4

Link 3 -> 5 Link 4 -> 6

(b) 10m links

0 2 4 6 8 10 12

Time [Minutes]

0.0

0.2

0.4

0.6

0.8

1.0

Li
n
k

Q
u
a
lit

y
 I
n
d
e
x

Link 1 -> 4 Link 2 -> 5 Link 3 -> 6

(c) 15m links

Fig. 2. Link quality index for different link lengths in an indoor scenario;
the index is a weighted average of RSSI and PDR.

received from other devices. As a result, each node in the
network has complete knowledge of the whole network graph.

Given that each node has complete view of the system
connectivity, we can either connect to a deployed device or use
one additional node to gather the complete knowledge of the
network graph. In particular, to make the deployment process
more practical, we developed a simple Android application
that processes data sent from a TelosB device to a smartphone
connected via USB (see Figure 1). On the smartphone, we
conveniently visualize the quality level of the links through
simple semaphores. In this way, not only we are able to gather
information that we can later exploit in the validation of the
supported application profiles, but the user can also identify
connectivity problems and deploy a functional network.

We ran several experiments at our chair, by deploying
different network setups in an indoor scenario. In Figure 2,
the measurements taken in one experiment are depicted. For
each link, we compute a weighted average of RSSI and PDR;
as a result, also links with high PDR but low RSSI (close to
the receiver sensitivity) are detected as unreliable. The nodes
were deployed at a fixed distance of 5m one from the other.

18

0 5 10 15 20 25 30

Time Ticks

0.75

0.80

0.85

0.90

0.95

1.00

P
D

R
 [

%
]

Real System Simulation

(a) Network delivery rate

1 2 3 4 6 7 8 9 12 14 15 16

Node Id

0

20

40

60

80

100

T
im

e
 R

a
d
io

 O
n
 [

%
]

Real System Simulation

(b) Radio duty cycle

1 2 3 4 6 7 8 9 12 14 15 16

Node Id

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

T
ra

n
sm

is
si

o
n
s

p
e
r

M
e
ss

a
g
e Real System Simulation

(c) Average number of send operations

Fig. 3. Comparison of simulated and real network behavior.

Despite the indoor communication range of 50m indicated in
the datasheet, unreliable links already appear at 15m. More
interestingly, lower distances already manifest high variation in
the link quality, even at a short distance of 5m. Modeling these
effects without direct measurements requires a very detailed
description of the scenario; e.g., doors, windows, and walls,
will have different impact on the wireless signal propagation,
also depending on the involved materials. Providing such a
detailed description is complex and arguably impractical.

IV. TOWARDS VALIDATION OF APPLICATION PROFILES

With the data collected as described in Section III, we
have available the description of the network in its operational
environment. We can, therefore, build an equivalent model of
the network and run simulations of the application behavior
in a controlled scenario, gaining reproducibility and visibility.
Having the network graph on the smartphone, we could upload
such information to a remote, more powerful server where
multiple application configuration are tested.

Before testing application configurations, it is important to
measure the adherence of simulation results to the behavior of
the real network. For this reason, we execute some preliminary
experiments in an indoor testbed at our chair. We ran a simple
data gathering application based on CTP [8] as routing proto-
col, and BoX-MAC [9] as underlying CSMA MAC protocol
with radio duty cycling. Before running the application in
the real system, the network connectivity is measured; these
measurements are used later as input to the simulation.

In Figure 3, a simulation run is compared against the
behavior of the application in the real testbed. From the
results, a rough match is evident. The discrepancies may be
caused by different timings, e.g., in the order in which the
nodes are booted or in the backoff timers used to access the
shared medium. These preliminary experiments show that it
is possible, based on the connectivity measurements taken
directly from the deployed network, to analyze the real system
in simulation. We are now working to further reduce the
mismatch by incorporating more information in the simulated
radio model, in particular improving the interference model.

V. RESEARCH AGENDA

In this work, we aim at introducing a technique to explore
the application requirements that a real network can satisfy

while being deployed. We have successfully built a monitoring
tool to accurately measure the network graph in an installed
system. With this information, we have been able to closely
approximate the behavior of the real network in simulation.
This will offer the possibility to test different system configu-
rations and verify which requirements are likely to be satisfied
by the deployed system. After increasing the adherence of the
simulation to the real system behavior, our long-term goal is
to explore solutions to guide modifications to the deployed
network so that requirements, currently not satisfied, can be
met. We will then provide the user with a comprehensive tool
to guide the deployment process and match the expectations
of the application for which the system is installed.

REFERENCES

[1] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh, “Fidelity
and yield in a volcano monitoring sensor network,” in Proc. of the 7th
Symp. on Operating Systems Design and Implementation (OSDI), 2006.

[2] M. Ceriotti, M. Corra, L. D’Orazio, R. Doriguzzi, D. Facchin, Ş. Gunǎ,
G. P. Jesi, R. Lo Cigno, L. Mottola, A. L. Murphy, M. Pescalli, G. P.
Picco, D. Pregnolato, and C. Torghele, “Is there light at the ends of the
tunnel? Wireless sensor networks for adaptive lighting in road tunnels,” in
Proc. of the 10th Int. Conf. on Information Processing in Sensor Networks
(IPSN), 2011.

[3] L. Mottola, G. P. Picco, M. Ceriotti, Ş. Gunǎ, and A. L. Murphy, “Not
all wireless sensor networks are created equal: A comparative study on
tunnels,” ACM Transactions on Sensor Networks, vol. 7, September 2010.

[4] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-level
sensor network simulation with COOJA,” in Proc. of the 31st Conf. on
Local Computer Networks (LCN), 2006.

[5] J. Eriksson, A. Dunkels, N. Finne, F. Österlind, and T. Voigt, “Mspsim –
an extensible simulator for msp430-equipped sensor boards,” in Proc. of
the 4th Europ. Conf. on Wireless Sensor Networks (EWSN), Poster/Demo
session, 2007.

[6] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low
power wireless research,” in Proc. of the 4th Int. Symp. on Information
Processing in Sensor Networks (IPSN), 2005.

[7] M. Ceriotti and A. L. Murphy, “A MAC contest between LPL (the
champion) and Reins-MAC (the challenger, an anarchic TDMA scheduler
providing QoS),” in Proc. of the 8th Conf. on Embedded Networked
Sensor Systems (SenSys), Demo session, 2010.

[8] O. Gnawali, R. Fonseca, K. Jamieson, M. Kazandjieva, D. Moss, and
P. Levis, “CTP: An efficient, robust, and reliable collection tree protocol
for wireless sensor networks,” (To appear) ACM Transactions on Sensor
Networks, vol. 10, February 2014.

[9] D. Moss and P. Levis, “BoX-MACs: Exploiting physical and link layer
boundaries in low-power networking,” Stanford University, Tech. Rep.
SING-08-00, 2008.

19

20

The Crux of OMNeT++ on development for a
specific Wireless Sensor Node Platform, A Progress

Report
Oliver Stecklina and Andreas Krumholz

IHP
Im Technologiepark 25

15236 Frankfurt (Oder), Germany
Email: {stecklina, krumholz}@ihp-microelectronics.com

Abstract—OMNeT++ is a discrete event-driven simulator and
is intensively used for testing and validating research results in
the area of Wireless Sensor Networks (WSN)s. In the context
of the IQlevel project we developed a Wireless Sensor Node
Platform (WSNP) and a Multi-Hop Routing (MHR) Protocol,
which benefits by our configurable protocol stack model. It
allows us to use a single protocol implementation in different
environments without any adaptations. Driven by the impressive
advantages of the OMNeT++ simulator we wrapped into the
early decision to continue our protocol development for our
WSNP with Castalia. In this progress report we will depict why
these strategy was an aberration, which finished in a sloppy
protocol implementation. We will describe five hard to find traps
that we had to solve for porting our successfully simulated
implementation to our target WSNP. As a conclusion we will
mentioned an alternative approach for testing and simulating
implementation for specific WSNPs.

I. INTRODUCTION
In the recent years the research in the area of Wireless

Sensor Network (WSN)s becomes more and more enlarged.
Publications cover a broad variety of topics, e.g. hardware,
operating systems, low power systems and wireless commu-
nication protocols. Especially the design and the implemen-
tation of wireless Medium Access Control (MAC) schemes
and routing protocols are deeply investigated. The addressed
features as ad-hoc structures, self-organization, self-healing or
mobility make the protocols and their development more and
more complex. Furthermore, testing and validation become
a time-consuming process and cannot be handled with real
WSNPs.
Due to the complexity and size of WSN protocols and

their deployments the usage of simulation frameworks be-
comes very attractive. Driven by a similar motivation we
used Castalia, which is based on OMNeT++, for testing and
validating our Fair Energy Trade (FET)-Multi-Hop Routing
(MHR) protocol [1]. The protocol was developed in the context
of the IQlevel project [2] and is currently in extension in
context of the Aeternitas project [3]. The protocol aims to
provide a long living multi-hop network with a mesh structure.
We started our development on a real Wireless Sensor Node
Platform (WSNP), but due to the complexity of the test and
validation runs we early decided to continue our work with

the Castalia framework. After finishing the simulation with
promising results we were confident that we can immediately
move our implementation to our MSP430-based WSNP [4],
[5]. But we had to learn in a long nerve-racking process that
a successful running implementation in Castalia has not to
be suitable for a real WSNP. In this progress report we will
describe five traps that were very hard to find and that we had
to solve during our porting work. We are convinced that most
of these traps may be clear for a skillful WSN engineer, but
we also hope that our progress report can motivate researchers
to be more carefully when using Castalia / OMNeT++ for
their protocol development as well as it helps to explain why
OMNeT++ and Castalia are not platforms for testing compiled
code for a specific WSNP.
In the following we shortly explain few fundamentals of

the OMNeT++ / Castalia framework. In section III we present
our approach of a configurable protocol stack model, which
allows us to use an unmodified implementation in different
environments. In section IV we describe the five major traps
that we had to solve for porting our protocol to a real WSNP.
We conclude this short paper with a mention of an alternative
approach for simulating and testing protocol implementation
for a specific WSNP and a short summary.

II. OMNET++ / CASTALIA
OMNeT++ is a discrete event simulator for modeling com-

munication networks, multiprocessors and other distributed
systems [6]. It is open-source and fully implemented in C++
and designed to support network simulation in large scale. Its
development was motivated by the needs of a powerful open-
source simulation tool for academic, education and research
use. OMNeT++ is available since 1997 and has a large com-
munity [7]. There have been registered downloads from over
forty universities worldwide and the number of OMNeT++-
related projects is still growing.
The OMNeT++ model consists of modules that communi-

cate with message passing. A message can be either objects
holding arbitrary data or simple events. Modules are instances
of module types, which are written in C++ and use the simula-
tion class library. The user can add functionality to its module

21

via one of two alternative programming models: (I) co-routine-
based programming and (II) event-processing functions. A
module of the co-routing-based model runs in its own thread
and contains an infinite loop with send and receive calls. The
thread gets control by the simulation kernel each time the
module receives a message. The event-processing function
is called by the simulation kernel and returns immediately
after processing the message. Modules can be hierarchically
grouped into a compound module, where the number of levels
is unlimited. This helps the user to transparently split its im-
plementation in several modules. OMNeT++ supports message
passing within a single level of module hierarchy or within
a compound module’s hierarchical structure. To the outside
a compound module acts as a ’cardboard box’, transparent
relaying messages from their inside. Furthermore, connections
can be parametrized with delay, data rate or bit error rate.
Especially the module structure and the strict separation of
”nodes” and ”links” provided by OMNeT++ improve the
reusability of the user’s model components and simplify their
deployment to a real application. An important requirement for
OMNeT++ was easy debuggability and traceability of simu-
lation modules. It offers module output windows, inspectors
and automatic animation as well as tracking object ownerships,
doing ownership-based automatic deallocations and detecting
bugs caused by aliased pointers and misuse of shared objects.
Castalia is a simulator for WSN, Body Area Network

(BAN) and generally networks of low-power embedded de-
vices. It is based on OMNeT++ and has an advanced channel
model, radio model, extends sensing modeling provisions and
supports node clock drift. Furthermore, Castalia inherits the
excellent modularity, realiability and simulation speed from
the OMNeT++ framework [8], [9].

III. A CONFIGURABLE PROTOCOL STACK MODEL

Although the implementation of our FET-MHR protocol
was driven by the requirements of the IQlevel project, where
Operating System (OS) and hardware were developed from
scratch, we decided to use a configurable protocol stack model.
This model basically divides the protocol stack in a driver,
a protocol and an application layer. These layers provide a
basic separation among Hardware Abstraction Layer (HAL),
Hardware Independent Layer (HIL) and application.
We are convinced that a well-defined protocol as part of

the HIL could be easily ported to different environments by
adding small adaptation layers. Although a network protocol
may make an extensive use of OS primitives like timers or
tasks and needs functions for sending and receiving data via
the radio interface, these functions are typically provided by
the application layer or the HAL and can be wrapped by the
adaptation layers. The authors of [10] show that this approach
is feasible for a various set of OSs and causes a minimal
runtime effort and code size impact.
We implemented adaptation layers to encapsulate our FET-

MHR protocol layer and to make it portable to multiple OSs
and simulators. Figure 1 shows the adaptation layers for the

different environments that already exist and the integration of
our FET-MHR protocol.
Castalia and the Reflex OS [11] are implemented in C++

and must be compiled by the GNU Compiler Collection
(GCC). Our FET-MHR protocol and the IQlevel OS are bare
C code and can be compiled by the GCC as well as by the
Texas Instruments (TI) compiler. This allows us to use the
TI compiler for our specific WSNP, which generates more
efficient machine code. Nevertheless, our build environment
supports both compilers so that our protocol can be used in
all these environments without any additional implementation
effort.

IV. CRITICAL TRAPS ON PORTING SOFTWARE

As just mentioned our protocol stack model and our build
environment allow us to use our implementation in different
environments as well as compile it with environment specific
compilers. But, we learned that the compiler and architectural
differences are causing a various number of pitfalls. In the
following subsections we will explain the most critical traps
that we found during porting our protocol from a Castalia
simulation, running on an x86 architecture, to a real MSP430-
based WSNP.

A. Unaligned data access
The MSP430 has a 16-bit Reduced Instruction Set Com-

puter (RISC) architecture, where any memory access must
be aligned to a 16-bit address. Nevertheless, an alignment by
software is not necessary. The Micro Controller Unit (MCU)
masks the lowest address bit at any memory access so that
an unaligned access never traps an error. For accessing 8-
bit memory addresses the compiler uses special instructions,
which mask the higher or lower byte of the 16-bit data word
internally.
The x86 architecture handles an 8-bit memory access in

a more native way. Special instructions are unnecessary and
a programmer has not to take care about memory alignment.
But, when porting software from x86 to the MSP430 architec-
ture a type cast from a 8-bit data array to a larger data type can
cause an unaligned memory access and due to the MSP430’s
architecture the processor will not trigger any runtime error.
It reads at the wrong address instead.
Especially in network protocol implementations packets are

initially stored in an unspecific 8-bit data array. Later, an
array’s subset is casted to protocol header specific structures
to simplify access onto header elements. While this cast is
working at any address on the x86 architecture on the MSP430
the structure must be aligned. To avoid this problem aligned
protocol headers can be used only, any access must be done
with 8-bit operations or the data must be copied to an aligned
address.

B. Stack size
Due to the limited resources of a low power MCU the

stack size is often few bytes only. Furthermore, a task imple-
mentation with isolated memory sections does not exist. The

22

Application

IQlevel

FET-MHR

DLDC-MAC

Radio Driver

REFLEX Application Adaptor

REFLEX System Adaptor

Application

Radio Driver

IQlevel Application Adaptor

IQlevel System Adaptor

REFLEX

Application

Radio Driver

Castalia Application Adaptor

Castalia System Adaptor

OMNeT++ & Castalia

Fig. 1. Configurable protocol stacks model for using a single protocol implementation in different Operating Systems (OS)s and simulators. FET-MHR and
DLDC layer are encapsulated by adaption layers to meet environment requirements and make it portable without implementation effort.

MSP430 does not have a memory protection unit to monitor
memory access. A low power sensor node OS running on an
MSP430 shares a single address space and stack among all its
tasks.
The stack size is growing with function calls. The processor

writes at least the return address and the frame pointer to the
stack at each call. While these information do not consume
as much memory each local variable, which can not be stored
in a register, is stored on the stack too. Especially, large local
objects as structures or arrays consume a lot of stack memory.
While in the Castalia framework running on a PC the stack

size is quasi unlimited and local objects are very comfortable
to use on a low power MCU the programmer must take special
care about this. As a result a software written for the Castalia
framework, which runs in a proper way, can cause a stack
overflow on a low power MCU. Due to the single address
space of a sensor node OS a stack overflow can overwrite any
data without causing a runtime error. This makes this kind of
error very hard to find.
A way to avoid this pitfall is to take special care about the

usage of local variables and to forbid the implementation of
uncontrolled recursions. Furthermore, barrier variables can be
used to detected a possible stack overflow during runtime.

C. Interrupt handling
As mentioned in section II the OMNeT++ framework sup-

ports objects and events for passing messages to a simulation
module. While objects are a good abstraction for receiving
network packets the asynchronous behavior of an interrupt
can not be sufficiently emulated. The delivery of an event
is controlled by the simulation kernel and its execution is
based on the kernel’s scheduling scheme. In addition to this
the OMNeT++ supports an ’unlimited’ event queue. Events
are not dropped in case that the programmer is not explicitly
implementing this.
The MSP430 serves an interrupt immediately after finishing

the current machine code instruction. Furthermore, interrupts
are blocked by the MCU during a running interrupt service. By
that reason an well-designed OS interrupt service is separated
into a bottom and a top half section. The bottom half function
runs in the interrupt context where interrupts are disabled. It

does the most necessary operations only. Complex operations
are done in the top half of an interrupt service, which runs in
an application context. This scheme guarantees that interrupts
can be served as fast as possible and the loss of interrupts can
be avoided.
During the comfortable event handling scheme of the OM-

NeT++ framework the user is wrapped into a sloppy interrupt
service implementation. Complex operations are not identified
and not moved to a top half function running outside the
interrupt context. On a real WSNP such a sloppy interrupt
service implementation causes an unpredictable behavior and
its solution requires a lot of re-implementation work, which
affects the simulation results too.

D. Run-time constrains
Beside interrupt handling the run-time constrains of low

power MCU are quite hard to emulated by the OMNeT++
framework. Although Castalia supports packet delivery delays
the emulation of execution delays caused by the restricted
computing power of a low power MCU must be explicitly
implemented and can not reflect the real behavior in a suffi-
cient manner.
Especially the low power modes of the MSP430 make an

useful emulation very hard. The execution time of an interrupt
is significantly influenced by the current low power mode.
Furthermore, the MCU is often running with a lower clock
speed and is not equipped with a floating point unit. Both
make the usage of complex mathematic operation very time-
consuming. These run-time constrains must be kept in mind
during protocol implementation, otherwise they will influence
the behavior of the protocol in a non-negligible manner.

E. Compiler bugs
As mentioned before we used the TI compiler to build the

IQlevel OS for our WSNP. Although the IQlevel build envi-
ronment also supports the GCC the TI compiler is preferred by
us. But the Castalia framework running on the x86 architecture
can not be compiled by the TI compiler. We build it with the
GCC.
While porting the FET-MHR protocol to our WSNP we

learned that the TI compiler generates incorrect machine code

23

for call by value function calls with large objects. The MSP430
uses 16-bit registers to pass arguments to the called function.
For objects larger than 16-bits more than one register must
be used to hold all data. Due to a bug the compiler generates
the correct machine code for the function call preparation, but
the generated machine code of the called functions does not
use the additional registers. It uses the first register only. The
additional registers are overwritten without reading the data
before. Again, this bug does not generate a run-time error and
the trap is very complex to solve.
Although this trap is basically a compiler bug. It shows that

the usage of different compilers for the Castalia framework and
the real WSNP opens the possibility to toddle into additional
errors, which are very hard to tackle later.

V. CYCLE ACCURATE SIMULATOR (CAS)
We are still convinced that the OMNeT++ simulation frame-

work is a powerful tool set for testing and validating new,
complex network protocols. It can be used for interoperability
testing and allows an efficient testing of large networks. But
the program code is compiled for the simulation’s host, which
can differ from real WSNP in a significant manner. The traps
that we found and explained in the previous section were quite
hard to tackle.
But we are also convinced that for developing new network

protocols for specific WSNP a simulator is necessary. In the
last recent years a large set of CASs are developed. A CAS
emulates the sensor node at the machine code instruction set
level and uses the program code compiled for this machine
type. We are confident that COOJA, simulator for the Contiki
sensor node operating system, should be used for interoper-
ability tests [12]. It is based on the MSPsim, a Java-based
CAS of the MSP430 MCU [13]. It provides both a realistic
simulation with accurate timing and good debugging. While
using a CAS the program code must be compiled for the
target hardware and the simulation covers all hardware specific
constrains. Although this kind of simulation is less efficient
than the OMNeT++ framework, we are convinced that the
development effort is even less.
In [14] we describe an extension of the MSPsim by using

a SystemC interface. The presented hybrid simulator can be
used for a cycle accurate simulation in combination with
testing new hardware components written in SystemC. It is
planned to integrated the hybrid simulator in COOJA, so
that the simulator can cover simulation from hardware up to
interoperability test in an efficient manner.

