
Design and Implementation

of a Graph Grammar Based Language

for Functional-Structural Plant Modelling

Von der Fakultät für Mathematik, Naturwissenschaften und Informatik

der Brandenburgischen Technischen Universität Cottbus

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

(Dr. rer. nat.)

genehmigte Dissertation

vorgelegt von

Diplom-Physiker

Ole Kniemeyer

geboren am 27. Juni 1977 in Bremen

Gutachter: Prof. Dr. Winfried Kurth
Gutachter: Prof. Dr. Claus Lewerentz
Gutachter: Prof. Dr. Hans-Jörg Kreowski
Gutachter: Prof. Dr. Dr. h.c. Branislav Sloboda

Tag der mündlichen Prüfung: 21. November 2008

Abstract

Increasing biological knowledge requires more and more elaborate methods
to translate the knowledge into executable model descriptions, and increasing
computational power allows to actually execute these descriptions. Such a
simulation helps to validate, extend and question the knowledge.

For plant modelling, the well-established formal description language of
Lindenmayer systems reaches its limits as a method to concisely represent
current knowledge and to conveniently assist in current research. On one hand,
it is well-suited to represent structural and geometric aspects of plant models
– of which units is a plant composed, how are these connected, what is their
location in 3D space –, but on the other hand, its usage to describe functional
aspects – what internal processes take place in the plant structure, how does
this interact with the structure – is not as convenient as desirable. This can
be traced back to the underlying representation of structure as a linear chain
of units, while the intrinsic nature of the structure is a tree or even a graph.
Therefore, we propose to use graphs and graph grammars as a basis for plant
modelling which combines structural and functional aspects.

In the first part of this thesis, we develop the necessary theoretical frame-
work. Starting with a short consideration of different kinds of models in Chap-
ter 2, we show the state of the art with respect to Lindenmayer systems in
Chapter 3 and with respect to graph grammars in Chapter 4. In Chapter 5,
we develop the formalism of relational growth grammars as a variant of graph
grammars. We show that this formalism has a natural embedding of Linden-
mayer systems which keeps all relevant properties, but represents branched
structures directly as axial trees and not as linear chains with indirect encod-
ing of branches.

In the second part, we develop the main practical result, the XL program-
ming language as an extension of the Java programming language by very
general rule-based features. Chapter 6 develops and explains the design of the
language in detail; this is the main reference to get familiar with the language.
Short examples illustrate the application of the new language features. Chap-
ter 7 describes the built-in pattern matching algorithm of the implemented

II Abstract

run-time system for the XL programming language. Chapter 8 sketches a
possible implementation of an XL compiler.

The third part is an application of relational growth grammars and the XL
programming language. At the beginning of Chapter 9, we show how the gen-
eral XL interfaces can be customized for relational growth grammars. On top
of this customization, several examples from a variety of disciplines demon-
strate the usefulness of the developed formalism and language to describe
plant growth, especially functional-structural plant models, but also artificial
life, architecture or interactive games. The examples of Chapter 9 operate
on custom graphs like XML DOM trees or scene graphs of commercial 3D
modellers, while the examples of Chapter 10 use the 3D modelling platform
GroIMP, a software developed in conjunction with this thesis.

Finally, the discussion in Chapter 11 summarizes and concludes this thesis.
It ends with an outlook for possible future research.

Appendix A gives an overview of the GroIMP software. The practical usage
of its plug-in for relational growth grammars is illustrated in Appendix B.

Contents

1 Introduction and Motivation . 1

Part I The Rule-Based Paradigm

2 Introductory Examples . 11
2.1 Snowflake Curve . 11
2.2 Plant-Like Branching Structure . 13
2.3 Sierpinski Triangle . 13
2.4 Game of Life . 14
2.5 Artificial Ants . 15
2.6 Comparison of Examples . 16

3 L-Systems . 17
3.1 Introduction . 17
3.2 Turtle Interpretation of Symbols . 19
3.3 Stochastic L-Systems . 22
3.4 Context-Sensitive L-Systems . 24
3.5 Table L-Systems. 24
3.6 Pseudo L-Systems . 25
3.7 Parametric L-Systems . 25
3.8 Differential L-Systems . 26
3.9 Interpretive Productions . 28
3.10 L-Systems with Imperative Programming Statements 29
3.11 Growth Grammars . 30
3.12 Environmentally-Sensitive L-Systems . 32
3.13 Open L-Systems . 32
3.14 L+C . 33
3.15 L-System Software . 35

3.15.1 GROGRA . 35
3.15.2 vlab and L-Studio . 36

IV Contents

3.15.3 Lparser . 38
3.15.4 L-transsys . 38

4 Graph Rewriting . 43
4.1 Introduction . 43
4.2 Embedding Mechanisms . 45

4.2.1 Neighbourhood Controlled Embedding 46
4.2.2 Hyperedge Replacement . 47
4.2.3 Double-Pushout Approach . 48
4.2.4 Single-Pushout Approach . 52
4.2.5 Pullback Rewriting . 56
4.2.6 Relation-Algebraic Rewriting . 58
4.2.7 Logic-Based Structure Replacement Systems 58

4.3 Parallel Graph Rewriting . 59
4.3.1 Explicit Connection Mechanisms . 60
4.3.2 Implicit Connection Mechanisms . 66

4.4 Parallelism . 68
4.5 Extensions of the Graph Model . 72

4.5.1 Typed Graphs . 72
4.5.2 Typed Graphs with Inheritance . 73
4.5.3 Typed Attributed Graphs with Inheritance 75

4.6 High-Level Replacement Systems . 80
4.7 Programmed Graph Replacement Systems 81
4.8 Graph Rewriting Software . 82

4.8.1 PROGRES . 82
4.8.2 AGG . 83
4.8.3 GrGen.NET . 85
4.8.4 vv . 85

5 Relational Growth Grammars . 89
5.1 Introduction . 89
5.2 Graph Model . 95

5.2.1 Axial Trees . 95
5.2.2 RGG Graph Model . 97

5.3 Connection Mechanism . 99
5.3.1 L-System-Style Connection . 99
5.3.2 Productions with Gluing . 103
5.3.3 Connection Mechanism: SPO Approach with Operators 104

5.4 Dynamic Creation of Successor . 105
5.5 Rules . 106
5.6 Control Flow and Relational Growth Grammar 112
5.7 Relations within Rules . 114
5.8 Incremental Modification of Attribute Values 115
Appendix 5.A Proofs . 116

Contents V

Part II The XL Programming Language

6 Design of the Language . 127
6.1 Requirements . 127
6.2 Design Guidelines . 128
6.3 Generator Expressions . 129

6.3.1 Generator Methods . 133
6.3.2 Range Operator . 134
6.3.3 Array Generator . 135
6.3.4 Guard Operator . 135
6.3.5 Filter Methods . 136
6.3.6 Standard Filter Methods . 138

6.4 Aggregate Expressions . 138
6.4.1 Containment Operator . 138
6.4.2 Aggregate Methods . 138
6.4.3 Standard Aggregate Methods . 140

6.5 Queries . 141
6.5.1 Compile-Time and Run-Time Models for Graphs 142
6.5.2 Node Patterns . 144
6.5.3 Path Patterns . 148
6.5.4 Composing Patterns . 151
6.5.5 Declaration of Query Variables . 151
6.5.6 Transitive Closures . 152
6.5.7 Single Match, Late Match and Optional Patterns 153
6.5.8 Marking Context . 154
6.5.9 Folding of Query Variables . 155
6.5.10 Query Initialization . 155
6.5.11 How Patterns are Combined . 156
6.5.12 Declarations of User-Defined Patterns 157
6.5.13 Query Expressions . 158

6.6 Operator Overloading . 160
6.7 Production Statements . 162

6.7.1 Execution of Production Statements, Current Producer 164
6.7.2 Node Expressions . 164
6.7.3 Prefix Operators for Node Expressions 166
6.7.4 Subtrees and Unconnected Parts . 168
6.7.5 Code Blocks . 169
6.7.6 Control Flow Statements . 169

6.8 Rules . 171
6.8.1 Rule Blocks . 172
6.8.2 Execution of Rules . 173

6.9 Stand-Alone Production Statements . 174
6.10 Properties . 174

6.10.1 Compile-Time and Run-Time Models for Properties . . . 174

VI Contents

6.10.2 Access to Property Variables . 176
6.10.3 Deferred Assignments . 177
6.10.4 Properties of Wrapper Types . 179

6.11 Module Declarations . 179
6.11.1 Syntax . 180
6.11.2 Instantiation Rules . 182

6.12 User-Defined Conversions . 183
6.13 Minor Extensions . 185

6.13.1 for statement . 185
6.13.2 Implicit Conversions from double to float 186
6.13.3 Expression Lists . 187
6.13.4 With-Instance Expression Lists . 187
6.13.5 Anonymous Function Expressions 188
6.13.6 const modifier . 189
6.13.7 New Operators . 190

7 Pattern Implementation and Matching Algorithm 193
7.1 Common Semantics of Patterns . 193
7.2 Built-In Patterns . 196
7.3 Compound Pattern . 196

7.3.1 Search Plans and Their Cost Model 197
7.3.2 Generating a Search Plan . 197
7.3.3 Enumeration of Nodes . 198
7.3.4 Checking Constraints . 199

7.4 User-Defined Patterns . 200
7.5 Storage of Named Query Variables . 201
7.6 Support for Application of Rules . 201

8 Compiler Implementation . 205
8.1 Lexical Analysis . 207
8.2 Syntax Analysis . 208
8.3 Semantic Analysis and Expression Tree Generation 209

8.3.1 Passes of the Semantic Analysis . 209
8.3.2 Scopes and their Symbol Tables . 210
8.3.3 Generation of Expression Trees . 211

8.4 Extension of the Virtual Machine . 212
8.4.1 Stack Extension . 213
8.4.2 Descriptors for Nested Method Invocations 216
8.4.3 Control Transfer to Enclosing Method Invocations 217
8.4.4 Minor Issues . 221
8.4.5 Transformation for Invocations of Generator Methods . . 223

8.5 Bytecode Generation . 224
8.5.1 Run-Time Models, Properties and Queries 225

8.6 Compiler Extensions . 226
8.7 Invocation of the Compiler . 226

Contents VII

8.8 Current Limitations . 227
8.9 Comparison with Java Compilers . 227

8.9.1 Efficiency of Output . 227
8.9.2 Efficiency of Compilation Process . 229

Part III Applications

9 Base Implementation and Its Applications 235
9.1 Base Implementation . 235

9.1.1 Graph Model . 235
9.1.2 Modification Queues . 237
9.1.3 Implementation of Connection Mechanism 239
9.1.4 Producer Implementation . 243
9.1.5 Derivation Modes . 245
9.1.6 Interpretive Structures . 248
9.1.7 Injectivity of Matches . 250
9.1.8 Implementation of Properties . 251

9.2 Simple Implementation . 251
9.2.1 Sierpinski Triangles . 253

9.3 Document Object Model Implementation 256
9.3.1 Simple Model of Young Maple Trees 258

9.4 Implementation for Commercial 3D Modellers 265
9.4.1 CINEMA 4D . 266
9.4.2 3ds Max . 266
9.4.3 Maya . 266

10 Applications within GroIMP . 269
10.1 Introductory Examples . 269

10.1.1 Snowflake Curve . 269
10.1.2 Sierpinski Triangles . 272
10.1.3 Game of Life . 275

10.2 Technical Examples . 278
10.2.1 Derivation Modes . 278
10.2.2 Amalgamated Two-Level Derivations 281

10.3 Artificial Life . 282
10.3.1 Biomorphs . 282
10.3.2 Artificial Ants . 287

10.4 Artificial Chemistry . 292
10.4.1 Prime Number Generator . 292
10.4.2 Polymerization Model . 293

10.5 Virtual Plants . 296
10.5.1 ABC Model of Flower Morphogenesis 296
10.5.2 Barley Breeder . 302
10.5.3 Carrot Field with Rodent . 310

VIII Contents

10.5.4 Spruce Model of GROGRA . 314
10.5.5 Analysis of Structural Data of Beech Trees with XL . . . 314
10.5.6 Beech Model and Tree Competition 317
10.5.7 Canola Model for Yield Optimization 329
10.5.8 GroIMP as HTTP Server in an E-Learning Project 330
10.5.9 Reproducing an Alder Tree of the Branitzer Park 332
10.5.10Ivy Model . 332

10.6 Graph Rotation Systems and the Vertex-Vertex Algebra 335
10.7 Architecture . 340

10.7.1 Results of Students of Architecture 341
10.7.2 City Generator . 343

10.8 AGTIVE ’07 Tool Contest . 347
10.8.1 Ludo Game . 347
10.8.2 Model Transformation from UML to CSP 353
10.8.3 Sierpinski Triangles Benchmark . 359

11 Discussion . 363
11.1 Relational Growth Grammars . 363
11.2 The XL Programming Language . 364
11.3 Outlook . 371

Appendix A The Modelling Platform GroIMP 375
A.1 Overview . 375
A.2 Plug-In Architecture . 377
A.3 Graph Component . 379

A.3.1 Graph Interface . 379
A.3.2 Management of Objects, Attributes and Changes 383
A.3.3 Graph Implementation . 384

A.4 Projects . 387
A.5 Graphical User Interface . 387
A.6 Import and Export Filters . 388

A.6.1 GraphML Import . 388
A.6.2 DTD and DTG Import . 390

A.7 3D Plug-In . 390
A.7.1 Built-In Raytracer . 392

Appendix B The RGG Plug-In of GroIMP 395
B.1 Overview of Functionality . 395
B.2 RGG Class and Its Life Cycle . 396
B.3 XL Console . 398
B.4 RGG Dialect of the XL Programming Language 399
B.5 Implicit Annotations for Source Code . 400
B.6 Processing of Compiled Classes . 400
B.7 Implementation of Graph Model . 401
B.8 Operations of the Producer . 401

Contents IX

B.9 Properties . 402
B.10 Wrappers . 404
B.11 Interpretive Mode . 405
B.12 Turtle Commands . 406
B.13 Library Functions . 408

B.13.1 Geometric Functions . 408
B.13.2 Mathematical Functions . 409
B.13.3 Topological Functions . 410
B.13.4 Control of Rule Application . 411
B.13.5 Creating References to User-Defined Objects 411
B.13.6 User Interface . 412
B.13.7 Operator Methods and Unwrapping Conversions 412

B.14 Radiation Model . 412
B.15 Support for GROGRA Models . 414

References . 415

Index . 427

1

Introduction and Motivation

Plant modelling and modelling in general try to create an image of reality
in terms of some description language. Usually, the image is an abstraction
and idealization of reality, but nevertheless, in most cases the long-term ob-
jective is to reach reality as closely as possible. A diversity of description
languages have been used: Historically, natural languages and drawings were
the first to be used, but later on, more precise specifications were expressed
in terms of mathematical equations. Starting with the advent of the com-
puter, programming languages have played a more and more important role
in modelling. Likewise, there exists a diversity of models: Qualitative models
describe observed structures and relations without statements on measured
values, while quantitative models aim at the description of numerical values
which come close to measured values [106]. Descriptive or empirical models
are based on measurements and try to reconstruct the latter out of a suit-
able, compact specification, while mechanistic or conceptual models try to
explain measurements based on general underlying mechanisms [106, 154].
Static models describe an image of reality at a particular point in time, while
developmental models specify the image by a development in time [154]. Mod-
els may be simple like a parameterized function which relates variables of the
model and has to be fitted to measurements (a quantitative empirical model),
or complex like a system of differential equations (a quantitative mechanistic
model) or an algorithmic description of growth.

Often, a model does not explicitly describe the relevant properties of a
structure. It rather gives instructions how to obtain these, and the used lan-
guage defines the semantics of the instructions, i. e., how the instructions are
to be processed. For example, a system of differential equations in the math-
ematical language has to be integrated, an algorithmic description has to be
executed. This execution of a model is called simulation, and computers are
particularly qualified for this task.

Given a concrete field of application, models can not only be categorized
according to the above general dimensions, but also with respect to their res-
olution and the considered components. In the context of plant modelling, we

2 1 Introduction and Motivation

can arrange models in the triangle shown in Fig. 1.1 [104]. Models of whole
forest areas, landscapes or ecosystems have a very aggregated view and are
typically expressed in a statistical way. When moving to scales with higher
resolution, two different aspects of plants and their growth appear: the topo-
logical and geometric structure of individual plants and their components
becomes visible, but also low-level biological processes with causal and func-
tional relationships. Ideally, such a hierarchy of models has the property that
the aggregation of models of higher resolution substantiates and explains the
model of lower resolution. Thus with increasing biological knowledge and com-
putational power, an obvious objective is to explain more and more scales by
their underlying mechanisms, although there is not yet a consensus that this
traditional method of physics is appropriate for biology [154].

Figure 1.1. Triangle of plant models (from [104])

Historically, the two aspects at the scale of plant components, their struc-
ture and their function, were treated separately by different models (and dif-
ferent research groups). Structural models (also called architectural models)
were mostly descriptive and did not take into account internal processes. Func-
tional models (also called process models) focused on a detailed representation
of mathematically coupled quantities of internal processes (e. g., photosynthe-
sis, water, sugar and nutrient transport, allocation), but had only a coarse
representation of structure, if any. A major reason for the simplification of
structure was its irrelevance in the end: a model had to predict properties
like the size of utilizable wood of a tree or the yield of a cereal. But even
if only these quantities are of interest in the end, a model can benefit from
the consideration of structure [104]. For example, a precise computation of
photosynthesis or matter exchanges requires an accurate three-dimensional
representation of the geometry. Vice versa, a descriptive structural model can
benefit from the inclusion of a functional model: if one integrates processes

1 Introduction and Motivation 3

like photosynthesis, transport and allocation which influence the growth of
structure, the model becomes a mechanistic one.

During the last decade and enabled by sufficiently powerful computers,
increasing attention was drawn to such combined functional-structural plant
models (FSPM, also called virtual plants) [69]. Like structural models, they
represent the plant as a topological structure of interconnected components
and with an associated distribution in 3D space, but now, given this detailed
spatial resolution, also the specification of biological processes has to take into
account the spatial distribution. As a consequence, functional-structural plant
models are based on scaling up, i. e., they explain the behaviour on higher
levels by underlying mechanisms. Having a detailed spatial description, inter-
actions with the environment can be specified as this typically happens at the
surface of plant organs. This includes light interception and mutual shading,
but also wind attenuation and gas exchange. Having a detailed topological de-
scription, internal fluxes (water, carbon, nutrients) and signals can be defined,
but also biomechanical aspects can be studied. Contrary to typical simulations
of transport and mechanics in physics, the structure in which these processes
happen changes itself when the plant is growing, so that there is a mutual
feedback between structure and function. In general, such systems are called
dynamical systems with dynamical structure [66].

According to [69], functional-structural plant modelling faces three chal-
lenges. At first, the modelled systems themselves have a high degree of com-
plexity, given the numerous processes and their interactions at different scales,
and the resulting variability of growth. Secondly and as a consequence thereof,
the biological knowledge is very diverse and spread over several spatial and
temporal scales, but this diversity has to be integrated in a single consistent
model. Finally, to deal with the complexity of the systems in question, suit-
able formalisms and languages are needed which assist in the specification and
execution of models.

This work is devoted to the latter challenge, the development of a suitable
formalism and programming language for functional-structural plant mod-
elling. The emphasis is on suitable: of course, any current high-level pro-
gramming language can be used to implement both functional and structural
aspects, but this typically amounts to a lot of code of technical nature which
obscures the proper model within the implementation. An analogous example
in a mathematical context is the (approximate) solution of a nonlinear equa-
tion. In a language which allows to specify such an equation in mathematical
notation and which has a built-in semantics to find a root of the equation, the
implementation of the model coincides with its natural specification. Con-
trary, the implementation in a general-purpose language requires both the
implementation of the equation, typically in a non-natural way as, e. g., par-
tial derivatives also may have to be provided, and the implementation of the
solver. The essence of the original model is lost in such an implementation.

But what is a suitable programming language for functional-structural
plant modelling? As in the mathematical example of nonlinear equations, the

4 1 Introduction and Motivation

programming language should be close to the “natural” language of plant
models. Unlike in mathematics, such a standard language for all aspects does
not exist, but for individual aspects, we can find more or less accepted or
intuitive notations. For example, consider Fig. 1.2. It shows two growth rules
at organ level. The left one describes how a terminal bud evolves into an
internode together with a new terminal bud and a smaller lateral bud, i. e., it
models the apical growth process which creates an axis of linearly connected
internodes. The right rule describes how a lateral bud develops into a branch
consisting of an internode with again two buds. The left rule also graphi-
cally describes an alternate phyllotactic pattern of branches, i. e., consecutive
branches point to alternating sides of the bearing axis.

Figure 1.2. Growth rules at organ level (from [67])

These growth rules constitute a purely structural model. For their precise
representation, a suitable rule-based language was already found, namely the
language of Lindenmayer systems (L-systems for short) [161]. The structure
is represented by a sequence of symbols, one for each organ (or whatever the
basic structural components are). Branches are enclosed by square brackets,
rotations are encoded by special rotation symbols. The right-hand side of the
left rule would be written as I [+B] - I [+B] - B, if I stands for an internode,
B for a bud, + for a rotation according to the branching angle and - for a
rotation of 180 degrees around the growth axis according to the phyllotactic
pattern. The dynamics within L-systems is implemented by replacement rules
for symbols. For the two depicted rules, we have a unified single L-system
rule if we observe that the lower internode in both graphical rules remains
unchanged:

B→ I [+B] - B (1.1)

Figure 1.3 on the facing page shows the result of the growth rule when applied
six times with an initial structure of a single bud B and with an additional
scaling factor for lateral buds. The rule-based notation is very precise and
concise for the description of growth of general branching structures, and it
is ready to be used as a basis for a programming language. In fact, several L-
system-based programming languages exist (Chap. 3), and they have served to

1 Introduction and Motivation 5

Figure 1.3. Branching structure resulting from growth rule (1.1)

implement a lot of structural plant models, but also true functional-structural
plant models.

On the other hand, due to the restriction to linear sequences of symbols,
the real topology of the plant can only be obtained indirectly by consider-
ing square brackets. If no interactions between components are required as
in typical pure structural models, this poses no problem, but this condition
does not hold for functional-structural plant models which expand functional
models to the structure by means of, e. g., transport and signalling. A natural
solution is to use trees or even graphs instead of linear sequences of symbols as
fundamental data structure, and this is the solution which this work proposes.

Moving from sequences of symbols to trees or graphs entails a transition
from L-systems to formalisms defined on such structures. However, the rule-
based paradigm underlying L-systems should be retained as this is the main
foundation of the success of L-systems in structural plant modelling. The
corresponding formalism on the basis of graphs is given by graph grammars.
This works develops relational growth grammars, a variant of graph grammars
especially tailored for the use in plant modelling.

Using graphs, we have not only a suitable data structure for the topol-
ogy of plants, but also for the representation of internal processes. Figure 1.4
on the next page shows typical process models for water and carbon: they
use the visual language of flow diagrams, which is of course an application of
the expressive power of graphs. On the other hand, this is only a qualitative
description and has to be supplemented with a quantitative specification of
the processes, e. g., with equations for carbon production or flow rates. This
is usually done within an imperative programming language, so a combina-

6 1 Introduction and Motivation

(a) (b)

Figure 1.4. Flow diagrams of a process model for beech trees (from [39]): (a) water
and carbon sub-models; (b) soil carbon sub-model

tion of graph grammars with imperative programming is advisable. The main
practical result of this work is precisely the design and implementation of such
a combined programming language, namely the XL programming language.

Quantitative specifications often involve differential equations, so it would
be desirable to have them included in the language. This is out of the scope
of this work and will be addressed in future work, however note that solvers
for differential equations can nevertheless be used or implemented due to the
inclusion of imperative programming.

The design of a formalism and a programming language involves an ab-
straction from concrete examples to common principles and requirements. The
larger the considered collection of examples, the better will be the achieved
abstraction. Therefore, in the following chapters we do not only take into ac-
count examples from plant modelling, but also from artificial life, i. e., from
a field of study where phenomena of living systems are investigated by the
consideration of (simplified) computer simulations.

Part I

The Rule-Based Paradigm

9

The first part of this thesis is devoted to the rule-based paradigm which, in
the form of L(indenmayer)-systems, already proved to be very suitable for
plant modelling. We start with a consideration of some examples of rule-
based modelling from different disciplines, and study L-systems and graph
grammars as two prominent and relevant representatives. Finally, we show
how both can be combined to relational growth grammars, enabling the spec-
ification of functional-structural plant models and also models of other kinds
such as artificial life. But what is the essence of rule-based programming?
The eighth international workshop on rule-based programming (RULE 2007)
characterizes this as follows [170]:

Rule-based programming provides a framework that facilitates view-
ing computation as a sequence of changes transforming a complex
shared structure such as a term, graph, proof, or constraint store. In
rule-based languages, a set of abstractions and primitive operations
typically provide sophisticated mechanisms for recognizing and manip-
ulating structures. In a classical setting, a rule-based program consists
of a collection of (conditional) rewrite rules together with a partially-
explicit specification of how the rule collection should be applied to a
given structure.

Thus, one has an initial structure and a set of rules, given in some rule-based
language, and an execution semantics which specifies how and where to apply
the (typically local) rules to the current structure, leading to a new structure.
Usually, it is the task of the run-time system of the language implementation
to find all locations in the structure where rules are applicable. So the pro-
grammer specifies what to do with the structure, possibly only under some
conditions, and the computer finds where actions take place. Thus, the control
flow is governed by the applicability of rules and the order of their processing,
which typically depends on previous applications and is therefore an emer-
gent property [107]. In systems with parallel application, there is even no
order within a single transformation. This is in contrast to the imperative
programming paradigm where the programmer explicitly governs the control
flow and, in doing so, specifies what to change and where to do this – following
the principle of a von Neumann machine.

The general advantage of rule-based modelling in the context of plant
modelling and artificial life is that we typically have a large collection of
individual entities (e. g., plants, plant organs, animals) which behave according
to a set of common rules (e. g., growth rule for buds, movement). Using the
rule-based paradigm releases the programmer from the burden to find all
entities where rules are applicable, and also the application of the rules is
implicit in the paradigm. This leads to a concise specification which (mostly)
consists of the actual behavioural rules.

2

Introductory Examples

In this chapter, we present different kinds of rule-based modelling using simple
examples. The examples serve to motivate and illustrate the presented for-
malisms and methods throughout the following chapters. Intentionally, they
are not only related to plant modelling, but also to other fields of application
in order to show the broad applicability of the rule-based paradigm. But nev-
ertheless, also the non-plant models can be seen as metaphors of (parts of)
functional-structural plant models.

2.1 Snowflake Curve

A simple but instructive example for the rule-based paradigm is the snowflake
curve [144] which is related to the following construction of the Swedish math-
ematician Helge von Koch [196]:

Joignons par une droite deux points A et B d’un plan (fig. 2.1). Parta-
geons le segment AB en trois parties égales AC, CE, EB, et constru-
isons sur CE comme base un triangle équilatéral CDE. Nous aurons
une ligne brisée ACDEB formée par 4 segments égaux. [. . .] Pour
abréger, nous désignons par Ω cette opération au moyen de laquelle
on passe d’un segment rectiligne AB à la ligne polygonale ACDEB
[. . .].
[. . .]
Effectuant l’opération Ω sur chacun de ces nouveaux segments et con-
tinuant ainsi indéfiniment, nous obtenons une suite indéfinie de lignes
polygonales que nous désignerons par

P1, P2, P3, . . . , Pn, . . .

et qui se composent respectivement de

1, 4, 42, . . . , 4n−1, . . .

12 2 Introductory Examples

ĉotés. P1 désigne la droite primitive AB, P2 la ligne ACDEB et ainsi
de suite.
Nous allons voir que, quand n crôıt indéfiniment, Pn tend vers une
courbe continue P qui ne possède, en aucun point, de tangente
déterminée.

A
�
�
�
�

C
T
T
T
T

D

E B

Figure 2.1. Illustration in Koch’s article

Thus, von Koch’s original intent was to define a continuous, but nowhere
differentiable curve. In the meantime, how this is done has received special
attention: the construction is based on the operation Ω which can be seen
as a rule that, applied to a structure consisting of straight line segments,
replaces every line segment AB by a polygonal line ACDEB. A whole family
of generalized Koch constructions [144] exists which is based on this simple
rule-based principle of initiator and generator. The initiator α (line AB in
the example) represents an initial structure which is composed of a set of
straight line segments. The generator Ω is recursively applied to the structure
and replaces each line segment in the structure by a set of new line segments,
thereby ensuring that the endpoints of a line segment and its replacement
match.

What has been put in words by von Koch can also be depicted graphically:

α Ω−−−→ �
�T
T

Using a straight line as initiator α, we obtain the Koch curve as the limit
limn→∞Ωn(α). If α is an equilateral triangle, the snowflake curve results in
the limit, see Fig. 2.2.

α Ω(α) Ω2(α) Ω4(α)

Figure 2.2. First approximations of snowflake curve

2.3 Sierpinski Triangle 13

2.2 Plant-Like Branching Structure

A generalized Koch construction which replaces a straight line segment not
by a linear sequence, but by a branched structure of such segments is given
by the following generator from [161]:

Ω−−−→

Applied to a straight line segment as initiator, we obtain the development of
a branching structure which resembles a simple herbaceous plant, see Fig. 2.3.

α Ω(α) Ω2(α) Ω5(α)

Figure 2.3. Generalized Koch construction for a branching structure

2.3 Sierpinski Triangle

The Sierpinski triangle can also be seen as the result of a generalized Koch
construction, but with triangles instead of straight line segments. The initiator
is a black triangle, the generator replaces such a black triangle by three black
triangles as follows:

α = ,
Ω−−−→

Figure 2.4 on the next page shows the first steps of the construction of the
Sierpinski triangle.

14 2 Introductory Examples

α Ω(α)

Ω2(α) Ω3(α) Ω6(α)

Figure 2.4. First approximations of Sierpinski triangle

2.4 Game of Life

Cellular automata [198] consist of regular, finite-dimensional grids of cells.
Each cell is in one of a finite number of states. A single transition rule is applied
in parallel to all cells and determines the new state of a cell as a function of the
old state of the cell and its neighbours. The finite neighbourhood is defined
relative to the grid position of a cell.

A famous example for a cellular automaton is the Game of Life [63]. It
is defined on a two-dimensional grid with two states (‘live’ and ‘dead’) and
Moore neighbourhood, i. e., the complete ring of eight neighbours (horizontal,
vertical, diagonal). The transition rule is as follows:

1. A live cell with more than three or less than two live neighbours dies.
2. A dead cell with exactly three live neighbours comes to life.
3. Otherwise, the state remains unchanged.

A lot of interesting pattern evolutions can be observed. As an example, the
glider pattern shown in Fig. 2.5 moves diagonally.

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

Figure 2.5. Evolution of glider pattern

2.5 Artificial Ants 15

The Game of Life is also a good example to illustrate the benefits of rule-
based modelling. In a suitable rule-based programming language, the specifi-
cation of the transition rule is a direct translation of the three lines of verbal
specification from above, without any additional code. Contrary, the specifi-
cation using an imperative programming language additionally requires some
loops and also a mechanism to simulate the parallel application. A possible
implementation in the Java programming language is

1 boolean[][] grid = new boolean[N][N];
2 ...

3 boolean[][] old = grid.clone();

4 for (int x = 0; x < N; x++) for (int y = 0; y < N; y++) {

5 int liveNeighbours = 0;

6 for (int dx = -1; dx <= 1; dx++) for (int dy = -1; dy <= 1; dy++) {

7 i f ((x + dx >= 0) && (x + dx < N)

8 && (y + dy >= 0) && (y + dy < N) && old[x + dx][y + dy]) {

9 liveNeighbours++;

10 }

11 }

12 i f (old[x][y] && ((liveNeighbours > 3) || (liveNeighbours < 2))) {

13 grid[x][y] = false;
14 } else i f (!old[x][y] && (liveNeighbours == 3)) {

15 grid[x][y] = true;
16 }

17 }

Obviously, the essence and simple nature of the Game of Life is hidden by
this implementation: the transition rule in lines 12–16 is embedded in code
which iterates through the whole grid and counts live neighbours in the con-
text. A suitable rule-based language provides both the iteration through the
structure and the evaluation of context as built-in features. For an example,
see Sect. 10.1.3 on page 275.

2.5 Artificial Ants

Ants are a popular subject in artificial life. Real ants communicate with each
other by pheromone trails laid down during movement. An ant encountering
an existing trail follows this trail with high probability and, in doing so, in-
tensifies the trail. This positive feedback loop leads to a remarkable collective
behaviour of an ant population: Short paths between, e. g., food sources and
the nest are found and then followed very quickly [28].

The abstraction from the observed behaviour to a model for artificial ants
leads to agent-based modelling [124]. Agent-based models have, among others,
the following properties: A collection of individual agents act in a common
environment. The behaviour is autonomous, i. e., agents make independent
decisions. Agents have the capability to communicate by some protocol, and

16 2 Introductory Examples

to sense the environment. The Game of Life can be seen as a precursor of an
agent-based model. The agents are live cells which make independent deci-
sions according to the transition rule and using a simple communication to
determine the number of live neighbours.