VI. CONCLUSION
We presented our approach of a configurable protocol model

for sensor node operating systems, which aims to reduce the
effort for porting from one OS to another. Furthermore, we
introduced our FET-MHR that we have implemented in the
configurable protocol model. We used the Castalia framework
for testing and validating the protocol. Due to our configurable
protocol model approach we were convinced that we can use
the same implementation in the Castalia and in our real WSNP.

But we had to learn that by using the Castalia framework we
were wrapped into a sloppy protocol implementation, which
was very hard to port to our specific WSNP. In this short
progress report we presented five major traps that we found
during our porting work. We described the trap’s background
and explained why these are very hard to find and solve. In
the last section we mentioned an alternative approach based
on a CAS, which supports testing of compiled native code.
We are convinced that this approach can help to avoid these
kind of errors and helps to expose problems earlier.

ACKNOWLEDGEMENTS
The research leading to these results has received funding

from the Federal Ministry of Education and Research (BMBF)
under grant agreement No. 16 BN1110.

REFERENCES
[1] O. Stecklina, P. Langendörfer, and C. Goltz, “A Fair Energy Trade Multi-

Hop Routing in Wireless Sensor Networks,” in Proceedings of the 6th
Joint IFIP Wireless and Mobile Networking Conference, ser. WMNC
2013, Dubai, UAE, April 2013.

[2] IHP, “IQlevel: Innovative high Quality level meter,” 2010. [Online].
Available: http://www.ihp-microelectronics.com/en/research/wireless-
systems-and-applications/projects/iq-level.html

[3] ——, “Aeternitas: Energieeffizientes Wakeup-System für draht-
lose Sensorknoten,” 2012. [Online]. Available: http://www.aet-
projekt.de/partner IHP.html

[4] K. Piotrowski, A. Sojka, and P. Langendörfer, “Body Area Network for
First Responders - a Case Study,” in Proceedings of the 5th International
Conference on Body Area Networks, Sep. 2010.

[5] O. Stecklina, D. Genschow, and C. Goltz, “TandemStack - A Flexible
and Customizable Sensor Node Platform for Low Power Applications,”
in Proceedings of the 1st International Conference on Sensor Networks,
ser. Sensornets 2012, Rome, Italy, February 2012.

[6] A. Varga, “The omnet++ discrete event simulation system,” in Pro-
ceedings of the European Simulation Multiconference, ser. ESM 2011,
Prague, Czech Republic, June 2001.

[7] OMNeT++, “Network Simulation Framework.” [Online]. Available:
http://www.omnetpp.org/index.php

[8] A. Boulis, “Castalia: revealing pitfalls in designing distributed algo-
rithms in WSN,” in Poster proceedings of the 5th international confer-
ence on Embedded networked sensor systems, ser. SenSys’07, Sydney,
Australia, November 2007.

[9] Castalia, “Wireless Sensor Network Simulator.” [Online]. Available:
http://castalia.research.nicta.com.au/index.php/en/

[10] M. Brzozowski and P. Langendörfer, “Is Cross-Platform Protocol Stack
Suitable for Sensor Networks? Empirical Evaluation,” in Proceedings
of the 6th Joint IFIP Wireless and Mobile Networking Conference, ser.
WMNC 2013, Dubai, UAE, April 2013.

[11] K. Walther and J. Nolte, “A Flexible Scheduling Framework for Deeply
Embedded Systems,” in Proceedings of the 21st International Confer-
ence on Advanced Information Networking and Applications Workshops
- Volume 01, ser. AINAW ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 784–791.

[12] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
Level Sensor Network Simulation with COOJA,” in Proceedings of the
1st IEEE International Workshop on Practical Issues in Building Sensor
Network Applications, ser. SenseApp, Tampa (Florida), USA, November
2006.

[13] J. Eriksson, A. Dunkels, N. Finne, F. Österlind, T. Voigt, and N. Tsiftes,
“Demo abstract: MSPsim - an extensible simulator for MSP430-
equipped sensor boards,” in Proceedings of the 5th European Conference
on Wireless Sensor Networks, ser. EWSN ’08, Bologna, Italy, Jan. 2008.

[14] O. Stecklina, F. Vater, T. Basmer, and E. B. und Hannes Menzel,
“Hybrid Simulation Environment for Rapid MSP430 System Design
Test and Validation using MSPsim and SystemC,” in Proceedings of
the 14th Symposium on Design and Diagnostics of Electronic Circuits
and Systems, ser. DDECS 2011, Cottbus, Germany, April 2011.

24

Semantische Annotationen für das IoT

Henning Hasemann und Alexander Kröller
Institut für Betriebssysteme und Rechnerverbund, Algorithmik

Technische Universität Braunschweig
38106 Braunschweig

{h.hasemann,a.kroeller}@tu-bs.de

Abstract—Dieser erweiterte Abstract gibt einen Überblick über
den Wiselib RDF Provider und den Wiselib TupleStore, zwei Kompo-
nenten, die es ermöglichen, eingebettete Systeme mit dem Semantic
Web zu verbinden. Diese legen den Grundstein für eine nicht vorher
dagewesene Flexibilität in der Anwendungsentwicklung und eine
vollständige Integration von eingebetteten Systemen in das Future
Internet. Unsere Software speichert semantische Daten komprimiert
auf eingebetteten System und ist durch die Verwendung der Wiselib
portabel auf zahlreiche Plattformen (unter anderem Contiki und
TinyOS). Die semantischen Daten können im RAM oder auf
einem Block Device (bspw. SD-Karten) abgelegt werden. Durch
Modularisierung werden verschiedene Trade-Offs im Bezug auf
Codesize, Energie und Speicherverbrauch erlaubt, die wir in dieser
Arbeit kurz beleuchten werden.

I. EINLEITUNG

Seit einigen Jahren sind wir Zeuge des Trends, eingebettete
Systeme in das existierende Internet zu integrieren; insbesondere
im Endanwender-Bereich ist diese Entwicklung wahrnehmbar.
Im Internet of Things (IoT) werden eingebettete Geräte mit
limitierten Ressourcen zu First-Class-Citizens im Internet. Dies
steht im Kontrast zu der bisherigen Rolle dieser Geräte als
reine Datenlieferanden an leistungsstärkere Systeme. Dies bringt
einige Herausforderungen mit sich:

Auto-Konfiguration: Komponenten im IoT sollten selb-
stbeschreibend und selbstkonfigurierend sein, und nicht abhängig
sein von spezieller Infrastruktur oder manueller Konfiguration.

Heterogenität: Eingebettete System werden von vielen
verschiedenen Herstellern für unterschiedlichste Einsatzge-
biete angeboten. Dies führt zum einen zu einer großen
Zahl verschiedener Prozessor- und Betriebssystem-Plattformen,
aber auch zu einer Vielzahl an verschiedenen Ressourcen-
Konfigurationen im Bezug auf verfügbare Prozessorleistung und
Energiequellen sowie nutzbaren Speicher. Ein erfolgreiches Sys-
tem für das IoT muss also nicht nur hohe Portabilität aufweisen,
sondern auch die Möglichkeit bereitstellen, den Ressourcen-
Verbrauch der Komponenten zu balancieren.

Daten-Integration: Das IoT hat heute schon viele Anwen-
dungsbereiche und wir erwarten, dass deren Anzahl steigen
wird. Um Zukunftssicherheit zu gewährleisten, müssen Systeme
Fakten auf universelle Art speichern und verarbeiten können.
Eine rein Menschen-orientierte Darstellung wie im bisheringen
Internet vorwiegend anzufinden ist nicht vorteilhaft. Eingebettete
Systeme erzeugen in der Regel dynamische Daten (z.B. Sensor-
daten), die erst im Verbund mit anderen (statischen) Daten für
Anwendungen sinnvolle Informationen ergeben. Somit ist eine
maschinenverarbeitbare Darstellung wünschenswert.

Mit dem Standard 6LowPAN [1] existiert seit einiger Zeit
die Möglichkeit, Netzwerke aus eingebetteten Systemen direkt
mit dem Internet zu verbinden. 6LowPAN erlaubt dabei Au-
tokonfiguration auf IP-Ebene. Eine weitere neue Entwicklung
ist das Constrained Application Protocol (CoAP) [2], das eine
Ressourcen-effiziente Alternative zu HTTP für eingebettete Sys-
teme zur Verfügung stellt und damit RESTful Webservices auf
diesen Systemen ermöglicht, so dass diese leicht an des Web
angebunden werden können.

Diese Arbeit beschäftigt sich mit der Entwicklung eines
portablen und modularen Systems, das semantische Daten-

Integration für das IoT zur Verfügung stellt. Somit adressiert es
die übrigen beiden Herausforderungen. Verschiedene Ansätze für
die Darstellung von Sensor-, Meta- und Anwendungsdaten auf
eingebetteten Systemen existieren. Diese Ansätze haben jedoch
gemein, dass sie inhärent auf einen bestimmten Anwendungs-
bereich der Daten beschränkt sind. Dies macht sie ungeeignet
als Basis für das IoT, das unserer Ansicht nach fortlaufend neue
Anwendungsbereiche erschliessen wird.

Das Semantic Web [3] bezeichnet eine Entwicklung, Daten im
Web in semantischer Form verfügbar zu machen. Die Kodierung
von Wissen erfolgt dabei mittels des Resource Description
Framework (RDF) [4], welches semantische Fakten in Subjekt–
Prädikat–Objekt-Tripeln ausdrückt. Semantische Objekte, die
in Rolle von Subjekt, Prädikat oder Objekt stehen, werden
dabei über eine URI identifiziert, deren Verfolgung weitere
RDF-kodierte Informationen zu dem jeweiligen Objekt liefert.
Auf diese Weise ist es möglich, beliebige Sachverhalte zu
beschreiben und miteinander in Verbindung zu setzen. Die An-
zahl der im Semantic Web verfügbaren RDF-Dokumente in Form
von Linked Data [5] ist in den vergangenen Jahren drastisch
angewachsen und stellt eine enorme semantische Wissensba-
sis dar, die leicht erweiterbar ist und es ermöglicht, aus der
Kombination von verteilt gelagerten Fakten Schlussfolgerungen
zu ziehen und somit neues Wissen zu erlangen. Wir glauben,
dass es möglich ist, das IoT und das Semantic Web sinnvoll
miteinander zu verbinden und eingebettete Systeme zu schaffen,
die sich selbst semantisch beschreiben und auf diese Weise die
Integration in das Future Internet auf Daten-Ebene ermöglichen.

Der Rest dieses Dokuments ist wie folgt aufgeteilt: In Ab-
schnitt II gehen wir auf verwandte Arbeiten ein, Abschnitt III
erläutert den Aufbau unseres Systems, das wir in Abschnitt IV
experimentell evaluieren, bevor wir in Abschnitt V zu einem
Schlusswort kommen.

II. RELATED WORK

Rao et al. schlagen vor, Sensor-Datenströme mit RDF zu
annotieren [6], allerdings wird dabei ein zentraler Proxy vo-
rausgesetzt, der die eigentliche Annotation vornimmt, so dass
das eingebettete Gerät nicht selbstbeschreibend ist. Das Open
Geospatial Consortium (OGC) schlägt einen ähnlichen Ansatz
vor, bei dem SensorML [7] verwendet wird um Komponenten
zu beschreiben. SensorML wird üblicherweise in XML serial-
isiert, weswegen auch hier meist ein Proxy für die Annotation
oder Übersetzung verwendet wird, wie bei Bröring et al. [8]
und D’Aquin et al. [9]. Desweiteren hat SensorML ein klar
definiertes Anwendungsgebiet und ist somit nicht universell für
zukünftige Anwendungen einsetzbar.

Zahlreiche Datenbanken für eingebettete Systeme wurden in
letzter Zeit vorgestellt: Für den Anwendungsfall von Delay Toler-
ant Networks (DTN) haben Sadler und Martonosi eine spezielle
Datenbank entwickelt [10]. Die Systeme TeenyLime [11],
[12] und Agilla [13] stellen verteile Tuple-Store-Systeme zur
Verfügung. Tsiftes et al. präsentieren eine kompakte relationale
Datenbank für eingebettete Systeme [14]. Keines dieser Systeme
geht dabei allerdings speziell auf das Speichern von RDF ein.
Aufgrund der hohen Redundanz dieser Daten, ist eine Betrach-
tung der Kompressionsmöglichkeiten jedoch unabdingbar.25

Fernández und Martı́nez-Prieto stellen mit HDT [15]
eine fortschrittliche Kompressionsmethode für RDF-Daten zur
Verfügung. Diese ist allerdings auf die Serialisierung von RDF-
Daten ausgelegt und erlaubt es nicht, die enthaltenen Tupel
kosteneffizient zu aktualisieren. Su und Riekki [16] schla-
gen einen gänzlich anderen Ansatz vor, bei dem die einge-
betten Geräte ein Template einer RDF-Beschreibung und die
einzufügendenen Rohdaten (wie z.B. Sensorwerte) im Speicher
halten. Dieser Ansatz ist zwar speicher-effizient, verhindert aber
eine echte Universalität in den Beschreibungen und damit eine
zukunftssichere Daten-Integration.

III. ARCHITEKTUR

A. Heterogenität

Um ein System entwickeln zu können, das auf verschiedener
Hardware verfügbar ist, ist es notwendig, auf fortgeschrittene
Features wie dynamische Speicherverwaltung, Exception Han-
dling, Run-Time Type Identification und Virtual Inheritance zu
verzichten, da diese nicht auf allen Plattformen verfügbar sind.
Desweiteren ist die Speicherplatz für Programmcode in der Regel
limitiert, was Laufzeit-Abstraktionen unattraktiv macht.

Die Wiselib [17] ist eine Algorithmenbibliothek für einge-
bettete Systeme, die sich dieser Problemstellung annimmt.
Durch die Verwendung von C++-Templates stellt sie —
ähnlich Boost oder der C++ Standard Template Library (STL)
— einen potenten Mechanismus zur Verfügung, um Mod-
ularität zur Übersetzungszeit abzuhandeln und vermeidet so
zusätzlichen Code für Laufzeit-Abstraktionen. Die Wiselib stellt,
neben Hardware-Abstraktion und einer Fülle von Algorithmen
aus verschiedenen Kategorien, eine Sammlung von Container-
Datenstrukturen analog zu der STL bereit.

Der Wiselib RDF Provider ist implementiert als eine Reihe
von Wiselib-Komponenten, die zur Übersetzungzeit austauschbar
sind und so verschiedene Ressourcen-Tradeoffs erlauben.
Betriebssystem-Details wie das Versenden von Nachrichten wer-
den von der Wiselib gekapselt. Der Wiselib RDF Provider ist
dadurch für eine Vielzahl von Plattformen verfügbar, darunter
TinyOS [18] und Contiki [19].

B. Dokumentstrukturen

Es liegt zunächst die Vermutung nahe, dass das eingebettete
System vollständig und sinnvoll mit einem einzelnen RDF-
Dokument beschrieben werden kann. Obwohl dies ohne weiteres
möglich ist, stellt sich die Frage, ob ein Client bei jeder An-
frage die gesamte semantische Beschreibung benötigt. Es wäre
zum Beispiel annehmbar, dass große Teile der Beschreibung
statisch sind, während andere, wie aktuelle Sensorwerte, sich
häufig ändern. Im Interesse der Energieeffizienz erlaubt der
Wiselib RDF Provider daher, mehrere sich überlappende RDF-
Dokumente zu verwalten. So ist es zum Beispiel möglich,
neben einem Dokument mit einer kompletten Beschreibung des
Systems ein Teildokument anzufordern, welches nur aktuelle
Sensorwerte enthält, weil davon ausgegangen werden kann, dass
sich Metadaten wie die Maßeinheit oder andere Annotationen
seit der letzten Messung nicht geändert haben.

C. Aufbau

Das von uns vorgestellte System besteht aus einer An-
zahl Protokollhandler, dem RDF Service Broker und dem
Wiselib TupleStore. Anfragen an semantische Dokumente von
Clients können über CoAP oder andere, modular ergänzbare
Protokoll-Handler an das System gesendet werden. Der RDF
Service Broker schlägt im Wiselib TupleStore die entsprechen-
den Tripel nach, die Teil des angefragten Dokuments sind, und
antwortet mit einem serialisierten RDF-Dokument. Sensordaten
und Sensor-Metadaten werden in Form von RDF-Tripeln in den
TupleStore eingefügt. Für Protokolle die das publish/subscribe-
Pattern unterstützen, stellt der RDF Service Broker zusätzlich

Data
Codec Dictionary

Tuple

Tuple

Block Interface Memory Management

Operating System

TupleStore

Wiselib

Platform

Erase
Query

Insert

Basic DS

Fig. 1. Überblick über die TupleStore Architektur. TupleContainer (rechts) und
Dictionary speichern die Tupel. Der (optionale) Codec stellt eine transparente
Huffman-Kompression zur Verfügung.

v1

v2

v3

v4

2 7

2 4 5 9 13 15

h(v1) = h(v2) = h(v3) = 2
h(v4) = 4

B+ Tree internal nodes

B+ Tree leaf nodes

Linked list
of values

Fig. 2. HashSet-Implementierung basierend auf einem B+ Baum [23].
Baum-Schlüssel sind Hash-Werte von Tupel-Elementen (Dictionary) oder Hash-
Werte über Dictionary-Key-Tupel (Tupel-Container). Kollisionen werden in einer
Linked List verwaltet. Als Keys für sofortiges Abrufen von Dictionary-Einträgen
werden die Speicheradressen der Einträge verwendet.

die Möglichkeit bereit, Protokollhandler über Änderungen an
Dokumenten im TupleStore zu informieren, was zum Beispiel
mittels CoAP Observe [20] dazu verwendet werden kann, Clients
automatisch über Änderungenen an relevanten Teilen der se-
mantischen Beschreibung eines Knoten zu benachrichtigen. Im
Folgenden beschreiben wir die Komponenten des Systems:

1) Wiselib TupleStore: Der Wiselib TupleStore hat die Auf-
gabe, semantische Tupel zu speichern. Da diese zum großen Teil
aus URIs bestehen, die eine hohe Redundanz aufweisen und
häufig mehrfach auftauchen, ist eine komprimierte Speicherung
der Daten naheliegend. Zu diesem Zwecke besteht der Tuple-
Store aus drei Komponenten: Tuple Container, Dictionary und
Codec, wie in Abbildung 1 dargestellt.

Der Codec komprimiert alle Strings von einzufügenden Tu-
peln unabhängig voneinander unter Benutzung eines komprim-
iert abgelegten, auf typische RDF-Daten optimierten statischen
Huffman-Baums [21]. Alle eingefügten (kodierten) Strings wer-
den im Dictionary abgelegt, das Wiederholungen und andere
Redundanzen zwischen mehreren Tupel-Elementen zur Speicher-
platzersparnis ausbeutet. Wie auch der Codec ist das Dictionary
modular austauschbar. Wir stellen zwei RAM-basierte Dictio-
naries zur Verfügung: Das AVL-Dictionary, welches Element
in einem AVL-Baum verwaltet, und das Prescilla Dictionary,
welches eine Variante des PATRICIA Tree [22] verwendet um
gemeinsame Präfixe in Tupel-Elementen auszunutzen.

Beide Dictionary-Implementierungen verwenden Pointer auf
entsprechende Baum-Knoten als Keys, mit denen die gespe-
icherten Strings in konstanter Zeit gefunden werden können.
Der TupleContainer hält Tupel von Dictionary Keys und damit
indirekt eine Menge von Tupeln von Strings. Alle Container-
Typen, die die entsprechenden grundlegenden Methoden bereit-
stellen, können verwendet werden, darunter die in der Wiselib
bereits vorhandenen vector_static, vector_dynamic,
list_static, list_dynamic und set_static.

Zusätzlich zu diesen RAM-basierten Ansätzen stellen wir
eine TupleContainer- sowie eine Dictionary-Komponente bereit,
die auf einem B+ Hashset basieren, siehe Abbildung 2. Tupel-
Store und Codec führen Kompression und Dekompression von
Tupeln dabei transparent aus, so dass der RDF Provider und
andere Nutzer des TupleStore von der Verwendung von Codec26

und Dictionary entkoppelt sind.

2) Protokolle und Serialisierungen: Der Wiselib RDF Broker
stellt zwei Interfaces zur Bearbeitung der TupleStore Daten
zur Verfügung: Das Document Level Interface und das Com-
mand Interface. Über das Document Level Interface können
RDF-Dokumente erzeugt, gelesen und gelöscht sowie Listener
für das publish/subscribe-Pattern registriert werden. Dabei ist
ein Dokument eine Menge von Tupeln im TupleStore, die
vom Broker über eine zusätzlich gespeicherte Bitmaske als
zusammengehörig identifiziert werden. Auf diese Weise koennen
Dokumente sich überlappen. Das Command Interface auf der
anderen Seite ermöglicht ressourcensparend einzelne Tupel mit
Transaktionslogik einzufügen oder zu löschen.

Wir stellen eine CoAP-Implementierung zur Verfügung,
die eine CoAP-Ressource mit RESTful interface pro RDF-
Dokument bereitstellt. Die Wiselib CoAP Implementierung
unterstützt publish/subscribe sowie Blockwise Transfer und
ermöglicht damit den Transport von Dokumenten, die länger
als eine MTU sind. Für Systeme, deren Ressourcen für CoAP
zu beschränkt sind, stellen wir das einfache Broker-To-Broker
Protocol vor, das das Command Interface des Clients benutzt
um Dokumente des Server-Knoten entgegenzunehmen und somit
auf zusätzlichen Code für die Verwaltung von Protokollzuständen
verzichten kann.

RDF, welches als solches ein reines Datenmodell darstellt,
kann auf verschiedene Weisen serialisiert werden. Bekannte
RDF-Serialiserungen beinhalten RDF/XML, Turtle und Nota-
tion 3 (N3). Wie die meisten RDF-Serialisierungen sind diese
allerdings auf Menschen-Lesbarkeit ausgerichtet und daher sehr
redundante Formen der Darstellung. Eine sehr viel kompaktere
Darstellung liefert HDT, welches zunächst ein Dictionary mit
allen verwendeten Strings serialisiert, die gefolgt wird von einer
kompakten Darstellung von Dictionary-Key-Tupeln. Für die Im-
plementierung auf eingebetteten Systemen hat diese Darstellung
jedoch den Nachteil, dass vor dem Iterieren über die Tupel
eines Dokuments nicht ohne zusätzlichen (ggf. erheblichen)
Speicherverbrauch ein zu kommunizierendes Dictionary zusam-
mengestellt werden kann.

Unsere Adaption dieses Verfahrens auf eingebettete Sys-
teme, Streaming HDT, kann den Datenstrom Paket für Paket
erstellen. Dies wird wie folgt erreicht: Der Versender einer RDF-
Dokuments legt zunächst die Tabellengröße entsprechend seines
verfügbaren Speichers fest und beginnt dann über die Tupel zu
iterieren. Jedes angetroffene Tupel-Element wird in der Tabelle
nachgeschlagen. Falls es dort noch nicht vorhanden ist, wird
es eingefügt und ein entsprechendes insert-Kommando als
Teil des Streams zum Empfänger gesendet. Ähnlich wie bei
HDT bestehen Tupel in SHDT aus Dictionary- bzw. Tabellen-
Keys. Im Unterschied zu HDT wird außer für die Tabelle fester
Größe und dem aktuell erzeugten Datenpaket kein Speicherplatz
belegt. Da die Tabellengröße aber unabhängig von der Anzahl
der zu versendenden Elemente ist, kann es notwendig sein,
Tabelleneinträge zu überschreiben und insert-Kommandos
zu wiederholen. Alternativ stellen wie eine Serialisierung zur
Verfügung, die kompatibel zu Google Protocol Buffers1 ist.

IV. EVALUATION

A. Codesize

Tabelle I zeigt den Wiselib RDF Provider kompiliert für ver-
schiedene Plattformen und veranschaulicht die möglichen Trade-
Offs: Unter Verwendung des Broker-to-Broker Protokolls für
Datenübertragung können wir einen TelosB-Knoten mit TinyOS
mit 8kB Code mit einem kompletten RDF Store ausstatten, der
Zugriff auf Tupel- oder Dokumentebene erlaubt und es somit
ermöglicht, den Knoten in das Semantic Web zu integrieren.
Für zusätzliche 5kB Codesize können wir Broker-to-Broker aus-
tauschen gegen CoAP in Kombination mit der komprimierenden

1https://developers.google.com/protocol-buffers/

SHDT Serialisierung und auf diese Weise die Kompatibilität
auf Protokollebene drastisch erhöhen. Gleichzeitig senkt diese
Änderung das transferierte Datenvolumen und damit den En-
ergieverbrauch.

B. Tuplestore Performance

Die Auswahl verschiedener TupleStore-Komponenten
ermöglicht einen Trade-Off zwischen Speicherverbrauch und
Energieverbrauch. Im einfachsten Fall verwenden wir einen
einfachen TupleStore ohne Dictionary oder Codec. Wie
Abbildung 4 veranschaulicht, kann diese Variante allerdings
eine sehr schlechte Speicherbilanz bedeuten. Aufgrund
seiner geringen Code-Komplexität ist dieser Ansatz dabei
einer der energieeffizientesten, siehe dazu Abbilding 3.
Durch Verwendung des Prescilla-Dictionaries können wir
die Kompression in der Regel drastisch erhöhen, ohne große
Einbußen bei der Energieeffizienz hinnehmen zu müssen.

Im Falle von URIs mit wenig Präfix-Gemeinsamkeiten, wie
in der Billion Triple Challenge vorkommen, kann das AVL
Dictionary durch seinen etwas geringeren konstanten Speicher-
Overhead besser Kompressionsergebnisse erzielen, siehe Abbil-
dung 4. AVL hat aber aufgrund der komplexen Rotationsopera-
tionen einen merklich höheren Energiebedarf. Auf Systemen, auf
denen Block-Storage (z.B. eine SD-Karte) verfügbar ist, kann
eine deutlich größere Menge an Daten untergebracht werden,
so dass eine elementweise Kompression oftmals nicht mehr
notwendig wird. Falls genug RAM verfügbar ist, kann dieser
als Cache genutzt werden um Zugriffszeit und Energieverbrauch
drastisch zu senken, siehe Abbildung 3.

C. Streaming HDT

Durch die variable Tabellengröße liefert SHDT einen di-
rekten konfigurierbaren Trade-Off zwischen RAM-Verbrauch
und Länge der Serialisierung, welche, z.B. beim Versenden
über Funk direkte Auswirkungen auf den Energieverbrauch hat.
Die Tabelle in Abbildung 4 vergleicht die Serialisierung einer
RDF-Knotenbeschreibung im N-Triples-Format und der SHDT-
Serialisierung des selben Dokuments für verschiedene Tabel-
lengrößen.

V. FAZIT

Wir haben gezeigt, dass es möglich ist, semantische Daten
auf eingebetteten Systemen zu speichern und verarbeiten. Dank
konsequenter Modularität erlaubt das System eine Balancierung
von Codesize, Energie- und Speicherverbrauch. Dies ermöglicht
die Anbindung von eingebetteten Systemen an das Semantic
Web und stellt damit die Grundlage für die Integration des
IoT mit dem Future Internet dar, welche die Verbindung von
dynamischen Informationen wie Sensordaten mit einer Fülle an
bereits existierenden semantischen Daten ermöglicht.

ACKNOWLEDGMENT

Diese Arbeit wurde teilweise unterstützt von der Eu-
ropäischen Union (ICT-2009-258885, SPITFIRE).

REFERENCES

[1] G. Mulligan, “The 6LoWPAN architecture,” in Proc. 4th workshop on
Embedded networked sensors (EmNets ’07). ACM, 2007, pp. 78–82.

[2] B. Frank, Z. Shelby, K. Hartke, and C. Bormann, “Constrained
application protocol (CoAP),” IETF draft, Jul. 2011. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-core-coap/

[3] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web: a new
form of web content that is meaningful to computers will unleash a
revolution of new possibilities,” Scientific American, vol. 284, no. 5, pp.
34–43, 2001.

[4] G. Klyne and J. J. Carroll, “Resource Description Framework: Concepts
and Abstract Syntax,” W3C recommendation, W3C, Tech. Rep., Feb.
2004. [Online]. Available: http://www.w3.org/TR/rdf-concepts/27

https://developers.google.com/protocol-buffers/
https://datatracker.ietf.org/doc/draft-ietf-core-coap/
http://www.w3.org/TR/rdf-concepts/

Protokolle Serialisierungen
Plattform RDF Broker CoAP Broker-to-Broker Protobuf Streaming HDT
iSense 5139 11048 / 264 9136 / 1964 3836 / 424 3120 / 4 1792 / 40
iSense 5148 5824 / 264 6240 / 1968 2072 / 424 1616 / 8 1372 / 44
Contiki / MicaZ 8580 / 522 7796 / 1816 3666 / 343 2840 / 13 1630 / 20
TinyOS / TelosB 6146 / 134 5798 / 1840 1898 / 266 1464 / 2 970 / 20
TinyOS / MicaZ 8648 / 524 7188 / 1816 3348 / 339 2840 / 13 1588 / 20

TABLE I. CODESIZE EINZELNER KOMPONENTEN. SCHREIBWEISE: “ROM/RAM”. ROM IST DIE GRÖSSE DES .text-SEGMENTS, RAM DIE GRÖSSE VON
.bss UND .data. DAS BROKER-TO-BROKER PROTOCOL (B2B) BENÖTIGT KEINE SERIALISIERUNGSKOMPONENTE.

0 50 100 150 200 250
Contained tuples

0

50

100

150

200

250

300

350

400

µ
Jp

er
in

se
rt TS Only

AVL
Prescilla
Prescilla & Codec
AVL & Codec
Block
Block & Cache

50100150200250300
Contained tuples

0

100

200

300

400

500

600

µ
Jp

er
er

as
e

TS Only
AVL
Prescilla
Prescilla & Codec
AVL & Codec
Block
Block & Cache

Konfiguration µJ / find
TS Only 6.71
AVL 42.44
AVL & Codec 62.23
Prescilla 2.15
Prescilla & Codec 57.69
Block 203.85
Block & Cache 68.15

Fig. 3. Energieverbrauch beim Einfügung (links), Löschen (mitte) und Suchen nach Tupeln auf einem iSense 5148 Sensorknoten.

0 100 200 300 400 500 600 700
Inserted Tuples

0k

10k

20k

30k

40k

50k

60k

70k

Fr
ee

R
A

M

TS Only
AVL
Prescilla
AVL & Codec
Prescilla & Codec

0 50 100 150 200 250 300 350
Inserted Tuples

0k

10k

20k

30k

40k

50k

60k

70k

Fr
ee

R
A

M

TS Only
AVL
Prescilla
AVL & Codec
Prescilla & Codec

Tabelle Serialisierung
N-Triples

- 7686
SHDT

3 6928
8 5682

16 4277
32 3489
64 3046
128 2851

Fig. 4. Freier Speicher bei Verwendung des TupleStores auf einem iSense 5148 Sensorknoten. Die Abbildung zeigt den freien Speicher nach Einfügen von Tupeln.
Die eingefügten Tupel sind typischer Smart Service Proxy output2 (links) bzw. zufällige Tupel aus der Billion Triple Challange3 (mitte). Tabelle Rechts: Größe eines
mit SHDT serialisierten Dokuments im Vergleich zur N-Triples-Serialisierung, abhängig von der verwendeten Tabellengröße.

[5] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The Story So Far,”
International Journal on Semantic Web and Information Systems (IJSWIS),
vol. 5, no. 3, pp. 1–22, 2009.

[6] K. R. Rao, T. R. Kumar, and M. N. Rao, “Architecture for automatic
semantic annotation to discover knowledge from heterogeneous sensor
data,” International Journal of Computer Applications in Engineering
Sciences, vol. 1, no. 2, pp. 137 –140, 2011.

[7] M. Botts, G. Percivall, C. Reed, and J. Davidson, “Sensor web enablement:
Overview and high level architecture,” OGC, Tech. Rep., December 2007.

[8] A. Bröring, J. Krzysztof, C. Stasch, and W. Kuhn, “Semantic challenges
for sensor plug and play,” in Proc. 9th International Symposium on Web
and Wireless Geographical Information Systems, 2009, pp. 72–86.

[9] M. d’Aquin, A. Nikolov, and E. Motta, “Enabling lightweight semantic
sensor networks on android devices,” in Proc. 4th International Workshop
on Semantic Sensor Networks (SSN), 2011.

[10] C. M. Sadler and M. Martonosi, “DALi: A Communication-Centric
Data Abstraction Layer for Energy-Constrained Devices in Mobile
Sensor Networks,” in Proceedings of the 5th international conference
on Mobile systems, applications and services (MobiSys). New York,
New York, USA: ACM Press, Jun. 2007, p. 99. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1247660.1247674

[11] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco, “Programming Wire-
less Sensor Networks with the TeenyLime Middleware,” in Proceedings
of the International Conference on Middleware, Nov. 2007, pp. 429–449.

[12] M. Ceriotti, M. Corra, L. D’Orazio, R. Doriguzzi, D. Facchin, S. Guna,
G. P. Jesi, R. Lo Cigno, L. Mottola, A. L. Murphy, M. Pescalli, G. P.
Picco, D. Pregnolato, and C. Torghele, “Is there light at the ends of the
tunnel? Wireless sensor networks for adaptive lighting in road tunnels,”
in Proceedings of the 10th International Conference on Information
Processing in Sensor Networks (IPSN), 2011, pp. 187–198.

[13] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: A Mobile Agent Middleware
for Self-Adaptive Wireless Sensor Networks,” ACM Transactions on
Autonomous and Adaptive Systems, vol. 4, no. 3, pp. 1–26, Jul. 2009.

[14] N. Tsiftes and A. Dunkels, “A database in every sensor,” in Proc. 9th ACM

Conference on Embedded Networked Sensor Systems (SenSys), 2011, pp.
316–332.

[15] J. D. Fernández, M. A. Martı́nez-Prieto, and C. Gutierrez, “Compact
representation of large RDF data sets for publishing and exchange,” in
Proceedings of the 9th International Semantic Web Conference (ISWC).
Shanghai: Springer, 2010, pp. 193–208.

[16] X. Su and J. Riekki, “Bridging the Gap between Semantic Web and Net-
worked Sensors: A Position Paper,” in Proceedings of the 3rd International
Workshop on Semantic Sensor Networks (SSN). Shanghai: CEUR, 2010.

[17] T. Baumgartner, I. Chatzigiannakis, S. P. Fekete, C. Koninis, A. Kröller,
and A. Pyrgelis, “Wiselib: A generic algorithm library for heterogeneous
sensor networks,” in Proc. 7th European Conference on Wireless Sensor
Networks (EWSN 2010), 2010, pp. 162–177.

[18] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, “TinyOS: An Oper-
ating System for Sensor Networks,” in Ambient Intelligence. Springer,
2005, pp. 115–148.

[19] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki – A Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in Proceedings
of the 29th Annual IEEE International Conference on Local Computer
Networks, 2004, pp. 455–462.

[20] K. Hartke, “Observing resources in CoAP,” IETF draft, 2013. [Online].
Available: http://datatracker.ietf.org/doc/draft-ietf-core-observe/

[21] D. Huffman, “A Method for the Construction of Minimum-Redundancy
Codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[22] D. Morrison, “PATRICIA – Practical Algorithm To Retrieve Information
Coded in Alphanumeric,” Journal of the ACM, vol. 15, no. 4, pp. 514–534,
1968.

[23] R. Bayer and E. M. McCreight, “Organization and maintenance of large
ordered indexes,” Acta Informatica, vol. 1, no. 3, pp. 173–189, 1972.

2http://spitfire-project.eu/ssp
3http://challenge.semanticweb.org/28

http://dl.acm.org/citation.cfm?id=1247660.1247674
http://datatracker.ietf.org/doc/draft-ietf-core-observe/
http://spitfire-project.eu/ssp
http://challenge.semanticweb.org/

Directed Link Utilization with Mahalle+
Gerry Siegemund, Volker Turau

Institute of Telematics
Hamburg University of Technology

Email: {gerry.siegemund, turau}@tu-harburg.de

Stefan Lohs, Jörg Nolte
Distributed Systems \ Operating System Group
Brandenburg University of Technology Cottbus

Email: {slohs, jon}@informatik.tu-cottbus.de

Abstract—Self-stabilization provides non-masking fault toler-

ance in distributed systems. Self-stabilizing algorithms (SSA) are

defined on the assumption that either the system’s topology is

fixed over time or topology changes are isolated events occurring

at a very low rate. These assumptions are not valid in wireless

sensor networks (WSNs) where link qualities change rapidly.

Therefore, neighborhood management protocols (NMP) are used

to ensure the stability of the network topology for a longer time

period. Furthermore, symmetrical links between nodes are more

desirable than unsymmetrical ones, therefore, unidirectional links

are often omitted. This paper presents an augmentation of the

NMP Mahalle

+
to transparently utilize certain unidirectional

links to increase the performance of SSAs running on top of

Mahalle

+
.

I. INTRODUCTION

Self-stabilizing distributed systems are guaranteed to con-
verge to a desired state or behavior in finite time, regardless
of the initial state. Convergence is guaranteed, i.e., after the
system is affected by transient faults of unknown scale or
nature, it will return to the desired behavior. Hence, self-
stabilization is a powerful approach for non-masking fault-
tolerance. The actions of each individual node of a self-
stabilizing system lead to a global behavior possibly not
known to each entity. A node can only evaluate its local view,
i.e., its own state and that of its neighbors. Alterations of
the neighborhood relation may force nodes to invoke rules
leading to updates of their states possibly triggering more
rule executions in the entire network. Ultimately, an algorithm
running on top of a vigorously changing topology will not
converge to a stable state. This situation occurs in WSNs
where links frequently disintegrate while others are established
regularly.

The goal of a NMP is to maintain a neighborhood relation
such that the resulting topology is stable and fulfills certain
criteria (first of all the connectedness of the induced graph).
These protocols often store histories of link quality parameters
leading to a considerable memory consumption. Since memory
is a limited resource in WSNs each node maintains only few
neighbors, resulting in new challenges. Agility and stability
are two essential abilities of neighborhood protocols. Agility
ensures that the protocol adjusts quickly to new or failing
nodes (or links) respectively. On the other hand, transient
faults, like burst errors, need to be ignored to keep the topology
stable.

Application algorithms running on top of any NMP are
influenced by the performance of it. The more stable the

produced topology the better the overall performance. Many
SSAs use the assumption of bidirectional links, i.e., each
communication channel between two nodes always works in
both ways. This assumption does not hold, according to [5]
unsymmetrical links can make over half of all connections
in a network. It has to be noted that the definition of a
unidirectional link varies greatly. One can argue that any
missed message in either direction can qualify for unidirec-
tional communication. While others argue that 50 % message
loss in either way might be expectable.

Our definition is as follows, if the link quality (defined by a
link quality estimator) in either direction is below a threshold
(Q) and in the other direction it is above, then the connection
is not symmetrical. Q may be adjusted for application needs.
Section III will offer more details on this matter.

On the other hand, self-stabilizing algorithms are not re-
stricted to symmetrical links. In [6] Masuzawa et al. developed
a unidirectional maximal independent set algorithm, neverthe-
less claiming that this tasked proved to be a difficult one.
In addition, [1] defines certain bounds for self-stabilization
in unidirectional networks, mainly for the vertex coloring
problem.

Mahalle+ [8] naturally favors symmetric links when build-
ing its neighbor list, but as long as there is space in the neigh-
borhood list, also unidirectional links will be recorded. (Since
WSNs are not synchronized from a node’s perspective all
connections are unsymmetrical at one point.) An application
running on top of Mahalle+ might only utilize the symmetrical
links.

The contribution of this paper is an augmentation of the
NMP Mahalle+, to transparently utilize directed links to in-
crease the number of available symmetric links for applications
running on top of Mahalle+.

II. RELATED WORK

Herman [3] introduced the first model for the usage of
self-stabilizing algorithms in WSNs. A fixed topology with
message loss and corruption is initiated, hence, there is no
necessity for a NMP. His main contribution is the cached
sensornet transformation (CST) where each node maintains
a copy of the state of each neighbor (with respect to the
fixed topology). Nodes periodically broadcast their state. They
only execute an action when an uncorrupted message from
each neighbor, since its last action, was received. Under
the assumption that each message is received with a fixed

29

probability and that message transmissions are independent
events the system will eventually reach a legitimate state with
probability 1 (see also [9]).

The intuitive way to set up a NMP is to add node ids of
presumable neighbors into a list. Due to the restrictions of
sensor nodes (e.g., low memory) the list will mostly have a
constant size. Should the list be full either no new neighbor
can be added or neighbors have to be removed first. Many
compared NMPs, as well as the naive implementation, will not
further update the list once it is full. Woo uses the following
replacement schemes to keep the list of neighbors up to date:
First in first out, least-recently heard, and frequency [10].