In an agent-based model of artificial ants, the environment could be a
discretized 2D world just as for the Game of Life, but now each cell has a
state which represents the pheromone intensity at its locations. An ant agent
moves along the grid, guided by the strategy to move to the neighbouring
cell with highest pheromone intensity, but to avoid previously visited cells.
When moving to a cell, an agent intensifies the amount of pheromone, so
the communication among agents uses the environment as medium. To mark
points of interest such as food sources, ant agents get excited when on such
points, which increases the amount of pheromone laid down on each move-
ment. Although an individual ant has poor capabilities as it can only see the
direct neighbourhood and has only a very restricted memory, the collective be-
haviour of a set of ant exhibits the remarkable emergent behaviour that short
paths through points of interest are found (see Sect. 10.3.2 on page 287).

2.6 Comparison of Examples

The Koch and generalized Koch constructions create geometric shapes in 2D
space and are not bound to some grid-like discretization. Contrary, the Game
of Life has a fixed 2D shape consisting of the grid of cells, and it is only the
states which change based on neighbourhood information. The sketched ant
model is similar, but in addition to state changes, agents may also move along
the grid. As we will see in the following chapters, L-systems are well suited
for models of the first kind, which includes structural plant models as the
main field of application of L-systems, but fail for models of the second kind
with graph-like neighbourhood relations. Graph grammars provide a natural
solution to this problem.

3

L-Systems

3.1 Introduction

Lindenmayer systems (L-systems for short) are the prevailing rule-based for-
malism in structural plant modelling. This string-rewriting formalism was
introduced in 1968 by Aristid Lindenmayer, a theoretical biologist [117]. His
original intent was to describe the cell division pattern of bacteria, but since
this first usage the capabilities of L-systems have been explored in a variety
of fields of application: most dominantly and successfully within the scope
of plant modelling, but also for the construction of space-filling curves, for
the generation of musical scores [70], and for architecture [70]. An excel-
lent book on L-systems from a practical point of view has been authored
by Prusinkiewicz and Lindenmayer himself [161]. The theoretical basis and
some theoretical results are summarized in [90], for a collection of research
papers see [168] and [169]. Foundations and application of L-systems are sum-
marized in the sequel to an extent which is needed for the following chapters,
for more details the reader is referred to the mentioned literature.

As a string-rewriting formalism, L-systems operate on a string of symbols
(a word) by replacing substrings with other strings according to a set of pro-
ductions. The crucial difference to other string-rewriting formalisms such as
Chomsky grammars is the application of productions in parallel, i. e., every
symbol is rewritten at each step of the rewriting process. The motivation for
this parallelism lies in biology: cell division and other growth processes in
nature happen in exactly this way. Another difference which has a more theo-
retical impact is that there is no distinction between terminal and nonterminal
symbols.

The formal definition of the simplest class of L-systems, context-free L-
systems, looks as follows. Given an alphabet (i. e., a set of symbols) V , we
use the usual notations V ∗ for the set of all words over V (i. e., of strings of
symbols) and V + for the set of all non-empty words over V .

18 3 L-Systems

Definition 3.1 (context-free L-system). A context-free L-system (0L-
system for short) G = (V, α, P) consists of an alphabet V , an initial non-
empty word α ∈ V + called the axiom or start word, and a set of productions
P ⊆ V × V ∗. A production (a, χ) ∈ P is written as a → χ, a is called the
predecessor of the production, χ the successor. For all symbols a ∈ V , there
has to be at least one production in P having a as predecessor. If there is
exactly one such production for each symbol, the L-system is deterministic
(D0L-system for short), otherwise it is nondeterministic.

Productions are also called rules in the literature.

Definition 3.2 (direct derivation, generated language). Let G be a 0L-
system as above and µ = a1 . . . an be a word of n symbols ai. If there exist
words χ1, . . . , χn ∈ V ∗ such that ai → χi ∈ P , then there is a (direct) deriva-
tion denoted µ

G=⇒ ν from µ to ν = χ1 . . . χn within G. The reflexive and
transitive closure of G=⇒ is denoted by G=⇒∗. The language generated by G is
L(G) =

{
ν ∈ V ∗

∣∣∣α G=⇒∗ν
}
, i. e., the set of all words which can be generated

from the axiom by a finite number of direct derivations.

As for other grammars, an L-system can be used for two purposes: firstly
to decide if a given word belongs to the language generated by the L-system,
secondly to generate words out of the axiom. In practical applications of L-
systems, the latter, generative aspect dominates. For example, within the
scope of plant modelling the sequence of derived words may represent growth
stages of a plant simulation.

To give a simple example for a deterministic 0L-system, let alphabet and
axiom be given by V = {A,B}, α = A, and the set of productions P by the
following two productions:

A→ BA ,

B→ A .

The first derivation applies A → BA to the axiom A, resulting in the word
BA. The second derivation simultaneously applies B → A to B and A → BA
to A, resulting in the word ABA:

A
G=⇒ BA

G=⇒ ABA
G=⇒ BAABA

G=⇒ ABABAABA
G=⇒

There are languages which can be generated by D0L-systems, but not by
sequential context-free grammars. For example, consider the following D0L-
system G:

α = AAA ,

P = {A→ AA} .

Obviously, the language which is generated by this L-system is L(G) =
{A3·2i |i ∈ N0}. This language cannot be obtained by sequential context-free

3.2 Turtle Interpretation of Symbols 19

rewriting [90]. If we simply treated the L-system as a (sequential) context-free
grammar G′, we would obtain the language L(G′) = {Ai|i ∈ N, i ≥ 3}) L(G).
The effect of parallelism can be simulated by compound derivations which
consist of several sequential steps in succession, but this requires an addi-
tional synchronization control mechanism which ensures that in each com-
pound derivation for every symbol of the original word exactly one sequential
derivation is applied. On the other hand, the behaviour of the sequential
context-free grammar G′ can be simulated easily by a nondeterministic 0L-
system if one simply adds the identity production A→ A to the productions
P of G.

3.2 Turtle Interpretation of Symbols

Words generated by L-systems are abstract in themselves, meaning that they
have no representation in terms of a common concept scheme. However, we
can choose such a concept scheme and associate its terms with the symbols in a
word. Such an association is called interpretation. For example, the application
of L-systems to create musical scores [70] has to establish a link between L-
system symbols and terms of the concept scheme of music, among them notes,
rests and tempo.

The prevailing interpretation of L-system symbols is the turtle interpreta-
tion which links symbols with two- or three-dimensional geometry. The name
refers to the notion of a turtle [1]. The turtle is a metaphor for a drawing
device which maintains a turtle state consisting of the current position and
orientation in two- or three-dimensional space. The device understands a set
of turtle commands which modify the state and/or create graphics primitives
using the current state. It is common practice to use the symbol F as the
line drawing command, i. e., the turtle draws a line of unit length starting
at the current position in the current moving direction and then changes the
current position to be at the end of the line. One can define further symbols
which represent rotations, movements without line drawing, or other primi-
tives such as circles, spheres or boxes. When the turtle is presented with the
current word of a derivation step of an L-system, it reads the symbols of the
word from left to right and performs the associated commands. If a symbol
has no associated command, it is simply ignored.

As an example, let us consider the implementation of the snowflake curve
(Sect. 2.1 on page 11) by an L-system. Naturally, the axiom of the L-system
has to represent the initiator, namely the initial equilateral triangle, and the
set of productions P has to contain a translation of von Koch’s generator Ω. If
we use the symbol F to denote a line, each side of the initial triangle and each
straight line within the generator production can simply be represented by an
F. We further need turtle commands for rotation in order to implement the
angle of 120 degrees of the equilateral triangle and the angles of 60 and 120
degrees of the generator. Thus, let the symbols Left and Right command the

20 3 L-Systems

turtle to rotate to the left or right, respectively, by 60 degrees. Note that these
symbols are treated as individual symbols and not as sequences of single-letter
symbols. The L-system translation can then be formulated as follows:

α = F Right Right F Right Right F ,

F → F Left F Right Right F Left F .

In this and all following examples, for every symbol a for which there is no
explicit production having a as predecessor the identity production a→ a has
to be added (in this case Left → Left and Right → Right). The turtle inter-
pretation of the results of derivation yields approximations of the snowflake
curve as in Fig. 2.2 on page 12.

Obviously, the sequence of symbols in a word is linear. Thus, without
further arrangements the turtle interpretation yields a geometric structure
which consists of a chain of geometric primitives stacked on top of each other.
While this is suitable for the snowflake curve, branched topologies cannot
be represented this way. But of course, the capability of representing such
branched topologies is an important prerequisite for the modelling of plants
and other non-linear structures.

The restriction to non-branched topologies can be overcome by the inclu-
sion of two special turtle commands: the first one pushes the current turtle
state onto a stack which is exclusively used for this purpose, the second one
pops the top from this stack and restores the current turtle state to the popped
value. The bracket symbols [and] are customarily used to denote the push-
and pop-operations, and L-systems which make use of them are called brack-
eted L-systems. For example, the word F [Left F] F commands the turtle to
perform this sequence of operations:

1. Draw a first line.
2. Push current state onto top of stack.
3. Rotate to the left by a predefined angle ϕ.
4. Draw a second line. This line starts at the end of the first line at an angle

of ϕ.
5. Pop state from stack so that it equals the state before 2.
6. Draw a third line. This line extends the first line straight.

si
1. 6.

�
�
�4.

ϕ
sf

The figure shows the resulting branched structure, si and sf indicate the
initial and final turtle state, respectively.

A further special turtle command is the cut-operator, this command is
usually denoted by %. It sets a flag in the turtle state which indicates that
the following turtle commands shall be ignored with the exception of the push-
and pop-commands. The effect is that the current branch is cut off up to its
terminating]-symbol.

3.2 Turtle Interpretation of Symbols 21

Now let us have a look at a more interesting example of a growing binary
tree. Its leaves (in the sense of graph theory) are represented by the symbol
Bud which is the axiom and predecessor of the single growth production:

α = Bud ,

Bud → F [Left Twist Bud] [Right Twist Bud] . (3.1)

In order to extend into three dimensions, the symbol Twist commands the
turtle to rotate about its own axis by 90 degrees. A visualization of the out-
come is shown in Fig. 3.1, where Bud symbols are drawn by small squares and
the angle of rotation of Left and Right is 30 degrees.

Figure 3.1. Turtle interpretation of L-system (3.1) after six derivation steps

With the help of the bracket symbols, we can also model the Sierpinski
construction (see Sect. 2.3 on page 13) by an L-system. If T stands for a “germ”
of a triangle, we have to replace such a germ by an actual triangle consisting of
three F commands with rotations (thus triangles are not filled, but represented
by their outline), and by three new germs for the next generation. We also
have to ensure that the length of triangle edges of a generation is half of
this length of its predecessor generation. This is simply done by doubling the
length of existing triangles, namely by replacing each existing F by two F
commands.

α = T ,

T→ T [F Left T F Left T F] , (3.2)
F → F F .

22 3 L-Systems

The angle of rotation of Left is 120 degrees. After six steps, we obtain the vi-
sualization depicted in Fig. 3.2. Note that although the visualization matches
the result of the Sierpinski construction, the internal structure created by the
L-system, namely a string with brackets, can be topologically interpreted only
as a tree. This means that connectivity information between segments is not
completely represented by the L-system string. Some vertices of triangles sim-
ply happen to be at the same location in 2D space without being topologically
linked in the string.

Figure 3.2. Turtle interpretation of L-system (3.2) after six derivation steps

3.3 Stochastic L-Systems

If one uses a nondeterministic L-system in the generative way, i. e., if a se-
quence of words shall be obtained by repeated derivation starting with the
axiom, there is a natural, stochastic solution how to handle the nondetermin-
ism: on derivation of a predecessor for which there are alternative productions,
one of the alternatives is chosen (pseudo-)randomly according to given prob-
abilities. The probabilities have to be specified along with the productions,
leading to the notion of a stochastic L-system:

3.3 Stochastic L-Systems 23

Definition 3.3 (stochastic 0L-system). A stochastic 0L-system (G, π) is
an 0L-system G together with a probability function π : P → (0, 1] such that
for each symbol a ∈ V the sum

∑
{χ∈V ∗|a→χ∈P} π(a→ χ) equals one.

Definition 3.4 (stochastic derivation). Let (G, π) be a stochastic 0L-

system. A stochastic derivation µ
(G,π)
===⇒ ν is a derivation such that for

each occurrence of a symbol a in µ the probability of applying the production
a→ χ ∈ P is given by π(a→ χ).

The nondeterminism of stochastic L-systems can be used to model pro-
cesses for which an underlying deterministic mechanism cannot be specified.
For example, consider a plant model where lateral buds in leaf axils may either
grow out, remain dormant or die. If there is a lack of knowledge of the under-
lying causes, or for the sake of simplicity, one can just assign probabilities to
the three types of bud development which reflect their observed frequencies.
Such a technique is used by the following L-system which extends L-system
(3.1) on page 21. Figure 3.3 displays a visualization.

Bud
0.2−−→ F [Left Twist Bud] [Right Twist Bud] , (3.3)

Bud
0.7−−→ Bud ,

Bud
0.1−−→ .

Figure 3.3. Turtle interpretation of L-system (3.3) after some stochastic derivation
steps

24 3 L-Systems

3.4 Context-Sensitive L-Systems

The L-systems considered so far are context-free. In practical terms of mod-
elling, this means that the development of each entity of the model is com-
pletely isolated from the other entities. There is no possibility of flow of infor-
mation. This precludes the implementation of causal dependences which are
the basis of advanced models of, e. g., plant development.

Both deterministic and stochastic 0L-systems can be augmented to context-
sensitive L-systems. A production of a context-sensitive L-system can only be
applied if the local context (one or more neighbouring symbols to the left
and/or to the right) of the predecessor fulfils some conditions which are spec-
ified along with the production. In the simplest case, these conditions state
that the context has to consist of specific symbols; such an L-system is called
2L-system if the context consists of one symbol to the left and one to the
right. The actual treatment of context-sensitive L-systems in L-system soft-
ware usually loosens the notion of neighbourhood: one may specify a set of
symbols which shall be ignored in context matching, and entire subsequences
enclosed in brackets are skipped so that symbols which are neighbouring in
the turtle interpretation are also neighbours for context matching.

3.5 Table L-Systems

The previously considered L-systems contained a single set of productions. At
each direct derivation step, the current word is subjected to all productions.
However, there are situations where we have several groups of productions
and only some of them should be active for a specific derivation. For example,
we could divide the growth of a perennial plant into a repeated sequence of
growth in spring, summer, autumn and winter. For each season, a specific
group of productions is appropriate. This idea lies behind table L-systems
which specify a list of tables of productions [90].

Definition 3.5 (T0L-system). A T0L-system G = (V, α, T) consists of an
alphabet V , an axiom α ∈ V + and a finite set T = {P1, . . . , Pn} of sets of
productions Pi ⊆ V × V ∗ such that for each P ∈ T the triple (V, α, P) is a
0L-system.

Definition 3.6 (direct derivation). Let G = (V, α, T) be a T0L-system and
µ, ν ∈ V ∗. There is a (direct) derivation from µ to ν if there is a P ∈ T such

that µ
(V,α,P)
====⇒ ν, i. e., one of the tables of productions derives ν from µ.

This definition does not control the order and multitude of the used tables.
One can define additional means to specify the order of tables, for example
graphs whose nodes define the currently active tables and whose edges define
the allowed paths, or finite automata [142].

3.7 Parametric L-Systems 25

3.6 Pseudo L-Systems

Predecessors of L-system productions consist of a single symbol, it is only
the context which may consist of entire words. Pseudo L-systems generalize
this so that (non-empty) words are allowed even for predecessors [153]. For
a direct derivation, the current word has to be partitioned completely and
disjointly by predecessor words of productions. This may lead to an additional
nondeterminism: for L-systems, nondeterminism is possible only at the level
of individual symbols which may be replaced by different successors, while
for pseudo L-systems, there may exist different partitions of the whole word.
The definition of [153] circumvents this nondeterminism by two additional
specifications: a direct derivation is constructed by scanning the current word
from left to right, and for each position, the first applicable production of the
ordered list of productions is chosen.

3.7 Parametric L-Systems

The symbols of L-systems are of a discrete nature both in time and space: the
course of time is represented by discrete derivation steps, and the structure
consists of symbols which are either present, meaning for example an internode
of a plant, or not present. Discretization of time is quite common in modelling
and simulation, because most processes cannot be integrated analytically with
respect to time and, thus, have to be discretized anyway. However, the strict
discreteness in space caused by plain symbols makes the corresponding L-
systems unsuitable for the modelling of processes with continuous properties,
for example smooth elongation of an internode. There is a simple yet powerful
solution of this shortcoming, namely the addition of (real-valued) parameters
to symbols and productions as in this production:

A(x, y)→ A(1.4x, x+ y) . (3.4)

Applied to the parameterized symbol A(3, 1), the production yields A(4.2, 4).
A parameterized symbol is called a module, an L-system which makes use of
such modules is a parametric L-system [161, 157, 74]. Every class of L-systems
can be extended easily to its parametric counterpart. For formal definitions,
the reader is referred to [74] and the more general approach in [23].

As indicated by production (3.4), a parameterized production has as its
left-hand side a symbol and a number of formal parameters. On derivation,
these formal parameters are bound to the values of the actual parameters of
the module to which the production is applied. These values are then used
on the right-hand side to determine the actual parameters for the replacing
modules. Arithmetic expressions can be used for this purpose, consisting of
standard operators and mathematical functions. Also the probability associ-
ated with a production may be an arithmetic expression.

26 3 L-Systems

Once that we have included parameters in L-system productions, we
can also make use of them in application conditions which in this case are
predicates (logical expressions) on the parameters. A production can only
be applied if its application condition is fulfilled. This can be compared to
context-sensitivity: the latter poses restrictions on the structure (namely on
the neighbourhood of a symbol), while predicates pose restrictions on at-
tributes (namely on the parameters of a module).

The following parametric L-system makes use of parameters, application
conditions and context. The notation follows [161], i. e., application conditions
are specified after a colon, and an optional context is separated from the
predecessor by angle brackets as in left < pred > right .

α = T(10) Bud(10) (3.5)
Bud(a) : a > 0 → F(0.2) [Left F(1)] [Right F(1)] Bud(a− 1) (3.6)
Bud(a) : a = 0→ (3.7)

T(a)→ T(a− 1) (3.8)
T(a) < F(x) : a = 0→ F(1) (3.9)

F(x) < F(y)→ F(
x+ 2y

3
) (3.10)

The first two productions (3.6) and (3.7) induce a growth of structure with
single-line branches. This structure is limited to ten repetitions due to the
decrement of the parameter a of the Bud. Meanwhile, the counter of a timer T
is decremented, too, by production (3.8). If the counter is zero, the parameter
of the first F (which has T as its left neighbour) is set to one by production
(3.9). The last production (3.10) implements a gradual propagation of the
parameter value of a module F to its right neighbour. If a module F(x) is
interpreted as a turtle command which draws a line of length x, we get the
development of Fig. 3.4 on the facing page.

As it can be seen from this example, context-sensitive, parametric L-
systems are able to propagate some continuous signal through the L-system
word by means of parameter values. This flow of information is a very im-
portant feature in plant modelling, as it can be used to model signalling and
transport. However note that due to the restriction to local context, the num-
ber of steps which it takes to propagate a signal along a path of N symbols
is proportional to N . The speed of flow of information is thus tightly coupled
with the time resolution of derivation steps.

3.8 Differential L-Systems

Parametric L-systems introduce continuity in space to L-systems by the addi-
tion of continuous parameters to the otherwise discrete structure of symbols.
The sequence of derivation steps leads to an inherent discretization of time

3.8 Differential L-Systems 27

10 11 15 20 30 50

Figure 3.4. Development of L-system (3.5)–(3.10) after the indicated number of
derivation steps. At step 11, elongation is triggered. In the following steps, this
propagates through the structure

which cannot be overcome as easily. As has been said in the previous section,
this usually poses no problems because a discretization of time is needed any-
way. But if this discretization is only due to a numerical solver for a differen-
tial equation, one can equip the formalism of L-systems itself with differential
equations and thus dispense with the need for an implementation of the solver
within the L-system.

The notion of a differential L-system (dL-system for short) is defined in
[156]. Ordinary differential equations with respect to time are associated with
the parameters of modules, these equations may include parameters of context.
The resulting development in time is C1-continuous until the trajectory of a
parameter vector of a module reaches some boundary which has been specified
along with the differential equation: this event triggers the application of a
production to the module and may therefore result in a discontinuity in both
topology and parameter values. Thus, topological changes, which are discrete
by their very nature, happen at discrete points in time by means of application
of productions; in between a C1-continuous development of parameter values
is governed by differential equations.

Of course, a concrete implementation of a dL-system on a computer has
to solve the differential equations by means of a numerical algorithm which
necessitates a discretization in time (unless the differential equation can be
solved analytically, which is a very rare case). But this discretization due to

28 3 L-Systems

technical demands can be chosen independently of any model-inherent dis-
cretization. A good solver will choose it as fine as needed to guarantee the
requested accuracy.

3.9 Interpretive Productions

Throughout the previous examples, the symbol F (or the module F(x)) has
been used as turtle command to draw a line. For the tree-like examples, we
can also think of them as simple botanical models and attribute the botanical
meaning of an internode to F. Thus, for visualization purposes the symbol F
stands for a geometric entity, while it stands for a botanical entity in terms of
the model. This mixture of meanings often turns out to be disadvantageous,
especially if the model becomes complex. In fact, it is in conflict with the prin-
ciple of separation of concerns which is well-known from software engineering
and should be followed as far as possible.

The mechanism of interpretive productions provides a solution to this prob-
lem within the formalism of L-systems itself [103]. Interpretive productions
are represented by a second set of productions PI . The interpretation of a
current word µ is mediated by PI : at first, a derivation of µ using PI is per-
formed, then the usual interpretation I (e. g., a turtle interpretation) is applied
to the derived word µ′. In order to distinguish interpretive productions from
the original productions of the L-system, the latter are called generative pro-
ductions. Figure 3.5 illustrates the mechanism of L-systems with interpretive
productions.

α
G +3 µ1

G +3

PI

��

µ2
G +3

PI

��

. . .

µ′1

I

��

µ′2

I

��
S1 S2

Figure 3.5. Generative (G) and interpretive (PI) derivations, turtle interpretation
(I), resulting structure (S)

Using interpretive productions, visualization can be separated from the L-
system model. For example, the model may use a module I(m) which stands
for an internode of mass m. The interpretive production

I(m)→ F(l(m))

3.10 L-Systems with Imperative Programming Statements 29

leads to a visualization of the internode as a line of length l(m), where the
function l reflects the allometric relation between mass and length of inter-
nodes. As another example consider a flower which is represented by a single
symbol in the model, but visualized nicely by a number of turtle commands.

3.10 L-Systems with Imperative Programming
Statements

Having introduced parameters, it is not unusual that the expressions in pro-
duction successors and application conditions become complex and share com-
mon subexpressions. For the sake of readability (and runtime efficiency if there
is no optimizing compiler), variables local to productions would be helpful in
such situations [74]. They have to be assigned before they are used just as in
an imperative programming language. Afterwards, their value can be used in
expressions.

As the assignment of variables with later use of the values is characteristic
of imperative programming, a consequential extension is to allow not only
assignments, but also other statements to be executed as a side effect of pro-
duction matching and application. Such an extension was developed in [74],
where a block of statements is executed before the application condition is
evaluated and another block before the successor is generated (if the appli-
cation condition has been fulfilled). The statements consist of assignments to
both local and global variables, text output to a console and control struc-
tures if, while, do. Additional blocks of statements are executed before the
L-system derivation begins, before each derivation step, at the end of each
derivation step and at the end of the entire derivation process. The following
code shows such an L-system in the notation of the cpfg software (Sect. 3.15.2
on page 36):

1 #define STEPS 10

2

3 Lsystem: 1

4

5 /* flowering indicates if flowers should be created for internodes in

6 the current step. n is the total number of internodes, len the

7 length of internodes which are created in the current step. */

8 Start: {flowering=0; n=0; len=1;}

9 StartEach: {len=len*0.8;}

10 EndEach: {

11 printf("Number of internodes = %3f, Flowering = %3f\n",n,flowering);

12 }

13 End: {printf("Done\n");}

14

15 Seed:1
16

17 derivation length: STEPS

30 3 L-Systems

18

19 /* Start word. !(x) sets line width to x. */

20 Axiom: T(4) !(1) X

21

22 /* T(x) represents timer, sets flowering to 1 every fifth step. */

23 T(x) : 1 { i f(x <= 0) {flowering=1; y=4;} else {flowering=0; y=x-1;}}

24 --> T(y)

25 /* X generates tree. +(a), -(a) and /(a) are rotations. */

26 X : 1 {n=n+1;} --> F(len) [+(30) /(90) X] [-(30) /(90) X] : 0.86

27 /* Probability of termination of growth at X is 14% (* = empty word)*/

28 X --> * : 0.14

29 /* If flowering has been set, create a flower for every F. */

30 F(x) : (flowering > 0) --> F(x) [Y !(10) F(0.05)]

31 /* Cut flowers created in the previous step (% is cut operator). */

32 Y --> %

33

34 endlsystem

It should be noted that the introduction of global variables and corresponding
assignment statements conflicts with the parallelism of L-systems: different
production applications may assign different values to a global variable in
parallel, so the result is undefined. If a single parallel derivation is modelled
by a sequence of synchronized sequential derivations as explained on page
19, the result depends on the chosen order of sequential derivation. If this is
fixed, e. g., from left to right, the semantics is a well-defined mixture of parallel
and sequential computation. The example makes use of this: Since the timer
module is the leftmost module in the word, its code is executed at first. The
computed value of flowering (line 23) is thus available in the applications of
the flowering production in line 30 within the same derivation step.

3.11 Growth Grammars

Growth grammars [103, 106] are an extension of parametric, stochastic 0L-
systems with interpretive productions. They are tailored for the needs of plant
modelling, especially of tree modelling, and the software GROGRA provides
an implementation which is presented in Sect. 3.15.1 on page 35. Growth
grammars are equipped with a fixed turtle interpretation of modules which
provides a rich set of turtle commands:

• Basic commands such as cylinder drawing (as a generalization of lines),
movement and rotation about the three axes. The generated cylinders are
called elementary units.

• Geotropism commands, i. e., rotations towards the global vertical direction.
• Commands to modify the turtle state, e. g., to set the current length or

diameter, or botanical parameters of the turtle state such as the biomass.
• Object instancing command to draw a previously defined substructure.

3.11 Growth Grammars 31

• Commands to modify values of registers (see below).

Expressions within growth grammars can use a lot of predefined functions,
among them mathematical functions and stochastic functions. A speciality
of sensitive growth grammars are sensitive functions: they depend on the
previously created geometric structure and compute, among others, the global
coordinates of the current position, the distance to the closest neighbouring
elementary unit, or the total biomass of all elementary units within a vertical
cone starting at the current position (the light cone). These functions are
globally sensitive since their values depend on the structure as a whole and
not just on the local context of the current symbol as it is the case for context-
sensitive L-systems. Fig. 3.6 illustrates this dependence. Note that now the
turtle interpretation is mandatory even if no visualization is desired.

α
G +3 µ1

G +3

PI

��

µ2
G +3

PI

��

. . .

µ′1

I

��

µ′2

I

��
S1

GG�
�

�
�

�
�

�
�

S2

GG�
�

�
�

�
�

�
�

Figure 3.6. Sensitivity: dependence of derivation on structure (dashed arrows)

Sensitive functions can be used for a lot of purposes. A simple, botanical
usage would be to make the growth dependent on the current position. This
could reflect the quality of the soil, a simple radiation model based on horizon-
tally homogeneous light extinction, some fixed obstacles to be avoided, or a
prescribed overall shape as in a topiary garden. A more advanced application
is the dependence of growth on the biomass in the light cone, this models the
competition for light even in heterogeneous stands in a realistic way.

Arithmetical-structural operators [105] are a further feature of growth
grammars. They evaluate a subexpression for every elementary unit of an
operator-specific set and compute the sum of the obtained values. There are
operators which compute the sum over all children of the current elementary
unit, over all descendants, and over all ancestors. Thus, the computation of,
for example, the total biomass of a branch including nested branches is easily
specified.

Growth grammars define local and global, real-valued registers [110, 105].
They are modified by special command modules, and they can be used in ex-
pressions as part of parameter computations, conditions or production prob-
abilities. Depending on the command module, the modification happens as a
side-effect of turtle interpretation, or it is already performed as part of the
generative derivation when the command module is created. In the latter case,

32 3 L-Systems

a global flow of information from a module to all other modules on the right
within a single step is possible, provided that the derivation replaces modules
from left to right, i. e., that it is a compound derivation consisting of sequen-
tial derivations from left to right with synchronization control as it has been
explained on page 19. This is similar to the introduction of global variables
which has been discussed in the previous section.

On the right-hand side of a production, a repetition operator is allowed
which contains a sequence of modules. When such a production is applied, this
operator is not inserted verbatim as part of the successor of the derivation. In-
stead, the operator produces a number of repetitions of its contained modules.
The number of repetitions is an expression, the parameters of the produced
modules may depend on the current repetition index. Thus, the structure
of the successor of a production is no longer fixed, it is rather dynamically
created depending on the current context.

Such a dynamic creation of the successor is also effected by the expansion
operator [105]. Like the repetition operator, it contains a sequence of modules.
But the expansion operator treats this sequence as an axiom and performs
a number of direct derivations according to the L-system, where the number
is specified as an expression. The final result of this derivation sequence is
inserted as part of the successor.

3.12 Environmentally-Sensitive L-Systems

Similar to growth grammars, environmentally-sensitive L-systems [155] pro-
vide a means to include a dependence on the current global position and orien-
tation in the derivation step of the underlying L-system. While growth gram-
mars provide sensitive functions for this purpose, environmentally-sensitive
L-systems make use of special query modules. When such a special module is
encountered on turtle interpretation, which is now mandatory as for sensitive
growth grammars, its parameter values are set to the current position or to
the current turtle orientation depending on the letter of the module. These
new parameter values can then be used in the next derivation step, so the
flow of information is similar to Fig. 3.6 on the previous page.

3.13 Open L-Systems

Open L-systems [129] are an extension of environmentally-sensitive L-systems.
The denotation open stresses the contrast to conventional L-systems which are
closed systems without any interaction with an external environment. Open L-
systems provide a means of bidirectional communication between the L-system
and an environment based on an extension of the mechanism of query modules.
The environment is represented as a mapping which receives data of a number
of communication modules and maps this data to new parameter values for

3.14 L+C 33

these modules. The data to be received by the environment is determined
during turtle interpretation: when a communication module is encountered,
its identity (i. e., its position in the current word), its parameter values and the
symbol and parameter values of the following module are collected along with
the current turtle state. Note that the environment therefore has a restricted
knowledge of the structure: any module which is neither a communication
module itself nor preceded by such a module is hidden from the environment.

The environment may represent, for example, a terrain which returns its
height at a given position, it may represent a model of light competition
based on light cones as it is defined for growth grammars, or it may represent
a physically-based radiation model (see Sect. B.14 on page 412). In any case,
such a concrete environment has to be specified externally to the L-system:
Open L-systems provide an abstract communication mechanism between an
L-system and an environment, while sensitive growth grammars provide a set
of fixed, intrinsic environmental algorithms.

3.14 L+C

In contrast to the previously described formal L-system extensions, the L+C
programming language [91, 92, 159] is a concrete programming language which
allows the specification of L-system productions by a special syntax. It has
been defined on the basis of the considerations in [160] in order to meet the
growing needs of functional-structural plant modelling. The L+C programming
language is specified in terms of a preprocessing step that translates the L+C
source file into a C++ source file which is then compiled by an ordinary C++

compiler. The syntax for productions and some further syntactical constructs
are substituted by C++ equivalents, which are composed of a set of statements
including invocations of functions of a special support library for L+C. The
rest of the L+C source file is taken over verbatim, i. e., as ordinary C++ source
code. Such C++ source code may even be used within the right-hand side of
productions, its side effects may influence the production successor.

The advantage of such an approach is obvious: The general logic of L-
systems as a rule-based formalism is retained in order to model the structure,
while pieces of imperative code, specified in the well-known all-purpose lan-
guage C++, can be used to modulate production application. These pieces are
responsible for those parts of the model which cannot be implemented reason-
ably by pure L-system productions. This substantial qualitative enhancement
can be put into practice by the comparatively uncomplex implementation of
a source code processor, the difficult task of the compilation of the source file
to efficient executable code is shifted to an existing C++ compiler.