The Link Estimation Exchange Protocol (LEEP) [2] from
TinyOS, uses a fixed neighborhood table size of 10. Every
node sends out its current knowledge about all its neighbors.
The eviction policy for a full neighborhood table always
replaces the node with the least quality value of LEEPs link
quality estimator. Hence, in dense networks, when there exist
more than 10 neighbors with a high quality value, link changes
occur permanently. The quality value and LEEPs broadcasting
data can be used to determine if a node is a symmetrical one
or not.

None of the above mentioned protocols utilize unidirectional
links and we are not familiar with any NMP which takes care
of such a case. In [4, pp.106-108] a neihborhood discovery al-
gorithm for the Unidirectional Link Triangle Routing (ULTR)
protocol is introduced. The basic idea of the routing algorithm
is similar to our approach while the neighborhood discovery
can not be understood as a NMP.

III. MAHALLE+ AND FORWARDED MESSAGES

This section illustrates the neighborhood algorithm
Mahalle+. It forms a stable network topology on top of a
physical network despite transient faults. Mahalle+ uses a
link quality estimator, two lists, and a set of eviction rules to
gather a number of good neighbors. The basic state diagram
of Mahalle+ is depicted in Figure 1.

not
listed

P

L

message received from UNKNOWN
and P not full Q > Qmin

and
(free space or

better than
one existing

neighbor)

replaced by new neighbor or
Q<Qtol

time out

Fig. 1: Basic state diagram of the Mahalle+ NMP (neighbor
list L and preparation list P)

For a node to enter the preparation list P simply a message
containing Mahalle+ maintenance information needs to be
received. Concurrently received messages stimulate the assess-
ment of information about a neighboring node.

A L A C
F L A C
B A I
E F G H I

Fig. 2: Mahalle+ example neighborhood view of a single Node
A.

Fig. 3: Local view of a Node A

The link quality estimator values for a neighboring node
need to exceed a certain threshold Q

min

and stay above
another threshold Q

tol

, for a node to be at all considered as
an actual neighbor. Any link estimator can be used, while
we decided to use the very potent Holistic Packet Statistic
(HoPS) [7]. HoPS produces four different estimations which
all aid the channel evaluation.

If a nodes link quality exceeds Q
min

it can be put onto the
neighborlist L. L’s size (|L|) is restricted, therefore, certain
replacement policies are in place to keep the best possible
neighbors [8].

The originating id of all messages travailing through the
neighborhood layer is screened. Messages from unknown
senders will not be passed to upper layers. Figure 2 shows
a typical example Mahalle+ neighborhood table of a Node A.
The graphical representation of the local view of Node A can
be seen in Figure 3. Note that the arrows point out the travel
direction of messages.

In this example Node A and E are not symmetrical neigh-
bors because Node E choose not to add Node A to its neighbor
list, possibly due to a unidirectional communication chan-
nel. Mahalle+ provides two-hop neighborhood information,
therefore, Node A can logically compute that communication
between Node A and Node E is possible, even with a unidirec-
tional channel, if Node F forwards all messages from Node A.

Only slight modifications to Mahalle+s implementation
were necessary to find the relay node and change the message
format to introduce the forwarding of messages. Firstly, a new
message-type was introduced for forwarding and forwarded

messages. All nodes that are supposed to forward a message
are added at the end of such a Mahalle+ maintenance message,
including a field for the number of forwarding nodes. If the
additional information does not fit into a maintenance message,
then one, until now, unused flag in the message is set to

30

Tab. I: Mahalle+ new message types

Message Type Flag 1 Forwarding Ids

FORWARD 0 Number of and Forwarding IDs
follow; containing own ID:

forward message
FORWARD 1 Every node which receives this

message may forward it
FORWARDED * Message was forwarded; has one

extra field for preliminary
sender ID

indicate that every node receiving this message shall forward
it (Table I).

Mahalle+ sends maintenance data in regular time intervals,
it attaches its data either to application messages or sends out
the information by itself. Forwarded messages need not to be
acknowledged. They are just forwarded once by the respective
node, which also handles the neighborhood data attached.

Nodes receiving relayed messages evaluate the data differ-
ently than regular messages. First, it might happen that a Node
V accepts another Node F as a neighbor through relayed data,
but the direct link between both nodes improves (due to some
positive change in the environment). The forwarding of data is
then just useless overhead. Therefore, Node F demanding the
forwarding of its messages, should stop doing so. Furthermore,
if messages, forwarded or not, are handled the same way,
then the Node V will attach the information that Node F
is a neighbor of V to the maintenance messages. If Node
F receives such a message it computes that V and F are
symmetric neighbors, therefore, it will stop to ask for relaying
of its maintenance messages. That again will cause the pseudo

symmetric link between both nodes to break, and causing a
restart of the forwarding procedure. This would have the effect
of destabilizing the whole topology, introducing a number of
unwanted link changes.

Hence, a node in the neighbor list is either treated as a direct

neighbor or as a pseudo direct neighbor. Nodes receiving both,
direct messages of a node and forwarded messages of the same
node treat them as two different nodes (direct: F

d

, pseudo
direct: F

p

). Both nodes build up their link quality and both
can be added to the preparation list (P). If F

d

advances from
P to L the maintenance message will include the id of F

d

,
hence, node F will stop asking for forwarding of its messages.
That means that, the quality value of F

d

will drop until the
information is cleared from P . Should F

d

advance to L then
there will be no mention of this in the maintenance messages,
i.e., the message flow of forwarded messages will continue.

The basic functionality of Mahalle+ is not compromised
by this approach. The eviction algorithm may choose to keep
pseudo symmetrical neighbors or not. Their link quality is
influenced by two connections (sender ! relay ! receiver),
possibly resulting in increased message loss, this might make
them less desirable as neighbors.

IV. EVALUATION

The evaluation was accomplished using simulations with
OMNeT++ and the MiXiM framework, path-loss models and

log-normal shadowing are used to influence the channel be-
havior.

For our approach to have any effect on the system, the build
topology, and the dependent application we first assessed the
occurrence of such possible pseudo symmetric communica-
tion patterns. In several simulations over differed topologies
(quadratic, random, or line) we evaluated the number of
symmetrical and pseudo symmetrical links in the emerged
topology. Figure 4 shows these findings for different neigh-
borhood table sizes and for the following test setup: A grid
topology with 50 to 200 nodes, a varying neighborhood table
size |L| of 5 to 10 and an average degree of 11. The bottom
bars represent the pseudo symmetrical neighbors and the top
bars the symmetrical once respectively. The x-axis states the
number links on average over all nodes found and utilized by
Mahalle+.

50 100 150 200
0

20

40

60

80

100

Number of nodes (avg. degree = 11)

P
e
r
c
e
n
t
a
g
e

o
f

p
e
s
u
d
o
/
s
y
m

.
n
e
i
g
h
b

o
r
s

(
b

o
t
t
o
m

/
t
o
p
)

Fig. 4: Symmetric and possible pseudo symmetric neighbors;
different neighborhood list sizes; without forwarding messages

We have found, that the higher the number of possible
neighbors, i.e, the size of the neighbor table, the higher the
number of pseudo symmetric neighbors. Even though, on
average less than ten percent of all neighbors of a node are
pseudo symmetrical, as can be seen in Figure 4, with 200
nodes and a maximum of 2000 edges, that still concerns
roughly 100 connections. Occasionally , the number of pseudo
symmetric nodes can even reach as high as forty percent.

After applying our approach of forwarding beneficial mes-
sages an increase of symmetrical neighbors, as depicted in
Figure 5, can be found. With increasing degree our approach
yields no increase in the average utilization of symmetric
links, because the availability of symmetric links is already
very high, i.e., with a degree much higher than the possible
neighbors per node the number of symmetrical neighbors is
sufficient.

31

50 100 150 200
0

20

40

60

80

100

Number of nodes (avg. degree = 11)

P
e
r
c
e
n
t
a
g
e

o
f

p
e
s
u
d
o
/
s
y
m

.
n
e
i
g
h
b

o
r
s

(
b

o
t
t
o
m

/
t
o
p
)

Fig. 5: Symmetric and possible pseudo symmetric neighbors;
different neighborhood list sizes; with forwarding messages

Nevertheless, our approach increases the symmetrical links
to be used by an application running on top of Mahalle+,
i.e., symmetrical plus pseudo symmetrical links. Therefore,
e.g., tree construction can benefit. Short cuts trough pseudo
symmetrical neighbors can shorten the overall tree depth. This,
on the other hand, is very topology dependent, in simulation
we found that this happens rarely, but the outcomes where
never worse than with the original approach.

The presented figures only show the overall improvement
of the build topology, which are quantified as a small increase
of the average symmetrical links. In special cases, on the
other hand, our approach might help to overcome bigger
problems. Consider the node setup in Figure 6, with Mahalle+
the network will not be symmetrically connected, with our
augmentation it will be. (Note: The directed arrows point
out the chosen neighbors, the message flow is vice versa;
unlike Fig. 3).

Node 1 chooses Node 2 as a neighbor, i.e., it can re-
ceive messages from it. Node 3 chooses Node 2 and it
is symmetrically connected to Node 1. Since there is no
symmetrical connection between Sub-network I and II upper
layer algorithms relying on these connections will not work
correctly. Node 1 can compute that Node 2 did not choose it as
a neighbor, possibly due to a directed channel, and that Node
3 can act as a relay Node. Again, Node 1 hears Node 2 and
Node 2 hears Node 3, even though the relay node 3 does not
hear Node 2, it will forward the messages from Node 1. The
green arrow in the figure implicates the pseudo symmetrical
connection between Node 1 and 2. In the same way also nodes
with naturally few neighbors, like nodes on the outside or edge
of a network, can benefit from our augmentation.

1
3

2 8

9
7

4

5
6

I

II

Fig. 6: Pseudo symmetric connection, Node 3 as a relay node

CONCLUSION

We presented an augmentation to the Mahalle+ neighbor-
hood protocol, to utilize a group of unidirectional links to
increase the usefulness of Mahalle+ for applications. Our
approach does not interfere with the self-stabilizing abilities
of Mahalle+. Especially for networks with a low to medium
average degree our approach is beneficial.

ACKNOWLEDGMENTS

This research was funded by the Deutsche Forschungsge-
meinschaft (DFG), contract number TU 221/6-1.

REFERENCES

[1] Bernard, S., Devismes, S., Potop-Butucaru, M.G., Tixeuil, S.:
Bounds for self-stabilization in unidirectional networks. arXiv preprint
arXiv:0805.0851 (2008)

[2] Gnawali, O.: The link estimation exchange protocol (LEEP) (2007),
TinyOS Extension Proposal (TEP)

[3] Herman, T.: Models of self-stabilization and sensor networks. In:
Distributed Computing - IWDC 2003, LNCS, vol. 2918, pp. 205–214.
Springer (2003)

[4] Karnapke, R.: Unidirectional Links in Wireless Sensor Networks. Ph.D.
thesis, Universitätsbibliothek (2012)

[5] Lohs, S., Karnapke, R., Nolte, J.: Link stability in a wireless sensor
network–an experimental study. In: Sensor Systems and Software, pp.
146–161. Springer (2012)

[6] Masuzawa, T., Tixeuil, S.: Stabilizing maximal independent set in
unidirectional networks is hard. arXiv preprint arXiv:0903.3106 (2009)

[7] Renner, C., Ernst, S., Weyer, C., Turau, V.: Prediction accuracy of
link-quality estimators. In: Proc. 8th Europ. Conf. on Wireless Sensor
Networks (EWSN) (2011)

[8] Siegemund, G., Turau, V., Lohs, S., Karnapke, R., Nolte, J.: Agile and
stable topology control for wireless sensor networks

[9] Turau, V., Weyer, C.: Fault tolerance in wireless sensor networks through
self-stabilization. Int. J. of Com. Networks & Distribyuted Systems 2(1),
78–98 (2009)

[10] Woo, A.: A holistic approach to multihop routing in sensor networks.
Ph.D. thesis, Berkeley, CA, USA (2004)

32

Sens4U: A Modular Approach Towards the Ideal
Sensor Node Software and Hardware

Krzysztof Piotrowski and Jürgen Lösche
IHP

Frankfurt(Oder), Germany
{piotrowski|loesche}@ihp-microelectronics.com

Abstract—Low-level hardware and software development gen-
erates most of the effort in the area of specialized wireless
sensor network (WSN) applications. Additionally, testing of the
results is a complex task as well. Thus, especially for the
hardware, most of the solutions focus on some predefined or only
slightly customizable platforms. The software platform allows
more flexibility and re-usability, but the solutions are usually
limited to the software modules already known to the application
developer. These two layers are crucial, because the reliability of
the application logic developed on top of that hardware and
software platform relies on these.

The Sens4U modular approach proposes a framework that
provides speed-up to the hardware and software development,
for both, the human driven and the automated development.
This framework allows describing the hardware and software
modules, so that finding the right modules can be realized easier.
The proposed abstraction is very powerful–the modules provide
specific functionality via defined interfaces and can be connected
using these to create the desired target configuration. And the
choice between several modules providing the same interface is
driven by the values of the interface parameters that describe
the features of the provided functionality in more detail. The
modularity improves the testability and reuse of components
and thus, improves their reliability and the reliability of the
generated configurations. Having functionality encapsulated in
modules allows easier testing, what gives a good base for further
application tests and debugging.

I. MOTIVATION

Developing a wireless sensor network (WSN) or a cyber-
physical system (CPS) application is not a trivial task. And this
remains true, even if the WSN applications seem simple, i.e.,
they usually collect some data, process it and perform some
actions based on the data or deliver the processing results to
some specific nodes in the network. However, implementing
the distributed application logic and choosing the right data
processing algorithms, like network protocols or aggrega-
tion algorithms, requires knowledge on WSN programming
and a lot of testing effort. The development process may
be simplified by splitting the complete application into the
individual layers and developing them separately, i.e., the
hardware platform, the low-level software service layer and
the application logic on top of these two layers. This solution
allows also developing tailor-made and optimized hardware
and software platforms for the given application or a family
of applications.

To address this issue on the software level, the WSN
operating systems, like TinyOS [1] or Contiki [2], usually

provide kind of modularity and a library base, so that some
of the required functionality do not have to be programmed
from scratch. But unfortunately, the choice of modules, i.e.,
the converting of application needs into the right set of
functions, is complicated, even if the most of the functionality
is available in the library. Additionally, in those operating
systems, the choice of one module from several providing the
same functionality is not a trivial task.

On the hardware level there are several predefined hard-
ware platforms, mainly designed for research purposes, like
the well known Mica family [3], [4], [5] or TelosB [6],
also known as TmoteSky. These provide some predefined
hardware configuration and extensions to this configuration
require designing additional hardware or attaching external
modules to the limited set of external interfaces. A more
flexible solution is to use predefined hardware modules that
allow building a customizable hardware platform from sev-
eral individual printed circuit boards (PCBs) providing some
chosen functionality. Such solutions are provided for instance
by the IHPStack [7] and by the iSense module family by
coalesenses [8]. The advantage of both these approaches is
that they allow building a prototyping hardware platform in a
very short time. On the other hand, these platforms are rather
suboptimal with respect to the node size and the flexibility is
reduced to the available modules, i.e., the extensions may still
require hardware development.

All the above mentioned solutions require the knowledge of
the software or hardware modules as well as their interfaces
before building the platforms. Our goal is to simplify the build-
ing process by allowing identifying the required interfaces
of both hardware and software modules and by that locating
the potential modules satisfying this first level requirement.
Further, the interface parameters allow choosing the right
module out of the ones providing the required interface. This
allows specifying higher level requirements, e.g., memory
usage estimation or a network protocol providing some spe-
cific feature. This approach can be also used to provide a
generation of hardware and software platform configurations
in an automatic way, e.g., providing the interfaces required
by the application logic together with some set of high level
requirements allows creating an ideal hardware and software
sensor network platform for the given application or a family
of applications.

This approach is used even further in the Sens4U project,

33

where we want also to apply the modularity for developing
the application logic in the semi-automatic way.

The remaining part of the paper is structured as follows.
The following section presents the Sens4U concept followed
by the explanation of the way we exploit modularity. The paper
concludes with the outlook and the future work.

II. THE SENS4U CONCEPT

This section describes the details of the approach we want
to implement within the Sens4U project. First, we sketch the
design flow and the roles of the users.

The main participants in the envisioned development pro-
cess are the customer, the tool chain or infrastructure provider
and the module developer. The customer is the person or
organization who will compose and deploy the sensor network.
The infrastructure provider sets the infrastructure and also
chooses and manages the set of available domain-specific
components and supported requirements. The developer pro-
vides the implementation and description of the basic building
blocks–hardware and software modules.

The development process starts with the definition of re-
quirements, done by the customer. These are chosen from the
requirements repository, which contains a set of selectable
and parameterizable requirements. In the following step–the
composition–the components are selected and assembled to
form a system that promises to satisfy the customer’s re-
quirements. The selection and assessment process employs
the component repository containing models of components
(modules) together with their properties and implementations.
Based on the resulting configuration, the actual system is
integrated–compiled and assembled. Finally, the resulting sen-
sor nodes are programmed with the resulting code images and
are deployed at the application site.

The vision is that customers only define the requirements
and finally perform the physical deployment, while compo-
sition and integration are executed automatically. We want to
realize this vision by applying the proposed development tools
(see Figure 1) that implement the above sketched concept and
are going to be realized within the Sens4U project. In Figure 1
we explicitly split the customer expertise into the application
domain expertise owned by the actual customer and the, at
least basic, WSN expertise owned by the integrator. The aim
here is to provide the real-life applicability of the approach and
thus, to introduce the integrator role to support the customer
in requirement specification.

The customer explains the target application to the integrator
and together they identify the most important features of the
application that are further provided to the planning tool
as input. They specify the non-technical requirements–the
target deployment area coverage, the kind of communication
obstacles in that area, the required sensing capabilities, the
spacial placement of these measurement units, the required
data flow and processing, together with the required security,
reliability and maintainability features. The planning tool gen-
erates the set of technical requirements containing the required
functionality and the required parameters that are further

Figure 1. The detailed tool-chain-oriented development flow and user roles

forwarded to the expert system. Here, the hardware and
software configurations are generated, based on the available
modules in the module pool and the above mentioned extract
from the technical requirements.

The configurations can be verified in simulation before
sending them for production. In case of a negative verification
result or in case of negative composition result the actions
can be twofold, the application requirements defined using
the planning tool may be relaxed or a request for developing
new modules may be issued to a developer, e.g., if none of
the available modules provides some functionality with the
requested parameters. Of course, these actions define a trade-
off between the quality and costs of the final application.

During the deployment, the sensor network can be further
verified with respect to communication conditions by using
the deployment tool. This tool analyses the actually achieved
network topology and the quality of links between individual
nodes in the sensor network. If the quality of links is not suf-
ficient, additional repeater nodes may be installed to improve
the connectivity. The deployment tool requires some parts of
the configuration, in order to be able to communicate with the
nodes and to evaluate the deployed network.

After the deployment, the network can be monitored and
managed using the management tool. This tool allows mon-
itoring all the parameters of each individual sensor node in
the network as well as changing their parameters on-the-fly.
It also allows forcing special conditions to verify the network
robustness as well as allows fine tuning the already deployed
nodes, e.g., to reduce their energy consumption or to increase
the transmission power.

34

III. THE MODULE CONCEPT

Practically, a module in the pool is an abstraction of (an im-
plemented) function or set of functions. And each functionality
is defined by an interface that specifies the ways the function-
ality is to be used together with the parameters describing
this functionality. Thus, a module is a self-contained building
block with a coherent functionality and well defined interfaces
so that it can be deployed independently and is subject to
composition by third parties. Modules can represent software
modules, such as functions, implemented classes, implemented
algorithms, or services, but also hardware modules with di-
verse granularity, including hardware platforms (sensor nodes),
hardware components (chips, sensors, memory extensions), or
implementable hardware description modules (HDL). So, the
granularity of a component can be very fine (one mathematical
operation) or coarse (an entire platform). It is also allowed that
modules combine other modules together and by that provide
some larger set of functions. All modules are stored in the
module pool.

As already mentioned, each interface has its associated
parameter set that further specifies the detailed attributes of the
functionality provided using this interface. These parameters
are specified while defining the interface and they specify the
qualitative and quantitative aspects of the functionality imple-
mented by a given module, i.e., the values of the parameters
are module related. If a module provides an interface, it has to
have defined values for all the parameters associated with that
interface. This allows comparing several modules that provide
a given functionality to choose one that suits the requirements
the best.

As part of the system assembly process, modules are
aggregated, in order to combine their functionality into the
target configuration. Similar to the well-known composition
concepts [9], [10], modules are composed by connecting their
interfaces. A module that provides a specific interface may
be connected to another module that requires the same, or a
compatible, interface.