The following code shows an example of the L+C syntax:

1 #include <lpfgall.h>

2 #include <math.h>

3

34 3 L-Systems

4 #define STEPS 10

5

6 derivation length: STEPS;

7

8 module X(float);
9 module Y(int);

10

11 float exp;

12

13 Start: {exp = 1.2;}

14

15 Axiom: SetWidth(0.1) X(1);

16

17 production:
18

19 X(t): {

20 float x = pow(t, exp);

21 nproduce F(1) SB();

22 i f ((t & 1) == 0)

23 nproduce Left(60);

24 else
25 nproduce Right(60);

26 produce Flower((int) x) EB() X(t+1);

27 }

28

29 interpretation:
30

31 Flower(n): {

32 nproduce F(1);

33 for (int i = 0; i < n; i++)

34 nproduce SB() RollL(360*i/n) Left(60) F(1) EB();

35 produce;
36 }

Lines 8 and 9 declare the model-specific modules including their parameter
types. The latter are not restricted to numerical types, any type can be cho-
sen. The section labelled Start in line 13 specifies the statements which shall
be executed at the beginning of the whole derivation process, this is the same
mechanism as the one described in Sect. 3.10 on page 29. Symbol names of the
L+C programming language are valid identifiers of the C++ programming lan-
guage, the symbols SB (start branch) and EB (end branch) replace the square
brackets of the usual L-system notation. The example consists of a generative
production in lines 19 to 27 and an interpretive production in lines 31 to 36.
Their predecessors X(t) and Flower(n) are replaced by successors which are
constructed dynamically by nproduce and produce statements. While pro-
duce terminates the construction of the successor, nproduce only generates
a partial result and has to be followed by further nproduce statements or
a terminating produce statement. As the example shows, this dynamic con-

3.15 L-System Software 35

struction of the successor can be governed by control flow statements like if
and for.

The L+C programming language also defines a new context which is the
neighbourhood of the successor of a production in the new word. If a derivation
is implemented by sequential steps from left to right, then the new context
to the left is already known on application of a production, and analogously
with left and right exchanged. For practical reasons, the new context is thus
restricted to either side, depending on the choice of derivation direction. This
is a special case of a predictive context [33] which allows both sides to be
used as context. An advantage of these contexts is that information can be
transferred globally in a single direct derivation. In the case of new context,
the direction of information flow is restricted to the derivation direction.

3.15 L-System Software

This section presents currently available software for the execution of L-system
based models. The list is not exhaustive.

3.15.1 GROGRA

The software GROGRA [103] is an interpreter for growth grammars (Sect. 3.11
on page 30). Growth grammars have to be specified in text files. The (non-
sensitive) growth grammar for the snowflake curve looks as follows:

1 \angle 60,

2 * # F - - F - - F,

3 F # F + F - - F + F

+ and - are rotation commands, their angle is set to 60 degrees in the first
line. The second line specifies a production which replaces the default axiom
* by the encoding of a triangle. The third line implements the generator of
the Koch curve. As we can see, production arrows are represented by #.

The following code is an example of a sensitive growth grammar.

1 \var z zcoordinate,
2 * # F(100) a(100),

3 (z<250) a(s) # [RU-60 F(s) a(s*0.7)] RU10 F(s) d a(s*0.9) ?0.8,

4 (z<250) a(s) # RU10 F(s) d a(s*0.9) ?0.2,

5 d # RH180 ?0.5,

6 d # ?0.5,

The variable z is declared to represent the current absolute z-coordinate in
line 1. Lines 3 and 4 specify stochastic productions: with a probability of 80 %,
a(s) produces a side branch, otherwise growth continues without branching.
Both productions are subjected to the condition that the z-coordinate (of the
tip of the F preceding a(s)) has to be less than 250. RU and RH are rotations.

36 3 L-Systems

Figure 3.7. Turtle interpretation of sensitive growth grammar after 13 derivation
steps

A single literal value for a parameter can be specified without parentheses
immediately after the symbol as in RU-60. The outcome of this example is
shown in Fig. 3.7 where one can recognize the horizontal growth limit z <
250.

The strength of GROGRA lies both in the underlying formalism of
growth grammars and in the numerous integrated analysis algorithms. Growth
grammars contain the unique features of globally sensitive functions and
arithmetical-structural operators which make them particularly apt for the
modelling of trees with geometrically caused interaction. By means of the
analysis algorithms, the generated structure can be investigated in detail, for
example with respect to its topology, fractal properties, or botanical proper-
ties. It is also possible to import an existing structure (e. g., a measured tree)
into GROGRA, the analysis algorithms can then be used equally well for this
structure.

Figure 3.8 on the facing page shows the outcome of a spruce model sim-
ulated with GROGRA [106]. It has been developed on the basis of measure-
ments in a pure spruce stand in the Solling (German midland mountains).

3.15.2 vlab and L-Studio

vlab (virtual laboratory) and L-Studio are both based on the L-system engines
cpfg and lpfg [152]. While vlab runs on UNIX systems, L-Studio is a program
for Windows. The engine cpfg (plant and fractal generator with continuous
parameters) implements open L-systems with imperative programming state-
ments as described in Sect. 3.10 on page 29 and Sect. 3.13 on page 32. The
engine lpfg implements the L+C programming language (Sect. 3.14 on page 33),
it invokes the source code preprocessor and afterwards a C++ compiler.

3.15 L-System Software 37

Figure 3.8. Outcome of spruce model at the age of 71 and 113 years, respectively,
and a magnified extract

The software comes with a lot of environmental programs with which an
open L-system can communicate. The communication is implemented by a
binary protocol which is transferred through either pipes, sockets, memory,
or files.

The set of turtle commands has been considerably enlarged compared
to the standard. The turtle commands { and } indicate that the enclosed
movements of the turtle shall generate a polygon or a swept surface [149]
(called generalized cylinder within the software), which is a spline surface
whose centre line follows the path of the turtle and whose cross section is
specified by a predefined contour. The turtle command ~ draws a predefined
Bézier surface [149]. There are turtle commands for spheres and circles. A
set of tropisms can be defined, their associated turtle commands implement
rotations which let the movement direction of the turtle converge to a specified
direction (e. g., phototropism, geotropism).

vlab and L-Studio are integrated modelling environments, meaning that
they include source code editing, interactive visual specification of predefined
contour curves, surfaces, functions and materials, and finally a 3D visualiza-
tion of the outcome with interactive navigation. Figure 3.9 on the following
page shows a screenshot of an evaluation version of L-Studio 4.0.

38 3 L-Systems

Figure 3.9. Screenshot of the L-Studio software, showing the included example of
a lily

3.15.3 Lparser

Lparser [114] is a command-line tool which reads an input file conforming to a
subset of the syntax of cpfg and creates a 3D output file which can be displayed
by a viewer. For the new version of Lparser [115] the output format is VRML
[82] so that it can not only be displayed in a viewer, but also imported into
various 3D modellers. A lot of beautiful, artificial images have been created
with Lparser, two of which are shown in Fig. 3.10 on the next page.

3.15.4 L-transsys

The program L-transsys [94] differs from the previously presented L-system
software in that its principal application is not the execution of L-systems,
but the simulation of gene regulatory networks by the program component
transsys. Within transsys, such a network is a bipartite graph with two types
of node elements, transcription factors and genes. Edges from transcription
factors to genes represent the activating and repressing effects of factors on
the expression of genes, i. e., on the construction of proteins according to the
DNA sequences of the genes. Edges from genes to transcription factors (which
are proteins) specify which genes encode a transcription factor. Under the

3.15 L-System Software 39

Figure 3.10. Images created with Lparser [114]

simplifying assumption that gene expression and the effect of activation and
repression on gene expression can be modelled by enzymatic reactions with
Michaelis-Menten kinetics [11], such a network encodes an ordinary differential
equation with respect to time for the concentrations of transcription factors.

The transsys program reads a description of the regulatory network as its
input and numerically integrates this set of differential equations, the result
being a series of factor concentrations. For example, the input

transsys cycler {

factor A { decay: 0.1; }

factor R { decay: 0.1; }

gene agene {

promoter {

constitutive: 0.01;

A: activate(0.01, 1.0);

R: repress(0.1, 1.0);

}

product {

default: A;

}

}

gene rgene {

promoter {

A: activate(1.0, 10.0);

R: repress(1.0, 1.0);

}

product {

default: R;

}

}

}

40 3 L-Systems

cycler

agene

A

rgene

R

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350 400

co
nc

en
tr

at
io

n

time

A
R

(a) (b)

Figure 3.11. Gene regulatory networks in transsys: (a) graph representation; (b)
resulting oscillatory dynamics

specifies the network of Fig. 3.11(a), its resulting oscillatory course of concen-
trations is depicted in (b).

The extension L-transsys combines this numerical integration of regula-
tory networks with a variant of parametric L-systems: a parameterized symbol
bears a complete set of factor concentrations as parameters, these are auto-
matically updated according to the set of differential equations as part of an
interleaved derivation process:

1. Create the axiom with initial factor concentrations.
2. For all symbols parameterized with factor concentrations, compute the

new values of factor concentrations after a unit time step.
3. Execute a direct derivation of the L-system. As a parameterized L-system,

a derivation may use parameters in conditions and for the successor.
4. Continue with step 2 as long as desired.

L-transsys can thus be seen as an extension of L-systems which incorporates
gene regulatory networks as a built-in feature, just like sensitive growth gram-
mars contain a set of globally sensitive functions as built-in features. The fol-
lowing code makes use of the preceding example cycler within symbols of
type meristem.

lsys example {

symbol meristem(cycler);

symbol shoot_piece;

symbol left;

symbol right;

symbol [;

symbol];

axiom meristem();

3.15 L-System Software 41

rule grow { // a single generative production

meristem(t) : t.A > 0.91 -->

[left meristem(transsys t:)]

[right meristem(transsys t:)]

shoot_piece meristem(transsys t:)

}

graphics { // list of interpretive productions

meristem {

move(0.2);

color(0.0, 1.0, 0.0);

sphere(0.2);

move(0.2);

}

shoot_piece {

move(0.5);

color(0.7, 0.7, 0.7);

cylinder(0.1, 1.0);

move(0.5);

}

left { turn(20); }

right { turn(-20); }

[{ push(); }

] { pop(); }

}

}

Note that this allows a direct representation of L-system models whose mor-
phogenesis is governed by gene regulatory networks, but both components of
the model have to be specified by strictly separated parts of the language.
Also there is not yet a feedback from generated structures to regulatory net-
works, so although we may classify L-transsys models as functional-structural
plant models, a flow of information exists only from the functional part to the
structural part.

4

Graph Rewriting

In this chapter, we give an overview of the theory of graph rewriting, and
we present some existing tools to apply graph rewriting in practice. This
chapter does not contain new results, but it is an important prerequisite for
the following chapter.

4.1 Introduction

Graph rewriting or graph transformation is the generalization of string rewrit-
ing from strings to graphs, i. e., to sets of nodes which are connected by edges.
The starting point of graph rewriting was a grammar-based approach for pat-
tern recognition in images [146], but nowadays graph rewriting is used in a
variety of fields of application.

While the string-rewriting production A→ BC, applied to the word UAX,
yields the word UBCX, a corresponding graph production

�� ��A →
�� ��B −→

�� ��C
could lead to this derivation:�� ��U &&NN

�� ��X
�� ��U &&NN

�� ��X�� ��A &&MM
88qq ⇒

�� ��B //
�� ��C &&MM

88qq�� ��V
88pp �� ��Y

�� ��V
88pp �� ��Y

In our notation, directed edges are shown as arrows, while nodes are repre-
sented by rounded boxes. The symbols within boxes are node labels or node
types. From this example, three essential questions can be deduced which have
to be answered in order to formalize the process of graph rewriting [31]:

1. What is the structure of a graph? In the example, nodes are labelled, while
edges are directed but unlabelled. Do we allow parallel edges or loops, i. e.,
edges from a node to itself?

2. How is the match of the left-hand side of a production at a location in
the graph defined? In the example, the A-labelled node of the left-hand
side was matched with the A-labelled node of the given graph. This is

44 4 Graph Rewriting

similar to string-rewriting formalisms: the symbol of the left-hand side of
a production has to match with a symbol in the current word.

3. How do we replace the match by the right-hand side of the production, i. e.,
what is a direct derivation? Within the context of string rewriting, this
is a trivial question: the symbols of the right-hand side simply replace
the matched symbol at its location in the word. Within the context of
graph rewriting, there is no unique answer to this question. Several so-
called embedding mechanisms exist which define how a match is removed
from the graph and how a right-hand side is attached to the graph. The
embedding mechanism used in the example redirects incoming edges of
the A-labelled node to the B-labelled node and outgoing edges of the A-
labelled node to the C-labelled node. One could equally well choose to
redirect all edges from the A-labelled node to, say, the B-labelled node,
but then the result would be different.

As we can learn from these questions, the situation is not as straightforward as
for string-rewriting systems. Each question permits a large degree of freedom.
For the sake of simplicity, we will use the following definition of a labelled,
directed graph throughout this chapter [54]:

Definition 4.1 (graph). Let Λ = (ΛV , ΛE) be an alphabet of node labels ΛV

and edge labels ΛE. A labelled, directed graph G = (GV , GE , Gλ) over Λ
consists of a set of nodes GV , a set of edges GE ⊆ {(s, β, t)|s, t ∈ GV , β ∈
ΛE} and a node labelling function Gλ : GV → ΛV . For an edge (s, β, t) ∈ GE,
s is called the source node, t the target node. If we use a graph G in a context
where it plays the role of a set, e. g., if we write a ∈ G or G ⊆ H, we mean
the set GV ∪GE. A discrete graph is a graph without edges, i. e., GE = ∅.

This definition excludes parallel edges of the same label, but allows loops,
i. e., edges from a node to itself. It should be clear how this definition can be
simplified in order to obtain node-labelled graphs (i. e., edges are unlabelled)
or undirected graphs (i. e., the two nodes with which an edge is incident are not
distinguished as source and target). In the literature, one also finds definitions
which allow parallel edges. Then edges are given by a set and mappings from
the set to labels and source and target nodes. Edges are identified by the
elements in the set, while an edge of our definition is uniquely determined by
its incident nodes and the edge label.

Note that there is a crucial difference in how one conceives of words on
the one hand and of graphs on the other hand. Words are usually imagined to
be a sequence of occurrences of symbols from an alphabet, i. e., while symbols
have an identity on their own, a word is built from mere occurrences. On the
other hand, nodes of a graph are objects on their own right, they have an
identity and are not considered as mere occurrences of their label. Thus, we
do not say ‘Node A is replaced by . . .’, which would correspond to ‘Symbol A
is replaced by . . .’, but ‘A node labelled A is replaced by . . .’.

On the basis of the definition of a graph, subgraphs and graph homomor-
phisms, i. e., structure-preserving functions can be defined:

4.2 Embedding Mechanisms 45

Definition 4.2 (subgraph). Let G = (GV , GE , Gλ) be a graph over Λ. A
subgraph S of G, written S v G, is a graph (SV , SE , Sλ) with SV ⊆ GV , SE ⊆
GE , Sλ = Gλ|SV

.

Definition 4.3 (graph homomorphism). Let G = (GV , GE , Gλ),H =
(HV ,HE ,Hλ) be graphs over the alphabet Λ and let fV be a function GV →
HV . fV is called label-preserving if Hλ ◦ fV = Gλ. fV induces a function
fE : GE → HV × ΛE × HV , (s, β, t) 7→ (fV (s), β, fV (t)). If fE(GE) ⊆ HE

and fV is label-preserving, fV induces a (total) graph homomorphism f =
(fV , fE) : G→ H. If f is injective, it is called a monomorphism. For an ob-
ject a ∈ GV ∪GE, we define f(a) = fV (a) if a ∈ GV , otherwise f(a) = fE(a).

The labels V and E are omitted from the component functions if it is clear
from context which component is meant.

Remark 4.4. If fV is injective, then fE is injective. Thus, f is a monomorphism
if and only if fV is injective. Furthermore, f is uniquely determined by fV .
Note that if we did not allow loops as edges, the construction of fE , given fV ,
would exclude functions fV which send nodes that are connected by an edge
to a single node in the image.

With the help of these definitions, we can answer the second question. We
have not yet defined exactly what a graph production is, but at the moment
it is sufficient to think of a production L→ R where L and R are graphs.

Definition 4.5 (match). A match (i. e., occurrence of the left-hand side)
for a production L → R in some host graph G is a graph homomorphism
m : L→ G.

Given a host graph G, a production p and a match m, the corresponding
derivation should remove the matched part m(L) of the host graph and insert
an isomorphic copy of R. How this is done precisely depends on the embedding
mechanisms and is discussed in the following section. Given such an embed-
ding mechanism, a set of productions and an initial graph, the definition of a
(sequential) graph grammar can be stated straightforwardly:

Definition 4.6 (graph grammar). Let alphabet and embedding mechanism
be fixed, i. e., for every production p : L → R and every (applicable) match
m : L → G a direct derivation G

p,m
==⇒ H is defined. A graph grammar G =

(α, P) is given by a start graph α and a set P of productions. The language
generated by G is L(G) =

{
G
∣∣∣∃α G=⇒∗G

}
, i. e., the set of all graphs G for which

there exists a sequence of direct derivations starting at α.

4.2 Embedding Mechanisms

An embedding mechanism defines how (an isomorphic copy of) the right-
hand side R of a production is embedded into the remainder G− of the host

46 4 Graph Rewriting

graph G after the match m(L) of the left-hand side has been removed, i. e.,
it establishes the link between G− and R. This mechanism e may depend
on the production, so in general, a production has to be written as L e−→ R.
The embedding mechanism can be seen as the most essential part of graph
rewriting; this is in contrast to string rewriting where embedding is trivial.

Two main types of embedding can be distinguished [54]: connecting and
gluing. Connecting mechanisms explicitly specify new edges which have to be
created as bridges between G− and R. Gluing mechanisms establish a link
between G− and R by identifying some objects (nodes, edges) in L and R
as part of the production specification. Since these are, roughly spoken, both
in the graph L to be deleted and in the graph R to be inserted, their image
under m is simply kept in the graph G−. The remaining part of R is then
added to G−, the link to G− being established by the kept objects.

We present the most important embedding mechanisms in the sequel. The
level of detail varies depending on the importance of the mechanism for the
remainder of this thesis.

4.2.1 Neighbourhood Controlled Embedding

Neighbourhood controlled embedding (NCE) is an embedding of the connecting
type [54]. A very simple case is the node label controlled (NLC) mechanism for
node-labelled, undirected graphs. A production has the form L

e−→ R, where L
is a single node, R a graph and e a set of connection instructions (µ, ν) with
node labels µ, ν. Given a match m : L→ G, the single node m(L) in the host
graph is removed together with its incident edges. Then for every neighbour
a of m(L) in the original host graph and every new node b of (an isomorphic
copy of) R, an edge is created if the set of connection instructions contains
the pair of labels (Gλ(a), Rλ(b)). Since the left-hand sides are restricted to
single nodes, one speaks of node replacement.

The basic idea of NLC embedding can be extended easily in various ways,
leading to the family of neighbourhood controlled embedding mechanisms.
This denomination stresses the locality of embedding: new embedding edges
are only created between direct neighbours of the removed nodes on one side
and new nodes on the other side. In the case of labelled, directed graphs, we
have the edNCE mechanism (e stands for edge-labelled, d for directed):

Definition 4.7 (edNCE production). An edNCE production p : L e−→ R
is given by two graphs L,R and a finite set e = {c1, . . . , cn} of connection
instructions ci = (v, µ, γ/δ, w, d) ∈ LV × ΛV × ΛE × ΛE ×RV × {in, out}.

A connection instruction (v, µ, γ/δ, w, out) specifies that each γ-labelled
edge from the removed node v to a µ-labelled neighbour n leads to a δ-labelled
embedding edge from the new node w to n, and analogously for ‘in’ instead
of ‘out’ (d indicates the direction of edges, either incoming or outgoing with
respect to the removed node). Note that this embedding is able to relabel

4.2 Embedding Mechanisms 47

edges, but cannot invert their direction. The mechanism is specified formally
by the following definition:

Definition 4.8 (direct edNCE derivation). Let p be as before, G a la-
belled, directed graph, m : L→ G a match for p. The direct derivation using
p via m, denoted as G

p,m
==⇒ H, is given by the graph H with

HV = (GV \m(LV)) ∪R′
V ,

HE = {(s, β, t) ∈ GE |s, t 6∈ m(LV)} ∪R′
E

∪
⋃

(v,µ,γ/δ,w′,d)∈e,d=out

{(w′, δ, n) |∃(m(v), γ, n) ∈ GE : Gλ(n) = µ, n 6∈ m(LV)}

∪
⋃

(v,µ,γ/δ,w′,d)∈e,d=in

{(n, δ, w′) |∃(n, γ,m(v)) ∈ GE : Gλ(n) = µ, n 6∈ m(LV)} ,

Hλ(v) =
{
Gλ(v) : v ∈ GV

R′
λ(v) : v ∈ R′

V
.

R′ denotes an isomorphic copy of R.

The introductory example on page 43 could be implemented by this edNCE
production, where we write ∗ for the single edge label:

p = a
�� ��A

e−→ b
�� ��B −→ c

�� ��C ,

e = {(a, {U,V}, ∗/∗, b, in), (a, {X,Y}, ∗/∗, c, out)} .

In this notation, lowercase letters in front of node boxes are used as node iden-
tifiers: for example, the right-hand side R of p is given by RV = {b, c}, RE =
{(b, ∗, c)}, Rλ : b 7→ B, c 7→ C. In addition, a set of labels like {U,V} in a
connection instruction has to be interpreted as a shorthand notation for a set
of connection instructions which use the elements of the set.

4.2.2 Hyperedge Replacement

Hyperedge replacement is an elementary approach of graph and hypergraph
rewriting [38]. The underlying graph model is not that of Def. 4.1 on page 44,
a (hyper-)graph is rather consisting of a number of hyperedges and nodes.
Each hyperedge has a fixed number of tentacles, each tentacle is connected
with tentacles of other hyperedges at an attachment node. In fact, nodes sim-
ply serve to collect the attached tentacles of hyperedges and have no further
meaning.

As the name indicates, hyperedge replacement replaces hyperedges and
keeps nodes unaffected. Left-hand sides of productions are restricted to single
hyperedges. On derivation, a matching hyperedge e for the left-hand side is
removed, the replacing structure R is embedded into the original structure. In
order for this to be possible, R has to be a hypergraph with as many external
nodes as e has tentacles, these external nodes are then identified with the

48 4 Graph Rewriting

previous attachment nodes of e. The embedding of hyperedge replacement is
thus of gluing type.

This replacement is context-free in the sense that the context of a replaced
hyperedge is not affected. Note that this is the same for string grammars, with
symbols instead of hyperedges and the implicit “space between consecutive
symbols” instead of attachment nodes. Hyperedge replacement can thus be
seen as a direct generalization of string grammars, and several structural re-
sults for string grammars can be restated for hyperedge grammars.

4.2.3 Double-Pushout Approach

The double-pushout approach (DPO) is an embedding of the gluing type [51,
48, 31, 44]. It is also called the algebraic approach because it relies on an
algebraic construction based on category theory. The embedding is specified
by a gluing graph K which is the common part of the left- and right-hand
sides L and R of a production and, thus, identifies objects in R with objects
in L. Hence, a rule is specified by p : L K−→ R, which is more suitably written
as p : L← K → R in this context:

Definition 4.9 (DPO production). A DPO production p : L l←− K
r−→ R

is given by graphs L,K,R, called the left-hand side, gluing graph, right-hand
side respectively, and monomorphisms l, r.

Without loss of generality, we may think of K as the intersection graph of
L and R, then l and r are simply inclusions and we write p : L←↩ K ↪→ R.

In order to proceed, we need some basic definitions and constructions from
category theory [111]:

Definition 4.10 (category). A (small) category is given by a set of objects
Obj, for every ordered tuple (A,B) of objects a set of arrows (also called
morphisms) Hom(A,B), where f ∈ Hom(A,B) is written as f : A → B or

A
f−→ B, for every ordered triple (A,B,C) of objects a composition function

Hom(B,C) × Hom(A,B) → Hom(A,C), written as (g, f) 7→ g ◦ f , and for
each object A an identity arrow idA ∈ Hom(A,A), such that the following
axioms are satisfied:

1. Associativity. Given objects and arrows as in A
f−→ B

g−→ C
h−→ D, one

always has the equality h ◦ (g ◦ f) = (h ◦ g) ◦ f .
2. Identity. For all arrows A

f−→ B, it holds that f ◦ idA = idB ◦f = f .

For an arrow A
f−→ B, A = dom f is called its domain, B = cod f its

codomain.

The standard example for a category is Set, the category of all small sets.1

The objects of Set are all small sets, Hom(A,B) is the set of all functions
1 For the definition of small, see [111].

4.2 Embedding Mechanisms 49

f : A → B, ◦ and id are defined as usual. Note that an arrow A
f−→ B has

its domain A and codomain B as intrinsic properties. E. g., in Set the arrows

R x7→x2

−−−−→ R and R x7→x2

−−−−→ R+
0 are different.

Based on Set, sets with a structure and their homomorphisms (i. e.,
structure-preserving functions) define categories, for example the category
Group of all groups and their homomorphisms, or the category Graph which
will play an important role in the following:

Proposition 4.11 (category Graph). Graphs and their graph homomor-
phisms define a category Graph. ut

The philosophy behind categories is to describe properties of mathematical
systems by a convenient presentation with diagrams consisting of arrows. This
notation provides a unified and simplified view at a high level of abstraction.
One is not interested in the concrete meaning of an object A ∈ Obj. Although
this may be a set of elements x ∈ A, one never uses such an element x:
reasoning exclusively uses arrows. This high level of abstraction is jokingly,
but not in the least derogatorily termed abstract nonsense [112, page 759]. As
an example for the diagrammatic language of category theory, its axioms can
be depicted as commutative diagrams:

Associativity :

A
f //

g◦f ��@@@@@@@ B

g

��

h◦g

 @@@@@@@

C
h
// D

Identity :

A
idA //

f

��

f

~~~~~~~~~
A

f��~~~~~~~

B
idB

// B

Commutative diagrams have to be read as follows: for each pair of objectsX,Y
in such a diagram and for any two paths X

f1−→ . . .
fn−→ Y , X

g1−→ . . .
gm−−→ Y

along arrows in their direction, the equality fn ◦ . . . ◦ f1 = gm ◦ . . . ◦ g1 holds.

Definition 4.12 (pushout). Let B
f←− A

g−→ C be two arrows in a category.
A pushout (D, f∗, g∗) over f, g is a commutative square

A
f //

g

��

B

g∗

��
C

f∗
// D

which satisfies the following universal property: for any commutative square

A
f //

g

��

B

gX

��
C

fX

// X

there exists a unique arrow D
t−→ X such that the following diagram commutes:



50 4 Graph Rewriting

A
f //

g

��

B

g∗

�� gX

��=================

C
f∗ //

fX

**TTTTTTTTTTTTTTTTTTTT D
t

&&NNNNNNN

X

By this definition, the pushout is unique up to isomorphism. In the cate-
gory Set, such a pushout always exists [111]: it is given by (B t C)/∼∗, the
disjoint union of B and C modulo the least equivalence relation ∼∗ which
identifies f(a) and g(a) for each a ∈ A. This gives us an intuitive meaning:
if f, g are inclusions, D consists of the elements of A plus those of B and C
which are not already in A. The pushout glues B and C on common elements.
This construction can be adopted to Graph:

Proposition 4.13 (pushouts in Graph). Pushouts in Graph always ex-
ists. They can be obtained by the pushout construction of Set with respect to
the node component, which then uniquely determines the edge component. ut

Note that this construction relies on the fact that loops are allowed as
edges. An example for a pushout in Graph is the diagram

a© b© //

��

a© // b©

��

a∼b© d©oo // a∼b© tt d©oo ,

where node mappings are indicated by lowercase identifiers. a ∼ b as identifier
means that both a and b are mapped to the same node.

Given a host graph G and a match m : L → G, the corresponding direct
derivation can now be defined in pure categorical terms:

Definition 4.14 (direct DPO derivation). Let p : L ←↩ K ↪→ R be a
production and m : L → G a match in a host graph G. A direct derivation
using p via m, denoted as G

p,m
==⇒ H, is given by the following double-pushout

diagram, where (1) and (2) are pushouts in the category Graph:

L oo ? _

m

��

K
� � //

d

��

R

m∗

��
(1) (2)

G oo
l∗

D
r∗
// H

D is called the context graph, m∗ the comatch.



4.2 Embedding Mechanisms 51

If D and H exist, they are uniquely determined up to isomorphism by this
diagram. This is a common characteristic of the algebraic approach to graph
rewriting and reasoning in category theory in general: objects are determined
up to isomorphism only. This can be seen as an abstraction of representation-
dependent details. From a practical point of view, it is clear how to deal with
this issue: wherever a diagram such as a pushout determines objects up to
isomorphism only, one simply fixes a specific construction for this diagram
which is then unique. A thorough investigation from a theoretical point of
view is presented in [29, 30], where suitable equivalence relations and standard
representations are studied.

It is not always possible to construct the double-pushout diagram: given
pushout (1), H can always be constructed as pushout (2), but pushout (1)
requires its completion by D which is only possible if and only if the gluing
condition is fulfilled:

Definition 4.15 (applicability of production). Let G, p, m be as before.
p is applicable via m if the double-pushout diagram exists.

Definition 4.16 (gluing condition). Let G, p, m be as before. The iden-
tification points IP = {a ∈ L | ∃b ∈ L, a 6= b : m(a) = m(b)} are
those nodes and edges in L which are identified by m. The dangling points
DP = {v ∈ LV | ∃(s, β, t) ∈ GE \m(LE) : s = m(v) ∨ t = m(v)} are those
nodes in L whose images under m are incident with edges that do not belong
to m(L). The gluing condition is IP ∪DP ⊆ K.

The gluing condition says that nodes of L which are identified by a match
must not be deleted, and that nodes which are removed by a derivation must
not leave dangling edges behind.

Proposition 4.17 (existence and uniqueness of context graph). Let G,
p, m be as before. The context graph D for a direct derivation as in Def. 4.14
on the facing page exists if and only if the gluing condition is fulfilled. If D
exists, it is unique up to isomorphism, and the double-pushout diagram can be
constructed, i. e., the production p is applicable. [44] ut

The concrete implementation of this construction is as follows [44]. Given
a derivation using p : L ←↩ K ↪→ R via m : L → G, delete those nodes and
edges in G that are reached by the match m, but keep the image of K. This
results in the context graph D = (G\m(L)) ∪m(K). Then add those nodes
and edges that are newly created in R. This results in H = D t (R\K). We
use the disjoint union to express that the added elements are really new.

As an example for a DPO derivation, consider Fig. 4.1 on the next page.
m is not injective, it identifies a and b in G. However, since both are elements
of K, this does not violate the gluing condition. Also a, b are dangling points
because their image is connected with d. But again this does not violate
the gluing condition since a, b ∈ K. Thus, the production is applicable and
amounts to the deletion of c and the creation of a loop edge at a ∼ b.



52 4 Graph Rewriting

The two examples in Fig. 4.2 show situations where the gluing condition
is not satisfied and, hence, a DPO derivation cannot be constructed. Even the
simple production of Fig. 4.2(b) which just deletes a node cannot be applied
to a node in G which has edges.

L

a© b© c© oo ? _

m
��

K

a© b© � � //

��

R

a© // b©

m∗��G

a∼b© d©oo c©

D

a∼b© d©oooo //

H

a∼b© tt d©oo

Figure 4.1. DPO derivation

L

a© b© oo ? _

m

��

K
a© � � //

R
a©

G
a∼b©

L
a© oo ? _

m
��

K

∅ � � //
R

∅

G

a© // b©

(a) (b)

Figure 4.2. Inapplicable productions: (a) identification point b 6∈ K; (b) dangling
point a 6∈ K

4.2.4 Single-Pushout Approach

Like the double-pushout approach, the single-pushout approach (SPO) is an
embedding of the gluing type [48, 47]. It has been developed as a generalization
of the DPO approach by dispensing with the gluing condition. The conflicts
which are indicated by a violated gluing condition are resolved by deletion,
i. e., dangling edges and objects which shall both be preserved and deleted are
deleted. The fact that a production is applicable via every match is a conse-
quence of the SPO construction where a derivation is a single pushout diagram
which always exists. However, we have to change the underlying category from
Graph to GraphP where arrows are partial graph homomorphisms:

Definition 4.18 (partial graph homomorphism). Let G,H be graphs
over the alphabet Λ. A partial graph homomorphism f from G to H is a total
graph homomorphism from some subgraph domP f of G to H, and domP f is
called the domain of f . 2

2 Note that the term domain is used ambiguously here: domP f v G is the domain

of G
f−→ H as a partial function, G = dom f is its domain as an arrow (see

Def. 4.10 on page 48).



4.2 Embedding Mechanisms 53

Proposition 4.19 (category GraphP). Graphs and their partial graph ho-
momorphisms define a category GraphP. ut

Definition 4.20 (coequalizer). Let f, g : A→ B be two arrows. A coequal-
izer of f, g is an arrow B

c−→ C such that c ◦ f = c ◦ g and for any arrow
B

x−→ X with x ◦ f = x ◦ g there exists a unique arrow C
t−→ X with x = t ◦ c:

A
f //
g
// B

c //

x
��???????? C

t

���
�
� c ◦ f = c ◦ g

X x ◦ f = x ◦ g

Coequalizers are unique up to isomorphism. Note that only the right part
of the coequalizer diagram is commutative.

Proposition 4.21 (specific coequalizer in GraphP). Let f, g : A→ B be
two partial graph homomorphisms which coincide on domP f ∩ domP g. Then
a coequalizer always exists and is given by the partial graph morphism B

c−→ C
where C v B is the largest subgraph of B with C ⊆ {a ∈ B | f−1(a) =
g−1(a)}, domP c = C, and c is the identity on C. [122] 3 ut

Proposition 4.22 (construction of pushouts in GraphP). Pushouts for

partial graph homomorphisms B
f←− A

g−→ C always exist and can be con-
structed by the following diagram:

domP g
g|domP g //

_�

��

C

��

��*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

(2)

domP f
� � //

f |domP f

��

A

��

g

88

�
	

�
�

z
u

r

f

��

r
u

z
�

�
	

�

// V

��

(1) (3)

B //

**TTTTTTTTTTTTTTTTTTTT U // W

��???????????????

X

3 The original construction in [47] is wrong and was corrected in [122].



54 4 Graph Rewriting

At first, the pushouts (1) of A ←↩ domP f
f |domP f−−−−−→ B and (2) of A ←↩

domP g
g|domP g−−−−−→ C are constructed in Graph (all arrows are total graph

morphisms). Then the pushout (3) of U ← A→ V is constructed in Graph.

Finally, the coequalizer X of A
f−→ B → U → W and A

g−→ C → V → W is
constructed in GraphP (the conditions for the specific construction are ful-

filled). The dashed square is the pushout of B
f←− A

g−→ C in GraphP, X its
pushout object. ut

Remark 4.23. Both the solid and dashed part of the diagram are commutative
in isolation. However note that the diagram as a whole is not commutative
since f, g are only partial graph homomorphisms. It is commutative on a
subdomain (start with replacing A by domP f ∩ domP g).

Remark 4.24. This construction differs from the one in [47]. However, the
latter is equivalent and can be obtained by the fact that pushouts can be
composed and decomposed, i. e., (2) + (3) is also a pushout and could be
constructed at once after (1). The presented construction was chosen instead
of the abbreviated one due to its symmetry.

Definition 4.25 (SPO production). An SPO production p : L → R is a
partial graph monomorphism L

p−→ R.

Without loss of generality, we may assume that p is the identity on its
domain. We can then rewrite p as L ←↩ domP p ↪→ R which shows that the
role of domP p coincides with that of the gluing graph K of a DPO rule.

Definition 4.26 (direct SPO derivation). Let p : L → R be a production
and m : L → G a match in a host graph G. A direct derivation using p via
m, denoted as G

p,m
==⇒ H, is given by the following single-pushout diagram in

the category GraphP:

L
p //

m

��

R

m∗

��
G

p∗
// H

m∗ is called the comatch.

Remark 4.27. The construction of Prop. 4.22 on the preceding page can be
simplified in case of the pushout of an SPO derivation since m is a total graph
homomorphism. In the terms of the construction, we have domP f = A,U = B
and construct the composed pushout (2) + (3) at once:



4.2 Embedding Mechanisms 55

domP p
p|domP p //

_�

��

R

��

m∗

��/
/

/
/

/
/

/
/

/
/

/
/

/
/

L

m

��

p

77oooooo

G //

p∗

++WWWWWWWWWWWWW W

''OOOOOOOOOOO

H

The concrete implementation of an SPO derivation starts with the con-
struction of W . Assuming p|domP p = iddomP p without loss of generality, this
amounts to the addition of the new objects R\domP p to G, thereby respect-
ing the (transitive closure of the) identification m(a) ∼ a for a ∈ domP p.
Then the coequalizer H is constructed by deletion of all objects of the old
host graph G whose preimage under m contains elements of L\domP p and,
finally, by deletion of all dangling edges. Thus, the apparent difference to a
DPO derivation is that the latter at first deletes objects by completing its
pushout (1) with the context graph D and then adds new objects, while an
SPO derivation at first adds new objects by constructing its pushout object
W and then deletes objects. This order implements deletion in preference to
preservation.

The SPO derivation of the production of Fig. 4.1 on page 52 looks the
same as the DPO derivation. However, the productions of 4.2 are now both
applicable as shown in Fig. 4.3.

L

a© b©
p //

m

��

R
a©

��G
a∼b© //

W
a∼b©

!!CCCCCC

H

∅

L
a©

p //

m
��

R

∅

��G

a© // b© //

W

a© // b©

$$HHHHHHH

H
b©

(a) (b)

Figure 4.3. Productions with violated gluing condition are applicable in the SPO
approach



56 4 Graph Rewriting

In [47], the SPO approach is compared with the DPO approach. The DPO
approach is considered to be safe because there is no implicit effect of deletion
of dangling edges; in fact, DPO derivations are invertible straightforwardly.
On the other hand, the SPO approach has the side effect of deletion of dangling
edges. SPO derivations are thus not invertible and are considered as relatively
unsafe. A way to moderate this unsafety is the inclusion of application con-
ditions. Indeed, the SPO approach with the gluing condition as application
condition is equivalent to the DPO approach.

The suggestion of [47] for concrete applications of graph grammars is to
assume a set of standard application conditions for productions in order to re-
strict the expressiveness to a safe and intelligible amount. Exceptions should
be possible by explicit specification of the user. Standard application con-
ditions could be the gluing condition or the requirement of injectivity for
matches.

4.2.5 Pullback Rewriting

The basic operation of the two presented pushout approaches is the pushout
in a suitable category of graphs. As has been noted after the pushout defi-
nition 4.12 on page 49, a pushout can be seen as a generalization of a union
which glues its components on common elements. This complies with the usual
rewriting mechanism of grammars where, after the matched part of a rule ap-
plication has been removed from the current structure, the new structure is
obtained by the union with the right-hand side of the rule and an additional
identification of objects.

However, a more powerful rewriting mechanism can be defined based on
products rather than on unions [8]. In terms of category theory, products and
generalizations thereof can be defined via a pullback, the dual of a pushout
(i. e., directions of arrows are reversed):

Definition 4.28 (pullback). Let B
f−→ A

g←− C be two arrows in a category.
A pullback (D, f∗, g∗) over f, g is a commutative square

A B
foo

C

g

OO

D
f∗

oo

g∗

OO

which satisfies the following universal property: for any commutative square

A B
foo

C

g

OO

X
fX

oo

gX

OO



4.2 Embedding Mechanisms 57

there exists a unique arrow X
t−→ D such that the following diagram commutes:

A B
foo

C

g

OO

D
f∗oo

g∗

OO

X

gX

^^=================fX

jjTTTTTTTTTTTTTTTTTTTT

t

ffN N N N N N N

By this definition, the pullback is unique up to isomorphism. In the cat-
egory Set, such a pullback always exists [44]: it is constructed by D =
{(b, c) ∈ B × C |f(b) = g(c)} with homomorphisms f∗ : D → C, (b, c) 7→ c
and g∗ : D → B, (b, c) 7→ b. If A is a singleton set, D is simply the cartesian
product B×C. If f and g are inclusions, D is (isomorphic to) the intersection
B ∩ C.

A precise description of pullback rewriting is given in [8, 9]. The following
just serves to give an idea of the formalism and its benefits. Since a pullback
is the dual of a pushout, pullback rewriting is dual to pushout rewriting:
directions of arrows have to be reversed. In a single-pullback framework, a
production is thus given by an arrow p : R → L and a match by an arrow
m : G→ L. A derivation using p via m is the pullback of G m−→ L

p←− R:

L R
poo

G

m

OO

Hoo

OO

Thus, a match assigns to each object of the host graph an object of the left-
hand side of a rule. This allows a single object of the left-hand side to be
matched by several objects of the host graph.

A simple application of this feature is the implementation of the edNCE
mechanism using pullback rewriting [8]. Connection instructions can be en-
coded as part of productions; namely, for a node v of the left-hand side of a
production, the unspecified number of neighbours of the match of v matches a
single neighbour n ∈ L of v. The connection instruction part of the production
p specifies how edges from v to n are transferred to the derived graph, this is
then carried out for each matching node for n.

A further application is the duplication of whole subgraphs: if a subgraph
S of the host graph matches a single node v (with loop) of the left-hand side,
and if the homomorphism p maps several nodes of R to v, the pullback creates
a copy of S in the derived graph H for every such node. Compare this with
the situation



58 4 Graph Rewriting

L = {0, 1} R = {α, β, γ}

p :
α 7→ 0
β 7→ 0
γ 7→ 1

oo

G = {a, b, c}

m :
a 7→ 0
b 7→ 0
c 7→ 1

OO

H = {(α, a), (α, b), (β, a), (β, b), (γ, c)}

OO

oo

in Set: the derived set H is given by {(α, a), (α, b), (β, a), (β, b), (γ, c)}, i. e.,
the subset S = {a, b} which matches the element 0 of L is duplicated (once
tagged with α and once tagged with β) because the two elements α and β
of R are mapped to 0 by p, the rest of G matches the element 1 of L and is
preserved because only γ is mapped to 1 by p.

4.2.6 Relation-Algebraic Rewriting

Pushout and pullback rewriting are complementary. As a consequence of the
direction of arrows which represent homomorphisms, pushout rewriting may
identify several objects of the left-hand side of a production with the same
object in the host graph, which is a useful feature for parallel derivations (see
remark 4.51 on page 70), but may not identify several objects in the host
graph with the same object of the left-hand side so that whole subgraphs
cannot be duplicated. On the other hand, pullback rewriting may duplicate
subgraphs, but cannot identify objects of the left-hand side.

A unification of these complementary approaches can be obtained if the
meaning of an arrow as a (partial) homomorphism is dispensed with in favour
of a general relation [88]. A partial homomorphism is then simply the special
case of a univalent relation, a total homomorphism is obtained if the relation
is also total. In [88] it is argued that this concept is as intuitive and elegant
as the pushout approaches while incorporating the replicative power of the
pullback approaches (which by themselves are less intuitive).

4.2.7 Logic-Based Structure Replacement Systems

Logic-based structure replacement systems [173] differ from the previous ap-
proaches in that they use a completely different graph model. A graph is rep-
resented as a so-called Σ-structure which is a set of closed atomic formulas.
For example, the graph

x
�� ��A

value=42

E // y
�� ��B

would be represented as the set of atomic formulas



4.3 Parallel Graph Rewriting 59

{node(x,A),node(y,B), edge(x,E, y), attr(x, value, 42)} .

Using first-order predicate logic formulas, a Σ-structure schema consisting
of integrity constraints and derived data definitions can be specified. The
integrity constraint that each edge is incident with nodes is the formula

∀s, β, t : edge(s, β, t)⇒ (∃X,Y : node(s,X) ∧ node(t, Y )) ,

and the derived definition of an ancestor is the formula

∀x, y : ancestor(x, y)⇔ (∃z : edge(z, child, x) ∧ (z = y ∨ ancestor(z, y))) .

A graphG (or aΣ-structure in general) conforms to a schema ifG is consistent
with the set Φ of integrity constraints and derived data definitions of the
schema, i. e., if G ∪ Φ is free of contradictions.

A match is represented by a Σ-relation which relates the left-hand side of
a production with the host structure. The left-hand side may contain object
identifiers and object set identifiers as variables. Object identifiers are related
with single objects of the host structure, while object set identifiers are related
with an arbitrarily large set of objects of the host structure. This is similar to
the combination of pushout and pullback rewriting in the relation-algebraic
rewriting of Sect. 4.2.6 on the preceding page. As an additional requirement,
preconditions have to be fulfilled, and a match for a production has to be
maximal, i. e., the matches for object set identifiers must not be extensible.

A derivation at first removes the image of the left-hand side without the
image of the right-hand side from the host structure and then adds an image
of the right-hand side without the image of the left-hand side to the host
structure. As a consequence of this construction, conflicts between deleting
and preserving objects are resolved in favour of preserving. Afterwards, post-
conditions and schema consistency is checked. If any violation is detected, the
derivation has to be undone.

According to [173], logic-based structure replacement systems are an at-
tempt to close the gap between rule-based modification and logic-based knowl-
edge representation. Structure replacement systems are expected to be a well-
defined formalism for the modification of knowledge bases, and logic-based
techniques can be used to define constraints and derived properties, and to
prove the correctness of modifications.

4.3 Parallel Graph Rewriting

The discussion so far deals with sequential rewriting exclusively. But from the
early days of graph rewriting on also parallel rewriting was studied, mainly
inspired by the contemporaneous evolution of the theory of L-systems [118].
Partly motivated by biological applications, a heterogeneous range of ap-
proaches for parallel graph grammars was proposed in the mid and late 1970s



60 4 Graph Rewriting

[32, 127, 143, 130, 123, 119], and some efforts were made to generalize and
unify them [52, 49]. An early review can be found in [132]. However, at least
to our knowledge, none of these approaches is still being an active field of
research or used for the modelling of biological systems. In fact, although
parallel graph rewriting made it into the early textbook Graph-Grammatiken
[131] of 1979, they were not discussed in the three-volume Handbook of Graph
Grammars [167, 45, 50] of 1997.

The main problem of parallel graph rewriting is the extension of the se-
quential embedding mechanism to a connection mechanism suitable for the
parallel mode of rewriting. Such a connection mechanism has to state how
the right-hand side of a rule has to be connected with the rest, but the rest
itself changes as part of a derivation. Two different ways of defining con-
nection mechanisms were proposed, namely explicit and implicit approaches
[132]. Explicit approaches have two kinds of productions: rewriting produc-
tions replace predecessor subgraphs of the host graph by successor subgraphs,
connection productions define how connections between two predecessor sub-
graphs are transformed into connections between the corresponding successor
subgraphs. Implicit approaches resemble embedding mechanisms of sequential
rewriting: there is only one sort of productions which specify both predecessor
and successor subgraphs and the way how successor subgraphs are connected
with the rest (consisting of all the other successor subgraphs). So explicit ap-
proaches establish connections based on a pairwise consideration of successor
subgraphs, while implicit approaches connect each successor subgraph with
the rest.

4.3.1 Explicit Connection Mechanisms

As a representative for explicit connection mechanisms we present the defi-
nition of connection productions based on stencils. The main idea was intro-
duced in [32] and was further investigated (with some changes in the defini-
tion) in [52, 86, 87]:

1. Replace each single node of the host graph individually and simultane-
ously by a successor graph according to the set of rewriting productions.
Thus, left-hand sides of productions are restricted to single nodes (node
replacement).

2. For each edge of the host graph, a connection production is chosen based
on the edge label and the successor graphs of its incident nodes. This
production specifies the edges to be created between the successor graphs.

A precise definition based on [52] is as follows:

Definition 4.29 (rewriting and connection productions based on sten-
cils). A rewriting production p : µ→ R is given by a node label µ ∈ ΛV and a
graph R. A connection production c : β → R is given by an edge label β ∈ ΛE

and a stencil R, where a stencil R = (S, T,E) consists of a source graph S,



4.3 Parallel Graph Rewriting 61

a target graph T and additional edges E ⊆ SV × ΛE × TV ∪ TV × ΛE × SV

between S and T .

Definition 4.30 (node replacement parallel graph grammar). A node
replacement parallel graph grammar G = (α, P,C) is given by a start graph
α, a set P of rewriting productions and a set C of connection productions.

Definition 4.31 (direct derivation). Let G = (α, P,C) be a node replace-
ment parallel graph grammar, and let G,H be graphs. Then there is a (direct)
derivation from G to H within G if all of the following holds:

1. There is, for each node v ∈ GV , a rewriting production pv : µv → Rv ∈ P
with µv = Gλ(v) such that HV is isomorphic (as a discrete graph) to⊔

v∈GV
Rv

V , the isomorphism being given by h :
⊔

v∈GV
Rv

V → HV .
2. There is, for each edge e = (s, β, t) ∈ GE, a connection production ce :
βe → (Se, T e, Ee) ∈ C with βe = β such that Se is isomorphic to Rs and
T e is isomorphic to Rt, the isomorphisms being given by σe : Se t T e →
Rs tRt (these conditions may be changed, e. g., cases like Se = Rs, T e =
Rt or Se v Rs, T e v Rt are also considered in the literature).

3. The set of edges of H is given by

HE =
⋃

v∈GV

{(h(s), β, h(t)) |(s, β, t) ∈ Rv
E }

∪
⋃

e∈GE

{((h ◦ σe)(s), β, (h ◦ σe)(t)) |(s, β, t) ∈ Ee } .

Roughly speaking, H is the union of all stencils resulting from application
of connection productions, glued together in the subgraphs resulting from
application of rewriting productions.

Example 4.32 (Sierpinski grammar). As an example for a node replacement
parallel graph grammar let us consider a variant of the Sierpinski construction
(see Sect. 2.3 on page 13 and L-system (3.2) on page 21) based on graphs. A
node in a graph represents a complete black triangle. So the start graph (the
initiator of the Sierpinski construction) is given by

α =
�� ��T ,

where T is the type of triangle nodes. Now the generator of the Sierpinski
construction replaces each black triangle, i. e., each node of type T, by three
black triangles. In order to keep track of the topology, we create edges between
these new triangles using the edge types e0, e120, e240 which stand for edges
at 0◦, 120◦ and 240◦, respectively, in the usual 2D representation, and which
are drawn as solid, dashed, or dotted arrows. The generator is then given by
the rewriting production



62 4 Graph Rewriting

p : T→

R �� ��T

���� ��T //
�� ��T

YY4
4

4 .

Now we also have to transfer the old connecting edges between black triangles
to new ones, this is done by the connection production

c0 : e0 →

S �� ��T

���� ��T //
�� ��T

YY4
4

4
E //

T �� ��T

���� ��T //
�� ��T

YY4
4

4

and the corresponding ones c120, c240 for the other edge types. The parallel
graph grammar G = (α, {p}, {c0, c120, c240}) leads to the sequence of deriva-
tions

α⇒

�� ��T

���� ��T //
�� ��T

YY4
4

4 ⇒

�� ��T

���� ��T //

��

�� ��T

YY4
4

4

�� ��T

��

�� ��T

��

YY4
4

4

�� ��T //
�� ��T

YY4
4

4
//
�� ��T //

�� ��T

YY4
4

4

⇒ . . . .

The stencil approach can be reformulated and generalized within the al-
gebraic theory of graph rewriting [49]. Here, we may informally think of a
complete covering G =

⋃
i∈I Bi of the host graph by a family of graphs

(Bi)i∈I which is the generalization of the covering with stencils. The intersec-
tion graphs Kij = Bi ∩ Bj (i. e., the largest subgraphs of G contained in the
sets Bi ∩ Bj) generalize the role of nodes, and the parts of Bi which are not
contained in some other Bj generalize the role of edges. Now all intersection
graphs Kij and all graphs Bi of the covering are replaced by successor graphs
K ′

ij , B
′
i such that K ′

ij = B′
i ∩ B′

j , these are then glued on the common parts
K ′

ij to yield the derived graph H. The precise definition is the following:

Definition 4.33 (covering grammar production). A covering grammar
production is a pair of graph homomorphisms p : L ← K,K ′ → R. K,K ′

may be empty.

Definition 4.34 (covering parallel graph grammar). A covering parallel
graph grammar G = (α, P ) is given by a start graph α and a set P of covering
grammar productions.



4.3 Parallel Graph Rewriting 63

Definition 4.35 (pushout-star). Let I be a finite index set, (Bi)i∈I a family
of objects in a category and (kij : Kij → Bi)i 6=j∈I a family of arrows such that
Kij = Kji. A pushout-star is an object G together with arrows mi : Bi → G
such that mi ◦ kij = mj ◦ kji and the universal property is fulfilled (i. e., for
any G′,m′

i with m′
i ◦ kij = m′

j ◦ kji there is a unique arrow f : G→ G′ such
that f ◦mi = m′

i).

The case I = {1, 2, 3} is illustrated by the following diagram:

K12

k12

��									
k21

��555555555

B1 m1

%%KKKKK B2m2

yysssss

G

K13

k13

EE����������

k31

// B3

m3

OO

K23

k23

YY2222222222

k32

oo

Definition 4.36 (direct derivation). Let G = (α, P ) be a covering parallel
graph grammar, and let G,H be graphs. Then there is a (direct) derivation
from G to H within G if all of the following holds:

1. There exist a finite index set I and a family (pij : Li ← Kij ;K ′
ij →

Ri)i 6=j∈I of productions pij ∈ P with Kij = Kji,K
′
ij = K ′

ji.
2. G is a pushout-star object of (Kij → Li)i 6=j∈I .
3. H is a pushout-star object of (K ′

ij → Ri)i 6=j∈I .

Example 4.37 (Sierpinski grammar). The previous node replacement Sierpin-
ski grammar can be reformulated as a covering parallel graph grammar. The
productions are given by

p : s
�� ��T ← s

�� ��T ;

c
�� ��T

��
a
�� ��T //b

�� ��T

[[7
7

7 →

c
�� ��T

��
a
�� ��T //b

�� ��T

[[7
7

7 ,

q0 : s
�� ��T //

�� ��T ← s
�� ��T ;

c
�� ��T

��
a
�� ��T //b

�� ��T

[[7
7

7 →
c
�� ��T

��

�� ��T

��
a
�� ��T //b

�� ��T

\\8
8

//
�� ��T //

�� ��T

YY4
4 ,

r0 :
�� ��T //t

�� ��T ← t
�� ��T ;

c
�� ��T

��
a
�� ��T //b

�� ��T

[[7
7

7 →

�� ��T

��

c
�� ��T

���� ��T //
�� ��T

YY4
4

//a
�� ��T //b

�� ��T

\\8
8



64 4 Graph Rewriting

and the corresponding productions q120, r120, q240, r240. We can cover the start
graph α by the left-hand side of p, i. e., α is a pushout-star of the singleton
family consisting of the left-hand side of p. The derived graph G1 is then given
by the right-hand side of p. G1 can be covered using each of the productions
q0, . . . , r240 exactly once:

c
�� ��T

q240

���������������

r120

��=============

c
�� ��T

��
a
�� ��T

!!CCCCC

c
�� ��T

b
�� ��T

[[7
7

7

}}{{{{{
G1

c
�� ��T

��
a
�� ��T //b

�� ��T

[[7
7

7

a
�� ��T

r240

GG�����������������������

q0
// a

�� ��T //b
�� ��T

OO

b
�� ��T .

q120

XX00000000000000000000000

r0
oo

The used productions are indicated by their name. The derived graph G2 is
the corresponding pushout-star and equals the one of the node replacement
Sierpinski grammar.

A related approach called amalgamated two-level derivations is presented
in [53]. There, productions have the usual form pi : Li ← Ki → Ri of Def. 4.9
on page 48. In order to apply a family (pi)i∈I of productions in parallel to a
graph, we have to specify not only the individual matches (mi : Li → G)i∈I

for the productions, but also the common parts pij : Lij ← Kij → Rij of
each pair of productions pi, pj so that we can use these common parts to glue
the right-hand sides Ri. The common parts are not fixed in advance, but are
chosen on the basis of a given match. The following commutative diagram
illustrates the mechanism.



4.3 Parallel Graph Rewriting 65

Lij

���
�
�
�
�
�
�
�
�

''OOOOOO Kij //oo

���
�
�
�
�
�
�
�
�

''PPPPPP Rij

���
�
�
�
�
�
�
�
�

''OOOOOO

Lj

��~
~

~
Kj

~~|
|

|
//oo Rj

~~~
~

~

L

m

00000

��0
0000

K

d

11111

��1
1111

//oo R

m∗

��0
00000000000

Li

>>|
|

|

mi ((PPPPPPPPPPPP
mj

��

Ki

=={
{

{
//oo Ri

==|
|

|

G D //oo H

Dashed quadrangles are pushout-stars. Given matches mi and common
parts pij : Lij ← Kij → Rij (which have to be compatible with the matches,
i. e., it must be possible to construct m : L → G such that the left face
of the diagram commutes), we can construct L,K,R as pushout-stars. The
homomorphismsK → L andK → R are determined by the universal property
of the pushout-star of K. The thus obtained production L ← K → R can
be applied via the match m by an ordinary direct derivation if the gluing
condition is fulfilled, resulting in the derived graph H. The whole construction
is called amalgamated two-level derivation: at the first level, the production
L ← K → R is composed as an amalgamation of the productions pi using
their intersections pij ; at the second level, this production is applied to the
graph by a sequential direct derivation. Note that the intersections pij have
to be chosen on the basis of the matches mi so that the whole amalgamated
production L← K → R depends on the matches.

An application of amalgamated two-level derivations is the algebraic spec-
ification of a production with edNCE-like embedding. Consider a production
q :

�� ��A ← ∅ →
�� ��B which shall be applied at a single A node in a graph.

Furthermore, the new B node shall receive all edges of the old A node. The
production q alone does not specify such a redirection of edges, and due to
the gluing condition q is in fact even not applicable if the A node has edges.
But we can specify two additional productions qi, qo for the edge transfer of
incoming and outgoing edges:

qi : n
�� ��µ //

�� ��A ← n
�� ��µ → n

�� ��µ //
�� ��B ,

qo :
�� ��A //n

�� ��µ ← n
�� ��µ →

�� ��B //n
�� ��µ .

µ stands for an arbitrary node label, a precise definition thereof is possible by
type graphs with inheritance (Sect. 4.5.2 on page 73). qi, qo have a match for
each edge incident with the A node, this yields the families (pi)i∈I , (mi)i∈I of
productions and matches. All matches overlap in the single A node and also the
right-hand sides have a common B node, so that the original production q may

66 4 Graph Rewriting

be used to described the common parts pij . As an example, the amalgamated
production L ← K → R for an A node with a single incoming and two
outgoing edges to X nodes is

y
�� ��X

x
�� ��X //

�� ��A

77nnn
''PPP
z
�� ��X

←
y
�� ��X

x
�� ��X

z
�� ��X

→
y
�� ��X

x
�� ��X //

�� ��B

77nnn
''PPP
z
�� ��X

.

A sequential derivation using this amalgamated production correctly imple-
ments the embedding of the new B node.

4.3.2 Implicit Connection Mechanisms

A quite general form of implicit connection mechanisms for node replacement
grammars is studied in [130, 131]. It is based on operators which yield for
every node of the host graph a set of related nodes of the host graph (e. g.,
its neighbours). Now an edge between two nodes of different successor graphs
is created if the predecessor nodes are mutually contained in the sets yielded
by associated operators. The latter are determined by the used productions,
i. e., each production specifies for each node of its successor graph a set of
operators which are applied to the single predecessor node. One can imagine
these operators as half-edges which have to match each other for an edge to be
created in the derived graph. The following definitions are slightly more gen-
eral than the original ones, first of all the definition of operators is generalized
for simplification purposes.

Definition 4.38 (operator). An operator A is given by a family of mappings
AG : GV → P(GV) for each graph G such that n /∈ AG(n) for all n ∈ GV .

This definition includes operators which yield the direct neighbourhood of
a node, but also more general cases such as all nodes which can be reached
by a path of specific edge and node labels.

Definition 4.39 (production with operators). A production with opera-
tors p : µ

σ,τ−−→ R is given by a node label µ, a graph R and two finite sets σ, τ
of connection transformations c = (A, γ,w) where A is an operator, γ ∈ ΛE

an edge label and w ∈ R a node of the right-hand side.

Definition 4.40 (parallel graph grammar with operators). A parallel
graph grammar with operators G = (α, P) is given by a start graph α and a
set P of productions with operators.

Definition 4.41 (direct derivation). Let G = (α, P) be a parallel graph
grammar with operators, and let G,H be graphs. Then there is a (direct)
derivation from G to H within G if all of the following holds:

4.3 Parallel Graph Rewriting 67

1. There is, for each node v ∈ GV , a production pv : µv σv,τv

−−−−→ Rv ∈ P
with µv = Gλ(v) such that HV is isomorphic (as a discrete graph) to⊔

v∈GV
Rv

V , the isomorphism being given by h :
⊔

v∈GV
Rv

V → HV .
2. Let π : HV → GV denote the mapping which assigns to each n ∈ HV the

predecessor node v ∈ GV , i. e., n ∈ h
(
R

π(n)
V

)
. The set of edges of H is

given by

HE =
⋃

v∈GV

{h(Rv
E)}

∪
{

(s, γ, t)
∣∣∣∃(S, γ, h−1(s)) ∈ σπ(s), (T, γ, h−1(t)) ∈ τπ(t) :

π(t) ∈ SG(π(s)) ∧ π(s) ∈ TG(π(t))
}

with the abbreviation for edges h
(
(s, β, t)

)
=
(
h(s), β, h(t)

)
.

This definition states that the nodes of G are completely covered by left-
hand sides of productions. The derived graph contains the disjoint union of all
right-hand sides, plus edges between successor nodes if the predecessor of the
source node has a connection transformation in σ which yields the predecessor
of the target node and if the predecessor of the target node has a connection
transformation in τ which yields the predecessor of the source node.

Example 4.42 (Sierpinski grammar). The node replacement Sierpinski gram-
mar (example 4.32 on page 61) can be reformulated as a parallel graph gram-
mar with operators. Let Nd

γ denote the operator such that Nd
γ,G(n) yields all

nodes of GV which are connected with n by a γ-typed non-loop edge, n being
the source if d = out and the target otherwise. Then the single production

p : T
σ,τ−−→

c
�� ��T

��
a
�� ��T //b

�� ��T

[[7
7

7 ,

σ =
(
(Nout

e0 , e0, b), (Nout
e120 , e120, c), (Nout

e240 , e240, a)
)
,

τ =
(
(N in

e0 , e0, a), (N in
e120 , e120, b), (N in

e240 , e240, c)
)

is equivalent to the node replacement Sierpinski grammar. The connection
transformations σ, τ ensure that old edges connecting two triangle nodes are
transferred to the correct successor nodes.

A simpler formalism for implicit connection mechanisms is defined and
studied in [86, 87], it translates the edNCE mechanism of Sect. 4.2.1 on page 46
to parallel graph grammars Again we have a node replacement grammar, but
now each production is equipped with a set of connection instructions. We give
a simplified definition which excludes the possibility to change the direction
of edges.

68 4 Graph Rewriting

Definition 4.43 (edNCEp production). An edNCEp production p : µ e−→
R is given by a node label µ, a graph R and a finite set e = {c1, . . . , cn} of
connection instructions ci = (σ, τ, γ/δ, d) ∈ ΛV × ΛV × ΛE × ΛE × {in, out}.

Definition 4.44 (edNCEp grammar). An edNCEp grammar G = (α, P)
is given by a start graph α and a set P of edNCEp productions.

Definition 4.45 (direct derivation). Let G = (α, P) be an edNCEp gram-
mar, and let G,H be graphs. Then there is a (direct) derivation from G to H
within G if all of the following holds:

1. There is, for each node v ∈ GV , a production pv : µv ev

−→ Rv ∈ P
with µv = Gλ(v) such that HV is isomorphic (as a discrete graph) to⊔

v∈GV
Rv

V , the isomorphism being given by h :
⊔

v∈GV
Rv

V → HV .
2. Let π : HV → GV denote the mapping which assigns to each n ∈ HV the

predecessor node v ∈ GV , i. e., n ∈ h
(
R

π(n)
V

)
. The set of edges of H is

given by

HE = {h(Rv
E)}

∪
{

(s, δ, t)
∣∣∣(π(s), γ, π(t)) ∈ GE , (Hλ(s),Hλ(t), γ/δ, out) ∈ eπ(s)

}
∪
{

(s, δ, t)
∣∣∣(π(s), γ, π(t)) ∈ GE , (Hλ(t),Hλ(s), γ/δ, in) ∈ eπ(t)

}
.

Thus, the connection mechanism connects a pair of nodes s, t of H by an
edge labelled δ if the predecessor nodes were connected by an edge labelled γ
and if a connection instruction which corresponds to the node and edge labels
is defined for s or t. This is different to the operator approach where an edge
is created only if both s and t yield matching half-edges.

4.4 Parallelism

Within the algebraic approaches (but also for other formalisms), parallelism
of derivations has been studied from another point of view, namely concerning
the question whether sequential derivations can be computed in parallel with-
out changing the result [43, 31, 44]. Parallel computations can be described
either by an interleaving model where the individual actions are applied se-
quentially in some order, but the result must not depend on the chosen order,
or by truly parallel computations without any order of application and inter-
mediate results.

For the truly parallel model the parallelism problem [31] is to find condi-
tions which ensure that a parallel derivation can be sequentialized and vice
versa. Within the algebraic approaches, this problem has a nice solution. In
order to formulate the solution, we have to define parallel productions and
independence properties between derivations. We start with the definition of
a categorical coproduct as the basis for the definition of parallel productions.