The association of interfaces and parameters also helps to
improve the testability of modules. The quality of the function-
ality a module promises can be verified before using a module
in the target system. This is the task of the infrastructure
provider to verify the quality of modules that are added to the
module pool. Additionally, one module that uses an interface
can be configured according to the values of the parameters
of a second module providing the interface, before these two
modules are integrated.

The result of the composition is a structural description of
the system in form of a graph of components connected via in-
terfaces. This graph is the blueprint for the system integration.
An example graph with configuration options for an example
application is shown in Figure 2. Here we also have shown
the split between the different layers of the application on
the node. Specifying the interfaces required by the application
logic and a set of requirements allows generating the ideal
lower layers, i.e., the software and hardware platform.

Figure 2. The graph representing the configuration options for an example
application

IV. THE APPLICATION LOGIC

The application logic is placed on top of the software and
hardware platform. One of the most tricky problems in semi-
automatic application development is the abstraction of the
distributed application logic and the required data flow in the
target application. Depending on the required WSN expertise
there are several solutions, starting from implementing the
application logic from scratch. More elegant solutions can
be realized by some kind of macro-programming, either by
some scripting means or by composition of modules available
in the module pool, representing the chosen sensors and
specific operations on the data they generate. In any case,
the application logic defines the interface set that it requires
from the lower layers and some high level requirements that
define the parameters of the interfaces. Thus, it defines the
requirements and the software and hardware platform can
be constructed according to these. Having the requirements
defined for several applications, it is possible to define the ideal
software and hardware configuration that optimally satisfies all
of them.

V. CONCLUSIONS

This paper presents the concept of modularity in software
and hardware development for wireless sensor networks that
may help in achieving the ideal or optimal platform for a given
application or set of applications. This concept is developed
within the Sens4U project where we research the methodology
and tools to simplify and automate application development for
environment monitoring. The aim of the project is to provide
a working demonstrator as a proof of concept.

The concept of modularity developed in the Sens4U project
and presented in this paper:

• provides a module description framework to support com-
puter aided application development and module testing,

• allows creating application specific/optimized software
and hardware configurations,

• does not only allow software compositions, but also
supports hardware components with diverse granularity

35

(platform, chip, module) and functionality (accelerators,
sensors, actuators) to fulfill the given task,

By this, our approach goes beyond pure software development.
Further, this concept can be easily applied for embedded
system application development in general, due to the powerful
abstraction and the tool chain.

ACKNOWLEDGEMENTS

This work was partially funded by the German government
under grant 03WKP26A.

REFERENCES

[1] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer et al., “Tinyos: An operating
system for sensor networks,” Ambient Intelligence, pp. 115–148, 2005.

[2] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in Proceedings of
the First IEEE Workshop on Embedded Networked Sensors (Emnets-I),
Tampa, Florida, USA, Nov. 2004.

[3] M. Inc., IRIS Wireless Measurement System,
2011, http://www.memsic.com/support/documentation/wireless-sensor-
networks/category/7-datasheets.html?download=135:iris. [Online].
Available: http://www.memsic.com/support/documentation/wireless-
sensor-networks/category/7-datasheets.html?download=135:iris

[4] ——, MICA2 Wireless Measurement System, 2011,
http://www.memsic.com/support/documentation/wireless-sensor-
networks/category/7-datasheets.html?download=147:mica2. [Online].
Available: http://www.memsic.com/support/documentation/wireless-
sensor-networks/category/7-datasheets.html?download=147:mica2

[5] ——, MICAz Wireless Measurement System, 2011,
http://www.memsic.com/support/documentation/wireless-sensor-
networks/category/7-datasheets.html?download=148:micaz. [Online].
Available: http://www.memsic.com/support/documentation/wireless-
sensor-networks/category/7-datasheets.html?download=148:micaz

[6] ——, TELOSB Mote Platform, 2011,
http://www.memsic.com/support/documentation/wireless-sensor-
networks/category/7-datasheets.html?download=152:telosb. [Online].
Available: http://www.memsic.com/support/documentation/wireless-
sensor-networks/category/7-datasheets.html?download=152:telosb

[7] O. Stecklina, D. Genschow, and C. Goltz, “TandemStack - A Flexible
and Customizable Sensor Node Platform for Low Power Applications,”
in In Proceedings of the 1st International Conference on Sensor Net-
works, ser. Sensornets 2012, Rome, Italy, February 2012.

[8] coalesenses GmbH, coalesenses GmbH-Homepage, 2013,
http://www.coalesenses.com/.

[9] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama,
and T. Sivaharan, “A generic component model for building systems
software,” ACM Transactions on Computer Systems (TOCS), vol. 26,
no. 1, p. 1, 2008.

[10] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC language: A holistic approach to networked embedded
systems,” in Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, 2003.

36

A GNU Radio-based IEEE 802.15.4 Testbed
Bastian Bloessl, Christoph Leitner, Falko Dressler, and Christoph Sommer

Computer and Communication Systems, Institute of Computer Science, University of Innsbruck, Austria
{bloessl,christoph.leitner,dressler,sommer}@ccs-labs.org

Abstract—We present a Software Defined Radio (SDR) based
IEEE 802.15.4 transceiver testbed for GNU Radio. Our testbed is
Open Source and fully interoperable with off-the-shelf TelosB
sensor motes and the Contiki sensor mote operating system,
from the physical layer to the network stack. The testbed can
be setup and configured easily via a graphical user interface
and applications can interface with the SDR using TCP sockets.
Furthermore, the SDR is able to log traffic in PCAP format to
investigate networks with common software like Wireshark.

We believe the main applications of the transceiver to be two-
fold. First, the communication stack has a modular, layered
structure, which allows for rapid prototyping, is educational,
and is easy to grasp, lowering the steep learning curve that
SDRs typically have. Secondly, the integration of a network stack
in GNU Radio pushes interoperability from the physical to the
network and application layer and thus enables the investigations
of higher layer metrics with SDRs.

I. INTRODUCTION

Due to their multitude of possible applications, Wireless
Sensor Networks (WSNs) are still an active research topic. The
application scenarios for these networks range from medical
monitoring for drug dispense, environmental monitoring for
precision agriculture, over industrial real-time monitoring of
production systems, to event detection systems like burglar
alarms. Since its release in 2003, IEEE 802.15.4 [1] emerged
as the de-facto standard for these networks, enabling higher
layer standards like WirelessHart, ZigBee or 6LoWPAN.

The success of the standard is also visible in the fact that,
today, there are twelve different physical layers proposed [2].
Starting with an O-QPSK physical layer with channels in the
700 MHz to 900 MHz and 2.4GHz ISM-bands, IEEE 802.15.4
networks are now even considered as secondary users on locally
unoccupied parts of the spectrum like TV white space.

For that reason, system designers not only have to decide
between different frequency bands, but also between completely
different wireless technologies, like O-QPSK, GFSK, or OFDM,
i.e., selecting from a spectrum that ranges from single to multi-
carrier systems. It is therefore crucial to be able to compare
and evaluate the performance of these different physical layer
technologies. Furthermore, as WSNs are extremely application
specific, it is important not to be limited to physical layer
metrics like Signal to Noise Ratio (SNR) and packet loss, but
to have the opportunity to compare application layer behavior
and metrics like true goodput.

Experimentation is a valuable instrument that can comple-
ment analytic and simulative performance evaluation of wireless
communication systems to considerably increase the confidence
in the results.

Currently, there are two general approaches to conduct
experimental research. First, one can rely on off-the-shelf sensor
motes. This approach is easy to realize and, due to typically
relatively cheap motes, a larger network can be investigated
with moderate costs. The drawback of using real motes is,
however, that the insights are limited to the information that the
transceiver chip provides. Off-the-shelf sensor mote testbeds are,
therefore, well-suited to investigate application layer metrics,
but might lack the possibility to explain some of the effects,
as advanced metrics are not accessible. For example, it can
be hard to determine if outage occurred due to interference or
due to noise, as ordinary transceiver chips do not provide any
information about packets that could not be decoded. Another
potential drawback is that off-the-shelf motes can not be used
to investigate new physical layer strategies. Furthermore, for
some of the proposed physical layers, there are no consumer
devices available yet.

A second approach for conducting experimental research
is the use of Software Defined Radios (SDRs), where signal
processing is done in software instead of being hidden inside
a transceiver chip. An SDR system consists of a software
framework for real-time signal processing and a hardware
RF frontend to send and receive the signal. With such a
reprogrammable system the user has full control over all signal
processing steps. The drawback of SDRs is that they add cost
and complexity. SDR-based systems are often not accessible for
non-experts in signal processing. Furthermore, these systems
are often limited to physical layer implementations only and,
thus, are not interoperable with real sensor motes on higher
layers, i.e., the SDRs can not become nodes in a WSN.

We bridge this gap by providing an SDR based IEEE
802.15.4 testbed that provides a fully interoperable network
stack. The testbed is implemented based on GNU Radio and
implements the communication stack from the physical up to
the network layer, where applications can be attached easily.
As network layer, we choose the Rime stack [3]. Rime is
a modular, lightweight network stack, which is part of the
Contiki operating system. Contiki [4], in turn, is a state-of-
the-art operating system for research in WSNs. With the help
of the Rime stack, the SDRs can be easily integrated into a
WSN, or form a heterogeneous network consisting of sensor
motes and SDRs.

We make all GNU Radio code, a demo application, and a
Contiki firmware available as Open Source software in the
hope that it might be useful for others.1

1All source code can be downloaded from http://www.ccs-labs.org/software/.

37

2

II. RELATED WORK

The O-QPSK physical layer of the IEEE 802.15.4 standard
was first implemented by Thomas Schmid in 2006 [5]. This
implementation featured separated receive and transmit chains
and was verified to work with Crossbow MicaZ motes.

This implementation provided the base for several further
research projects. It was used to study properties of the physical
layer and the applicability of SDRs to conduct wireless research
in general.

The potential of SDR based testbeds for wireless research in
sensor networks was already realized by Ali et al. [6], urging the
community to move from simulations to SDR based prototypes.
In [7], the authors go one step further and discuss the idea
of Cognitive Radio Sensor Networks. These networks exploit
the flexibility of SDRs by applying cognitive radio strategies
to sensor networks. An actual testbed for wireless research
is presented in [8], where the authors prototype protocols in
SDRs and on real hardware, but focus only on the MAC layer.

In all SDR implementations latency is a crucial factor, as
the standard mandates strict maximum response times. For
that reason, the latency of the GNU Radio implementation is
studied by Thomas Schmid et al. in [9] by means of Round
Trip Time (RTT) measurements.

Using SDRs connected via USB 2.0, the RTT of the SDR
was an order of magnitude higher than the RTT of MicaZ
motes. Furthermore, the RTT of the SDR suffered from high
variances, whereas the RTT of the MicaZ motes was very
deterministic. Given these results, the latency bounds that the
IEEE 802.15.4 standard mandates could not be met.

The more recent USRP2 SDRs are connected via Gigabit
Ethernet. This, together with the advances of GNU Radio,
most notably the Vectorized Library of Kernels (VOLK) [10],
should lower latency considerably. The VOLK library is part of
GNU Radio and allows the use of Single Instruction Multiple
Data (SIMD) operations. As SIMD instructions operate on
vectors instead of scalars, the performance can be improved
considerably.

In [11], the IEEE 802.15.4 implementation was further
extended to support multi-channel reception with the N210
USRP SDRs. Compared to the USRP1, the N210 provides a
higher bandwidth and allows to decode five adjacent channels
in parallel.

III. TRANSCEIVER ARCHITECTURE

Figure 1 gives an overview of the transceiver structure as
exposed to GNU Radio Companion, a GUI that can be used to
setup and configure signal processing flow graphs. The layered
structure of the communication system can be identified clearly.
In the following, we describe the individual components.

A. Physical Layer

For our tests and development of the receiver, we used USRP
N210 SDRs from Ettus Research, equipped with XCVR2450
daughterboards as radio frontend. These daughterboards can
operate on the 2.4 GHz ISM band in half-duplex mode.

Figure 1. The modular, layered structure of the SDR transceiver as exposed to
GNU Radio Companion. The physical Layer is encapsulated in a hierarchical
block. The packets between the MAC and the physical layer are captured
by the Wireshark Connector (in this case only outgoing packets to preserve
clearness of the Figure).

The USRP source and USRP sink blocks in Figure 1 are
interfacing this hardware. These blocks are connected to the
physical layer, which is encapsulated in a hierarchical block,
that hides all details of the modulation process. In GNU Radio,
a hierarchical block does not implement an algorithm itself but
contains another flow graph. This concept supports modularity
and allows a clearer structure.

From the multitude of physical layers that are included
(or, rather, are proposed to be included) in the IEEE 802.15.4
standard, currently only the O-QPSK PHY is implemented.
This physical layer defines 16 channels in the 2.4 GHz band.
The implementation is based on the UCLA ZigBee PHY of
Thomas Schmid [5]. We extended it by porting it to version
3.7 of GNU Radio, we added GNU Radio Companion bindings
in order to access the blocks in the graphical user interface,
we reimplemented all python functions in C++, we changed
the transmitter to GNU Radio blocks (i.e., removed custom
blocks that are not needed anymore), and finally merged the
separated receive and transmit chains to operate in parallel to
form a transceiver system.

Creating a transceiver out of separated receive and transmit
chains is not as straight forward as it might sound. Since
we use half-duplex radio frontends, the USRP has to switch
between send and receive mode for every packet that is
sent. This happens automatically, in the sense that by default
the USRP receives and switches to transmission mode if it
receives samples from GNU Radio. The switch from receiving
to transmitting is no problem, however the other way round
is. When a packet (i.e., a burst of samples) is sent and the
sample stream to the device stops, the USRP first assumes that
an underflow occurred, i.e., the PC can not deliver the samples
fast enough. For that reason, the device does not switch back

38

(a) Overview of the modular structure of the Rime stack. Each
protocol makes use of its underlying primitives. Solid components
have been implemented in our testbed.

(b) Configuration interface of the Rime block with ports
dynamically created by the given parameter set.

(c) Resulting block instance.

Figure 2. Overview of the Rime stack and implementation in GNU Radio.

to receive mode immediately, but instead waits until a timeout
occurs. The problem, however, is that when communicating
with real hardware like the TelosB motes, this timeout period
is too long and immediate responses like acknowledgments are
missed, as the device is still in transmit mode.

To deal with that issue, we insert a tag at the start of each
burst that indicates its length, i.e., the number of samples that
the burst spans.2 We added a block just before the USRP sink,
which reads the length tag and, with this additional length
information, is able to signal the USRP when the end of the
burst is reached. Thus, the timeout before switching back to
receive mode is avoided.

B. MAC Layer

As depicted in Figure 1, the MAC layer is implemented
on top of the physical layer. The colors of the ports encode
the type of data that is exchanged between the blocks. Gray
is used to depict asynchronous messages ports, which were
introduced in GNU Radio v3.6.3. Asynchronous messages allow
to work packet-based, as opposed to stream-based – the mode
in which most of the physical layer blocks are working in.
Asynchronous messages can encapsulate arbitrary information
by the use of polymorphic types. The GNU Radio developers,
however, agreed on a Protocol Data Unit (PDU) format. A
PDU is represented by a pair consisting of a dictionary and a
character buffer. The buffer is used to store the actual data of
the packet, while the dictionary can contain arbitrary metadata.

The MAC block is currently limited to the most basic
functionality that enables connectivity. It encapsulates the
packets from the higher layers with a valid IEEE 802.15.4
header and calculates and appends the CRC checksum. On the
receive path, it does the reverse, removing the MAC header
and checking whether the CRC is correct.

In particular, the MAC layer does not perform carrier sensing,
but instead sends a message immediately. For that reason,
the MAC layer does not yet support any other CSMA/CA
functionality like backing off in time.

2In GNU Radio, tags can annotate specific samples of the sample stream
with arbitrary information.

C. Rime Network Stack

The Rime communication stack is a lightweight network
stack, designed for use in WSNs. It was implemented for
Contiki by Dunkels et al. [3]. Contiki is a state-of-the-art
operating system for WSNs and is, like TinyOS, heavily used
and well accepted in the research community.

As depicted in Figure 2a, Rime has a modular, layered
structure, where more complex connection primitives extend
the underlying simpler ones to offer advanced features. The
solid blocks in Figure 2a depict the connection primitives that
are currently included in our SDR implementation.

The communication stack can be setup completely with a
graphical user interface. Figure 2b shows the configuration
interface of the Rime stack in the GNU Radio Companion
GUI frontend. The user can open new Rime connections
by adding channels numbers to the list corresponding to the
desired connection type. We tweaked GNU Radio so that it is
possible to dynamically create input and output message ports.
This way, we can add a new pair of input and output port
per connection. Figure 2c depicts the Rime block, generated
by the given configuration. We see two pairs of broadcast
and unicast connections (labeled bcinX, bcoutX, ucinX, and
ucoutX) and a reliable unicast connection (labeled with rucin
and rucout). Furthermore, we can configure the Rime address
of the transceiver.

Considering unicast connections, the application has to
specify the destination node on a per-packet basis, like it
is the case for common UDP sockets. This is required as Rime
operates connection-less. We decided to prefix the actual packet
payload with the destination address of the target node in order
to provide an easy to use interface to the SDR.

IV. PCAP AND WIRESHARK CONNECTOR

To ease debugging and to allow monitoring communications
in the WSN, we implemented a module that logs all transmis-
sions in PCAP format3, the de-facto standard format for packet
dumps. PCAP is understood by all network monitoring tools
like Wireshark or tcpdump. These tools also provide useful
additional functionality like throughput and delay calculations.

3http://www.tcpdump.org/

39

4

We dump the network traffic with the Wireshark Connector
block, which is depicted at the right hand side of Figure 1.
When the block is started it writes a PCAP file header that
includes global parameters like maximum packet size and the
utilized technology. Every packet that is passed between MAC
and physical layer is prefixed with per-packet information and
logged. The per-packet header contains information about the
packet size and includes a time stamp that indicates when the
packet was received. The PCAP file can either be written to
disk or to a Linux pipe where Wireshark can be attached to.
With the help of the pipe the network can be monitored live.
We utilized the Wireshark connector to get first insights into
the latency of the presented transceiver. We ran the transceiver
on a laptop with an Intel i5 CPU (2.6 GHz) and measured the
RTTs between an SDR and a TelosB mote to be around 5 ms.

Wireshark supports ZigBee and, thus, can dissect the IEEE
802.15.4 MAC format, but not the Rime protocol headers. We
therefore also implemented a dissector for Rime in LUA.

To demonstrate the capabilities of the testbed, we im-
plemented and made available a Contiki firmware for the
TelosB sensor mote platform. By default this firmware opens
a broadcast connection and periodically disseminates the
values of the light sensor on that connection. Furthermore,
a notification is sent over that connection when the button is
pressed.

It is extremely easy to connect to the flow graph with the help
of the Socket PDU block. Connecting to the Rime connection
of the flow graph and printing of the sensor values can be done
with a line of shell code:

nc -u localhost 52001 | od -vsw2

As shown in Figure 3, we also provide a more visual
representation of the results in a GUI that uses matplotlib
to draw a live graph of the sensor values. Furthermore, the
firmware includes a shell application where the user can connect
via a serial connection over USB and dynamically open new
connections and send messages on them.

V. CONCLUSION

We created a GNU Radio-based IEEE 802.15.4 testbed. The
testbed is interoperable with real sensor motes on physical
layer, and with Contiki, a state-of-the-art operating system for
WSNs, on network layer. With this level of interoperability it is
possible to set up a mixed network, consisting of off-the-shelf
sensor motes and SDR-based transceivers. The SDR-based
transceiver can be setup and configured quickly with the help
of a graphical user interface. The whole communication stack,
from physical to application layer, is implemented within the
SDR system. Applications can be attached to the transceiver
via TCP or UDP sockets.

Debugging, logging, and monitoring of the communication
is aided by an option to capture all traffic in PCAP format.
To further increase usability, we implemented a Wireshark
dissector that parses the utilized protocols. Finally, the platform
is accessible as it is Open Source.

Figure 3. An example setup, consisting of a USRP N210 and a TelosB mote
that periodically sends light sensor data that is displayed in the graph on the
right screen. On the left screen, the whole communication is monitored in
Wireshark.

This transceiver represents a proof of concept implementation
that is interoperable with real sensor motes. With this as
a starting point, we hope to provide a tool that facilitates
rapid prototyping of new physical layers, and that allows the
investigation of application layer metrics with SDRs.

REFERENCES

[1] “Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE, Std
802.15.4-2011, June 2011.

[2] C.-S. Sum, L. Lu, M.-T. Zhou, F. Kojima, and H. Harada, “Design
Considerations of IEEE 802.15.4m Low-Rate WPAN in TV White Space,”
IEEE Communications Magazine, vol. 51, no. 4, pp. 74–82, April 2013.