4.4 Parallelism 69

Definition 4.46 (coproduct). Let A,B ∈ Obj be two objects of a category.
A binary coproduct is given by a coproduct object A + B and arrows A iA−→
A+B iB←− B which satisfy the universal property of a binary coproduct: for all
objects X and arrows A

f−→ X
g←− B there exists a unique arrow A+ B

x−→ X
such that the diagram

A
iA //

f ##FFFFFFFFF A+B

x

���
�
� B

iBoo

g
{{xxxxxxxxx

X

commutes.

Remark 4.47. By definition, if a coproduct exists, it is unique up to isomor-
phism. In order to simplify the following considerations, we assume that a
suitable coproduct has been fixed uniquely. In Set, such a coproduct is the
disjoint union with inclusions iA, iB . This construction extends to Graph and
GraphP. The definition of a binary coproduct can be extended to coproducts
of more than two objects.

Now the categorical framework allows a straightforward definition of par-
allel productions and derivations based on coproducts. This corresponds to
the intuitive meaning of a parallel production p1 + p2 to be the disjoint union
of both productions.

Definition 4.48 (parallel SPO production). Let p1 : L1 → R1 and p2 :
L2 → R2 be SPO productions. The parallel production p1 + p2 is defined
uniquely by the following commutative diagram in GraphP, where the vertical
parts are coproducts:

L1
p1 //

��

R1

��
L1 + L2

p1+p2 //___ R1 +R2

L2
p2 //

OO

R2

OO

Definition 4.49 (parallel SPO derivation). Let G a graph, p1 : L1 → R1

and p2 : L2 → R2 be SPO productions with corresponding matches mi : Li →
G. A direct parallel derivation using p1+p2 via m1+m2, G

p1+p2,m1+m2=========⇒ H, is
a direct derivation using the parallel production p1+p2 via the match m1+m2,
the latter being uniquely determined by the coproduct L1 ← L1 + L2 → L2.

70 4 Graph Rewriting

L1 + L2
p1+p2 //_________

m1+m2

�
�
�
�
�
�

���
�
�
�
�

R1 +R2

��

L2
p2

ddIIIIIII

m2

�����

�������������

// R2

ddJJJJJJJ

L1
p1 //

CC�������������

m1

��::::::::::: R1

CC�������������

G // H

This definition is extended in the obvious way to more than two productions
and matches, resulting in the direct parallel derivation using

∑
i pi via

∑
imi.

Remark 4.50. Such a parallel derivation can be seen as a special amalgamated
two-level derivation (compare with the diagram on page 65, but note that there
the DPO approach is used) if we simply set the intersection productions to
be pij : ∅ ← ∅ → ∅. Then pushout-stars like L are just coproducts

∑
i Li.

Remark 4.51. Even if all individual matchesmi are injective, the match
∑

imi

of the parallel derivation is not injective if the matches overlap.

Example 4.52 (parallel SPO derivation). Given the following production and
host graph

L

a
�� ��A

x
�� ��X //

OO

y
�� ��X

p //

R

a
�� ��A

x
�� ��X //y

�� ��X

OO

G�� ��A
�� ��A�� ��X //

OO ??��� �� ��X //
�� ��X

,

there are two matches of L in G. The parallel SPO derivation using p twice
via those two matches is

L1 + L2

a1
�� ��A a2

�� ��A

x1
�� ��X //

OO

y1
�� ��X x2

�� ��X //

OO

y2
�� ��X

p1+p2 //

��

R1 +R2

a1
�� ��A a2

�� ��A

x1
�� ��X //y1

�� ��X

OO

x2
�� ��X //y2

�� ��X

OO

��G

a1
�� ��A a2

�� ��A

x1∼x2
�� ��X //

OO 88qqqqqqq
y1∼y2

�� ��X //
�� ��X

//

H �� ��A
�� ��A�� ��X //

�� ��X //

OO ??����� �� ��X

.

4.4 Parallelism 71

Now we define parallel and sequential independence properties between
derivations.

Definition 4.53 (parallel independence of derivations). A direct SPO
derivation G

p2,m2===⇒ H2 is weakly parallel independent of another derivation
G

p1,m1===⇒ H1 if m2(L2)∩m1(L1) ⊆ m1(domP p1). Two derivations are parallel
independent if they are mutually weakly parallel independent.

This states that if a derivation is weakly parallel independent of another,
their matches do only overlap in objects which are preserved by the latter so
that the first derivation can be delayed after the second. If they are parallel
independent, each of them can be delayed after the other.

Definition 4.54 (sequential independence of derivations). Let G
p1,m1===⇒

H1
p2,m′

2===⇒ X be two consecutive direct SPO derivations. H1
p2,m′

2===⇒ X is
weakly sequentially independent of G

p1,m1===⇒ H1 if m∗
1(R1) ∩ m′

2(L2) ⊆
m∗

1(p1(domP p1)). If furthermore m∗
1(R1)∩m′

2(L2) ⊆ m′
2(domP p2), the two-

step derivation is sequentially independent.

So a second derivation is weakly sequentially independent of a first if it
does not depend on objects generated by the first one and, thus, could be
applied before the first one.

Now one can prove the following theorem [47]:

Theorem 4.55 (weak parallelism theorem).

H1

p2,m′
2

�$
BBBBBBB

BBBBBBB

G

p1,m1

:B}}}}}}}

}}}}}}}

p2,m2 �$
AAAAAAA

AAAAAAA
p1+p2,m1+m2 +3 X

H2

p1,m′
1

:B|||||||

|||||||

1. Let G
p1+p2,m1+m2=========⇒ X be a direct parallel derivation such that G

p2,m2===⇒ H2

is weakly parallel independent of G
p1,m1===⇒ H1. Then there exists a match

m′
2 and a direct SPO derivation H1

p2,m′
2===⇒ X such that G

p1,m1===⇒ H1
p2,m′

2===⇒
X is weakly sequentially independent.

2. Let G
p1,m1===⇒ H1

p2,m′
2===⇒ X be a weakly sequentially independent derivation.

Then there exists a parallel direct derivation G
p1+p2,m1+m2=========⇒ X such that

G
p2,m2===⇒ H2 is weakly parallel independent of G

p1,m1===⇒ H1. ut

The weak parallelism theorem relates the interleaving model of parallel
computations with the truly parallel model. Within the SPO approach, every

72 4 Graph Rewriting

weakly sequentially independent derivation can be transformed in an equiva-
lent parallel derivation, but only parallel derivations where one part is weakly
parallel independent of the other may be sequentialized. This is different in
the DPO approach where every parallel derivation can be sequentialized into
a sequentially independent derivation and vice versa. Thus in the DPO ap-
proach the interleaving model and truly parallel model allow to represent the
same amount of parallelism, while in the SPO approach the parallel model
can express a higher degree of parallelism [31]. This can be seen either as an
advantage or as a source of unsafety, the latter because the effect of a parallel
derivation cannot be understood by isolated consideration of its components
[47].

4.5 Extensions of the Graph Model

Labelled graphs as in Def. 4.1 on page 44 were originally considered as the
main notion of graphs. Meanwhile, the necessity of more complex graph mod-
els has become apparent. For example, in object-oriented programming a type
hierarchy is defined: every object is an instance of its class, but also of all (di-
rect and transitive) supertypes of this class. If we consider nodes as objects,
their classes correspond to labels in the traditional graph model. Now the
principle of polymorphism states that an instance of a subtype of a type T
can appear wherever an instance of T is expected. This is in conflict with the
traditional graph model which has no notion of a label hierarchy and within
which a match for a node labelled T has to be a node exactly labelled T and
not a node of some sublabel of T .

Graph schemas are another important concept which is missing in the
traditional graph model. A graph schema specifies which types of edges are
allowed from a node of some type to a node of some further type and may
additionally contain restrictions such as the multiplicity of edges, i. e., the
allowed number of edges of some type at a single node. A popular notation
for graph schemas is given by UML class diagrams [136].

Last, but not least, practical applications of graphs and graph rewriting
need attributed graphs which associate attribute values with nodes and edges.
This reflects the fact that not everything can be represented by structure
only, within structural objects non-structural information is stored by means
of attribute values.

Solutions to these shortcomings of the traditional graph model are pre-
sented within the context of the algebraic approach in [44] based on earlier
work. We will discuss these solutions in the following.

4.5.1 Typed Graphs

The concept of a graph schema can be implemented by a type graph. This
is a distinguished (meta-)graph whose nodes play the role of node labels of

4.5 Extensions of the Graph Model 73

the actual graphs and whose edges specify the allowed relationships. A type
graph is thus a direct representation of a graph schema. A given actual graph is
schema-consistent if there is a homomorphism to the type graph, the graph is
then called a typed graph. These considerations are formalized by the following
definition, which does not yet include inheritance.

Definition 4.56 (type graph, typed graph). A type graph is a graph T
whose set of nodes defines the alphabet of node labels, ΛV = TV , and whose
labelling function is the identity. A typed graph G = (GV , GE , Gτ) over T is
a graph (GV , GE , Gλ) together with a graph homomorphism Gτ : G→ T . As
a consequence, Gλ is uniquely determined by Gτ , namely Gλ = Gτ |GV

.

Definition 4.57 (typed graph homomorphism). Let G,H be typed graphs
over the same type graph, a typed graph homomorphism is a graph homomor-
phism f : G→ H such that Hτ ◦ f = Gτ .

In the context of typed graphs, one rather speaks of node and edge types
than of node and edge labels. As an example for a type graph, let us construct
the type graph of all bipartite graphs with a single edge label ∗. A bipartite
graph is a graph whose nodes can be divided into two disjoint sets such that
every edge starts in a node of one of the sets and ends in a node of the other
set. The type graph T bi is given by T bi

V = {A,B}, T bi
E = {(A, ∗,B), (B, ∗,A)}:�� ��A

((�� ��Bhh

Now a graph is bipartite if and only if there exists a homomorphism to T bi.
The type graph of an ordinary, labelled graph (Def. 4.1 on page 44) has

the complete set ΛV × ΛE × ΛV as the edges, i. e., for every edge label and
every pair of nodes s, t (including s = t) there is a corresponding edge. This
reflects the fact that Def. 4.1 provides no means to restrict the usage of edges
to edge-specific node types.

On the basis of a typed graph, productions and derivations in the double-
pushout and single-pushout approach can be defined by prefixing graphs and
homomorphisms with the attribute ‘typed’ [44]. We do not give these defini-
tions here, since they are a special case of the definitions of section Sect. 4.5.3
on page 75.

4.5.2 Typed Graphs with Inheritance

The object-oriented concept of inheritance between types is not reflected in
the definition of a type graph. In this section, we define a representation of
inheritance for typed graphs. In [44], inheritance is restricted to node types,
and productions are defined in terms of a mapping from single abstract pro-
ductions to sets of concrete productions without inheritance. This hides in-
heritance from the category and its graph homomorphisms at the cost of a

74 4 Graph Rewriting

technical construction. Conversely, [139] integrates the inheritance relation
for node and edge types within the category, but there is no notion of a type
graph. In the following, we use the ideas of both approaches to define inher-
itance for node and edge types within a category of typed graphs. A similar
construction is presented in [56].

Definition 4.58 (inheritance relation). Let T be a type graph. An inher-
itance relation ≤ on T is a pair (≤V ,≤ΛE

) of partial orders on TV and ΛE,
respectively. a is called a subtype of b if a ≤V b or a ≤ΛE

b (so a type is a
subtype of itself). ≤V and ≤ΛE

define a partial order on the set TV ×ΛE×TV :
(s′, β′, t′) ≤E (s, β, t)⇔ s′ ≤V s ∧ β′ ≤ΛE

β ∧ t′ ≤V t.

Definition 4.59 (type graph with inheritance). A type graph with inher-
itance is a tuple (T,≤,A) where T is a type graph, ≤ an inheritance relation
on T , and A ⊆ TV ∪ ΛE a set of abstract types of T .

The simplest way to integrate such a type graph with inheritance into the
previous framework is to flatten it into a type graph without inheritance, i. e.,
to copy all β-typed edges connecting nodes s, t to β′-typed edges connecting
nodes s′, t′ where β′, s′, t′ are subtypes of β, s, t, respectively [44].

Definition 4.60 (closure of type graph with inheritance). Let (T,≤,A)
be a type graph with inheritance. Its closure is given by the type graph T having

TV = TV ,

TE = {(s, β, t) ∈ TV × ΛE × TV |∃e ∈ TE , (s, β, t) ≤E e} .

The concrete closure T̂ is the largest subgraph of T without abstract types,
i. e., T̂V = TV \A, T̂E ⊆ TE\(TV ×A× TV).

Definition 4.61 (typed graph with inheritance). Let (T,≤,A) be a type
graph with inheritance. A typed graph over TE (T̂E) is a (concrete) typed
graph with inheritance over (T,≤,A).

The explicit definition of concrete typed graphs is necessary for the def-
inition of productions: left-hand sides of productions may contain nodes of
abstract types because they just serve as a pattern, but host graphs and re-
sults of a derivation have to consist of nodes of concrete types exclusively.

Now inheritance has to be integrated in the definition of a homomorphism.
Considering the example of a match m : L→ G, it follows from the principle
of polymorphism that candidates for a match of an object x of the left-hand
side have to be of a subtype of the type of x, Gτ (m(x)) ≤ Lτ (x). This is
exactly the condition for an inheritance-aware homomorphism:

Definition 4.62 (typed graph homomorphism with inheritance). Let
G,H be typed graphs with inheritance, a typed graph homomorphism with
inheritance f : G→ H is a pair of functions (fV : GV → HV , fE : GE → HE)
such that fE((s, β, t)) = (fV (s), γ, fV (t)) with some γ ∈ ΛE and (Hτ ◦f)(x) ≤
Gτ (x) for all x ∈ G (where this means, as usual, the node or edge component
depending on whether x is a node or an edge).

4.5 Extensions of the Graph Model 75

4.5.3 Typed Attributed Graphs with Inheritance

The key idea to represent attributed graphs is to reuse the graph model for this
purpose: attribute values are indicated by edges from the attributed objects
to value nodes. For example, a real-valued attribute ‘length’ of a node having
value 3.14 is represented by an edge of type ‘length’ from the node to the value
node 3.14. In order to formally define an attributed graph, some preliminary
definitions concerning signatures and algebras are needed [44]:

Definition 4.63 (signature). A signature Σ = (S,OP) consists of a set S
of sorts and a family OP = (OPw,s)(w,s)∈S∗×S of operation symbols. For
op ∈ OPw,s, we write op : w → s or op : s1 . . . sn → s. If |w| = 0, op :→ s is
a constant symbol.

A signature is a syntactical description of an algebra. For example, within
the natural numbers N0 the operations + and · are defined, and the numbers
0 and 1 play a special role. This can be abstracted to the signature NAT
which has a single sort nat and the operation symbols + : nat × nat → nat,
· : nat × nat → nat, O :→ nat, I :→ nat. The natural numbers are then an
implementation of this signature, a NAT -algebra:

Definition 4.64 (Σ-algebra). Let Σ = (S,OP) by a signature. A Σ-algebra
A = ((As)s∈S , (opA)op∈OP) is defined by a carrier set As for each sort s and a
mapping opA : As1×. . .×Asn → As for each operation symbol op : s1 . . . sn →
s. For constant symbols, opA :→ As is a constant cA ∈ As.

For N0 as an implementation of NAT , this means Anat = N0, + : (x, y) 7→
x+ y, · : (x, y) 7→ xy, OA = 0, IA = 1.

Definition 4.65 (Σ-algebra homomorphism). Let A,B be Σ-algebras. A
homomorphism f : A → B is a family (fs)s∈S of mappings fs : As → Bs

such that fs(opA(x1, . . . , xn)) = opB(fs1(x1), . . . , fsn(xn)) for all operation
symbols op : s1 . . . sn → s and all xi ∈ Asi .

Definition 4.66 (final Σ-algebra). Let Σ be a signature. Its finalΣ-algebra
Z is given by Zs = {s} for each sort and opZ : (s1, . . . , sn) 7→ s for each
operation symbol op : s1 . . . sn → s.

For every Σ-algebra A, there is a unique homomorphism zA : A → Z, it
simply maps a value of a carrier set As onto its sort s.

From now on, we fix a specific data signature Σ and denote its final algebra
by ZΣ . The following definition of an attributed graph differs from [44] in that
we do not allow attributed edges. The latter require attribute edges starting
at edges which makes an extension of the usual graph model necessary. Our
simplification is justified by the fact that we do not make use of attributed
edges in subsequent chapters.

76 4 Graph Rewriting

Definition 4.67 (attributed graph). An attributed graph G is given by
G = (GN , GE , Gλ, GD) where GD = ((GD,s)s∈S , (opGD,s

)op∈OP) is a Σ-
algebra, (GV , GE , Gλ) with GV = GN ∪

⋃
s∈S GD,s is a graph, and GE ⊆

GN × ΛE ×GV , i. e., source nodes of edges are in GN .

This definition states that every possible element of the carrier sets GD,s

is a node in G, and that these nodes may only be used as targets of edges.
Such an edge is to be interpreted as an attribute edge, the value being the
target node which is drawn from one of the carrier sets (e. g., the natural or
real numbers). However, this definition does not make explicit which attribute
is encoded by an attribute edge.

Definition 4.68 (attributed graph homomorphism). Let G,H be at-
tributed graphs, an attributed graph homomorphism f : G → H is a graph
homomorphism such that the family (f |GD,s

)s∈S is an algebra homomorphism.

Similar to the definition of a typed graph with inheritance in the previous
section, we define a typed attributed graph with inheritance by requiring an
attributed graph homomorphism to a distinguished type graph.

Definition 4.69 (attributed type graph with inheritance). A type
graph with inheritance (T,≤,A) is an attributed type graph with inheri-
tance if T is an attributed graph and ≤V is the equality on carrier sets, i. e.,
a ≤V b ∧ (a /∈ TN ∨ b /∈ TN)⇒ a = b.

Definition 4.70 (typed attributed graph with inheritance). Let (T,
≤,A) be a distinguished attributed type graph with inheritance with algebra
ZΣ. A typed attributed graph with inheritance G = (GN , GE , GD, Gτ) over
(T,≤,A) is both an attributed graph (GN , GE , Gλ, GD) and a typed graph with
inheritance (GV , GE , Gτ) over (T,≤,A). Gλ = Gτ |GV

is uniquely determined
by Gτ .

These definitions exclude inheritance on carrier sets and, thus, on types
of attributes. Of course, in object-oriented programming attributes of objects
may be objects themselves. The apparent conflict can be resolved by treating
object values of an attribute as ordinary nodes. Types of true attributes in the
sense of Def. 4.67 are restricted to non-object-types. This different treatment
can be justified by the following consideration: elements of the carrier sets are
required to exist exactly once in an attributed graph, they cannot be created
or deleted. In the case of real numbers, there has to be a single node for every
real number. This reflects the fact that a given real number exists only once
– if two real numbers are equal, they are the same. On the other hand, two
objects of the same type and with identical attribute values are equal, but
not necessarily the same – objects have an identity. This identity is expressed
by being an ordinary node which may be created or deleted.

An attributed type graph with inheritance (T,≤,A) is a graph schema
which contains for every attribute a of a type C an attribute edge labelled

4.5 Extensions of the Graph Model 77

a from the node C to the corresponding sort of the attribute value. A typed
attributed graph with inheritance G over (T,≤,A) must not have attributes
which are not defined by (T,≤,A). However, the definition does not specify
that for each object of G all attributes allowed by the type graph are present,
nor does it guarantee that the same attribute is present at most once per
object. Graph constraints can be added which ensure that each object has all
allowed attributes exactly once [44]. According to [56], we give a definition
which characterizes graphs with such desirable properties:

Definition 4.71 (strict and complete typed attributed graphs). A
typed attributed graph with inheritance G over (T,≤,A) is strict if for each
node n ∈ GN and each edge (Gτ (n), β, t) ∈ TE with t ∈ S there exists at most
one edge (n, β, t′) ∈ GE such that Gτ ((n, β, t′)) = (Gτ (n), β, t). G is complete
if there exists exactly one such edge for each node n.

In order to instantiate the SPO approach for typed attributed graphs
with inheritance, we have to define homomorphisms and the corresponding
category, and we have to ensure the existence of pushouts. We start with
total homomorphisms.

Definition 4.72 (typed attributed graph homomorphism with inher-
itance). Let G,H be typed attributed graphs with inheritance, a typed at-
tributed graph homomorphism is an attributed graph homomorphism f : G→
H such that Hτ ◦ f ≤ Gτ .

Proposition 4.73 (category AGraph(T,≤,A)). Let (T,≤,A) be an at-
tributed type graph with inheritance. Typed attributed graphs with inheritance
over (T,≤,A) and their total homomorphisms define a category AGraph(T,
≤,A). ut

Definition 4.74 (class M of type-preserving monomorphisms). A ho-
momorphism f : G → H is called type-preserving if Hτ ◦ f = Gτ . Given an
attributed type graph with inheritance, the class of type-preserving monomor-
phisms is denoted by M.

Proposition 4.75 (pushouts in AGraph(T,≤,A)). AGraph(T,≤,A) has
pushouts alongM-homomorphisms (i. e., if at least one of the given homomor-
phisms is inM), andM-homomorphisms are closed under pushouts (i. e., for
a given homomorphism f ∈M, the resulting homomorphism f∗ of the pushout
is also in M).

Proof. The construction of the pushout follows the construction in Prop. 4.13
on page 50. Let f, g of the following square be given with f ∈M.

A
f //

g

��

B

g∗

��
C

f∗
// D

78 4 Graph Rewriting

The node componentDV ofD is constructed in Set, i. e.,DV = (BV tCV)/∼∗
where ∼∗ is the least equivalence relation which identifies f(a) and g(a) for
each a ∈ AV . Here, the equivalence class of c ∈ C is given by [c] = f(g−1(c))t
{c} ⊆ BV tCV . In order to prove this we have to show the minimality of the
set [c] because ∼∗ is defined as the least equivalence relation induced by the
relation f(a) ∼ g(a). If we extend the set by c′ ∈ C with c′ 6= c and c′ ∼ [c],
there must be some b′ ∈ f(g−1(c)) with c′ ∼ b′ and, thus, some a′ with
c′ = g(a′) and b′ = f(a′). It follows that f(a′) = b′ ∈ f(g−1(c)) and, because
f is a monomorphism, a′ ∈ g−1(c). But then c′ = g(a′) = c, which is a
contradiction. Similarly, if we extend the set by b′ ∈ B with b′ ∼ [c], it follows
b′ = f(a′) ∼ g(a′) ∈ {c} ⇒ b′ ∈ f(g−1(c)) ⊂ [c], i. e., the set [c] is minimal. As
a consequence, the construction of DV amounts to DV = (BV \f(AV)) tCV .

Now we set f∗(c) = c and g∗(b) = g(f−1(b)) if b ∈ f(AV), otherwise
g∗(b) = b. For d ∈ BV \f(AV), we set Dτ (d) = Bτ (d). For d ∈ CV , we set
Dτ (d) = Cτ (d). This already ensures the node component part of the assertion
f∗ ∈ M, and the requirement (Dτ ◦ g∗)(b) ≤ Bτ (b) is fulfilled for all nodes
b ∈ BV since for b /∈ f(AV) we have (Dτ ◦ g∗)(b) = Dτ (b) = Bτ (b) and for
b = f(a) we have (Dτ ◦ g∗)(b) = Dτ (g(a)) = Cτ (g(a)) ≤ Aτ (a) = Bτ (f(a)) =
Bτ (b).

It remains to construct the edge component part. For e = (s, β, t) ∈ CE ,
we set f∗(e) = (f∗(s), β, f∗(t)). For e = (s, β, t) ∈ BE , we set g∗(e) =
f∗(g(f−1(e)) if e ∈ f(AE), otherwise we set g∗(e) = (g∗(s), β, g∗(t)). Fi-
nally DE is chosen as required by f∗, g∗, i. e., DE = f∗(CE) ∪ g∗(BE). Note
that it may happen that an edge of f(AE) is mapped by g∗ to the same edge
in DE as an edge of BE\f(AE).

The resulting mappings f∗, g∗ have the properties of typed attributed
graph homomorphisms with inheritance, furthermore we have f∗ ∈ M, and
the square is commutative. The pushout property can be verified by the fol-
lowing observations: the construction of the node components of D, f∗, g∗ is
the same as in Set, the construction of the edge components is the minimal
one which leads to a commutative square, the construction of the type ho-
momorphism Dτ ensures that the type is always the greatest of all possible
types. ut

Now the category AGraph(T,≤,A) and its properties can be used to
define the category AGraphP(T,≤,A) which has partial homomorphisms as
arrows.

Proposition 4.76 (category AGraphP(T,≤,A)). Let (T,≤,A) be an at-
tributed type graph with inheritance. Typed attributed graphs with inher-
itance over (T,≤,A) and their partial homomorphisms define a category
AGraphP(T,≤,A). ut
Proposition 4.77 (pushouts in AGraphP(T,≤,A)). AGraphP(T,≤,A)
has pushouts along MP -homomorphisms (partial homomorphisms which are
M-homomorphisms on their domain), and MP -homomorphisms are closed
under pushouts.

4.5 Extensions of the Graph Model 79

Proof. The construction of the pushout is the construction of Prop. 4.22 on
page 53, translated to AGraphP(T,≤,A). We use Prop. 4.75 on page 77 for
the three pushouts of the construction, noting that for each pushout we have
at least one M-homomorphism given. The final coequalizer construction of
Prop. 4.21 on page 53 directly carries over. ut

In order to really make use of attributes within graph rewriting, i. e., within
a derivation, computations on attribute values of nodes of a match must be
possible, resulting in attribute values of nodes of the right-hand side. Within
a production, such a computation is encoded as a formula which contains
attribute values of the left-hand side as variables. This is reflected by the
following definitions [44].

Definition 4.78 (variables and terms). Let Σ = (S,OP) be a signature
and X = (Xs)s∈S a family of sets, the variables of sort s. The family TΣ(X) =
(TΣ,s(X))s∈S of terms is inductively defined:

• Xs ⊂ TΣ,s(X),
• op(t1, . . . , tn) ∈ TΣ,s(X) for each operation symbol (including constant

symbols) op : s1 . . . sn → s and all terms ti ∈ TΣ,si(X).

Definition 4.79 (term algebra). The family of terms TΣ(X) defines the
term algebra over Σ and X, where the carrier set of a sort s is given by
TΣ,s(X) and the mapping of an operation symbol op : s1 . . . sn → s by
opTΣ,s(X) : (t1, . . . , tn) 7→ op(t1, . . . , tn).

Definition 4.80 (typed attributed SPO production with inheritance).
A typed attributed SPO production with inheritance p : L → R is a partial
typed attributed graph monomorphism with inheritance, where L,R are typed
attributed graphs with inheritance which share the same term algebra TΣ(X)
for some family X of variables, and where p|TΣ,s(X) is the identity for all sorts
s.

The last requirement ensures that the application of a production does not
modify the value nodes. Note that in [44] only the double-pushout approach
is presented, but since we will need single-pushout productions in the sequel,
we give the corresponding SPO definitions.

Definition 4.81 (typed attributed match with inheritance). A match
for a production p : L→ R in a typed attributed host graph with inheritance G
is a total typed attributed graph homomorphism with inheritance m : L→ G.

Definition 4.82 (direct typed attributed SPO derivation with inher-
itance). Let p : L → R be a production and m : L → G a match in a typed
attributed host graph with inheritance G. A direct derivation using p via m,
denoted as G

p,m
==⇒ H, is given by the following single-pushout diagram in the

category AGraphP(T,≤,A):

80 4 Graph Rewriting

L
p //

m

��

R

m∗

��
G

p∗
// H

Figure 4.4 shows an example for a derivation which squares a real-valued
attribute. The variable v is required to match the current value of the at-
tribute, i. e., the node v of L matches the node 2 of the host graph G. The
redirection of the attribute edge from v to v · v removes the edge to 2 and
creates an edge to 4 in the host graph via the pushout construction.

L

x
�� ��v y

�� ��v + v z
�� ��v · v . . .

a©

eeKKKK
p //

m
��

R

x
�� ��v y

�� ��v + v z
�� ��v · v . . .

a©

88qqqqq

��G

x
�� ��2 y∼z

�� ��4 . . .

a©

aaDD //

W

x
�� ��2 y∼z

�� ��4 . . .

a©

aaDD ;;vvv

��H

x
�� ��2 y∼z

�� ��4 . . .

a©

;;vvv

Figure 4.4. Typed attributed SPO derivation: the attribute indicated by the at-
tribute edge is squared. In fact, every term for L, R and every real number for
G, W, H are part of the graphs, and m maps each term to its value. For obvious
reasons, the complete graphs cannot be depicted, omitted parts are indicated by . . .

4.6 High-Level Replacement Systems

The definitions of the algebraic approaches to graph rewriting (pushout, pull-
back, relation-algebraic) can be stated without reference to a concrete graph
model. In fact, they can be given for any category which satisfies certain condi-
tions such as the existence of pushouts for derivations. This leads to the notion

4.7 Programmed Graph Replacement Systems 81

of high-level replacement systems whose definitions are as abstract as possible.
For the double-pushout approach, the whole theory can be generalized from
graphs to weak adhesive HLR categories [44]. These are characterized by the
following properties:

1. There is a class M of monomorphisms which are closed under isomor-
phisms, composition and decomposition.

2. Pushouts and pullbacks along M-homomorphisms exist, and M-homo-
morphisms are closed under pushouts and pullbacks.

3. Pushouts along M-homomorphisms are weak van Kampen squares (see
[44]).

4.7 Programmed Graph Replacement Systems

Programmed graph replacement systems are an extension of basic graph gram-
mars by means to control the application of productions. There is no longer a
monolithic set of productions to which the current graph is subjected at every
derivation step, the set of productions to apply is rather selected by some
sort of control flow. This is similar to the idea of table L-systems (Sect. 3.5
on page 24). For an overview of programmed graph replacement systems, see
[173].

Several techniques exist to prescribe the control flow. There are simple
ones which are suitable for theoretical studies, but may turn out to be too
restrictive for practical use. As an example, programmed graph grammars use
a control flow diagram whose nodes specify sets of productions which have
to be applied when the control flow reaches a node [21]. Each node has two
sets of outgoing edges which prescribe the path taken by the control flow:
depending on whether a production could be applied or not, an edge of the
first or the second set is used.

On the other side of the spectrum of programmed graph replacement sys-
tems, the control flow is governed by imperative control structures. This gives
maximal freedom to the user, but may not be as qualified for theoretical in-
vestigations. A tight coupling between control structures and productions is
generally desirable. For example, there should be branching or iterating con-
trol structures whose conditions are linked with the success or failure of the
(previous or potential) application of productions [116, 201] or even complex
transactions, which are composed of productions and control structures. For
sequential grammars with their nondeterministic match selection among all
possible matches, the control structures should preserve the nondeterminism
as far as possible, which is in conflict with deterministically working tradi-
tional control structures. For example, we could think of a control structure
which executes either of two transactions with nondeterministic choice, or of
a control structure which executes two transactions in arbitrary order [173].
This has to be implemented in such a way that, if a nondeterministic choice

82 4 Graph Rewriting

leads to a dead-end, another choice is tried. The common technique is to use
backtracking for this purpose which in this case has to be extended from the
single choice of a match for a production to a whole sequence of statements
consisting of control structures, productions and transactions.

4.8 Graph Rewriting Software

This section presents four different graph rewriting tools. Of course, there are
a lot of further graph rewriting tools. An extensive but a bit out-of-date list
is contained in [133], a recent comparison of tools on the basis of three case
studies is given by [164] (see also Sect. 10.8 on page 347).

4.8.1 PROGRES

The PROGRES language and programming environment is probably the most
elaborated tool for graph transformations which has been implemented up to
now [173, 175, 188, 151]. It uses directed attributed graphs as data model. The
semantics is that of logic-based structure replacement (Sect. 4.2.7 on page 58),
embedded in imperative control structures (Sect. 4.7 on the previous page).
Within PROGRES, a graph schema with inheritance and edge cardinalities is
specified which is used for type-checking of productions at compile-time and,
together with integrity constraints, for the current graph at run-time. Derived
attributes can be specified and are computed using an incremental attribute
evaluation algorithm.

Productions are specified by their left- and right-hand sides as usual, to-
gether with textual specification of attribute transfer and edNCE-like embed-
ding (Sect. 4.2.1 on page 46). The matching of left-hand sides allows advanced
features like optional nodes which need not exist, node sets which are mapped
onto a non-empty set of nodes, and negative nodes or edges which must not ex-
ist. The PROGRES language also defines queries which have the same syntax
as left-hand sides of productions and can be used for subgraph tests.

Productions are the basic building blocks and can be combined by control
structures to define transactions. These contain nondeterministic ones as dis-
cussed in Sect. 4.7 on the previous page. A whole transaction has the same
characteristics as a single production, including nondeterministic choices and
the initiation of backtracking if a choice leads into a dead-end.

A complete program is a mixture of visual and textual elements, where
visual elements are used to represent queries and the left- and right-hand
sides of productions. The programming environment of PROGRES consists,
among others, of a mixed textual and visual editor, a compiler which creates
code for an abstract graph transformation machine, an implementation of
such a machine to execute a specification within the PROGRES programming
environment, and back ends to translate the abstract machine code to C or
Modula-2 in order to obtain a prototype from the PROGRES specification.

4.8 Graph Rewriting Software 83

Figure 4.5. Screenshot of PROGRES environment (from [151])

Fig. 4.5 shows a screenshot displaying a production which loads a ferry. The
structural part is specified visually, while the quantitative part (conditions on
and assignments of attribute values) is specified textually.

4.8.2 AGG

The Attributed Graph Grammar (AGG) system [55, 44, 192] is an integrated
development tool for typed attributed graph transformation implemented in
Java. Graphs are similar to those of Def. 4.70 on page 76, but inheritance
is defined differently and parallel edges of the same type are allowed. The
consistency of graphs with respect to their type graph is checked, also graph
constraints which have to be fulfilled can be specified. Nodes and edges can
be attributed with Java objects. Differently from the theory, each object has
exactly one value for each of its attributes – the theory does not enforce this,
but it can be expressed by corresponding graph constraints. Also the usage of
Java objects in itself differs from the theory since their classes are parts of a
inheritance hierarchy, but the definition based on Σ-algebras does not handle
inheritance for carrier sets of attribute values (see the discussion on page 76
in Sect. 4.5.3).

84 4 Graph Rewriting

Figure 4.6. Screenshot of the AGG software (from [192])

Productions are treated according to the single-pushout approach. Appli-
cation conditions can be specified including boolean Java expressions. The
double-pushout approach can be obtained as a built-in feature by activation
of the gluing condition as application condition.

AGG works sequentially. A single (possibly noninjective) match is selected
for actual application out of all possible matches, either randomly or by prefer-
ence, e. g., by user interaction. On application, the graph structure is modified
according to the theory. The expressions for the computation of new attribute
values may contain invocations of arbitrary Java methods, this obviously goes
beyond the theory since it may trigger arbitrary side effects.

A simple control flow is provided by the concept of layers. Each layer
has a priority and contains a set of productions. Starting with the layer of
lowest priority, productions of the current layer are applied as long as possible.
Afterwards, the next layer with respect to priority is made current. If all layers
have been processed, the transformation terminates.

AGG provides several analysis techniques. The conformance to graph con-
straints can be checked. Critical pairs can be detected (minimal examples of
parallel dependent derivations), this is important in order to verify that a
graph grammar is confluent, i. e., that the final result after productions have
been applied as long as possible does not depend on the order of production

4.8 Graph Rewriting Software 85

applications. A graph parser checks whether a given input graph is part of a
graph language specified by a set of parsing rules and a stop graph. It tries
to find a derivation using the parsing rules from the input to the stop graph.
Furthermore, for a subset of graph grammars AGG can decide if they are
terminating or not.

As an integrated development tool, AGG has a graphical user interface
with visual editors for types, graphs and productions. The core functionality
of graph rewriting is provided by a graph transformation engine which is
independent of the visual environment. It may also be used by other tools.

4.8.3 GrGen.NET

GrGen.NET is a relatively new graph transformation tool for the .NET frame-
work [65]. A type graph with inheritance can be specified by defining node
and edge types as well as connection assertions, and the compliance of a graph
with the type graph can be checked on demand. Attribute and type conditions
can be specified for patterns. The sequential derivation mechanism is based
on the single-pushout approach. Several productions may be composed with
logical and iterative control of application. The invocation is done either inter-
actively within a shell-like environment, or in custom programs by including
the GrGen.NET library.

The authors of GrGen.NET attach great importance to a fast implemen-
tation of the pattern matching algorithm which finds occurrences of left-hand
sides in the current graph. For a pattern composed of several subpatterns, the
order in which subpatterns are matched has the largest impact on the time
efficiency of the whole matching algorithm. An estimate of the matching time
can be described heuristically by a cost model, and then an optimization al-
gorithm can be used to find an optimal order with respect to the cost model.
This order defines a search plan ([7] and Sect. 7.3.1 on page 197) which gov-
erns the later execution of the matching algorithm. By an implementation of
such a technique in GrGen.NET, the tool was able to outperform any other
tested graph transformation tool by at least one order of magnitude [64]. An
important feature of the underlying cost model of GrGen.NET is its depen-
dence on statistics of the current graph like the number of nodes and edges
of specific types. This leads to a relatively precise cost model, so that the
computed search plan is really a good choice.

4.8.4 vv

The vv software [177, 178] differs from most other graph rewriting tools in
that its target is the modification of polygon meshes, which can be seen as
special graphs. For the vv software, the representation of polygon meshes by
graph rotation systems was chosen among the multitude of possible polygon
mesh representations (see [59] for examples). A graph rotation system consists
of a set V of vertices and, for each vertex v ∈ V , a circular list v∗ of its

86 4 Graph Rewriting

neighbours such that the symmetry condition w ∈ v∗ ⇔ v ∈ w∗ is fulfilled.
A graph rotation system induces an undirected graph if we let v, w ∈ V be
connected by an edge if and only if w ∈ v∗. Furthermore and more important,
it induces a unique closed topological polygon mesh by considering all circular
sequences v0, . . . , vn = v0 as polygons for which all vi+1 immediately follow
vi−1 in the circular list v∗i . If in addition we have positional information about
the vertices, we obtain a geometric polygon mesh.

Now the vv software provides a set of useful operations (called the vertex-
vertex algebra) on graph rotation systems like the insertion of a vertex in the
neighbourhood of another vertex, its removal, or the determination of the
vertex which follows a given vertex in the neighbourhood of another given
vertex. These operations are implemented as part of a vv library, and they
are also made available directly by the syntax of the vv language. The vv
language is an extension of C++ and is implemented by a special source code
preprocessor which transforms its input into C++ source code. The language
follows the imperative programming paradigm; thus, it is not rule-based. The
following source code is the implementation of the Loop subdivision scheme
which is an algorithm for surface subdivision (from [178]), the 3D outcome is
shown Fig. 4.7(a) on the next page.

// splits existing edge between p and q by insertion of new vertex

vertex insert(vertex p, vertex q) {

vertex x;

make {p, q} nb of x; // sets circular list of neighbours of x

replace p with x in q;// replaces p with x in list of q’s neighbours

replace q with x in p;

return x;

}

// implements Loop subdivision

void loop(mesh& S) {

synchronize S; // create a local copy of S, accessible via prefix ‘

mesh NV;

fora l l p in S {

double n = valence p; // number of neighbours of p

double w = (5.0/8.0)/n - pow(3.0/8.0 + 1.0/4.0*cos(2*PI/n),2)/n;

p$pos *= 1.0 - n*w;

fora l l q in ‘p {

p$pos += w * ‘q$pos

i f (p < q) continue; // vertices are ordered

vertex x = insert(p, q);

// nextto a in b yields vertex next to a in list of b’s,

// neighbours, prevto correspondingly

x$pos = 3.0/8.0 * (‘p$pos + ‘q$pos)

+ 1.0/8.0 * ‘(nextto q in ‘p)$pos

+ 1.0/8.0 * ‘(prevto q in ‘p)$pos;

add x to NV;

}

4.8 Graph Rewriting Software 87

}

fora l l x in NV {

vertex p = any in x; // choose any neighbour of x

vertex q = nextto p in x;

make {nextto x in q, q, prevto x in q,

nextto x in p, p, prevto x in p} nb of x;

}

merge S with NV; // add vertices of NV to S

}

A special feature of vv is the use of the synchronize statement together
with backquote-prefixed vertex expressions. The synchronize statement cre-
ates a local read-only copy of the current mesh. If v is a vertex of the current
structure which already existed when the copy was made, ‘v denotes its corre-
sponding copy. This provides a means to consistently refer to the old structure
while modifying the current structure step by step. Note that this problem
could be solved in a more elegant way by a suitable parallel grammar operating
on graph rotation systems.

Figure 4.7(b) shows the relevance of the vv approach for plant modelling.
It displays the outcome of a model for an apical meristem [177]. The meris-
tem grows by cell subdivision at the tip. Regulated by concentrations of an
inhibitor on an active ring just below the tip, cells differentiate and become
the germs of primordia, which grow out laterally. The model simplifies the real
situation by considering only the surface of the apical meristem and primordia,
so that cells are two-dimensional.

(a) (b)

Figure 4.7. Polygon meshes modelled with vv (from [177]): (a) initial mesh and
three iterations of Loop subdivision; (b) apex with primordia

5

Relational Growth Grammars

While the previous chapters report the current situation in L-system and
graph transformation theory and application, from this chapter on we present
the extensions which have been developed as part of this thesis. They are all
linked with the formalism of relational growth grammars which is a general-
ization of parallel graph grammars and incorporates L-systems as a special
case.

5.1 Introduction

The aim of this thesis, design and implementation of a graph grammar based
language for functional-structural plant modelling (FSPM), already antici-
pates that graph grammars are a suitable formalism for FSPM. Nevertheless,
we have to justify this. Since graph grammars can be seen as an extension
of L-systems, they inherit the proved strengths of the latter. But as we will
see in the next paragraphs, L-systems have several drawbacks which can be
overcome easily with the help of graph grammars.

At first sight, the ongoing success of L-systems in plant modelling is evi-
dence for their fitness for this purpose. This holds especially for pure structural
modelling as can be seen by the fact that there was basically no attempt to
extend the notion of context-sensitive, bracketed L-systems with respect to
structure since its appearance. The string encoding is easily understandable
and well-suited for plant-like structures as long as there is at most a sim-
ple kind of interaction within the structure, and the rule-based programming
paradigm often provides a direct translation of botanical rules.

On the other hand, a variety of extensions of L-systems with respect to
function have been defined. With ‘function’ we mean nonstructural parts in or-
der to reflect the complementarity of function and structure which is connoted
by the term FSPM. Parametric L-systems can be seen as the first functional
extension of the basic L-system formalism because they allow the represen-
tation of internal data within the structure. Differential, environmentally-

90 5 Relational Growth Grammars

sensitive and open L-systems as well as sensitive growth grammars and
arithmetical-structural operators can also be classified as functional exten-
sions since they focus on parameters and three-dimensional interpretation of
the structure and not on its pure topology. L-systems with programming state-
ments use parameter values as basis for their computations, and approaches
like L+C generalize the type of parameters from numeric types to arbitrary
C++ types.

Despite their success, L-systems have shown some deficiencies in their
nearly 40 years of use in plant modelling [100]:

• 3D structures have to be serialized into strings of symbols in order to
make them representable by an L-system. This is acceptable for tree-like
structures, but it hinders the modelling of more complex topologies.

• Strings produced by an L-system have to be interpreted geometrically by
the turtle. This implies a sort of semantic gap and an extra step of pro-
cessing between the rewriting formalism and 3D structures, in contrast to
modern data structures for 3D world (e. g., scene graphs [59, 82, 84]) where
information is represented more directly. The semantic gap is especially no-
ticeable if there is a complex interaction based on the 3D geometry, e. g.,
collision or competition for light.

• In a structure generated by an L-system, basically only two relations be-
tween symbols can be modelled: ‘successor’ between consecutive symbols
and ‘branch’ where a branch in brackets comes out. In many applications,
particularly for multiscaled models, it is desirable to have more relations
at hand.

• L-systems give little support for computations on the created structure
(e. g., determination of the mass of a plant or a branch): the pure string
representation does not provide a means for efficient structure-aware nav-
igation due to the indirect encoding of branches by bracket symbols. In
fact, arithmetical-structural operators of sensitive growth grammars are
not defined on the string representation, but on the result of turtle inter-
pretation which is a true tree.

Based on these considerations, it seems natural for an extension of L-systems
to retain the basic rule-based principle, but to use trees or even graphs as
representation: then we can dispense with brackets as part of the internal
string representation and directly represent branchings in the structure. This
allows a straight navigation which is the basis for efficient implementations of
sensitivity such as arithmetical-structural operators. If we extend the structure
anyway, we can at the same time enrich it internally from parameterized
symbols to nodes which are instances of classes in the object-oriented sense.
Such nodes may provide additional information besides their parameters, e. g.,
the location in three-dimensional space, which then can be accessed easily
within expressions. Turtle commands have a natural translation to this setting:
they become nodes of a 3D scene graph. Turtle commands which only move the
turtle become transformation nodes, turtle commands which create geometry

5.1 Introduction 91

become shape nodes. This closes the semantic gap between the structure and
its interpretation: nodes may be both elements of the structure and 3D objects
by their very nature.

The usage of true graphs and graph grammars instead of just trees and
tree grammars further increases the expressiveness of the formalism and opens
the door for applications in a wide range of fields:

• Metabolic and gene regulatory networks appear at a low level of plant
development. The program transsys (Sect. 3.15.4 on page 38) combines L-
systems with such networks. However, both parts are specified separately
there, each with an own sublanguage. If networks can be represented di-
rectly as a graph, their dynamics can be implemented by a graph grammar
together with structural parts at higher levels of the plant. Neural networks
are a further type of networks in biological or biology-inspired modelling.

• Cellular automata (Sect. 2.4 on page 14) are defined on n-dimensional
grids. Such a grid can be implemented as a graph where edges specify direct
neighbours, i. e., the topology of the grid. Thus, a grid and its dynamics
have a direct representation as graphs and graph grammars, whereas this
would become intricate within the formalism of L-systems.

• The grid of a cellular automaton is a prototype of the representation of
a discretized world. The example of artificial ants in Sect. 2.5 on page 15
makes use of such a world, but it could also be applied in the context of
plant modelling to represent the soil on which several plants grow and com-
pete for resources. This can even be generalized to three-dimensional grids,
or to non-regular structures like polygonal meshes which could represent,
e. g., cell layers and tissues.

• Finally, arbitrary relationships between entities of the model can be es-
tablished by edges. These can also be scale crossing, leading to multiscale
models [67].

Given this list of applications, it is in fact somewhat astonishing that true
graph grammars have hardly been used in plant modelling, with the exception
of early studies in the 1970s in the wake of the evolution of L-systems [118].
As the biological knowledge increases, the integration of the mentioned issues
in plant models becomes more and more important. We thus believe that
it is about time to dispense with the traditional L-system representation of
a string of symbols, and to use graphs and graph grammars instead. Even
Lindenmayer himself states in the introduction of [118]:

The one-dimensional character of basic L system models and the rigid
grid structure of cellular automata constructs certainly limit the mod-
elling possibilities of both of these theories. The very recently evolved
theory of parallel graph generating and related systems tries to remove
both obstacles and therefore constitutes a promising approach.

The transition to graphs comes at nearly no cost, since it is backward com-
patible and the increase in required computer memory for the representation

92 5 Relational Growth Grammars

of graphs instead of strings poses no problem for modern computers, possibly
with the exception of model simulations where an extremely large number of
nodes is created.

But the transition to graphs and graph grammars alone would only be
half the way to a suitable extension of the L-system formalism which is able
to build the basis of FSP models with increasing complexity within the next
years: this transition is a structural extension and has to be completed by an
adequate functional extension. This has to be consistently designed in such
a way that it covers the whole heterogeneous range of existing functional
L-system extensions, and it should at the same time be simple and com-
prehensive as a programming language formalism. Here, we can learn from
the evolution of imperative programming languages [13]: initially, such lan-
guages were very technical low-level languages without any built-in support
for the management of, e. g., control flow or larger systems. The introduction
of structured, modular and object-oriented techniques led to simple but com-
prehensive high-level languages which assist the programmer to keep complex
software intelligible, extensible and maintainable.

The basic L-system formalism is a low-level formalism whose semantics is
the plain application of productions to a string, comparable to the semantics of
low-level languages whose programs consist of sequences of instructions (with
goto and call being the sole control flow instructions). In [13], it is expected
that the evolution of L-systems will give birth to object-oriented and even vi-
sual programming techniques for L-systems, and an extension of L-systems is
already presented which makes use of the object-oriented principles of inher-
itance and polymorphism for symbols. The combination with a conventional
imperative and object-oriented programming language like C++ in the case of
L+C is a different branch of the evolution of L-systems: the typing system of
symbols is not object-oriented, but C++ is used to define types of parameters,
computations within productions and whole functions.

If we take a further step along the evolution of L-systems by unifying both
branches on the basis of graphs and additionally allowing the imperative part
to control the application of productions like in programmed graph replace-
ment systems (Sect. 4.7 on page 81), we can achieve the following properties:

• The control flow is controlled like in any structured imperative program-
ming language, i. e., there are statements like if or for.

• The control flow invokes the application of productions. There is no mono-
lithic set of productions which are always applied jointly; sets of produc-
tions are rather statements in the sense of imperative programming lan-
guages which are executed when they are reached by the control flow. This
generalizes table L-systems (Sect. 3.5 on page 24) and many approaches
of programmed graph replacement systems in a convenient way (at least
from a practical point of view, the underlying theory loses elegance due to
the unrestricted inclusion of imperative programming).

5.1 Introduction 93

• Right hand-sides of productions may contain imperative programming
statements which are executed as a side-effect of production application.
They can be used, e. g., for auxiliary calculations in order to compute
new attribute values for nodes. Together with the previous item, this
encompasses the possibilities of L-systems with programming statements
(Sect. 3.10 on page 29).

• The global program structure is that of an object-oriented program. Thus,
we have a class hierarchy with inheritance and polymorphism. A subset
of the classes can be used as node types, this subhierarchy is reflected in
the type graph with inheritance (Sect. 4.5.2 on page 73). Statements (and,
thus, sets of productions) constitute the bodies of methods.

In doing so, we follow the proposal of [107] where the possibilities and ad-
vantages of a combination of the imperative, object-oriented and rule-based
paradigms were discussed in the context of ecological and plant modelling.

As a completing step, we have to provide a means to conveniently access
the structure not only as part of the actual graph rewriting process, but also
as part of general expressions by a query language. This can be seen as a re-
flection of the structure within the functional part since it enables us to easily
specify computations within the structure. As we noted in the list of deficien-
cies of L-systems, one might be interested in the total mass of all descendant
objects of a given node, or in the node of some specific type which is closest
in three-dimensional space to a given node. Rather than having to hand-code
these functions in the imperative part of the formalism by loops, recursive
methods and other technical necessities, a query language allows to concisely
specify what to search for (e. g., all descendant objects), and aggregate func-
tions can be used to compute aggregated values on the basis of query results
(e. g., the sum of masses of a set of objects). A concrete query language could
reuse the syntax of the left-hand side of productions since both search for
occurrences of a pattern in the current structure. Query expressions in combi-
nation with aggregate functions generalize arithmetical-structural operators
of growth grammars, see Sect. 3.11 on page 30. Furthermore, we can also spec-
ify globally sensitive functions like those of growth grammars (Sect. 3.11 on
page 30) within our model in a versatile way. For example, while the globally
sensitive function which computes the total biomass of all elementary units
within a vertical cone starting at a given position had to be implemented as
a fixed part of the GROGRA software, we can specify this as an aggregate
function applied to a result of a query, given that the modelling environment
provides us with the quite basic geometric function which tests whether an
object lies within a cone. By this means, query expressions and aggregate
functions allow us to combine universal “atomic” building blocks provided
by the modelling environment in order to specify arbitrarily complex sensi-
tive functions within the model itself. This technique was already proposed in
[107], it shifts the borderline between the model itself and the modelling envi-
ronment or some external software in such a way that the model-specific parts

94 5 Relational Growth Grammars

can easily and favourably be implemented as part of the model. Interestingly,
the evolution of imperative programming languages has also integrated query
expressions recently in the language C# [128] (a stable version is expected in
the course of the year 2008); however, our approach is independent thereof.

We believe that graph grammars, interwoven with an imperative language
and the possibility of structural queries within expressions, all based on object-
oriented principles, are a good candidate for the definition of a state-of-the-art
FSPM language. Such a language extends the proved techniques of L-systems
for the structural part and of imperative programming for the functional part
in a way which takes into account the fact that a whole is more than the mere
sum of its parts:

• The structural view of L-systems is retained but extended to graphs in
order to be able to directly represent arbitrary relationships, e. g., complex
functional relationships like interaction networks.

• The procedural view of functional models is reflected in the imperative
language. The latter is augmented by query expressions as a technique
for computation and information flow; this technique assists in expanding
functional models from a single entity to the whole plant structure created
by the structural part.

In this chapter, we define the formalism of relational growth grammars (RGG
for short) as a formal basis for such a language. We concentrate on the defi-
nition of the rewriting mechanism and specify the imperative part in a rather
abstract way by a general control flow (and by Σ-algebras for the predefined
functions of the modelling environment). Part II presents the XL program-
ming language, a concrete programming language for which the RGG formal-
ism can be implemented easily; there it is also shown how graph grammars
and imperative programming can be interwoven in practice. The name ‘rela-
tional growth grammars’ has been chosen in view of the intended principal
application, in order to stress the continuousness of the development from
L-systems via growth grammars to the RGG formalism, and to emphasize its
being based on relational notions like graphs and relations (see also Sect. 5.7
on page 114).

The presented RGG formalism and its usage for the modelling of (artificial)
living systems are in the spirit of the following opinion of Kari, Rozenberg and
Salomaa [90], but are at the same time an addendum:

However, one feature very characteristic for the architecture of all
living beings is that life is fundamentally parallel. A living system
may consist of millions of parts, all having their own characteristic
behavior. However, although a living system is highly distributed, it
is massively parallel.
Thus, any model for artificial life must be capable of simulating paral-
lelism – no other approach is likely to prove viable. Among all gram-
matical models, L systems are by their very essence the most suitable

5.2 Graph Model 95

for modeling parallelism. L systems may turn out to be even more
suitable for modeling artificial life than real life.

The addendum is that parallel graph grammars are even more suitable for
modelling parallelism of (artificial) living systems than L-systems. This will
be shown in Chap. 10.

5.2 Graph Model

The first question to be answered for the definition of relational growth gram-
mars is that of the graph model. A seamless integration of an imperative
object-oriented programming language requires a typing system for graphs
which reflects the principles of inheritance and polymorphism. In order to
generalize parameterized symbols and to represent properties of objects, at-
tributed graphs are the natural choice. But what is the precise meaning of
nodes and edges, with which features are they equipped? We start our con-
siderations with the case of graph equivalents of L-system strings.

5.2.1 Axial Trees

The data structure of L-systems, a string of symbols, is interpreted by the
turtle as an axial tree [161, 67] with the help of bracket symbols. Or the
other way around, the string is considered as a linearization of an axial tree in
postfix notation. An axial tree is a rooted tree (a single node is distinguished as
root) with two types of directed edges, branching edges and continuing edges.
Each node has at most one incoming edge, an arbitrary number of outgoing
branching edges, and at most one outgoing continuing edge. Two symbols
which are direct neighbours in the L-system string, possibly separated by
complete bracketed sequences, are connected by a continuing edge, the first
symbol after an opening bracket is connected with the last symbol before
the bracket by a branching edge. A maximal sequence of nodes which are
connected by continuing edges is called an axis. The botanical interpretation
is as follows [67]. The growth of a plant is governed by apical meristems which
generate, through repeated activity, a sequence of metamers in the apical
growth process. Each metamer consists of an internode, a leaf together with
its insertion node, and a lateral meristem. This sequence corresponds to an
axis and would be represented in an L-system string by a sequence of symbols
on the same level, i. e., without brackets. Depending on the resolution, the
symbols stand for whole metamers or the individual organs internode, leaf,
node. The created lateral meristems may become apical meristems themselves
as part of the branching process. The outcome of this process, an axis of higher
order, is inserted within brackets in the L-system string.

The graph model corresponding to axial trees uses nodes as the actual ob-
jects and edges as the representation of relations between objects. The edge

96 5 Relational Growth Grammars

alphabet contains two elements ‘branching’ and ‘continuing’, the correspond-
ingly typed edges will be called branch edge and successor edge and denoted
by + and >, respectively, from now on following the notation of [67]. Nodes
have attributes, edges do not. Such a graph model is sufficient for the repre-
sentation of L-system structures. The precise representation is given by the
following definitions. We omit the representation of parameters as node at-
tributes for the sake of simplicity. This comes without loss of generality since
attributes are internal to nodes, but the following is concerned with structural
issues only.

Definition 5.1 (well-nested word). Let V be an alphabet without % and
bracket symbols and set VB = V ∪{[,],%}. The set of all well-nested words over
V is defined as the language over VB generated by the context-free (sequential)
grammar

α → A0 ,

A0 → ε ,

A0 → A ,

A → aA0 ∀a ∈ V ,

A → %A0 ,

A → [A0]A0 .

In this definition, α is the axiom, ε denotes the empty word, the nonterminal
A stands for a non-empty well-nested word, while A0 stands for a possibly
empty well-nested word. The symbols [,] and % denote branches and a cutting
as explained in Sect. 3.2 on page 19. The fourth production actually stands
for a set of productions, namely a single production for each symbol a ∈ V .
The definition extends that of [158] by the symbol %. Note that the grammar
is LL(1). Thus it is unambiguous and the parse tree for a given well-nested
word is unique so that we can recursively define mappings from well-nested
words in the manner of synthesized attributes [2]. We immediately make use
of this:

Definition 5.2 (graph representation of well-nested words). The graph
representation of well-nested words ν over V is given by a mapping T =
(TG, TL, TR, TB) : ν 7→ (G,L,R,B) where G is a graph over the alpha-
bet Λ = (V, {>,+}), L ⊆ GV ∪ {%} denotes the left-most nodes of G,
R ⊆ GV ∪ {%} the right-most nodes of G and B ⊆ GV the pending branch
nodes of G. T is defined recursively according to the productions of the gram-
mar of Def. 5.1 (a stands for a symbol of V ; χ, ψ are well-nested words):

5.2 Graph Model 97

T (ε) = (∅, ∅, ∅, ∅) ,

T (aχ) =

(
{n} ∪ TG(χ) ∪

⋃
m∈T L(χ)\{%}

(n,>,m) ∪
⋃

m∈T B(χ)

(n,+,m), {n},

{
TR(χ) : TR(χ) 6= ∅
{n} : TR(χ) = ∅ , ∅

)
with some new a-labelled node n,

T (%χ) =
(
TG(χ), {%}, {%} ∪ TR(χ), ∅

)
,

T ([ψ]χ) =
(
TG(χ) ∪ TG(ψ), TL(χ), TR(χ), TB(χ) ∪ TL(ψ) ∪ TB(ψ)

)
.

It follows that the sets L,R of left- and rightmost nodes contain at most
a single node, but may contain an additional % in which case the original
word contained a %-symbol at the highest (non-nested) level. L is empty if
and only if R is empty. As an example for the representation, the well-nested
word [[AB]C]D[[E[F]G]][H%IJ]K[]%L is translated to the (unconnected) graph�� ��F

a
�� ��A

> //
�� ��B

�� ��E

+

??��������

>
//
�� ��G

c
�� ��C d

�� ��D

+

>>}}}}}}}} > //

+

 AAAAAAAA

�� ��K l
�� ��L

�� ��H
�� ��I

> //
�� ��J

together with the set of left-most nodes {d}, the set of right-most nodes {%, l}
and the set of pending branch nodes {a, c}. Note how symbols to the right of
% are unconnected with the rest, and that the set of right-most nodes contains
% to indicate a %-symbol at highest level. Note also that information is lost:
the %-symbol detaches the following nodes from the graph (for L-systems, we
could have a rule which replaces % by some non-cutting word), and empty
or redundant pairs of brackets and the order of branches cannot be recovered
from the graph representation. Under the assumption that typical reasonable
L-systems do not replace the symbols [,], % by other symbols and that the
order of branches is irrelevant, this loss of information poses no problems.
This assumption is reasonable from a botanical point of view.

5.2.2 RGG Graph Model

The model of an axial tree can be embedded in a lot of graph models, be it
a simple one like plain graphs according to definition Def. 4.1 on page 44, a
more complex one like hypergraphs of Sect. 4.2.2 on page 47 or even hierar-
chical graphs where entire subgraphs are nested within edges. When choosing

98 5 Relational Growth Grammars

a graph model, a typical trade-off between different requirements has to be
made: on one hand, it should be simple enough so that it is intelligible, that
its representation within computer memory is efficient, and that its graph in-
stances can be manipulated efficiently. On the other hand, it should allow the
direct representation of a sufficiently large class of objects and their relation-
ships.

Because it is not unusual for L-system based models to produce structures
of several 100,000 or even millions of objects, special attention has to be paid
to the memory-related aspect of the trade-off. It is a reasonable assumption
that typical RGG structures consist for a large part of tree-like substructures
which require n−1 edges for n nodes. If – which is also a reasonable assumption
– the types of actually used edges in such trees are drawn from a small set
(e. g., mostly branch and successor edges), it would be a striking waste of
memory if edges are represented as complex objects with a rich set of features
which are hardly used.

Based on these considerations, the graph model of relational growth
grammars is chosen to be that of typed attributed graphs with inheritance
(Def. 4.70 on page 76) so that attributes and object-oriented principles are
reflected in the model. The semantics of edges is to stand for plain relation-
ships between their incident nodes. Thus, they have no attributes, and the
restriction that no parallel edges of the same type may exist is reasonable.
Concrete edge types are drawn from a finite set Λ̂E without inheritance rela-
tion between them, the types branch and successor are included in Λ̂E . The
set ΛE of all edge types is given by the power set of Λ̂E with the exclusion
of the empty set so that an inheritance relation ≤ΛE

can be defined by the
subset relation (we identify T ∈ Λ̂E with the singleton set {T} ∈ ΛE) [139].
This allows specifications like ‘an edge of type T or U exists from a to b’ for
the left-hand side of productions, since ‘T or U ’ corresponds to the abstract
edge type {T,U} which is a supertype of both T and U . If attributed edges
or parallel edges of the same type are really necessary, a common trick helps:
an auxiliary node with a single incoming edge from a and a single outgoing
edge to b plays the role of such an edge from a to b. We formalize these verbal
considerations in the definition of an RGG type graph:

Definition 5.3 (RGG type graph). Let Λ̂E be a finite set of concrete
edge types. An attributed type graph with inheritance (T,≤,A) over the
edge alphabet ΛE = P(Λ̂E) \ {∅} is an RGG type graph if ≤ΛE

=⊆ and
ΛE ∩ A = ΛE \{{γ}|γ ∈ Λ̂E}, i. e., the abstract edge types are exactly the
non-singleton sets.

Definition 5.4 (RGG graph). An RGG graph is a typed attributed graph
with inheritance over an RGG type graph.

The following definition just serves to simplify subsequent statements.

5.3 Connection Mechanism 99

Definition 5.5 (category RGGGraph). Let (T,≤,A) be a fixed, distin-
guished RGG type graph. The category AGraphP(T,≤,A) is called RGG-
Graph (over (T,≤,A)).

With the graph model of RGG graphs, sets, lists, axial trees and grids
like those of cellular automata are directly representable [98, 99]. These data
structures were considered in [107] as important building blocks for the spec-
ification of a wide spectrum of ecological phenomena. Metabolic and gene
regulatory networks can also be represented, but require auxiliary nodes for
edges with numeric parameters which encode, e. g., the strength of inhibition
of an enzyme by a substance. Relationships between different scales of a model
[67] may be expressed by scale edges. However, in this case hierarchical graphs
might be a better choice, but then the method of graph transformation has
to be extended correspondingly [22].

5.3 Connection Mechanism

The choice of the basic connection mechanism of relational growth grammars
has a great influence on the power, intelligibility and usability of the formal-
ism. The presented mechanisms of Sect. 4.3 on page 59 have to be investigated,
but also the technique of parallel SPO derivations (Def. 4.49 on page 69) turns
out to be very convenient.

5.3.1 L-System-Style Connection

One requirement is the possibility to specify L-system productions in the RGG
formalism. Since left- and right-hand side of an L-system production do not
share common objects, embeddings of the gluing type are not directly usable,
whereas edNCE-like connection mechanisms seem to be suitable. Namely, if
we translate the application of an L-system production A → [B]CD to the
string UAX (with result U[B]CDX) to the language of graphs, it implies, for
every incoming edge e of the A-node, the creation of embedding edges from the
source of e (U-node in the example) to both the C-node and the B-node, the
latter edge being of type ‘branch’, and for every outgoing edge f of the A-node
the creation of an embedding edge from the D-node to the target of f (X-node
in the example). This creation of embedding edges is edNCE-like as it can be
specified by a list of connection instructions of the form (v, µ, γ/δ, w, d).

However, there is a crucial difference to the edNCE mechanism due to the
parallelism of L-systems. The neighbours of a removed node are themselves
replaced as part of a direct derivation. A natural idea is to use parallel edNCEp
grammars of Def. 4.44 on page 68. But these establish connections based on
node types exclusively, while for L-system simulation, we have to distinguish
special nodes of right-hand sides as left-most (C-node in the example), right-
most (D-node in the example) and pending branch (B-node in the example)

100 5 Relational Growth Grammars

according to the namings of Def. 5.2 on page 96. Now for two neighbouring
nodes which are replaced by L-system productions, connection edges have to
be established from the right-most node of the successor of the source to the
left-most and pending branch nodes of the successor of the target. So both
successors are involved in the decision whether a connection edge is created or
not. This can be seen as an application of “matching half-edges”, namely as
a special case of the operator approach to parallel graph grammars (Def. 4.41
on page 66) in the following way:

Definition 5.6 (translation of axis-propagating L-system production).
Let V be an alphabet without % and bracket symbols. An L-system production
p : a→ χ with a well-nested word χ over V and L 6= ∅ for the graph representa-
tion (G,L,R,B) = T (χ) of χ (Def. 5.2 on page 96) is called axis-propagating.
Its translation to a production with operators is given by T (p) : a

σ,τ−−→ G with

σ =
⋃

γ∈ bΛE ,s∈R\{%}

{
(Nout

γ , γ, s), (Nout
γ ,+, s)

}
,

τ =
⋃

γ∈ bΛE ,t∈L\{%}

{
(N in

γ , γ, t)
}
∪

⋃
γ∈ bΛE ,t∈B

{
(N in

γ ,+, t)
}
.