[3] A. Dunkels, F. Österlind, and Z. He, “An Adaptive Communication
Architecture for Wireless Sensor Networks,” in 5th ACM Conference on
Embedded Networked Sensor Systems (SenSys 2007). Sydney, Australia:
ACM, November 2007.

[4] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in 29th IEEE
International Conference on Local Computer Networks (LCN 2004),
Tampa, FL, November 2004, pp. 455–462.

[5] T. Schmid, “GNU Radio 802.15. 4 En-and Decoding,” Networked &
Embedded Systems Laboratory, UCLA, Technical Report TR-UCLA-
NESL-200609-06, June 2006.

[6] M. Ali, U. Saif, A. Dunkels, T. Voigt, K. Römer, K. Langendoen,
J. Polastre, and Z. A. Uzmi, “Medium Access Control Issues in Sensor
Networks,” ACM SIGCOMM Computer Communication Review (CCR),
vol. 36, no. 2, pp. 33–36, April 2006.

[7] O. B. Akan, O. B. Karli, and O. Ergul, “Cognitive Radio Sensor
Networks,” IEEE Network, vol. 23, no. 4, pp. 34–40, July 2009.

[8] X. Zhang, J. Ansari, L. M. A. Martinez, N. A. Linio, and P. Mähönen,
“Enabling Rapid Prototyping of Reconfigurable MAC Protocols for
Wireless Sensor Networks,” in IEEE Wireless Communications and
Networking Conference (WCNC 2013). Shanghai, China: IEEE, April
2013, pp. 47–52.

[9] T. Schmid, O. Sekkat, and M. B. Srivastava, “An Experimental Study of
Network Performance Impact of Increased Latency in Software Defined
Radios,” in 2nd ACM International Workshop on Wireless Network
Testbeds, Experimental evaluation and Characterization (WiNTECH’07).
Montréal, Québec, Canada: ACM, September 2007, pp. 59–66.

[10] T. Rondeau, N. McCarthy, and T. O’Shea, “SIMD Programming in GNU
Radio: Maintainable und User-Friendly Algorithm Optimization with
VOLK,” in Conference on Communications Technologies and Software
Defined Radio (SDR’12). Brussels, Belgium: Wireless Innovation Forum
Europe, June 2012.

[11] L. Choong, “Multi-Channel IEEE 802.15.4 Packet Capture Using
Software Defined Radio,” Networked & Embedded Systems Laboratory,
UCLA, Technical Report TR-UCLA-NESL-200904-01, April 2009.

40

Extending Wireless Body Sensor Networks Using Intelligent Implants

Thomas Basmer⇤, Mario Birkholz⇤
⇤IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany,

Email: basmer@ihp-microelectronics.com

Abstract— For monitoring vital parameters Wireless Body

Area Networks (WBAN) or body sensor networks are a major

research field in Wireless Sensor Networks (WSN). Extending

WBAN to encompass medical implants would improve appli-

cations and develop new ones. We point out the challenges

developing intelligent implants for WBANs. Wireless in-body

communication, software development, security aspects, housing

and energy management are discussed.

I. INTRODUCTION

Today WBANs are monitoring vital parameters, like tem-
perature, oxygen content and pulse, outside human bodies to
monitor patients [1], firemen [2] or used for ambient assisted
living. Here, transmitter and receiver are outside the human
body and wireless communication is a so called on-body link.
It would be beneficial to include intelligent implant devices
into WBANs to optimize therapies, keep patients mobile and
provide non-steady 24/7 monitoring. Patients would benefit
due to better treatment while costs could be reduced at the
same time. WBANs using on-body and in-body communica-
tion are introduced in [3]. The development of implants has to
cope with many tasks related to bio-compatibility, wireless in-
body communication (receiver or transmitter are inside human
body), housing, energy management, reliability and sensor
functionality.

Fig. 1. Sensor node architecture used for typical WSN and implant devices.

An implant consists of comparable components like WBAN
or WSN nodes (Fig. 1): Microcontroller and software, radio
module for communication, sensors to detect or monitor
phenomena and actuators to react in answer to them. Power
supply and energy management ensure operation over the des-
ignated period. Housing protects the system against external
impacts. Scope of this work are all these aspects regarding
to specifics of implantable medical devices. It includes the
experiences we made during GlucoPlant project [4], [5], [6]
aiming at a continuous monitoring of blood sugar levels.
The following sections provide an overview of implants and
their requirements ranging from components over software to
system aspects.

II. IMPLANT SENSOR NODE

Well-known types of implanted sensor nodes are modern
pacemakers or defibrillators. These devices supporting heart
functionality and send therapy information to the outside
world. It is also possible to configure functionality after imple-
mentation using a wireless link. Other examples are the insulin
pump [7] or Pillcam [8]. All these devices communicate with
a basestation only. The idea is to include implants into a
WBAN to use extra information like strain, movement and
other parameters to evaluate situations more precisely. Implant
devices are intended to have a life cycle of at least 10 years.
Meanwhile they are not physical accessible so functionality
and power supply must be guaranteed. In order to not impair
patients implants must be miniaturized as far as possible. Top
priority for a design is that human beings must not be harmed
under any circumstances.

III. WIRELESS COMMUNICATION

WBAN and WSN applications typically use license-free In-
dustrial, Scientific and Medical (ISM) bands for wireless com-
munication. Popular ISM frequencies in Europe are 433 MHz,
868 MHz and 2.4 GHz. They are regulated by the European
Commission in [9]. Wireless in-body communication for im-
plant devices is regulated to minimize mutual reaction with
human body (i.e. heating) and to reduce interference with other
bands. For implant devices two frequency bands are approved:
The Medical Implant Communication Service (MICS) and
Radio Frequency Identification (RFID) presented in the next
subsections. These bands are not part of ISM so a gateway is
necessary between implant and WBAN nodes. In section III-C
antennas in lossy medium (human body) are discussed.

A. RFID
RFID systems consist of a reader device and a so called tag

device. Reader is master during communication using varying
magnetic fields for transmission of power and information.
A tag is called passive if it has no own power supply and
is powered via magnetic induction. Otherwise it is an active
device. RFID is available for frequencies from kHz up to
GHz range enabling distances up to 10 m. As implant RFID
tag is used for animal identification (125 kHz, 134.2 kHz),
human identification (134.2 kHz), pacemaker (175 kHz) [10]
or hip prosthesis (125 kHz) [11]. Low frequencies require
large coils/antennas leading to large reader devices not easily
applicable in WBAN nodes. Also permitted data rate and
range are very small (< 0.5m) in this frequency range. In case
of power consumption RFID systems could be beneficial. A
passive tag does not consume limited energy resources.

41

Fig. 2. Physical (solid) and electrical (dashed) antenna size (based on [18]).

B. MICS Band

MICS band is frequently used for in-body wireless commu-
nication. It is described and regulated in [12], [13], [14]. Avail-
able frequencies are 402-405 MHz. The maximum Equivalent
Isotropically Radiated Power (EIRP) on the body surface
is limited to 25µW (-16 dBm). Bandwidth is separated into
25 kHz channels. Each implant may occupy up to 300 kHz.
Sending range can be up to 5 m.
To our knowledge the only commercially available MICS
band radio devices are offered by Microsemi (former Zarlink).
ZL70321 [15], used in GlucoPlant project, is a user friendly
device needing just a few external components and can be
accessed via Serial Peripheral Interface (SPI). Power consump-
tion during communication is 5 mA and in idle mode just
1 mA. A low-power mode can be accessed reducing power
consumption to 10 nA. Maximum sending power is -2 dBm
and receiver sensitivity is -99 dBm. Data rate is up to 800 kb/s.
Modulation modes are 2-Frequency Shift Keying (FSK), 4-
FSK or Gaussian-FSK (GFSK). In low-power mode the whole
system can be started externally using 2.4 GHz wake-up
signals. Therefore a wake-up receiver is included consuming
290 nA constantly. It polls periodically for incoming wake-
up messages. If a message is received an interrupt signal is
generated waking up a microcontroller from its deepest low-
power mode. Only the ZL70120 [16] has a 2.4 GHz wake-up
transmitter (CC2550) so it should be used for base station or
gateway devices.

C. MICS Band Antennas

This subsection is limited to MICS band antennas due to
the rare usage of RFID communication in WBANs and WSNs.
Low frequency of MICS band (⇠403 MHz, wavelength �:
0.74 m in air) requires long antennas (�/4 wire antenna:
0.18 m) not suitable for miniaturized implants. This problem
is extenuated because of the fact that electrical characteristics
of enclosed implant antennas are changed by lossy media.
Mainly permittivity ✏ affects antenna capacity. ✏ is 1.00 As/Vm
in vacuum. Other media have higher permittivity increasing
capacity and also electrical size of the antenna (Fig. 2) [17].
To have similar performance as in air/vacuum physical antenna
size can be decreased.

We examined small antennas in a lossy medium for sensor
node devices. In [18] antenna measurements for a sensor
capsule are described. Capsule is intended for a bio-reactor
filled with algae. Measurements were done at 433 MHz.
For GlucoPlant project similar measurements for MICS band

Fig. 3. Application schedule of the glucose implant device [5].

were done at 403 MHz in a body phantom [19]. We iden-
tified small sized antennas, i.e. a ceramic chip antenna
(11 x 3 x 1 mm) [20] and a multi-turn printed loop antenna
(10.2 x 10.0 x 1 mm) [21] enabling wireless communication
up to a distance of 5 m.

IV. CONTROL UNIT

A. Microcontroller

Microcontrollers are well-known and widely used as pro-
cessing units on wireless sensor nodes. They are usually based
on a Reduced Instruction Set Cycle (RISC) architecture with
bus width of 8, 16 or 32 bit. Available memory is up to
512 kB of non-volatile memory and up to 64 kB RAM. Todays
microcontrollers support multitude of embedded and WSN
applications coming with integrated Analog Digital Converters
(ADC), timers, interfaces (SPI, UART) to connect external
components (i.e. radio, sensors) and I/O ports including in-
terrupt functionality. Low-power modes are available that are
realized by switching off components. MSP430F67xx comes
with eight different power modes to finely adjust power
management to the application’s need [22]. Usable voltage
is between 1.8 V and 3.6 V. The power consumption of the
device is adjustable between 265 µA/MHz in Active Mode
and 0.78 µA in its deepest low-power mode (LPM4.5).

B. Software

Software for wireless sensor nodes has to run the application
and to control the power management. Fig. 3 shows application
schedule of GlucoPlant device [5] as an example. This scheme
is typical for most WSN applications. In idle period all non-
required components are set to low-power mode. Idle mode
is left for measurement or communication. In our case body
temperature and a so-called switching time representing glu-
cose concentration are measured [6]. Wireless communication
can be done at different points: Directly after measurement,
initiated externally by WBAN node acting as base station or
on fixed dates.

Due to limited memory in todays microcontrollers, the main
challenge of WSN software development is to design very
efficient code. In general implementation is done from scratch.
Only special operating systems for WSN support the software
development process. Available WSN operating systems are
TinyOS [23], Contiki [24], REFLEX [25] and eCos [26]
supporting engineers with main functionalities. But such an
implementation from scratch is not standardized and it is hard
to ensure that software is reliable in any use case. Especially

42

in critical applications where in worst case scenarios patients
could be harmed, software development must be transferred
from scratch development to standardized reliable approaches
as known from industry. Model-based development, known
from automotive industry [27], is one approach to overcome
this. Therefore an accurate model of the target system must
be available. The model enables a fast software algorithm
development and structured tests. The difficulty in case of
medical devices is to describe a patient and not a technical
system. Also automatic code generators used in automotive
industry could generate code that follows standardized rules,
implementing well tested algorithms and would be less fault-
prone. Tests and certification can be performed very fast.
Unfortunately the drawback of these approaches is a code
overhead.

V. SECURITY

In previous WSN applications for measurement of envi-
ronmental parameters (i.e. temperature, humidity, pressure)
security was not a key aspect because security operations
are very resource consuming. However, in WBAN applica-
tions personal data is measured and therapies are controlled.
Therefore privacy aspects must be taken into account and
unauthorized changes in therapies must be prohibited.
In [28] an attack against a defibrillator using wireless com-
munication at 175 kHz is presented. An oscilloscope and
an universal software radio peripheral are used to intercept
communication. Oscilloscope was used to reverse engineer
the wireless communication and software radio to emulate
programmer outside the body. This setup enables a read out
of plain data i.e. patients name, date of birth, patients history,
treating physicians telephone number, implant serial ID. It
was also possible to change patient’s name, turn off therapy
and induce fibrillations. A common way to enable privacy is
encryption of measured data and communication. Common
cryptographic operations are Advanced Encryption Standard
(AES) or Elliptic Curve Cryptography (ECC). These algo-
rithms can be done in software or hardware. In general special
hardware accelerators are faster and more energy efficient
than software implementation but less flexible. Such hardware
accelerators are only seldom available in integrated circuits.
The MSP430x59xx microcontrollers have AES hardware ac-
celerators included with an encryption runtime of 168 clock
cycles and a decryption runtime of 215 clock cycles for 128-
AES [29]. In comparison an AES software implementation
needs 5228 cycles for encryption and 6857 for decryption. At
IHP hardware accelerators for 128-AES [30] and 233-ECC
[31] were developed and successfully integrated into a 32-bit
LEON processor [32] and 16-bit microcontroller [33]. The IHP
AES needs 78 clock cycles for encryption and decryption only.
A 233-ECC point multiplication in software needs 13 Mio.
clock cycles, the IHP hardware accelerator only 13164 clock
cycles.

Data and communication encryption is a necessity for
medical WBAN applications because privacy of personal data
and security of the therapy must be guaranteed.

G
as

es

Si
lic

on
es

Ep
ox

ie
s

Fl
uo

ro
-C

ar
bo

ns

G
la

ss
es

Ce
ra

m
ics

M
et

al
s

100

10.0

1.0

0.1
Min Hr Day Mo Yr 10

Yr
100
Yr

Th
ic

kn
es

s
Pm

m
g

10-6 10-8 10-10 10-12 10-14 10-16

Permeability Pg/cm/s/torrg

Time

Fig. 4. Time after interior of package (different materials and thickness)
reaches 50% relative humidity [39]. Grey shaded area is relevant for implants.

VI. ASSEMBLY

A. Power Supply
The power supply must provide implant lifetime of up to 10

years. First pacemakers were equipped with radioisotope ther-
moelectric generators using the decay of plutonium to generate
energy. Todays implants use batteries as energy source. The
GlucoPlant device is powered by a titanium sealed 1200 mAh
Litronik pacemaker battery (31 x 28 x 5 mm) [34]. Thin-film
batteries and super capacitors are not widely used in implants
yet. Thin-film batteries are not commercially available and
super capacitors are used in pacemakers to offer high discharge
currents but not as primary power supply. Another approach
is an external power supply like shown in the Fraunhofer hip
prosthesis [11] where externally induced energy activates the
device (RFID). Future technologies include energy harvesters
generating electrical energy from physical forces. In [35]
a generator using vibration caused by body movement is
presented. Another idea is to use the heart beat to generate
energy [36] sufficient to power a pacemaker.

B. Housing
Housing of implant devices is very challenging as influences

from and to the outside have to be minimized. In Fig. 4 it
can be seen that only metals and ceramics are valid housing
materials for implants. Pacemakers and defibrillators usually
use titanium housings. Housings made of high performance
plastics like polyether ether keton (PEEK) are advancing. This
material has a density similar to ceramics and metals, is easy to
deform at high temperature and is resistant against chemicals.
The bio-compatibility is also an important feature because
body internals are a very aggressive environment attacking
and dissipating every debris [37], [38].

VII. CONCLUSION

Implantable devices represent a valuable component of
WBANs. Contemporary applications can be upgraded and new
areas developed. The design of such a device is still complex
and challenging. To protect patients, implants are strictly regu-
lated. Available modules for wireless communication integrate
MICS and RFID bands with limited EIRP of 25 µW. Both
bands are not part of ISM bands used by most WBANs so a

43

gateway node is necessary. Software used for such extended
WBANs must be certified but common microcontrollers have
limited resources, so software is often implemented from
scratch. Strategies (model-based, code generators) used in au-
tomotive industry could be beneficial. These extended WBANs
process private and personal data, so security aspects must
be taken into account. There is literature available coping
with pacemakers sending personal data as plain. Life time of
implants should be at least 10 years exceeding life time of
todays WBANs. Therefore energy management strategies are
crucial (i.e. use low-power components, switch off everything
that is not needed). Housing is an additional challenge for such
a long life time. Only few materials (metals ceramics, high
performance plastics) can protect implants against aggressive
environment inside human bodies.

ACKNOWLEDGMENT

The investigations presented here were performed within
the development project of an implantable glucose sensor
funded by the BMBF under contract number 16SV3934 (Voll-
implantierbarer Glucosesensor für Diabetesdiagnostik und -
therapie GlucoPlant).

REFERENCES

[1] (2013, June) Stroke back project website. [Online]. Available:
http://www.strokeback.eu

[2] H. Will, T. Hillebrandt, and M. Kyas, “Wireless sensor networks in
emergency scenarios: the feuerwhere deployment,” in Proceedings of
the 1st ACM international workshop on Sensor-Enhanced Safety and
Security in Public Spaces, ser. SESP ’12. New York, NY, USA: ACM,
2012, pp. 9–14.

[3] S. Ullah, P. Khan, N. Ullah, S. Saleem, H. Higgins, and K. S. Kwak, “A
review of wireless body area networks for medical applications,” CoRR,
2010.

[4] T. Basmer, P. Kulse, and M. Birkholz, “Systemarchitektur intelligenter
Sensorimplantate,” in Biomedical Engineering / Biomedizinische Tech-
nik, vol. 55, 2010, pp. 43–46.

[5] T. Basmer, D. Genschow, M. Fröhlich, and M. Birkholz, “Energy
budget of an implantable glucose measurement system,” in Biomedical
Engineering / Biomedizinische Technik, vol. 57, 2012, pp. 259–262.

[6] M. Birkholz, K.-E. Ehwald, T. Basmer, P. Kulse, C. Reich, J. Drews,
D. Genschow, U. Haak, S. Marschmeyer, E. Matthus, K. Schulz,
D. Wolansky, W. Winkler, T. Guschauski, and R. Ehwald, “Sensing
glucose concentrations at GHz frequencies with a fully embedded
biomicro-electromechanical system (BioMEMS),” in Journal of Applied
Physics. AIP, 2013, vol. 113, no. 24, p. 244904.

[7] E. Renard, “Implantable closed-loop glucose-sensing and insulin deliv-
ery: the future for insulin pump therapy,” Current Opinion in Pharma-
cology, vol. 2, no. 6, pp. 708 – 716, 2002.

[8] (2013, June) Pillcam website. [Online]. Available: http://www.pillcam.ch
[9] ERC Recommendation 70-03, Conférence Europenne des Administra-

tions des Postes et des Télécommunications Std., May 2013.
[10] M. Schuettler and T. Stieglitz, “Intelligent telemetric implants,” in

Biomedical Engineering / Biomedizinische Technik, vol. 57, 2012, pp.
967–970.

[11] “Intelligente implantate,” November 2012, flyer of the Fraunhofer IPMS
hip prosthesis.

[12] The 47 CFR 95.601-95.673 Subpart E Rules applicable to the MedRadio
Service, Federal Communications Commission Std., 1999.

[13] ETSI EN 301 839-1: Electromagnetic compatibility and Radio spectrum
Matters (ERM);Radio equipment in the frequency range 402 MHz to 405
MHz for Ultra Low Power Active Medical Implants and Accessories;Part
1: Technical characteristics, including electromagnetic compatibility re-
quirements, and test methods, European Telecommunications Standards
Institute Std.

[14] MICS Band Plan Part 95, Federal Communications Commission Std.,
january 2003.

[15] ZL70321 Implantable Radio Module MICS RF Telemetry, Zarlink Semi-
conductor Std., march 2011.

[16] “Zl70120 mics-band rf base station module (bsm),” Microsemi, Tech.
Rep., February 2013.

[17] F. Merli, B. Fuchs, J. Mosig, and A. Skrivervik, “The effect of insu-
lating layers on the performance of implanted antennas,” Antennas and
Propagation, IEEE Transactions on, vol. 59, pp. 21–31, 2011.

[18] N. Todtenberg, T. Basmer, J. Klatt, and K. Schmalz, “Estimation of 433
MHz path loss in algae culture for biosensor capsule application,” in
43st European Microwave Conference (EuMC), 2013, accepted.

[19] T. Basmer, N. Todtenberg, F. Popiela, and M. Birkholz, “Examination
of antennas for use in implant mics band applications,” in IEEE MTT-S
International Microwave Workshop Series on RF and Wireless Technolo-
gies for Biomedical and Healthcare Applications, 2013, submitted.