Nd
γ denotes the operator such that Nd

γ,G(n) yields all nodes of GV which are
connected with n by a γ-typed non-loop edge, n being the source if d = out and
the target otherwise. In the terms of [130], this operator is of depth 1, and the
connection transformations are orientation preserving.

Remark 5.7. The term ‘axis-propagating’ is in analogy to the usual termi-
nology which calls L-systems propagating if all productions have non-empty
right-hand sides. For an axis-propagating production, the right-hand sides
have to be non-empty even if we remove all bracketed branches. This means
that the current axis ‘grows’ (except for the case of % as right-hand side which
is also axis-propagating, but cuts off the axis).

Theorem 5.8 (equivalence of axis-propagating L-system and trans-
lated graph grammar). Let V, VB be as in Def. 5.1 on page 96. Let G =
(VB , α, P) be a D0L-system such that P = {%→%, [→[,]→]} ∪ P ′ where P ′

contains only axis-propagating productions. Then G is equivalent to the trans-
lated parallel graph grammar with operators T (G) =

(
TG(α), {T (p) | p ∈ P ′}

)
in the sense that for every derivation the diagram

µ

T G

��

G +3 ν

T G

��
TG(µ)

T (G) +3 TG(ν)

commutes.

5.3 Connection Mechanism 101

Proof. See Appendix 5.A on page 118. ut

Remark 5.9. Of course, a true equivalence cannot be obtained because of the
loss of information of the graph representation of well-nested words. But if
we are only interested in the axial trees which are represented by L-system
words, the equivalence holds.

Remark 5.10. Although the theorem is stated for D0L-systems, it should
be clear that the extension to nondeterministic or parametric L-systems is
straightforward and only requires a more complex notation.

The problem with non-axis-propagating productions like A → [B] is that
they may lead to connection edges in the graph representation whose prede-
cessor nodes have an arbitrarily large distance. For example, if we apply the
above production together with X → Y to XAAAX, the result is Y[B][B][B]Y
so that a connection edge between both Y-typed nodes has to be created
although their X-typed predecessors have a distance of four. A simple solu-
tion would be to add some unused auxiliary symbol to the right-hand side
of non-axis-propagating productions and to have a postprocessing step which
removes all chains of auxiliary nodes. A more direct solution is to extend the
operators Nd

γ so that they skip nodes whose successors do not propagate the
axis:

• Nd
γ,G(n) for γ 6= + traverses G starting at n in direction d using only edges

of type γ. If it finds a node m whose production pm within the current
derivation is axis-propagating, it stops traversing at m and yields m.

• Nd
+,G(n) traverses G starting at n in direction d using edges of an arbitrary

type. If it finds a node m whose production pm within the current deriva-
tion is axis-propagating, it stops traversing at m and, if it has traversed
at least one single branch edge, yields m.

This requires an extension of the definition of parallel graph grammars with
operators because operators have to know about the productions which are
used for nodes. The proof of equivalence would be even more technical than
for Theorem 5.8, but it should be possible.

The question arises whether the connection mechanism which is required
for L-systems can also be obtained by algebraic pushout approaches. Unfortu-
nately, these approaches do not provide a straightforward solution. we would
have to specify a production which implements the application of the con-
nection mechanism to a match. Its left-hand side would have to include all
neighbours of the match which are involved in the connections to be created
because algebraic productions require all modified or used objects to be on
their left-hand side. But this is not possible because the number of neighbours
is not known in advance and one cannot construct a DPO or SPO production
with a variable number of nodes on the left-hand side. A solution to this prob-
lem within the DPO approach and sequential derivations is presented in [53],
it makes use of amalgamated two-level derivations (see page 64). The key idea

102 5 Relational Growth Grammars

is to extend the original production for every connection instruction and every
matching neighbour individually. The resulting single amalgamated produc-
tion has then the same effect as an edNCE production. However, this technique
was only investigated for derivations which are sequential at a macroscopic
level, i. e., as a translation of edNCE embedding. Nevertheless, it can also be
used for parallel derivations if we extend the original productions not only
based on the neighbours within the current graph, but also on the desired
neighbours in the derived graph. For example, consider the following graph G
and DPO production p with the three obvious matches.

G =
c
�� ��X

a
�� ��X

==zzzz
//b
�� ��X

, p :
�� ��X ← ∅ →

�� ��Y

In order to implement the connection mechanism, we have to specify a sin-
gle production-match pair for each combination of an original match and an
embedding edge. The productions have to include both the embedding edges
of the host graph on their left-hand side and the new embedding edges of
the derived graph on their right-hand side. This yields four productions (the
indices indicate from which original match the productions are derived).

pa : a
�� ��X //b

�� ��X ← ∅ → α
�� ��Y //β

�� ��Y ,

pa′ : a
�� ��X //c

�� ��X ← ∅ → α
�� ��Y //γ

�� ��Y ,

pb : a
�� ��X //b

�� ��X ← ∅ → α
�� ��Y //β

�� ��Y ,

pc : a
�� ��X //c

�� ��X ← ∅ → α
�� ��Y //γ

�� ��Y .

The matches and the intersection productions pij : Lij ← ∅ → Rij for amal-
gamation are indicated by the identifiers a, . . . , γ. The resulting amalgamated
production (see diagram on page 65) and the match to use are as follows:

c
�� ��X

a
�� ��X

==zzzz
//b
�� ��X

← ∅ →

�� ��Y�� ��Y

??���
//
�� ��Y

.

The algebraic pullback approach (Sect. 4.2.5 on page 56) allows a direct
representation of edNCE embedding, since a built-in feature of this approach
is that a match of a left-hand side may associate an object of the left-hand
side with an arbitrary number of objects of the host graph [8]. Again, only
the sequential case was investigated. Since the pullback approach (and the
extension, relation-algebraic rewriting) has some drawbacks with regard to a
later implementation, we did not examine these techniques in detail.

5.3 Connection Mechanism 103

5.3.2 Productions with Gluing

Allowing only L-system-style productions would unnecessarily restrict the ex-
pressiveness of the formalism. As an example, they do not contain the possi-
bility to keep existing nodes in the graph and to simply change edges between
them or connect new nodes with them. This is the domain of gluing approaches
like the algebraic approaches which establish connections by means of the kept
nodes. Two examples for edge replacement are given by these productions in
SPO notation:

L1

a
�� ��A

x
�� ��X //

OO

y
�� ��X

//

R1

a
�� ��A

x
�� ��X //y

�� ��X

OO

L2

i
�� ��G //j

�� ��G

k
�� ��G //l

�� ��G

//

R2

i
�� ��G

!!DDDD
j
�� ��G

k
�� ��G

==zzzz
l
�� ��G

The first production moves a node of type A along an edge from an X-typed
node to another X-typed node. This could be used to model the movement
of, say, an animal a (type A) on a discretized world consisting of cells (nodes
of type X) and neighbourhood edges. The second production models crossing-
over of genomes, each genome being represented by a linear sequence of gene
nodes of type G [98, 99]. The dotted line indicates an application condition,
namely that the involved genes are on homologous gene loci.

Both productions can be applied as part of parallel derivations (Def. 4.49
on page 69) without any problems. This would model the independent (paral-
lel) movement of animals on the discrete world, or the process of crossing-over
at different locations at the same time. In both cases, nodes play the role of
a fixed context for gluing, because they reappear on the right-hand sides.
The following shows an example for a parallel derivation using the crossing-
over production via three matches. (In practice, the choice whether to apply
crossing-over at a possible match could be modelled by a stochastic process
in order to reflect the situation in real life.)�� ��G //

�� ��G //
�� ��G //

�� ��G //
�� ��G�� ��G //

�� ��G //
�� ��G //

�� ��G //
�� ��G

=⇒

�� ��G

��???

�� ��G

��???

�� ��G //
�� ��G

��???

�� ��G�� ��G

??��� �� ��G

??��� �� ��G //
�� ��G

??��� �� ��G

Another case which is easily handled by (possibly parallel) SPO produc-
tions is the addition of nodes while keeping the rest. The following rule could
model the creation of a child of animal a at the same cell x.

L

a
�� ��A

x
�� ��X

OO //

R

a
�� ��A

�� ��A

x
�� ��X

OO >>||||

104 5 Relational Growth Grammars

A quite large set of models can be built using only productions of this
and the previous kind, i. e., SPO productions which keep some nodes of their
left-hand side. This includes models based on a fixed, discrete world such as
cellular automata or even board games like chess. As long as no nodes are
deleted, we could equally well use the DPO approach since it is then equiva-
lent with the SPO approach. However, if nodes are deleted, the DPO gluing
condition may not always be satisfied. The resolution of these problematic
cases within the SPO approach is reasonable for the purpose of modelling
biological systems:

• The SPO approach removes dangling edges. Without this feature, it would
not be possible to delete a node without knowing its complete neighbour-
hood in advance and specifying the latter as part of the left-hand side
of the deleting production. The deletion of nodes is frequently required
within models of the intended fields of applications, e. g., the dying off of
branches of a plant, but usually we do not know the exact neighbourhood
in advance: a dying branch may bear further branches or not, there may
exist further edges depending on whether some further relationships with
other nodes exist or not. The SPO solution to remove dangling edges seems
useful for these important cases.

• The SPO approach removes nodes and edges which have at least one preim-
age with respect to the match that is deleted. The thus resolved conflicts
between preservation and deletion do not only happen if a match for a
single production identifies several left-hand side objects, of which only
a subset is to be deleted, with the same object in the graph, they also
happen for parallel productions where a subproduction deletes some ob-
ject and another subproduction preserves the same object. Since in our
considered models deletion is a deliberate and rather drastic event, is it
reasonable to prefer deletion over preservation. For example, if there is a
production for the metabolism of a plant organ, it will preserve the organ
and simply update some state attributes. Another independent production
could model the dying off of the organ by deletion, and its effect should
not be inhibited by the existence of the metabolism production. Or in the
case of animal movement, the movement production keeps the animal in
the graph. There could be another production which deletes the animal be-
cause of insufficient energy or ageing. The mere existence of the movement
rule should not protect the animal from being deleted.

5.3.3 Choice of Connection Mechanism:
Single-Pushout Approach with Operators

Based on the previous considerations, we chose a combination of the SPO
approach with operators as a basis for relational growth grammars. Of course,
this may be criticized from a theoretical point of view as a mixture of two
very different approaches, but the power of both approaches is required for a

5.4 Dynamic Creation of Successor 105

suitable formalism for functional-structural plant modelling and similar fields
of application. The combination is intelligible and works very well in practice
as we will see in Part III. Fortunately, it is possible to integrate the effect of
operators within the SPO approach in a similar way as amalgamated two-level
derivations can integrate embedding instructions in their first level (see page
64 and the discussion in Sect. 5.3.1 on page 102).

5.4 Dynamic Creation of Successor

With some exceptions, productions are given by static structures for left- and
right-hand sides in the literature. This may be inconvenient in practice: think
of a growth rule of a plant where the number of generated plant segments
(i. e., nodes of the graph) depends on the local vitality of the plant. If we were
constrained to conventional static productions, we would have to either specify
several productions (one for each possible number of generated segments) or
to use several derivation steps for a single global step of plant development
(with the complicating possibility of different numbers of derivation steps at
different locations of the plant). Both solutions are not feasible from a practical
point of view. A better solution is to dynamically create the successor (i. e.,
the graph which replaces the match) on the basis of a match for the left-hand
side. Within the context of L-systems, this was theoretically investigated in
[23] where the successor of an L-system production is given by a mapping
of the predecessor and its parameters, and it was practically implemented
as the repetition and expansion operators for growth grammars (Sect. 3.11
on page 30), the dynamic construction mechanism of the L+C programming
language (Sect. 3.14 on page 33), or the set of control statements of the ELSYS
language [71].

The following is an example for such a production with dynamic successor
on the basis of the SPO approach. It is a combination of the previous ex-
amples for animal movement and child creation where the number of created
children depends on the energy (a node attribute). For the sake of simplicity,
the reduction of energy on movement and the initial energy of children are
omitted.

L

a
�� ��A

x
�� ��X //

OO

y
�� ��X

// Rba.energyc

with R0 =
a
�� ��A

x
�� ��X //y

�� ��X

OO
, R1 =

�� ��A a
�� ��A

x
�� ��X //

OO

y
�� ��X

OO
, R2 =

�� ��A
�� ��A a

�� ��A

x
�� ��X //

OO``BBBB
y
�� ��X

OO
, . . .

106 5 Relational Growth Grammars

a.energy refers to the value of the energy attribute of the animal a, and
bxc denotes the integral part of x (floor function).

5.5 Rules

In this section, the main part of the RGG formalism is defined, namely its
rules. We use the term rule instead of production for disambiguation purposes,
since the application of an RGG rule will be defined via a dynamically created
SPO production. The intent of the definitions of this section is to clarify the
formal basis of relational growth grammars, we will not use them for proving
theorems. In order to obtain (interesting) theoretical results, one might have to
reduce the expressiveness until the definitions become well-suited for proving.

In the sequel, we use Hom(G, ·) to denote the set of all total homomor-
phisms in RGGGraph whose domain is G, and MonP (·, ·) to denote the
set of all partial monomorphisms, i. e., injective partial homomorphisms, in
RGGGraph. If we simply write graph, an RGG graph is meant.

We start with the definition of an application condition. Given a potential
match for the left hand side of a rule, such a condition determines whether
the potential match is an actual match or not. Because every boolean ex-
pression of the concrete RGG language shall be allowed, we do not impose
any restriction on the structure of a general application condition. We only
demand decidability, i. e., the existence of an algorithm to decide whether the
application condition is fulfilled or not for a given match, for obvious reasons.

Definition 5.11 (application condition). Let L be a graph. An application
condition c on Hom(L, ·) is a decidable subset of Hom(L, ·). It is fulfilled for
x : L→ X if x ∈ c.

This definition follows [46]. More restricted application conditions in the
context of the algebraic approach of graph transformation are discussed in
[44].

Now we are ready to define a rule of a relational growth grammar. The
definition is based on that of a typed attributed SPO production with inher-
itance in Def. 4.80 on page 79. However, a rule is not an SPO production,
it rather generates such a production dynamically on the basis of a match.
The match m of a rule also serves as the match for the generated production
by letting the left-hand side of the production be a supergraph of the image
m(L) of the match. Right-hand side and homomorphism of the production
are given by a mapping p(m). This dynamic mechanism formally captures the
dynamic generation of the successor as it has been discussed in the previous
section. The fact that the left-hand side of the generated production may be
a supergraph of m(L) allows to match additional objects of the host graph in
the production p(m) which are not matched by the rule. However, we demand
that these additional matches are kept as they are by the production so that

5.5 Rules 107

only matches of the original rule may be deleted. This means that additional
matches have to be in the context, i. e., they have to be in the domain of the
homomorphism of the production.

Furthermore, we integrate the operator approach by the inclusion of a
mapping which assigns to each match a set of connection transformations.
While the original definition (Def. 4.39 on page 66) is based on left-hand
sides which consist of a single node, we extend the mechanism to arbitrary
left-hand sides by letting a connection transformation be given by a 6-tuple
(s, (A, d, γ, h), t) where s is a node in the match of the left-hand side, t is a
node of the right-hand side, A is an operator, d ∈ {in, out} a direction flag,
γ ∈ Λ̂E a concrete edge type, and h ∈ {0, 1} determines if the connection
transformation shall also create a connection edge if there is no matching
connection transformation (see below in Def. 5.16). We may think of such a
transformation as a connection transformation edge which points from the old
node s of the host graph to the new node t. The mechanism of the operator
approach then shifts connections along these edges from the host graph to the
derived graph.

Definition 5.12 (RGG rule). An RGG rule r = (L, c, p, z) is given by a
graph L, an application condition c, a mapping p : Hom(L, ·) → MonP (·, ·)
and a mapping z such that the following conditions hold:

1. For a match m : L→ G ∈ Hom(L, ·) the image p(m) is a typed attributed

SPO production with inheritance M(m)
p(m)−−−→ R(m) whose domain (in the

categorical sense) M(m) is a subgraph of G and a supergraph of m(L),
m(L) v M(m) v G, and which is defined (as a graph monomorphism)
for all objects not in m(L), M(m)\m(L) ⊆ domP p(m).

2. For a match m : L → G ∈ Hom(L, ·) the image z(m) is a finite set
of connection transformations (s, (A, d, γ, h), t) with an operator A, s ∈
M(m), t ∈ R(m), d ∈ {in, out}, γ ∈ Λ̂E , h ∈ {0, 1}.

Remark 5.13. An RGG rule may be just a conventional static SPO production
L

x−→ R′ if we set p(m) to be the pushout arrow m(L) x∗−→ R of the pushout
of m(L) m←− L x−→ R′.

Remark 5.14. A production with operators p : µ
σ,τ−−→ R has a natural trans-

lation to an RGG rule. The left-hand side L consists of a single µ-typed node
n, we have no application condition, p(m) : m(L)→ R has an empty domain
(i. e., it is nowhere defined), and z(m) =

⋃
(A,γ,w)∈σ(m(n), (A, out, γ, 0), w) ∪⋃

(A,γ,w)∈τ (m(n), (A, in, γ, 0), w).

Definition 5.15 (RGG match). A match for a rule r = (L, c, p, z) in a host
graph G is a total graph homomorphism m : L → G ∈ Hom(L, ·) such that
the application condition c is fulfilled.

108 5 Relational Growth Grammars

Given a set of rules with matches, the induced SPO productions can be
applied in parallel, leading to a parallel RGG derivation. This is an important
definition since it states how the parallelism of L-systems carries over in the
RGG formalism. We also have to define how connection transformations are
handled. For this purpose, we use a technique whose result is similar to an
amalgamated two-level derivation, although it does not make use of amalga-
mation. If we reconsider the example of page 102, the final production (now
as an SPO production) is

c
�� ��X

a
�� ��X

==zzzz
//b
�� ��X

→

�� ��Y�� ��Y

??���
//
�� ��Y

.

If we simply applied the original production p :
�� ��X →

�� ��Y via the three
possible matches as part of a plain parallel SPO derivation, we would use the
parallel production

c
�� ��X

a
�� ��X b

�� ��X

→

�� ��Y�� ��Y
�� ��Y

which does not create the desired connection edges. But obviously we can
obtain the desired production by extending the right-hand side by connection
edges (the extension of the left-hand side is not necessary because its nodes are
deleted anyway). This mechanism can also be seen as a two-level derivation: At
the first level, elementary SPO productions pi(mi) are generated by matches
mi for rules ri, combined to a parallel production and extended by connection
edges according to the specified connection transformations zi(mi). At the
second level, a direct sequential derivation using the resulting production is
executed. The difference to amalgamated two-level derivations is that the
latter extend the elementary productions by connection edges at first and
then amalgamate them to a parallel production.

Definition 5.16 (parallel RGG derivation). Let G be a graph, I be a
finite index set, r = (ri)i∈I a family of rules with ri = (Li, ci, pi, zi), and
m = (mi)i∈I a family of finite sets of corresponding matches, i. e., every
f ∈ mi is a match for ri in the host graph G. A direct parallel derivation
using r via m is given by a direct SPO derivation using L→ R via the match
L→ G, where L→ R and L→ G are determined as follows:

1. Let M → R′ denote the coproduct
∑

i,f∈mi
Mi(f)

pi(f)−−−→ Ri(f) of the pro-
ductions. Let Z =

⋃
i,f∈mi

zi(f) be the set which contains all connection
transformations.

2. For each pair (s, (A, d, γ, h), t), (s′, (A′, d′, γ, h′), t′) ∈ Z of matching con-
nection transformations (i. e., d 6= d′, s′ ∈ AG(s), s ∈ A′

G(s′)), we con-
struct the graph B which contains only t, t′, the graph C which contains

5.5 Rules 109

t, t′ and a γ-typed edge between t and t′ with t being the source if d = out
and the target otherwise. Let the families (Bj)j∈J , (Cj)j∈J be chosen such
that they exactly contain all such pairs of graphs B,C.

3. For each connection transformation (s, (A, d, γ, 1), t) ∈ Z and each node
s′ ∈ AG(s) which has no connection transformation for edge type γ and
the opposite direction of d in Z, we construct the graph T which contains
only t, the graph U which contains only s′, the graph C ′ which contains
t, s′ and a γ-typed edge between t and s′ with t being the source if d = out
and the target otherwise. Let the families (Tk)k∈K , (Uk)k∈K , (C ′

k)k∈K be
chosen such that they exactly contain all such triples of graphs T,U,C ′.

4. We construct the following commutative diagram:∑
j Bj //

��

∑
j Cj

��
M +

∑
k Uk

���
�
�
�
�
�
�
�
�
�
�
�

((l i g e c a _] [Y W U R

M //

������

��������������������

? _oo R′ �
� // R′ +

∑
k Uk

// R′′ // R

��

∑
k Tk

//

OO

∑
k Tk +

∑
k Uk

OO�
�
�

//∑
k C

′
k

OO

∑
k Uk

0 P

aaCCCCCCCCCCCCCCCCCCCCC

vvllllllllllllllll

+ �

88rrrrrrrrrrr5�

::

G // H

The dashed arrows are uniquely determined by the universal property of
the coproducts, the dotted arrows are pushouts. The graph L is given by
M+

∑
k Uk so that the diagram yields the homomorphisms L→ R, L→ G

and the direct SPO derivation G⇒ H using L→ R via L→ G.

Remark 5.17. The construction seems to be quite complicated and is not very
elegant. However, at least its effect is easy to understand. If there is a con-
nection transformation (s, (A, d, γ, 1), t) and a node s′ ∈ AG(s) which has no
connection transformation for edge type γ and the opposite direction of d, a
connection edge between the new node t and the old node s′ ∈ G shall be cre-
ated. (Note that this has no effect if s′ is deleted by the derivation.) This new
edge has to be established by the right-hand side which means that we have
to include s′ on the right-hand side and in the match. Thus we have to extend
M to M +

∑
k Uk and R′ to R′ +

∑
k Uk and to include the new edges

∑
k C

′
k

in R′′. Finally we have to merge R′′ with the new connection edges
∑

j Cj

resulting from matching pairs of connection transformations, this yields the
final right-hand side R.

110 5 Relational Growth Grammars

Remark 5.18. Item 3 of the definition extends the connection mechanism of
operators by the convention that if for a node s′ the set Z of all connection
transformations has no connection transformation for a given edge type γ
and the opposite direction of d, then connection edges shall be created for any
connection transformation (s, (A, d, γ, h), t) whose operator reaches s′ and for
which the h-component is set to 1. In other words, in such cases an implicit
connection transformation from the node s′ to itself is assumed whose operator
reaches every node. This is similar to edNCE- or edNCEp-derivations (Def. 4.8
on page 47, Def. 4.45 on page 68) and is useful for cases where a node is kept
by a derivation, while its neighbour is replaced by a new node:

G =
�� ��A //

�� ��B ,
�� ��B →

�� ��C .

Without the convention, the derived graph would not contain an edge from the
A-node to the C-node even if the rule specifies a connection transformation for
incoming edges of the B-node: there is no matching half-edge, i. e., no matching
connection transformation associated with the A-node. But as this situation is
very common (e. g., think of an internode A with a bud B which is replaced by a
new organ C), we have to provide a “default connection transformation” from
a node to itself. For the original definition of productions with operators, this
situation cannot occur as every node is replaced in each derivation. By setting
the h-component to 0, the default behaviour can be deactivated, and this is
in fact advisable for translated L-system productions according to Def. 5.6 on
page 100: the part (Nout

γ ,+, s) of σ should have h = 0 so that an edge whose
source is replaced by a translated L-system production is not duplicated as a
branch edge. All other parts of σ, τ should have h = 1 as motivated above.

Example 5.19. As an example for an RGG derivation, consider the following
setting (where ∗ denotes the single edge type and Nd

∗ is given in Def. 5.6):

G =
d
�� ��A

a
�� ��A //b

�� ��B //

==zzzz
c
�� ��B

,

r1 =
(
L1 = α

�� ��A ,Hom(L1, ·),m 7→
(
m(L1)→ α

�� ��A //κ
�� ��C
)
,m 7→ ∅

)
,

r2 =
(
L2 = β

�� ��B ,Hom(L2, ·),m 7→
(
m(L2)→ λ

�� ��D
)
,

m 7→ {(m(β), (N in
∗ , in, ∗, 1), λ), (m(β), (Nout

∗ , out, ∗, 1), λ)}
)
,

r3 =
(
L3 = γ

�� ��B ,Hom(L3, ·),m 7→
(
m(L3)→ µ

�� ��E //ν
�� ��F
)
,

m 7→ {(m(γ), (N in
∗ , in, ∗, 1), µ), (m(γ), (Nout

∗ , out, ∗, 1), ν)}
)
,

m1 = {(α 7→ a)} ,
m2 = {(β 7→ b), (β 7→ c)} ,
m3 = {(γ 7→ b)} .

5.5 Rules 111

The application conditions of all rules allow every match to be used, so actually
the rules have no application condition. r1 appends a C-typed node to an
A-typed node, thereby keeping the latter. r2 replaces a B-typed node by a D-
typed node and moves both incoming and outgoing edges from the old node
to the new node. r3 replaces a B-typed node by a E-typed and an F-typed
node, connected with an edge, and moves incoming edges to the E-typed node
and outgoing edges to the F-typed node. r1 is applied to the A-typed node a
of G. r2 is applied to both B-typed nodes b, c, while r3 is only applied to b.

In the first step, the parallel production M → R′ and the connection
transformations Z resulting from all matches are computed:

M =

a
�� ��A

b′
�� ��B

b
�� ��B c

�� ��B

→ R′ =

a
�� ��A //κ

�� ��C

µ
�� ��E //ν

�� ��F

λ
�� ��D λ′

�� ��D

,

Z =
{
Z1 =

(
b, (N in

∗ , in, ∗, 1), λ
)
, Z2 =

(
b, (Nout

∗ , out, ∗, 1), λ
)
,

Z3 =
(
c, (N in

∗ , in, ∗, 1), λ′
)
, Z4 =

(
c, (Nout

∗ , out, ∗, 1), λ′
)
,

Z5 =
(
b′, (N in

∗ , in, ∗, 1), µ
)
, Z6 =

(
b′, (Nout

∗ , out, ∗, 1), ν
)}
.

The mapping M → R′ as well as the match M → G are indicated by the
identifiers a, b, b′, c, where both b, b′ ∈M are mapped to b ∈ G.

Next, we have to consider all connection transformations in Z. Z1 uses
the edge from a to b to create an edge from a to λ, Z2 uses the edge from
b to d to create an edge from λ to d. Z2 in combination with Z3 detects the
edge from b to c and creates an edge from λ to λ′. Z4 does not lead to a
connection edge. Z5 is similar to Z1 and creates an edge from a to µ. Finally,
Z6 is similar to Z2 and creates both an edge from ν to d and in combination
with Z3 an edge from ν to λ′. Because a and d do not specify a connection
transformation by themselves, they define the set

∑
k Uk which has to be

added to the production:

M +
∑

k

Uk =

a
�� ��A

b′
�� ��B d′

�� ��A

a′
�� ��A b

�� ��B c
�� ��B

→ R′ +
∑

k

Uk =

a
�� ��A //κ

�� ��C

µ
�� ��E //ν

�� ��F d′
�� ��A

a′
�� ��A λ

�� ��D λ′
�� ��D

.

Both a, a′ are mapped to a ∈ G, d, d′ to d ∈ G. Now we can add the connection
edges

∑
k C

′
k and

∑
k Ck to the right-hand side:

112 5 Relational Growth Grammars

R′′ =

a
�� ��A //κ

�� ��C

µ
�� ��E //ν

�� ��F //d′
�� ��A

a′
�� ��A //

OO

λ
�� ��D

;;xxxx
λ′

�� ��D

, R =

a
�� ��A //κ

�� ��C

µ
�� ��E //ν

�� ��F //

##FFFF
d′

�� ��A

a′
�� ��A //

OO

λ
�� ��D //

;;xxxx
λ′

�� ��D

.

Applied to G, this yields the parallel RGG derivation

G =
d
�� ��A

a
�� ��A //b

�� ��B //

==zzzz
c
�� ��B

=⇒ H =

�� ��C
�� ��E //ν

�� ��F //

!!DDDD
d
�� ��A

a
�� ��A //

OO >>}}}} �� ��D //

==zzzz �� ��D

.

If, for example, the connection transformation of r3 for outgoing edges has 0
instead of 1 as h-component, Z6 changes to (b′, (Nout

∗ , out, ∗, 0), ν). Then the
edge from ν to d is not created as d has no matching connection transforma-
tion.

5.6 Control Flow and Relational Growth Grammar

The simulation of the parallel mode of a (deterministic) L-system is obtained
if every rule is applied via every possible match within a single parallel deriva-
tion. Generalizations like table L-systems [166] divide the set of productions
into subsets such that, depending on the current state which may be, e. g.,
the number of already performed derivations or the current word, only pro-
ductions from one subset are active within a derivation. Similar regulations
of active productions have also been defined for graph grammars, a review is
contained in [173]. All these mechanisms can be captured by a control flow
which selects rules and their matches based on the current state which is taken
here to be the host graph. (We could also model the state by some variable
outside of the graph, which is more realistic in practice, but for the theory
we may think of some distinguished state node in the graph with a lot of
attributes.)

Definition 5.20 (control flow). Let r be a family of rules as before. A con-
trol flow ϕ for r is a mapping which assigns to each graph G a family of
finite (possibly empty) sets of matches for r in G, ϕ : G 7→ (mi)i∈I with
mi ⊆ Hom(Li, G). The derivation G

ϕ
=⇒ H according to the control flow ϕ is

the parallel RGG derivation using r via ϕ(G).

Definition 5.21 (relational growth grammar). A relational growth gram-
mar is given by a family r of rules with a control flow ϕ and a start graph α.
The sequence of generated graphs Gn is given by derivations according to the
control flow, α

(
ϕ
=⇒
)n

Gn. The generated language is the set
⋃

n∈N0
Gn.

5.6 Control Flow and Relational Growth Grammar 113

Remark 5.22. The definition of a control flow and its derivation is determin-
istic, so relational growth grammars are deterministic. Because their field of
application uses them to generate graphs, this is no practical restriction: the
control flow may utilize a pseudorandom number generator to choose rules
and matches; its seed would be part of the state, i. e., of the current graph.

Example 5.23 (Sierpinski grammar). A simple example for a relational growth
grammar is the Sierpinski grammar [191]. It models the Sierpinski construc-
tion (see Sect. 2.3 on page 13 and L-system (3.2) on page 21) as a graph,
but not in the sense of Ex. 4.32 on page 61 where a node represents a black
triangle: instead of this, a node represents a vertex so that each black trian-
gle is represented as a graph of three circularly connected vertices. We use
a node type V for the vertices and the three edge types e0, e120, e240 from
the previous Sierpinski examples which stand for edges at 0◦, 120◦ and 240◦,
respectively, in the usual 2D representation and which are drawn as solid,
dashed, or dotted arrows. So the start graph (the initiator of the Sierpinski
construction) is given by

α =

�� ��V

���� ��V //
�� ��V

YY3
3

3

and the rule (generator of the Sierpinski construction) is given by

r =

(
L =

c
�� ��V

��
a
�� ��V //b

�� ��V

ZZ4
4

4 ,Hom(L, ·),

m 7→
(
m(L)→

c
�� ��V

���� ��V

��

//
�� ��V

YY2
2

2

��
a
�� ��V //

�� ��V //

YY2
2

2
b
�� ��V

YY2
2

2

)
,m 7→ ∅

)
.

The usage of three edge types allows to identify “black” triangles, i. e., those
triangles where the generator shall be applied. For example, the triangle in
the centre of the right-hand side is not black because its edges are arranged
in the wrong order. It does not match the left-hand side.

Now the control flow simply applies r in parallel at every possible location,
i. e., it assigns to the current graph G all possible homomorphisms from L to
G as matches for r:

114 5 Relational Growth Grammars

ϕ : G 7→ (Hom(L,G)).

Then the generated language of this relational growth grammar consists of all
finite approximations of the Sierpinski graph. After two derivation steps, we
obtain

G2 =

�� ��V

���� ��V

��

//
�� ��V

YY2
2

2

���� ��V //

��

�� ��V //

YY2
2

2 �� ��V

YY2
2

2

���� ��V

��

//
�� ��V

YY2
2

2

��

�� ��V

��

//
�� ��V

YY2
2

2

���� ��V //
�� ��V //

YY2
2

2 �� ��V

YY2
2

2
//
�� ��V //

YY2
2

2 �� ��V

YY2
2

2

.