[20] Chip Antennas, Mitsubishi Materials Corperation Std., 2009.
[21] K. Yazdandoost and R. Kohno, “An antenna for medical implant

communications system,” in European Microwave Conference, 2007,
october 2007, pp. 968–971.

[22] “Msp430f672x , msp430f673x mixed signal microcontroller datasheet,”
Texas Instruments, Tech. Rep., February 2013.

[23] (2013, June) Tinyos website. [Online]. Available: http://www.tinyos.net
[24] (2013, june) Conitki-os website. [Online]. Available: http://www.contiki-

os.org
[25] (2013, June) Reflex website. [Online]. Available:

http://idun.informatik.tu-cottbus.de/reflex/cgi/reflex-trac.fcgi
[26] (2013, June) ecos website. [Online]. Available:

http://ecos.sourceware.org/
[27] T. Felderhoff, “Teaching model-based development methods for biomed-

ical signal processing to sensitize and motivate for accuracy and product
quality,” in Biomedical Engineering / Biomedizinische Technik, vol. 57,
2012, pp. 962–965.

[28] D. Halperin, T. Heydt-Benjamin, B. Ransford, S. Clark, B. Defend,
W. Morgan, K. Fu, T. Kohno, and W. Maisel, “Pacemakers and im-
plantable cardiac defibrillators: Software radio attacks and zero power
defenses,” in Security and Privacy, 2008. SP 2008. IEEE Symposium
on, may 2008, pp. 129–142.

[29] “Msp430fr58xx and msp430fr59xx family user’s guide,” Texas Instru-
ments, Tech. Rep., January 2013.

[30] F. Vater and P. Langendörfer, “An area efficient realization of aes for
wireless devices,” in IT - Information Technology, 2007, pp. 188–193.

[31] S. Peter, “Evaluation of design alternatives for flexible elliptic curve
hardware accelerators,” Master’s thesis, BTU Cottbus, 2006.

[32] P. Langendörferfer, F. Vater, T. Basmer, O. Stecklina, F. Gehring, and
C. Wieschebrink, “Abschlussbericht - trusted sensor node,” IHP and BSI,
Tech. Rep., October 2011.

[33] G. Panic, T. Basmer, S. Henry, S. Peter, F. Vater, and K. Tittelbach-
Helmrich, “Design of a sensor node crypto processor for ieee 802.15.4
applications,” in SoCC, 2012, pp. 213–217.

[34] LiS 3150 M LITRONIK Li-Manganese Dioxide Medium Rate Battery,
MST Litronik Std., february 2010.

[35] S. Platt, S. Farritor, and H. Haider, “On low-frequency electric power
generation with pzt ceramics,” Mechatronics, IEEE/ASME Transactions
on, vol. 10, no. 2, pp. 240–252, 2005.

[36] M. A. Karami and D. J. Inman, “Powering pacemakers from heartbeat
vibrations using linear and nonlinear energy harvesters,” Applied Physics
Letters, vol. 100, no. 4, p. 042901, 2012.

[37] M. Birkholz, K.-E. Ehwald, D. Wolansky, I. Costina, C. Baristiran-
Kaynak, M. Frhlich, H. Beyer, A. Kapp, and F. Lisdat, “Corrosion-
resistant metal layers from a CMOS process for bioelectronic applica-
tions,” Surface and Coatings Technology, vol. 204, pp. 2055 – 2059,
2010, proceedings of the European Materials Research Socierty (E-
MRS)Spring Meeting 2009 Symposium.

[38] M. Fröhlich, M. Birkholz, K. E. Ehwald, P. Kulse, O. Fursenko, and
J. Katzer, “Biostability of an implantable glucose sensor chip,” IOP
Conference Series: Materials Science and Engineering, vol. 41, 2012.

[39] R. K. Traeger, “Nonhermeticity of polymeric lid sealants,” Parts, Hy-
brids, and Packaging, IEEE Transactions on, vol. 13, no. 2, pp. 147–152,
1977.

44

Optimization of Point-to-Point Communication in
Wireless Sensor Networks

Tsvetko Tsvetkov1, Alexander von Bodisco2, and Georg Carle1

1Chair for Network Architectures and Services, Technische Universität München
2Industrial Data Communication, University of Applied Science Kempten

Email: tsvetkov@net.in.tum.de, alexander.von.bodisco@tn-allgaeu.de, carle@net.in.tum.de

Abstract—Usually, Wireless Sensor Network (WSN) nodes are
scattered over a large area. Their primary task is to collect data
from the environment and to forward it to a base station. In
order to overcome network topology changes and failures, the
Routing Protocol for Low-Power and Lossy Networks (RPL)
was developed and standardized by the Internet Engineering
Task Force (IETF). The protocol is designed for constructing
and maintaining a routing topology which is optimized for
bidirectional communication between the nodes and the sink.

There are, however, use-cases where instead of a sensor to sink
traffic pattern, a sensor to sensor communication is required.
For example, a node may delegate computation tasks to another
node due to lack of energy. Since RPL basically requires all data
packets to pass through the data sink, suboptimal routes may
be selected in this kind of scenarios. Moreover, severe traffic
congestion may occur near the base station. To overcome these
challenges, an extension of RPL has been developed. It is called
P2P-RPL, and it enables a node to discover on demand routes to
other devices that do not necessarily go through the data sink.

In this paper, an assessment of RPL and P2P-RPL for TinyOS
is given and an evaluation of both protocols on the MoteLab
testbed is made. Furthermore, implementation specific design
choices of both approaches are discussed.

I. INTRODUCTION

Over the last years WSNs have become a very important
and challenging research field. Such networks consist of
spatially distributed autonomous devices which usually operate
untethered and additionally have limited power resources.
This limits all aspects of their construction, architecture and
communication capabilities. To overcome these challenges,
the IETF Routing Over Low Power and Lossy networks
(ROLL) Working Group [1] designed a new routing protocol,
called RPL [2]. The protocol supports the latest version of
the Internet Protocol which results from the research made
by different organizations such as the IP for Smart Objects
(IPSO) Alliance [3]. The highest goal of RPL is to provide
efficient routing paths for Multipoint-to-Point (MP2P) traffic
from devices inside the network towards a data sink as well as
for Point-to-Multipoint (P2MP) traffic from the central control
point to the remaining nodes. For this purpose, a Directed
Acyclic Graph (DAG) which is rooted at the data sink is
established. The DAG is actively maintained by all devices
and its links are used to transport data from the sink to the
network and vice versa.

However, there is a third traffic pattern that was neglected
by the developers of the protocol: the Point-to-Point (P2P)

connectivity between two arbitrary nodes. In case two devices
need to communicate and neither of them is the sink, the
transmitted data is restricted to travel only along the links
in the DAG. As discussed in [4], this may result in the
usage of significantly suboptimal routes and severe traffic
congestion near the DAG root. Therefore, we decided to
develop an extension to RPL for TinyOS. This new mechanism
is commonly referred to as P2P-RPL and allows a node to
reactively discover routes to one or more network participants.
A node having the need to communicate with another non-
sink device sends a route request message that travels through
the network in a multicast manner. This message accumulates
the addresses of the nodes that forward it until it reaches
the desired destination. Upon reception of this message, the
destination stores the accumulated route and generates a reply
message containing the route. The reply message travels back
to the source along the specified route. After receiving the
reply, the source is able to use the learned route and transmit
data packets without necessarily going along the links in the
existing DAG.

This paper is organized as follows. Section II provides a
detailed description of the protocols. An evaluation of both
approaches is made in Section III. Our work is concluded in
Section IV with a summary.

II. PROTOCOLS

A. RPL

RPL is a distance vector routing protocol for low-power
and lossy networks. Network devices running the protocol
are connected in such a way that no cycles are present. For
this purpose a Destination Oriented Directed Acyclic Graph
(DODAG), which is routed at a single destination, is built. The
RPL specification calls this specific node a DODAG root. The
graph is constructed by the use of an Objective Function (OF)
which defines how the routing metric is computed. In other
words, the OF specifies how routing constraints, certain Key
Performance Indicators (KPIs) or other functions are taken
into account during topology construction by every device
separately.

In some cases a network has to be optimized for differ-
ent application scenarios and deployments. For example, a
DODAG may be constructed in a way where the Expected
Number of Transmissions (ETX) or where the current amount

45

of battery power of a node is considered. For this reason, RPL
allows to build a logical routing topology over an existing
physical infrastructure. It specifies the so-called RPL Instance
which defines an OF for a set of one or more DODAGs.

The protocol tries to avoid routing loops by computing a
node’s position relative to other nodes with respect to the
DODAG root. This position is called a Rank and increases
if nodes move away from the root and decreases when nodes
move in the other direction, respectively. The calculation of the
Rank can be based on a simple hop-count metric or a function
which leaves more room for flexible adaptive routing.

The RPL specification defines four types of control mes-
sages for topology maintenance and information exchange.
The first one is called a DODAG Information Object (DIO)
and is the main source of routing control information. It may
store information like the current Rank of a node, the current
RPL Instance, the IPv6 address of the root, etc. The second one
is called a Destination Advertisement Object (DAO). It enables
the support of downward traffic and is used to propagate
destination information upwards along the DODAG. The third
one is named DODAG Information Solicitation (DIS) and
allows a node to require DIO messages from a reachable
neighbor. The fourth type is a DAO-ACK and is sent by
a DAO recipient in response to a DAO message. The RPL
specification defines all four types of control messages as
ICMPv6 information messages with a requested type of 155.
This new type has been officially confirmed by the Internet
Assigned Numbers Authority (IANA) [5].

The support of downward routing is an important key
feature of the protocol. By supporting P2MP traffic it is
possible for a network administrator to control nodes that are
not within direct communication range. This is very useful
for performance evaluation purposes where usually several
hundred nodes are spread over a large area. If such traffic
is not supported, even the slightest changes, such as a timer
value, may require to find the node, disconnect it from the
network and upload a new code image. Moreover, if the idea
of the Internet of Things is considered, P2MP becomes a must
for WSN routing protocols [6].

The RPL specification defines two modes of operation for
supporting P2MP. First, the non-storing mode which makes
use of source routing. In this mode each node has to propagate
its parent list up to the root. After receiving such topology
information, the root computes the path to the destinations.
Second, the storing mode which is fully stateful. In this
mode each non-root and non-leaf network participant has to
maintain a routing table for possible destinations. Note that
the latter one is employed by TinyRPL, the TinyOS RPL
implementation, and evaluated in this paper.

Another important fact about the protocol’s design is the
maintenance of the topology. Since most devices in a WSN are
typically battery powered, it is crucial to limit the number of
control messages transmitted over the network. Many routing
protocols broadcast control packets at a fixed time interval,
which causes energy to be wasted when the network is in a
stable condition. Thus, RPL adapts the sending rate of DIO

messages by extending the Trickle algorithm [7]. In a network
with stable links the control messages will be rare which is
in contrast to an environment with frequent topology changes
where control messages have to be sent at a very high rate.

B. P2P-RPL

The P2P-RPL specification distinguishes between two types
of nodes: an origin and a target. The discovery process begins
by forming a DODAG rooted at the origin, the node that
wishes to establish a P2P connection. Unlike RPL, the formed
DODAG is temporal in nature and is only used to discover
routes to one or more target nodes. For this reason, DIO
messages are not only used for establishing the DODAG, but
they also serve as route discovery messages. The specification
defines them as P2P-DIO messages, and they are extended to
carry additional information such as an unicast or multicast
target address. Moreover, such control messages accumulate
the route from the origin to the target as nodes join the
DODAG. Each node determines its Rank and selects the
appropriate parent node as defined by the used OF.

1

2

3

5

6 7

4

DODAG

P2P-DODAG

Fig. 1. RPL and P2P-RPL

Upon reception of a P2P-DIO, the target remembers the
discovered route and sends it via a reply message to the
origin. This reply message, which is called a Discovery
Reply Object (DRO), travels back to the origin along the
discovered route. The target node may additionally request the
origin to acknowledge the DRO message by sending back a
DRO Acknowledgment (DRO-ACK). After the route discovery
process completes, both nodes are able to communicate with
each other by using source routing, as shown in Figure 1.

The implementation discussed in this work is called Nano
P2P-RPL and is based on the 9th revision of the P2P-RPL
Internet draft published in March 2012 [4]. It supports only a
single P2P-RPL instance which means that nodes are not able
to participate in concurrent route discoveries, i.e. once a node
joins a P2P-DODAG it will not partake in any other route
discovery until the lifetime expires. Note that the term ’P2P-
DODAG’ represents a temporal DODAG established during
route discovery. Since the RPL as well as the P2P-RPL
specification use the term ’DODAG’, the decision is made
to define a second one in order to prevent misinterpretation.
Furthermore, Nano P2P-RPL does not include an hop-by-hop
route establishing mode, thus requiring an origin and a target
to employ source routing after the route discovery process

46

(a) Average Route Length

(b) Average End-to-End Packet Delay

Fig. 2. Nano P2P-RPL Route Optimization

completes. By default, OF0 is used during the setup of the
P2P-DODAG.

Since P2P-RPL operation requires bidirectional links, every
Nano P2P-RPL node that receives a P2P-DIO sends the
message back to the sender. However, it contains an infinite
Rank and the neighbor’s address as destination. The selection
of a unicast address is motivated by the fact that the BLIP
stack [8] does not acknowledge packets containing a multicast
destination address. By selecting a unicast address, Nano P2P-
RPL is able to make use of the linkResult event signaled
by the forwarding engine and determine whether its neighbor
is reachable.

III. EVALUATION

The evaluation part consists of three experiments: (1) an
estimation of the average route length between source and
destination, (2) a computation of packet forwarding overhead
of the data sink, and (3) a stability measurement of the
discovered route. The first two compare TinyRPL with Nano
P2P-RPL and depict the advantages of employing the route
discovery mechanism. Each one of them lasts 6 hours. The
last one evaluates the selection of three different P2P-DODAG
lifetimes. It lasts 18 hours since the experiment is repeated
three times.

During every experiment, 59 MoteLab nodes are actively
participating. A new origin is selected every 30 minutes and a
new target is selected every 5 minutes. In other words, as soon
as a node becomes an origin, it tries to find a new target every
5 minutes. In total, 12 origins and 72 targets are chosen. They
are selected according an uniform distribution over the node
IDs. The data generation time interval is set to 2 seconds and
the shown 99 % confidence intervals are computed around the
sample mean.

A. Route Optimization

The average route lengths between source and destination
are presented in Figure 2(a). While data packets sent only over
the DODAG established by TinyRPL need to traverse 3.6 hops
on average, the average route length is almost halved when
nodes additionally employ Nano P2P-RPL. The reduction of

the average route length has also an impact on the end-to-
end packet delay. As shown in Figure 2(b), the average delay
of packets sent over a P2P route equals to 267 ms whereas
packets sent over the RPL DODAG links require 495 ms to
reach the destination.

Two factors may have an negatively influence the end-to-end
packet delay: hardware quality and environmental disruption.
A malfunctioning antenna of a node may lead to suboptimal
parent selection and delay increase. Interference from another
network may lead to packet collisions and packet loss. For
example, WiFi interference may lead to poor performance
when the WiFi channel overlaps the one, selected by the
sensor devices [9]. Unfortunately, none of these factors can
be monitored and controlled over distance. MoteLab neither
provides information about the current state of the hardware,
nor gives details about interference and disruption from other
networks.

B. Packet Forwarding Overhead

The results from this experiment show that only 648 of the
generated packets traverse data sink when Nano P2P-RPL is
employed. The forwarding overhead experienced by this node
increases in comparison to the situation where nodes use only
the DODAG links provided by TinyRPL: 2916 of the generated
packets are received and forwarded by the DODAG root which
leads to an increase by a factor of 4.5.

Despite the positive results, a very important remark should
be made. The formed topology plays a crucial role when it
comes to decreasing the data packet forwarding overhead of
the data sink. In case the topology resembles an unbalanced
tree, there is a low probability for P2P traffic to reach the
sink even when the links established by RPL are used. For
example, if the formed DODAG resembles a chain, none of
the generated data packets will reach the DODAG root unless
it is chosen as destination.

C. Stability of the Discovered Route

A short P2P-DODAG lifetime influences Nano P2P-RPL’s
ability to discover the best route to a target node. As shown
in Figure 3, the usage of a source route discovered over a

47

DODAG with a lifetime of 5 seconds results in 1.3 route
failures whereas the usage of a route discovered over a 10
second time period results in 0.9 route failures. When a P2P-
DODAG lifetime of 15 seconds is selected, the reliability of
the discovered route further increases: the reported route fail-
ures are 0.6. The results are computed in the following manner.
Every time a new target is selected, the origin reports the
number of received ICMPv6 destination unreachable messages
as it tried to reach the previous target. The sample mean is
computed over these values.

Furthermore, an estimation of the route changes is made.
In terms of P2P-RPL, a route change occurs when an origin
receives a DRO message containing a higher sequence number
than the last one seen. Therefore, it will overwrite the last
advertised route and use the new one instead. As indicated
by the results in Figure 3, route changes start to occur more
frequently as the P2P-DODAG lifetime increases. When a
lifetime of 5 seconds is selected, the observed sample mean of
route changes equals to 1.6. In case the lifetime is increased
to 10 seconds, the sample mean equals to 2.2. It raises up to
3 when the lifetime is set to 15 seconds.

Fig. 3. Route Changes and Failures

Another aspect which is of particular interest is the packet
delivery ratio. In case an intermediate node does not manage
to forward a packet as specified by the source routing header,
it will drop it and generate ICMPv6 destination unreachable
messages to the origin and the target. These messages will be
forwarded along the DODAG established by TinyRPL unless
the originator of the messages has source routes to these
destinations. However, such messages are also prone to loss
and delay. If the origin is not informed on time that the selected
route is not valid anymore, it may continue using it and packet
loss may occur. During the three tests, Nano P2P-RPL proves
to be highly reliable in detecting invalid routes. In case a P2P-
DODAG lifetime of 5 seconds is selected the observed packet
delivery ratio is 92 % and when a lifetime of 10 seconds is
picked, the packet delivery ratio increases by 1 %. It further
increases by 1 % when a P2P-DODAG lifetime of 15 seconds
is chosen. The packet delivery ratio is computed as the ratio
of the correctly received packets over all sent packets.

IV. CONCLUSION

In this paper, a new mechanism for establishing P2P routes
in WSNs is described and evaluated. This approach, also

known as P2P-RPL, establishes a DODAG rooted at the origin,
the node initiating the route discovery process. The multicast
P2P-DIO messages used for creating the DODAG are extended
to accumulate the addresses of the nodes they traverse. The
purpose of these messages is to discover routes to a target, the
node at the other end point of the P2P route. Upon reception
of such a message, the target remembers the accumulated
route and sends it back to the origin via a reply message.
This message travels along the specified route until it reaches
the node which has triggered the route discovery mechanism.
Unlike the RPL protocol, the established DODAG is only valid
for a certain period after which nodes leave the DODAG.

P2P-RPL proves to be a reliable and efficient approach,
allowing an origin and a target to exchange data packets over
considerably shorter routes than the ones provided by the
RPL protocol. The experiments show that the average route
length is almost halved when nodes employ Nano P2P-RPL,
the implementation of P2P-RPL for TinyOS. This decrease of
the average route length affects the end-to-end packet delay
as well. The results indicate that it is reduced by a factor
of 1.85 when motes make use of the P2P-RPL mechanism.
Furthermore, the packet processing overhead experienced by
the data sink is significantly reduced. The experiments show
that forwarding overhead of the sink is reduced by a factor of
4.5 when the links established by P2P-RPL are used.

In addition, a lifetime change of P2P-DODAG influences
the ability of the origin to successfully discover the target.
The results show that when the origin picks a lifetime of 5
seconds it manages to receive a reply message from only 50 %
of the targets it selects. A lifetime of 15 seconds on the other
side results in target discovery success rate of 90 %.

REFERENCES

[1] Michael Richardson, Jean Philippe Vasseur, Adrian Farrel, and Rene
Struik, Routing Over Low Power and Lossy networks (ROLL) Working
Group, http://datatracker.ietf.org/wg/roll/, September 2012.

[2] Jean Philippe Vasseur, Navneet Agarwal, Jonathan Hui, Zach Shelby, Paul
Bertrand, and Cedric Chauvenet, RPL: IPv6 Routing Protocol for Low
power and Lossy Networks. IPSO Alliance, April 2011.

[3] Geoff Mulligan, Pete Pierre, Tim Hirou, Nick Ashworth, Anton Pfef-
ferseder and others, The IPSO Alliance, September 2012.

[4] Mukul Goyal, Emmanuel Baccelli, Matthias Philipp, Anders Brandt and
Jerald Martocci, Reactive Discovery of Point-to-Point Routes in Low
Power and Lossy Networks (draft-ietf-roll-p2p-rpl-09), Internet Draft,
Work in Progress, March 2012.

[5] Internet Assigned Numbers Authority (IANA), Internet Control Mes-
sage Protocol version 6 (ICMPv6) Parameters: ICMPv6 Type Numbers,
http://iana.org/assignments/icmpv6-parameters/, April 2013.

[6] Jean Philippe Vasseur, The Internet of Things: Dream or Reality.
SENSORCOMM 2010: The Fourth International Conference on Sensor
Technologies and Applications, July 2010.

[7] Philip Levis, Neil Patel, David Culler and Scott Shenker, Trickle: A Self-
Regulating Algorithm for Code Propagation and Maintenance in Wireless
Sensor Networks. In Proceedings of the USENIX NSDI Conference, San
Francisco, CA, USA, March 2004.

[8] The TinyOS Community, BLIP 2.0 - TinyOS Documentation Wiki,
http://docs.tinyos.net/tinywiki/index.php/BLIP 2.0 Tutorial,
October 2011.

[9] Matteo Bertocco, Giovanni Gamba and Alessandro Sona, Is CSMA/CA
Really Efficient Against Interference in a Wireless Control System? An
Experimental Answer. In Proceedings of Emerging Technologies and
Factory Automation, September 2008.

48

Weniger ist Mehr: Leichtgewichtige Metriken zur
Erkennung von Denial-of-Service Angriffen in

Drahtlosen Sensornetzen
Michael Riecker und Matthias Hollick

Secure Mobile Networking Lab
Technische Universität Darmstadt

Mornewegstr. 32, 64293 Darmstadt
{michael.riecker, matthias.hollick}@seemoo.tu-darmstadt.de

Zusammenfassung—Drahtlose Sensornetze (WSN) sind
anfällig für Angriffe. Insbesondere Denial-of-Service (DoS)
Angriffe können sich stark auf die ressourcenschwachen Knoten
auswirken. In dieser Ausarbeitung identifizieren wir eine große
Anzahl an Metriken, die sich leicht auslesen und berechnen
lassen ohne zuviel Overhead zu erzeugen. In einem weiteren
Schritt soll untersucht werden, wie sich diese Metriken im
Angriffsfall verhalten und ob sie sich zur Erkennung von
Angriffen eignen.

I. EINFÜHRUNG

In letzter Zeit wurden drahtlose Sensornetze (WSN) zu-
nehmend zur Lösung von unterschiedlichen, praktischen An-
wendungen eingesetzt. Die Einsatzgebiete in der echten Welt,
in denen WSN eine wichtige Rolle spielen, reichen von der
Beobachtung von industriellen Anlagen wie beispielsweise
das Erkennen von undichten Stellen und das Messen des
Drucks in einem Rohr [1] bis hin zur Überwachung kritischer
Infrastrukturen wie der Golden Gate Brücke [2]. Das Gewähr-
leisten von Sicherheit in diesen beispielhaften Anwendungen
stellt ein Problem dar. Eine Analyse der Literatur in diesem
Bereich hat ergeben, dass Sicherheit bisher hauptsächlich von
einem kryptographischen Standpunkt her betrachtet wurde,
wobei der Schwerpunkt auf Vertraulichkeit und Integrität der
Daten liegt. So wurden beispielsweise nicht nur sehr effizien-
te symmetrische Algorithmen für die ressourcenbeschränkten
Knoten entwickelt, sondern auch Public-Key Kryptographie
ist auf Sensorknoten einsetzbar [3], [4]. Was den Einsatz
von kryptographischen Schlüsseln betrifft, so wurden mehre-
re Schlüsselmanagementsysteme vorgeschlagen [5], [6], [7].
Nichts desto trotz sollte aufgrund der oftmals leichten Zugäng-
lichkeit ein Angreifer angenommen werden, der in der Lage
ist die Knoten physisch zu kompromittieren und somit Zugriff
auf das Schlüsselmaterial zu erhalten. Aus diesem Grunde sind
Mechanismen zum Schutz vor Angriffen auf die Verfügbarkeit
des WSN, wie z.B. Denial-of-Service (DoS) Angriffe, nötig.
Ferner muss die Sicherheit im laufenden Betrieb gewährleistet
werden.

Eine klassische Möglichkeit zur Erkennung von Angriffen
stellen Intrusion Detection Systeme (IDS) dar. Die bestehen-
den IDS für drahtlose Sensornetze unterscheiden sich nicht

nur hinsichtlich der Architektur, sondern auch in den einge-
setzten Erkennungstechniken sowie den potentiell erkennbaren
Angriffen. Die überwiegende Mehrheit dieser IDS arbeitet
dezentral, d.h. die Knoten versuchen die Angriffe lokal zu
erkennen, teilweise unter Einbeziehung der Nachbarknoten.
Einige IDS können nur ein bestimmtes Fehlverhalten wie
Sinkhole- oder Wormholeangriffe erkennen, während andere
in der Lage sind, unterschiedliche Anomalien zu erkennen.
Ein Algorithmus zur Detektion von Insider-Angriffen mit Hilfe
von lokal verfügbaren Informationen wurde in [8] vorgestellt.
Diese Arbeit erforscht den Einfluss räumlicher Nähe auf das
Netzverhalten von Sensorknoten in direkter Nachbarschaft.
Jeder Knoten überwacht dabei seine direkten Nachbarn, identi-
fiziert Ausreißer mittels Mahalanobis-Distanzen und bestimmt
durch Mehrheitswahl unter Einbeziehung der Nachbarn die
endgültige Liste mit anormalen Sensorknoten. Das Netzver-
halten wird charakterisiert durch die Rate an verworfenen
Paketen, die Paketsenderate, die Verzögerung beim Weiter-
leiten und die tatsächlichen Sensormesswerte. Ein weiteres
beispielhaftes IDS wurde in [9] entwickelt, welches ein Modell
vom normalen Verhalten anhand einer Vielzahl von Metriken
erstellt, wie z.B. die Paketkollisionsrate, der Energieverbrauch
und das Messintervall.

Bisher wird die Entscheidung, welche Metriken für die
Angriffserkennung relevant sind, mehr willkürlich als wissen-
schaftlich begründet getroffen. Um die passendsten Metriken
zu identifizieren, müssen wir die tatsächlichen Effekte von An-
griffen auf drahtlose Sensornetze verstehen. Wir gehen davon
aus, dass bestimmte DoS-Angriffe drastische Auswirkungen
auf verschiedene Metriken haben und sich diese somit im An-
griffsfall signifikant von den normalen Werten unterscheiden.

II. LEICHTGEWICHTIGE METRIKEN

Was könnten nun leichtgewichtige Metriken sein, die sich
ohne viel Aufwand lokal am Knoten auslesen lassen? Wir
haben mit dem Collection Tree Protokoll (CTP) ein typi-
sches Anwendungsszenario von WSN näher betrachtet und
verschiedene Metriken identifiziert, die sich potentiell eignen
könnten, um DoS-Angriffe zu erkennen. Neben diesen CTP-
spezifischen Metriken wurden auch allgemein verwendbare

49

Metriken herausgearbeitet, welche zunächst vorgestellt wer-
den:

1) Received Signal Strength Indicator (RSSI): Der RSSI-
Wert stellt die momentane Stärke des Funksignals dar,
wie es auf Empfängerseite gemessen und üblicherweise
in dBm ausgedrückt wird. Ein hoher RSSI-Wert könnte
auf einen Angriff deuten, bei dem ein Angreifer mit
höherer Sendeleistung operiert als reguläre Sensorkno-
ten.

2) Sende-/Empfangszeit: Diese Metriken geben an, wie-
viel Zeit das Funkmodul pro Periode im Sende-
/Empfangsmodus verbringt. Jamming und Blackhole-
Angriffe sollten diese Zeit beeinflussen.

3) Gesendete/Empfangene Pakete auf Netzwerkebene: Auf
Netzwerkebene werden alle ausgehenden und einge-
henden Pakete gezählt. Abhängig von der Stärke eines
Jamming-Angriffs könnte sich die Anzahl der empfan-
genen Pakete entweder erhöhen oder ganz auf Null redu-
ziert werden, wenn keine Kommunikation mehr möglich
ist. Der Blackhole-Angriff könnte ebenfalls zu zwei
unterschiedlichen Effekten führen. Einerseits könnten
Knoten in direkter Nachbarschaft zum Angreifer eine
erhöhte Anzahl an empfangenen Paketen verzeichnen.
Andererseits könnte das Verwerfen von Paketen durch
den Angreifer bei bestimmten Knoten zu einer Abnahme
an empfangenen Paketen führen.

4) Gesendete/Empfangene Pakete auf MAC-Ebene: Diese
Paketraten entsprechen den Metriken auf Netzwerke-
bene, zählen aber die ausgehenden und eingehenden
Nachrichten auf MAC-Ebene.

5) Pakete mit ungültiger CRC-Prüfsumme: Ein empfange-
nes Paket mit ungültiger CRC-Prüfsumme wird verwor-
fen. Diese Metrik stellt die Häufigkeit des Auftretens
solcher Ereignisse dar. Falls ein Angreifer Pakete sendet,
die nicht der IEEE 802.15.4 Spezifikation entsprechen,
sollte sich die Anzahl an Paketen mit ungültiger CRC-
Prüfsumme erhöhen. Darüber hinaus könnte höherer
Netzverkehr zu Interferenzen und der Zerstörung von
regulären Paketen führen.

6) Energieverbrauch durch das Funkmodul: Der Energie-
verbrauch durch Aktivitäten des Funkmoduls wie das
Abhören des Kanals, das Senden von Nachrichten oder
der Energieverbrauch im Bereitschaftsmodus können
gemessen werden.

7) Energieverbrauch durch den Mikrocontroller: Diese Me-
trik misst den Energieverbrauch des Mikrocontrollers,
der von der Betriebszeit und -spannung abhängt.

8) Contention Rate: Wenn ein Knoten aufgrund eines be-
legten Kanals kein Paket senden konnte, wird der Zähler
dieser Metrik hochgesetzt.

9) Wartende Pakete: Diese boolesche Metrik gibt an, ob der
Knoten noch nicht verarbeitete Pakete im Buffer hat.

10) Zu kurze Pakete: Pakete die kürzer sind als der Footer
plus die Prüfsumme könnten durch einen Jamming-
Angriff hervorgerufen werden.

Das Collection Tree Protokoll stellt zusätzliche statistische
Daten das Routing betreffend zur Verfügung, welche als
mögliche Erkennungsmetriken eingesetzt werden können:
11) Gesendete/Empfangene Datenpakete: Diese Metriken

zählen, wieviele Datenpakete unter Einsatz des Collec-
tion Tree Protokolls gesendet/empfangen wurden.

12) Gesendete/Empfangene Acknowledgement-Pakete: Hier
wird angegeben, wieviele Acknowledgement-Pakete ge-
sendet und empfangen wurden.

13) Empfangene Duplikate: Diese Metrik beschreibt die
Anzahl der empfangenen Duplikate. Angriffe, bei denen
die selben Datenpakete ohne jede Veränderung wieder-
eingespielt werden, könnten dadurch erkannt werden.

14) Verworfene Pakete aufgrund eines überladenen Buffers:
Sollte der Buffer für eingehende Datenpakete überladen
sein, werden die nächsten ankommenden Pakete verwor-
fen. Diese Metrik zählt, wie oft dieses Ereignis eintritt.

15) Paketzustellrate: Die Paketzustellrate (PDR) basiert auf
den gesendeten Datenpaketen und den empfangenen
Acknowledgements. Sie wird wie folgt berechnet

PDRSender =
empfangene ACKs

gesendete Pakete

und beschreibt den Anteil der erfolgreich gesendeten
Datenpakete.

16) Wechseln des Vaterknotens: Im Collection Tree Protokoll
kommt eine baumbasierte Topologie zum Senden von
Daten zum Einsatz. Falls ein Sensorknoten nicht direkt
mit der Basisstation kommunizieren kann, wählt er einen
Vaterknoten aus, welcher seine Daten weiterleitet. Die
Anzahl der Wechsel des Vaterknotens wird durch diese
Metrik gezählt. Diese Information könnte nützlich sein,
um Blackhole-Angriffe zu identifizieren.

17) Schätzung des besten Nachbarknotens: Ein Knoten
wählt denjenigen Nachbarn als Vaterknoten, der die ge-
ringsten Routingkosten aufweist. Diese Kosten werden
entweder berechnet durch Schätzen der Linkqualität oder
durch Auslesen der Headerinformationen von eingehen-
den Paketen. Diese Metrik schätzt die Linkqualität zum
besten Nachbarknoten und kann dadurch evtl. generelle
Netzwerkanomalien wie Sinkhole-Angriffe erkennen.

Abbildung 1. Architektur eines Sensorknotens. Die Zahlen geben an, welche
Metrik auf welcher Ebene / welchem Modul ausgelesen wird.

50

18) Anzahl der Nachbarknoten: Dieser Wert gibt die Anzahl
der erreichbaren Knoten in der Nachbarschaft an.

Abbildung 1 zeigt die Architektur eines typischen Sensor-
knotens und gibt an, an welcher Stelle die Metriken ausgelesen
werden bzw. welche Ebenen betroffen sind. Alle genannten
Metriken lassen sich mit Hilfe von Standard Contiki- / CTP-
Funktionen entweder direkt auslesen oder sind leicht anhand
der ermittelten Werte berechenbar.

III. VERWANDTE ARBEITEN

Die systematische Analyse der Auswirkungen von Denial-
of-Service Angriffen auf drahtlose Sensornetze wurde bisher
vernachlässigt.

Xu et al. [10] untersuchten mehrere Erkennungsvarian-
ten für Jamming-Angriffe. Die Autoren verwendeten drei
verschiedene Metriken, um zwischen normalem und durch
Jamming beeinträchtigtem Verkehr zu unterscheiden: (1)
den durchschnittlichen RSSI-Wert, (2) die Abhörzeit des
Trägers, und (3) die Paketzustellrate (PDR). Sie zogen den
Schluss, dass die Kombination aus PDR und RSSI zuverlässig
Jamming-Angriffe erkennen kann. Die selben Autoren erwei-
terten ihre Arbeit zu Jamming-Angriffen in [11], und erforsch-
ten die Auswirkung von Jamming-Angriffen auf die Paketzu-
stellrate und implementierten ”Channel Surfing“ - Techniken,
um Interferenzen entgegen zu wirken.

Ebenso führten Zhao et al. [12] eine Studie zur Paketzu-
stellrate in dichten WSN durch. Obwohl sie störende Übert-
ragungen auf der MAC-Ebene berücksichtigen, wird kein
systematischer Angriff in ihrer Arbeit betrachtet.

Eine weitere Arbeit, die sich mit der Paketzustellrate be-
fasst, wurde in [13] vorgestellt. Hauer et al. evaluierten die
Auswirkungen von WLAN-Interferenz auf die Paketzustellrate
in IEEE 802.15.4 Body Area Networks.

Kürzlich stellten Lu et al. [14] ein System zur Erkennung
von Jamming-Angriffen in zeitkritischen Netzwerken vor. Sie
schlugen eine neue Metrik zur Performanzmessung vor. Eine
Nachricht wird hierbei als ungültig angesehen, wenn die Nach-
richtenverzögerung einen bestimmten Grenzwert überschreitet.
Sie analysierten die Auswirkungen von Jamming-Angriffen
auf diese spezielle Metrik.

Mehrere Arbeiten untersuchten Linkqualitätsmetriken, z.B.
um die Dienstgüte zu verbessern. Liu et al. [15] führten einen
Linkschätzer basierend auf maschinellen Lernverfahren ein.
Ihre Modelle können die Linkqualität vorhersagen, indem sie
eine Kombination aus PHY-Parametern (Signal to Noise Ratio
(SNR), Link Quality Indicator (LQI) und RSSI) und der Packet
Reception Rate (PRR) als Eingabe verwenden. Boano et al.
[16] analysierten die Kombination von PRR, SNR und LQI
zu einer einzigen, robusteren Metrik um die Linkqualität zu
schätzen. Boano et al. [17] entwickelten auch JamLab, ein
System zur Erzeugung von Interferenz, und untersuchten den
Einfluss auf die PRR.

IV. ZUSAMMENFASSUNG UND AUSBLICK

Wir identifizieren eine große Anzahl an leichtgewichtigen
Metriken, die lokal an den Sensorknoten ausgelesen werden

können. Inwieweit sich diese Metriken eignen, um DoS-
Angriffe zu erkennen, muss in einem weiteren Schritt un-
tersucht werden. Hierzu haben wir ein Angriffs-Testbed ent-
wickelt, um die Auswirkungen von Jamming- und Blackhole-
Angriffen auf die Metriken zu analysieren. Die Auswertung
dieser Ergebnisse steht teilweise noch aus, jedoch lässt sich
bereits sagen, dass gewisse Metriken wie die Paketzustellrate
statistisch signifikant unterschiedliche Werte im Angriffsfall
aufweisen und sich somit sehr gut zur Angriffserkennung
eignen.

DANKSAGUNGEN

Diese Arbeit wurde im Rahmen des Projektes EMERGENT
im Software-Cluster (www.software-cluster.org) erstellt und
mit Mitteln des Bundesministeriums für Bildung und For-
schung (BMBF) unter dem Förderkennzeichen ”01IC10S01“
teilweise gefördert und wurde unterstützt durch LOEWE CA-
SED (www.cased.de). Die Verantwortung für den Inhalt liegt
bei den Autoren.

LITERATUR

[1] P. Suriyachai, J. Brown, and U. Roedig, “Time-critical data delivery in
wireless sensor networks,” in DCOSS, 2010.

[2] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon, “Health monitoring of civil infrastructures using wireless
sensor networks,” in IPSN, 2007.

[3] A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz, “Energy
analysis of public-key cryptography for wireless sensor networks,” in
PerCom, 2005.

[4] A. Liu and P. Ning, “Tinyecc: A configurable library for elliptic curve
cryptography in wireless sensor networks,” in IPSN, 2008.

[5] L. Eschenauer and V. D. Gligor, “A key-management scheme for
distributed sensor networks,” in CCS, 2002.

[6] D. Liu and P. Ning, “Establishing pairwise keys in distributed sensor
networks,” in CCS, 2003.

[7] W. Du, J. Deng, Y. S. Han, S. Chen, and P. K. Varshney, “A key
management scheme for wireless sensor networks using deployment
knowledge,” in INFOCOM, 2004.

[8] F. Liu, X. Cheng, and D. Chen, “Insider attacker detection in wireless
sensor networks,” in INFOCOM, 2007.

[9] Z. Yu and J. J. Tsai, “A framework of machine learning based intrusion
detection for wireless sensor networks,” in SUTC, 2008.

[10] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching
and detecting jamming attacks in wireless networks,” in MobiHoc, 2005.

[11] W. Xu, W. Trappe, and Y. Zhang, “Channel surfing: Defending wireless
sensor networks from interference,” in IPSN, 2007.

[12] J. Zhao and R. Govindan, “Understanding packet delivery performance
in dense wireless sensor networks,” in SenSys, 2003.

[13] J.-H. Hauer, V. Handzinski, and A. Wolisz, “Experimental study of the
impact of wlan interference on ieee 802.15.4 body area networks,” in
EWSN, 2009.

[14] Z. Lu, W. Wang, and C. Wang, “From jammer to gambler: Modeling and
detection of jamming attacks against time-critical traffic,” in INFOCOM,
2011.

[15] T. Liu and A. Cerpa, “Foresee (4c): Wireless link prediction using link
features,” in IPSN, 2011.

[16] C. Boano, M. Zuniga, T. Voigt, A. Willig, and K. Römer, “The triangle
metric: Fast link quality estimation for mobile wireless sensor networks,”
in ICCCN, 2010.

[17] C. Boano, T. Voigt, C. Noda, K. Romer, and M. Zuniga, “Jamlab:
Augmenting sensornet testbeds with realistic and controlled interference
generation,” in IPSN, 2011.

51

	Inhaltsverzeichnis
	Real-world Bluetooth Master-Slave BridgeDeployment
	Wireless in The Woods: Experimental Evaluation ofIEEE 802.11a/b/g in Forested Environments
	Selbstorganisierende drahtlose Vernetzung inPhotovoltaik-Kraftwerken
	On the Comparability of Indoor LocalizationSystems’ Accuracy
	Towards Application-Centric Deployment ofLow-Power Wireless Networks
	The Crux of OMNeT++ on development for aspecific Wireless Sensor Node Platform, A ProgressReport
	Semantische Annotationen für das IoT
	Directed Link Utilization with Mahalle+
	Sens4U: A Modular Approach Towards the IdealSensor Node Software and Hardware
	A GNURadio-based IEEE 802.15.4 Testbed
	Extending Wireless Body Sensor Networks Using Intelligent Implants
	Optimization of Point-to-Point Communication inWireless Sensor Networks
	Weniger ist Mehr: Leichtgewichtige Metriken zurErkennung von Denial-of-Service Angriffen inDrahtlosen Sensornetzen