5.7 Relations within Rules

As the name indicates, relational notions play an important role within re-
lational growth grammars and their applications. Relations in this context
are binary predicates for nodes: given two nodes a, b, a relation R either ex-
ists between them or not. The simplest type of relations is given by edges.
Edges “materially” or intrinsically represent the existence of a relation be-
tween their incident nodes. But we may also have derived relations which are
given by some algorithmic prescriptions, e. g., spatial distance being below a
threshold. This is similar to the distinction between intrinsic and derived at-
tributes, where values of the former are directly stored as part of their owner,
while the latter are given by formulas involving attributes and structure. The
basic notion is captured by the definition of an RGG relation.

Definition 5.24 (RGG relation). An RGG relation R is, for each graph
G, a decidable subset RG of GV ×GV . If (a, b) ∈ RG, i. e., if the nodes a, b of
G are in relation according to R, we also write RG(a, b).

The special case of edges is obtained straightforwardly:

Definition 5.25 (edge relation). An edge relation Re is induced by an edge
type e ∈ ΛE, namely Re

G(a, b)⇔ ∃(a, t, b) ∈ G, t ≤ΛE
e.

Also boolean-valued functions (binary predicates) and unary node-valued
functions induce relations in a natural way:

Definition 5.26 (binary predicate relation). A binary predicate relation
Rp is induced by a G-indexed family of boolean-valued functions pG : GV ×
GV → {0, 1}, namely Rp

G(a, b)⇔ pG(a, b) = 1.

5.8 Incremental Modification of Attribute Values 115

Definition 5.27 (node function relation). A node function relation Rf is
induced by a G-indexed family of unary node-valued functions fG : GV → GV ,
namely Rf

G(a, b)⇔ b = fG(a).

Given a relation R, new relations can be defined on its basis. The most
important ones are transitive closures. If RG(a, b) and RG(b, c), this does not
necessarily imply RG(a, c), i. e., RG is not necessarily transitive. However, this
transitivity holds for the transitive closure of R which is the least transitive
relation which contains R as a subrelation, i. e., which relates all elements
related by R. As an example, the transitive closure of an edge relation Re

relates an ordered pair (a, b) of nodes if they are connected by a path of e-
typed edges from a to b. If the transitive closure is reflexive, nodes are in
relation with themselves, i. e., even paths of zero length are considered.

Definition 5.28 (transitive closure). Let R be an RGG relation. Its tran-
sitive closure R+ is, for every graph G, the least transitive relation R+

G with
RG(a, b)⇒ R+

G(a, b). Its reflexive, transitive closure R∗ is, for every graph G,
the least reflexive, transitive relation R∗

G with RG(a, b)⇒ R∗
G(a, b).

As relations are a generalization of edges, it makes perfectly sense to use
them for the left-hand side of a rule (L, c, p, z) just like edges. In the theory,
edges of the left-hand side can be specified directly as part of L, while general
relations have to be included as part of the application condition c. A set of
relations is thus treated as a relational application condition which is fulfilled
if and only if every single relation is fulfilled, where a single relation Ri is
evaluated for the match of two nodes ai, bi of the left-hand side of a rule.

Definition 5.29 (relational application condition). A relational appli-
cation condition c on Hom(L, ·) is an application condition of the form
c =

{
x ∈ Hom(L, ·)

∣∣∀i ∈ I : Ri
cod x(x(ai), x(bi))

}
with a finite index set I,

relations Ri and nodes ai, bi ∈ L.

Note that although the theory makes a distinction between edges and
general relations, a concrete programming language may provide a syntax for
left-hand sides of rules which unifies edges and general relations (see Sect. 6.5.3
on page 148).

5.8 Incremental Modification of Attribute Values

Parallel SPO derivations are well-defined if they modify the structure and
there are no graph constraints restricting the allowed number of edges at
a node. Conflicts are resolved in a unique and meaningful manner. How-
ever, parallel modifications of attribute values may lead to more than one
attribute edge for the same attribute at a single node, this of course violates
the graph constraints for attributed graphs (the graph is not strict in the sense

116 5 Relational Growth Grammars

of Def. 4.71 on page 77). There is simply no sensible definition of the assign-
ment of different values to an attribute of an object in parallel. What does
make sense is the incremental modification of attribute values in parallel: the
addition of several increments, the multiplication by several factors, or in gen-
eral the application of mutually commutative operations in parallel. We may
think of some dynamical system with independent processes (for example, a
time-discrete approximation of a system of ordinary differential equations),
each of which depends on numeric attributes of nodes and at the same time
modifies these attributes by small increments within a step. In order to imple-
ment such a system using an imperative programming language, one usually
makes a copy of the current state, uses this copy throughout the whole step
as input to the processes and then computes and applies the increments in a
sequential way. By using the copy, one ensures that the processes consistently
use the previous values of attributes instead of a mixture of previous, inter-
mediate and new ones depending on the order of sequentialization. (But there
are also algorithms like the Gauß-Seidel method which take advantage of the
early availability of at least some new values.)

Within parallel graph rewriting, we can (and have to) take another way: we
can use incremental modification edges from the node whose attribute is to be
modified to the value by which it is modified. After a parallel derivation which
has created such edges, the control flow has to apply cumulating productions
sequentially as long as possible, where each sequential derivation cumulates
a single incremental modification edge into the attribute value as shown in
Fig. 5.1. Of course, we have to impose the graph constraint that for each object
and attribute there are at most incremental modification edges of mutually
commutative operations. E. g., incremental addition and multiplication at the
same time are not commutative and, thus, cannot be defined reasonably.

v a

©

attr

OO

attr+

??~~~~~~~
→

v + a

©

attr

OO 20 19 3

©

attr
OO

attr+

??�������attr+

``AAAAAAAA
⇒

39 3

©

attr

OO

attr+

??�������
⇒

42

©

attr

OO

(a) (b)

Figure 5.1. Incremental modification: (a) cumulating production for incremental
addition of attribute ‘attr’, additive increments are encoded by edge type ’attr+’;
(b) sequential derivations perform addition

Appendix 5.A Proofs

In order to prove Theorem 5.8, we need an auxiliary lemma concerning the
translation T from well-nested words to graphs (see Def. 5.2 on page 96):

5.A Proofs 117

Lemma 5.30 (decomposition law for T). Let χ, ν be well-nested words
over V . For node sets R,L,B, where L,R may also contain the non-node
symbol %, define

E(R,L,B) :=
⋃

n∈R\{%}

 ⋃
m∈L\{%}

(n,>,m) ∪
⋃

m∈B

(n,+,m)

 .

I. e., the set E(R,L,B) contains exactly those edges which arise when the
nodes of R are connected with the nodes of L by successor edges and with the
nodes of B by branch edges. Then we have

TG(χν) = TG(χ) ∪ TG(ν) ∪ E
(
TR(χ), TL(ν), TB(ν)

)
,

TL(χν) =
{
TL(χ) : TL(χ) 6= ∅
TL(ν) : otherwise ,

TB(χν) =
{

TB(χ) : TL(χ) 6= ∅
TB(χ) ∪ TB(ν) : otherwise .

Remark 5.31. To simplify the notation, we assume that the node n to which a
symbol a at a given position p in the current word µ is mapped by T is inde-
pendent of the splitting of µ, i. e., if χν = χ′ν′ = µ are two splittings of µ such
that p is contained in χ and ν′, the corresponding node in TG(χν), TG(χ′ν′) is
the same. Without this simplification, we would have to work with equivalence
classes of graphs.

Proof. The decomposition law for TL and TB is obtained easily: if TL(χ) 6= ∅,
it follows from Def. 5.2 on page 96 that there must be some symbol a ∈ V ∪{%}
such that χ = µaω where ω is a well-nested word and µ is a possibly empty
sequence of well-nested words in brackets, µ = [µ1] . . . [µk]. But then a is also
the left-most non-bracketed symbol of TL(χν), and it follows from Def. 5.2
that TL(χν) = TL(χ) and TB(χν) = TB(χ). Otherwise, if TL(χ) = ∅, it
follows χ = [µ1] . . . [µk] and then TL(χν) = TL(ν), TB(χν) = TB(χ)∪TB(ν).

The identity for TG is proved by structural induction with respect to χ
according to the grammar for well-nested words in Def. 5.1 on page 96. The
induction starts with the empty word χ = ε for which the identities are easily
verified. Assuming that we have proved the claim for χ, we have to show its
validity for %χ, [χ′]χ and aχ. For the first case, we have

TG(%χν) = TG(χν) = TG(χ) ∪ TG(ν) ∪ E
(
TR(χ), TL(ν), TB(ν)

)
= TG(χ) ∪ TG(ν) ∪ E

(
{%} ∪ TR(χ), TL(ν), TB(ν)

)
= TG(%χ) ∪ TG(ν) ∪ E

(
TR(%χ), TL(ν), TB(ν)

)
.

For the second case, we have

TG([χ′]χν) = TG(χ′) ∪ TG(χν)
= TG(χ′) ∪ TG(χ) ∪ TG(ν) ∪ E

(
TR(χ), TL(ν), TB(ν)

)
= TG([χ′]χ) ∪ TG(ν) ∪ E

(
TR([χ′]χ), TL(ν), TB(ν)

)
.

118 5 Relational Growth Grammars

For the third case, we have to show that

TG(aχν) = {n} ∪ TG(χν) ∪ E
(
{n}, TL(χν), TB(χν)

)
= {n} ∪ TG(χ) ∪ TG(ν) ∪ E

(
TR(χ), TL(ν), TB(ν)

)
∪ E

(
{n}, TL(χν), TB(χν)

)
equals

TG(aχ) ∪ TG(ν) ∪ E
(
TR(aχ), TL(ν), TB(ν)

)
={n} ∪ TG(χ) ∪ TG(ν) ∪ E

(
TR(aχ), TL(ν), TB(ν)

)
∪ E

(
{n}, TL(χ), TB(χ)

)
.

If TL(χ) 6= ∅, we also have TR(χ) 6= ∅ and conclude the equality from Def. 5.2
on page 96 and this lemma for TL, TB . Otherwise, If TL(χ) = ∅, we also have
TR(χ) = ∅ and conclude the equality in a similar way. ut

Now we are ready to prove the equivalence theorem from page 100, which
is repeated here:

Theorem 5.8 (equivalence of axis-propagating L-system and trans-
lated graph grammar). Let V, VB be as in Def. 5.1 on page 96. Let G =
(VB , α, P) be a D0L-system such that P = {%→%, [→[,]→]} ∪ P ′ where P ′

contains only axis-propagating productions. Then G is equivalent to the trans-
lated parallel graph grammar with operators T (G) =

(
TG(α), {T (p) | p ∈ P ′}

)
in the sense that for every derivation the diagram

µ

T G

��

G +3 ν

T G

��
TG(µ)

T (G) +3 TG(ν)

commutes.

Proof. We prove the theorem by structural induction with respect to µ ac-
cording to the grammar for well-nested words in Def. 5.1 on page 96. In order
for this to work, we have to prove five additional properties:

1. For t ∈ TL(ν)\{%}, there is a node u ∈ TL(µ) with connection transfor-
mations (N in

> , >, t), (N
in
+ ,+, t) ∈ τu.

2. For t ∈ TB(ν), there is a node u ∈ TL(µ) with connection transforma-
tions (N in

> ,+, t), (N
in
+ ,+, t) ∈ τu or a node u ∈ TB(µ) with a connection

transformation (N in
+ ,+, t) ∈ τu.

3. For u ∈ TL(µ)\{%} and (N in
> , γ, t) ∈ τu, we have either t ∈ TL(ν) and

γ = > or t ∈ TB(ν) and γ = +.

5.A Proofs 119

4. For u ∈ TL(µ)\{%} and (N in
+ , γ, t) ∈ τu, we have t ∈ TL(ν) ∪ TB(ν) and

γ = +.
5. For u ∈ TB(µ) and (N in

+ , γ, t) ∈ τu, we have t ∈ TB(ν) and γ = +.

τu denotes the set of connection transformations which are associated with
the predecessor node u by the derivation within T (G), see the notation of
Def. 4.41 on page 66. But note that we simplify the notation with respect to
t: t is a node of the derived graph, while connection transformations use nodes
of productions. With the notation of Def. 4.41 we would have to write h−1(t)
instead of t.

The induction starts with the empty word µ = ε for which all conditions
are trivially satisfied. Assuming that we have proved the cases µ G=⇒ ν and
µ′

G=⇒ ν′, the diagram

%µ

T G

��

G +3 %ν

T G

��
TG(%µ)

T (G) +3 TG(%ν)

commutes because TG(%µ) = TG(µ), TG(%ν) = TG(ν), and the additional
properties hold because the sets are empty. (For %µ G=⇒ %ν we have used the
fact that G replaces % by %.) Also the diagram

[µ′]µ

T G

��

G +3 [ν′]ν

T G

��
TG([µ′]µ)

T (G) +3 TG([ν′]ν)

commutes: we have TG([µ′]µ) = TG(µ′) ∪ TG(µ) so that there are no edges
between the parts TG(µ′) and TG(µ). Consequently, there are no connection
edges between the successors of these parts because the operators Nd

λ cannot
reach from one part to the other. So the derivation within T (G) can be done
separately for each part, this yields commutativity for the diagram. Since
TL([µ′]µ) = TL(µ), TL([ν′]ν) = TL(ν) and TB([ν′]ν) ⊇ TB(ν), the validity
of properties 1, 3 and 4 follows directly from the validity for the case µ G=⇒ ν.
For property 2 with t ∈ TB([ν′]ν), we

• either have t ∈ TB(ν) and the validity follows from the same property for
µ

G=⇒ ν,
• or we have t ∈ TB(ν′) and conclude from property 2 of µ′ G=⇒ ν′ that there

is a node u ∈ TL(µ′) ∪ TB(µ′) ⊆ TB([µ′]µ) with (N in
+ ,+, t) ∈ τu,

• or we have t ∈ TL(ν′) and conclude from property 1 of µ′ G=⇒ ν′ that there
is a node u ∈ TL(µ′) ⊆ TB([µ′]µ) with (N in

+ ,+, t) ∈ τu.

120 5 Relational Growth Grammars

For property 5 with u ∈ TB([µ′]µ), we

• either have u ∈ TB(µ) and use property 5 of µ G=⇒ ν,
• or we have u ∈ TB(µ′) and use property 5 of µ′ G=⇒ ν′,
• or we have u ∈ TL(µ′) and use property 4 of µ′ G=⇒ ν′ together with

TL(ν′) ∪ TB(ν′) ⊆ TB([ν′]ν).

It remains to prove the case

aµ

T G

��

G +3 χν

T G

��
TG(aµ)

T (G) +3 TG(χν)

for a→ χ ∈ P, a ∈ V . We have TG(aµ) = {n}∪TG(µ)∪E({n}, TL(µ), TB(µ))
with some unique a-labelled node n. Lemma 5.30 allows us to decompose
TG(χν) = TG(χ) ∪ TG(ν) ∪ E(TR(χ), TL(ν), TB(ν)), Furthermore, we have

{n} T (G)
===⇒ TG(χ) and TG(µ)

T (G)
===⇒ TG(ν). What we have to show is that

the connection edges between TG(χ) and TG(ν) which are created by the
derivation of TG(aµ) are exactly the edges E(TR(χ), TL(ν), TB(ν)).

• For an edge (s,>, t) of the latter set, we have s ∈ TR(χ), t ∈ TL(ν) and
deduce from property 1 that there is a node u ∈ TL(µ) with (N in

> , >, t) ∈
τu and from Def. 5.6 on page 100 that (Nout

> , >, s) ∈ σn. As there is a
successor edge from n to u in TG(aµ), the operators match for (s, t) and
thus create an edge (s,>, t).

• For an edge (s,+, t) we have s ∈ TR(χ), t ∈ TB(ν) and deduce from
property 2 that there is
– a node u ∈ TL(µ) with (N in

> ,+, t) ∈ τu and from Def. 5.6 that
(Nout

> ,+, s) ∈ σn. As there is a successor edge from n to u in TG(aµ),
the operators match for (s, t) and thus create an edge (s,+, t).

– or a node u ∈ TB(µ) with (N in
+ ,+, t) ∈ τu and from Def. 5.6 that

(Nout
+ ,+, s) ∈ σn. As there is a branch edge from n to u in TG(aµ),

the operators match for (s, t) and thus create an edge (s,+, t).

On the other hand, let (s, γ, t) be a connection edge created by T (G) between
the parts TG(χ) and TG(ν). Then there must be a predecessor node u ∈ TG(µ)
and an edge (n, λ, u) ∈ TG(aµ) such that (Nout

λ , γ, s) ∈ σn and (N in
λ , γ, t) ∈

τu. From (Nout
λ , γ, s) ∈ σn and Def. 5.6 we deduce s ∈ TR(χ). The existence

of the edge (n, λ, u) implies that

• either u ∈ TL(µ) and λ = >. In this case property 3 implies t ∈
TL(ν) and γ = > or t ∈ TB(ν) and γ = +. But then (s, γ, t) is in
E(TR(χ), TL(ν), TB(ν)).

• or u ∈ TB(µ) and λ = +. From property 5 we deduce t ∈ TB(ν) and
γ = + so that (s, γ, t) already is in E(TR(χ), TL(ν), TB(ν)).

5.A Proofs 121

Finally, we have to check the properties. We have TL(aµ) = {n} and, due
to the axis-propagating precondition TL(χ) 6= ∅ and Lemma 5.30, TL(χν) =
TL(χ) and TB(χν) = TB(χ). Thus, for t ∈ TL(χν) we obtain t ∈ TL(χ),
and property 1 follows from Def. 5.6 with u = n. For t ∈ TB(χν) we obtain
t ∈ TB(χ), and property 2 follows analogously to property 1. For properties 3
and 4, we have u = n again and use Def. 5.6 to show their validity. Property
5 is trivially fulfilled since TB(aµ) = ∅. ut

Part II

Design and Implementation
of the XL Programming Language

125

The concept of relational growth grammars which was introduced in Chap. 5
may serve as an underlying formalism for programming languages within the
rule-based paradigm. One needs a concrete programming language which im-
plements this concept in order to actually make use of relational growth gram-
mars. Three tasks have to be coped with:

• A specification for the programming language has to be developed.
• An interpreter or compiler has to be implemented so that programs can

be understood by a computer.
• A run-time library has to be provided which contains fundamental data

structures, basic functions and, depending on the field of application, a
set of further facilities, for example 3D geometric objects for 3D plant
modelling and corresponding functions to compute geometric properties
like the distance.

These tasks are considerably simplified if one uses an existing programming
language as basis and builds an implementation language of relational growths
grammars on top.

We chose the Java programming language as basis and defined the XL
programming language as an extension of the Java programming language.
For the XL programming language, the concept of relational growth grammars
can be implemented in a relatively easy way. The name XL may be seen as a
reminiscence of L-systems, namely as the acronym of eXtended L-systems.

Choosing the Java programming language as basis has several advantages:

• The Java programming language is a widely used, platform-independent
object-oriented programming language.

• It has a clean and simple language design (simple at least compared to
C++).

• Due to its popularity, the range of available libraries is one of the widest
for programming languages. Even the standard run-time library covers a
wide range of applications.

• Programs and libraries written in the Java programming language are
usually compiled for the Java virtual machine. Compiling for the Java
virtual machine is much simpler than compiling to typical native machine
code.

Since the Java programming language in itself has no graph- or rule-based fea-
tures, these requirements for relational growth grammars have to be addressed
by the extension XL.

Of course, we could also have chosen an existing rule-based language as
basis and enrich it with the missing features. However, existing rule-based
languages and their libraries are not even approximately as widespread and
extensive as it it the case for the Java programming language, so the increase
in value inherited by the basis language would have been relatively small.

6

Design of the Language

This chapter describes the design of the XL programming language. Although
the presentation is relatively streamlined, the process of finding this final
design was not, but we believe that we arrived at a consistent, useful and
general programming language not only for rule-based programming.

6.1 Requirements

The requirements which the XL programming language has to fulfil are derived
from the possibility to specify relational growth grammars in a convenient way.
They can be divided into several parts:

• A type graph with inheritance can be specified, the user can define new
types.

• There is a syntax for rules in general, consisting of a left-hand side and a
right-hand side (Def. 5.12 on page 107).

• Both SPO gluing (i. e., identification of objects of the left- and right-hand
side) and connection transformations are supported.

• The rule syntax supports application conditions (Def. 5.11 on page 106).
• Relations as discussed in Sect. 5.7 on page 114 have a convenient syntax,

including their transitive closures.
• The dynamic creation of the successor can be specified (Sect. 5.4 on

page 105).
• Attribute values can be assigned as part of a parallel derivation. This

includes the incremental modification of attribute values (Sect. 5.8 on
page 115).

• The control flow which governs the application of rules is specifiable (see
Def. 5.20 on page 112 and the discussion in Sect. 5.1 on page 92).

• Query and aggregate expressions are supported (see the discussion in
Sect. 5.1 on page 93). Query expressions should reuse the syntax of left-
hand sides.

128 6 Design of the Language

6.2 Design Guidelines

Since the XL programming language shall be defined as an extension of the
Java programming language, the extension has to be designed such that it
coheres syntactically and semantically with the Java programming language.
For example, the Java programming language makes extensive use of sym-
bols, thus following the tradition of the C programming language: With the
exception of new and instanceof, all operators are represented by symbols,
subexpressions are tied together with parentheses. Statements are grouped
together by blocks, whose boundaries are marked by the symbols { and }.
Keywords are mainly used at higher levels, namely for statements which influ-
ence the control flow (e. g., if, for, break, throw), for declarations (e.g, class,
public) and for primitive types. Thus, extensions of the Java programming
language should use mostly symbols at the level of expressions, statements
and grouping, and should use keywords at higher levels.

Besides coherence, also generality is one of the guidelines for the design of
the XL programming language. The requirements posed by relational growth
grammars are of a relatively concrete nature, but if one finds the “right”
abstraction so that the XL programming language in itself makes no refer-
ence to a specific graph structure or a specific mode of rewriting at all, then
it is possible to use the language not only for relational growth grammars,
but also as a general language with support for the rule-based paradigm in
various fields of application, e. g., the rule-based transformation of XML docu-
ments or a mechanism similar to vertex-vertex algebras to transform polygon
meshes (Sect. 4.8.4 on page 85). Even the implementation of relational growth
grammars presented in Appendix B derives benefit from this generality, as it
provides for easily realizable extensions to the original specification of re-
lational growth grammars. An obvious presupposition for generality is that
the XL programming language must not make any reference to some target
application, e. g., to the modelling platform GroIMP which is presented in
Appendix A.

The underlying Java programming language does not define a syntax for
rules, so in principle, we are free in designing this syntax. However, in this case
the guideline of coherence should be followed with suitable existing rule-based
languages in mind. We chose the L-system languages of GROGRA and cpfg
as patterns.

In the following sections, we discuss the design of the new features of
the XL programming language at which we finally arrived on the basis of
the general guidelines. A thorough specification is presented in [95]. For a
complete understanding, the reader is expected to be familiar with the Java
programming language as defined by the Java language specification in its
third edition [72]. The discussion often refers to types declared in subpack-
ages of de.grogra.xl, additional Javadoc documentation for these types is
available at the website of the project [101].

6.3 Generator Expressions 129

Note that the presented features are arranged in a logical order such that
subsequent sections base on previous sections. For this reason, we do not
start with the discussion of rules. However, for a more concrete discussion it
is sometimes necessary to show code examples which use features that have
not yet been explained.

6.3 Generator Expressions

One of the requirements for the XL programming language is to be able to use
query expressions and aggregate functions. As we have discussed in Sect. 5.1
on page 93, query expressions find matches of a pattern in a graph such as
all nodes of a given type which fulfil some condition, and aggregate functions
compute aggregated values based on the result of a query, for example the sum
of some numeric attribute of the found matches. Within the XL programming
language, an example is the expression

sum((* f:F, (f.diameter > 0.01) *).length)

which finds all nodes of type F (think of nodes of a 3D scene graph representing
a line or cylinder like the turtle command F), binds them to the identifier f,
checks if the application condition f.diameter > 0.01 is fulfilled, obtains
their length values, and computes the sum of the latter. The query is the
part enclosed in asterisked parentheses, sum is an aggregate function.

If we abstract from the example, we arrive at the classical producer/con-
sumer pattern: a query expression is s special kind of a general class of expres-
sions which produce multiple values, and an aggregate expression consumes
multiple values as input and returns a single result. We call expressions which
produce multiple values generator expressions, this name has been adopted
from the Python programming language [162]. For the implementation of gen-
erator expressions, there are several possibilities:

1. We can return an array which contains all values. This would be a very
simple solution which is already available within the Java programming
language. But it has the major disadvantage that all values have to be
computed and stored in advance. This is a disadvantage with respect to
both time and memory. For example, assume that we want to know if the
multiple values contain a value which fulfils some condition. If we have
found such a value, we do no longer need the remaining ones. However,
using an array they would have been computed in advance for nothing,
thereby wasting time. And if we need multiple values just to compute an
aggregated value, we often do not need simultaneous knowledge about all
values. For example, to compute a sum it suffices to know a single value
at a time and add this value to a temporary variable.

2. Likewise, we may use a java.util.List. Because lists allow random ac-
cess to their elements, we also would have to compute the values in advance
so that the same considerations as for arrays hold.

130 6 Design of the Language

3. We may use a java.util.Iterator. This interface declares the method
hasNext to check whether there is a further value and the method next
to fetch this value. Using this technique, only those values are computed
which are actually used, and there is no need to store all computed values
simultaneously. This solves the problems concerning time and memory,
thus iterators are a good candidate for generator expressions.

4. We can also use a callback interface with a single method consume which
receives a value. Compared to the previous technique, this reverses the
responsibilities: using iterators, the consumer which is interested in values
invokes next on the producer to fetch the next value; using callback in-
terfaces, the producer invokes consume on the consumer to pass the next
value. This approach also has no memory overhead, and if the consumer
has a possibility to tell the producer that no further values are needed,
there is no unneeded computation of values. It is called internal iterators
because the iteration logic is internal to the iterator, while the iterators
of the previous approach are called external [62].

5. If the Java virtual machine were not the target machine, we could use
coroutines [102]. Coroutines may temporarily suspend execution and give
control back to their callers. Later, their execution can be resumed just
after the point where they have been suspended. However, such a mecha-
nism is in conflict with the purely stack-based Java virtual machine.

Only the options 3 and 4 are eligible. Using internal iterators, producers can
be specified in a natural way. For example, with a suitable interface Consumer
a method which produces all int-values from 0 to n is easily specified in the
Java programming language like

void produce(Consumer<Integer> consumer, int n) {

for (int i = 0; i <= n; i++) {

consumer.consume(i);

}

}

But the usage of this producer method is relatively complicated because we
have to provide an implementation of the callback interface (a closure):

class Sum implements Consumer<Integer> {

int tmp = 0;

public void consume(Integer value) {

tmp += value;

}

}

Sum s = new Sum();

produce(s, 100);

int sum = s.tmp;

6.3 Generator Expressions 131

Note that although this example has no explicit support to allow the consumer
to terminate the producer loop, this is nevertheless possible by throwing and
catching an exception.

Using external iterators, the situation is reversed: external iterators re-
quire to remember the state of the producer between invocations of next
which makes producer implementations difficult. The producer could be im-
plemented like

class Producer implements Iterator<Integer> {

int i = 0;

int n;

boolean done;

Producer(int n) {

this.n = n;

this.done = n < 0;

}

public boolean hasNext() {

return !done;

}

public Integer next() {

done = i == n;

return i++;

}

public void remove() {

throw new UnsupportedOperationException();

}

}

In this case, remembering the state is simple. But for more complex producers,
the state becomes complex and even includes several stack frames for recursive
algorithms like pattern matchers for queries. Because the Java virtual machine
does only allow to access its current stack frame, recursive algorithms would
have to be specified without recursive method invocations, i. e., they would
have to manage a stack-like structure (e. g., a tree path) by their own. On
the other hand, external iterators allow the consumer to be implemented in a
natural way:

int sum = 0;

for (Iterator<Integer> it = new Producer(100); it.hasNext();) {

sum += it.next();

}

A technique to convert an internal iterator to an external one is to use an
own thread for the internal iterator and to properly synchronize the methods
consume and next (which run on different threads). This is the classical solu-
tion for the producer/consumer pattern and is also used by pipes of modern

132 6 Design of the Language

operation systems. However, it is only appropriate for transferring large data
streams because setting up an own thread and the synchronization mecha-
nism require a lot of time. Thus, it is not feasible for our purposes since query
expressions may be evaluated frequently and typically return only small sets
of values.

The conversion from an external iterator to an internal one is simple, we
just need a loop which iterates over the external iterator and passes every
value to the consumer.

Because we are defining our own programming language, we are free to
introduce some translation scheme which moves the burden to implement
the consumer interface for internal iterators or remembering the state for
external iterators from the programmer to the compiler. For example, the C#
programming language allows to implement an external iterator using a yield
return as if it were an internal iterator [41]:

class EnumProducer: IEnumerable<int> {

int n;

EnumProducer(int n) {

this.n = n;

}

public IEnumerator<int> GetEnumerator() {

for (int i = 0; i <= n; i++) {

yield return i;

}

}

}

Now a compiler has to generate a suitable implementation of IEnumerator
as an external iterator which saves the state internally. A similar approach
is defined for the Python programming language. While this is a convenient
solution for non-recursive producers, it fails for recursive implementations.

Now for the XL programming language, we have to decide whether to
use external or internal iterators. Because we have recursive structures like
graphs in mind, recursive algorithms for producers will occur frequently (in
particular the built-in support for queries). Compared to such algorithms,
consumers will be relatively simple, for example simple loops or aggregate
functions like the summation of all values. Thus it is reasonable to shift the
burden from producers to consumers and to use internal iterators. To hide
this from the XL programmer, the necessary consumer code is generated by
a compiler for the XL programming language. For example, for the code

int sum = 0;

for (int value : produce(100)) {

sum += value;

}

System.out.println(sum);

6.3 Generator Expressions 133

(which uses the syntax of the enhanced for statement of the Java programming
language) a compiler could generate a consumer implementation like

f inal int[] sum = {0};

produce(new Consumer<Integer>() {

public void consume(Integer __value) {

int value = __value;

sum[0] += value;

}

}, 100);

System.out.println(sum[0]);

I. e., the body of the loop has to be moved to the body of the consume method.
The replacement of sum by an array with a single element is necessary in order
to allow the consumer class to modify the value of sum in the enclosing block.
This can be seen as a simulation of pointers like those from the C programming
language. The final modifier is required by definition of the Java programming
language, without this modifier the anonymous Consumer class would not be
allowed to access sum.

The XL programming language defines several types of generator expres-
sions. Besides generator methods like produce in the above example, there are
also query expressions, the range operator a : b, the array generator a[:]
and the guard expression a :: b. Expressions of type java.lang.Iterable
can also be used as generator expressions, they yield all values of the corre-
sponding external iterator.

All types of generator expressions can be used in an enhanced for statement
as shown above. They may also be combined with other expressions as in

produce(100) * 2

produce(100) * produce(10)

produce(produce(100))

System.out.println(produce(100));

If an expression statement such as System.out.println(produce(100));
has a generator expression, there is an implicit loop over its values.

6.3.1 Generator Methods

As generator expressions are handled by internal iterators, the declaration of
generator methods, i. e., methods which return multiple values in succession,
is easy. Such a method has to receive an additional argument for the consumer
to which it can pass its return values one after another. As we have used it
in the examples above, the type for a consumer could be an invocation of a
generic interface declared as

�interface�

Consumer〈T〉
+ consume(value: T)

134 6 Design of the Language

But such a solution would have to box primitive values into wrapper instances
which is not efficient (note that we are about to define a core feature of the
XL programming language). For this reason, there is a special interface for
each primitive type and a generic interface for reference types:

�interface�

BooleanConsumer

+ consume(value: boolean)

. . .
�interface�

ObjectConsumer〈T〉
+ consume(value: T)

These interfaces are members of the package de.grogra.xl.lang which con-
tains those classes and interfaces to which the specification of the XL pro-
gramming language refers. Now methods with argument types

(BooleanConsumer consumer, ...)

...

(ObjectConsumer<? super T> consumer, ...)

where the ellipsis in arguments indicates an arbitrary number of further argu-
ments are considered to be generator methods of type boolean, . . . , T. If the
first consumer argument is omitted in an invocation, the invocation is treated
as a generator expression which yields all values to the implicit first argument
for which a compiler has to provide a suitable consumer implementation as in
the example on page 133.

To have a more convenient syntax for the implementation of generator
methods, we introduce a syntax for a method declaration using an asterisk
after the return type and the new keyword yield as in

int* produce(int n) {

for (int i = 0; i <= n; i++) {

yield i;

}

}

which shall be equivalent to the conventional method declaration

void produce(IntConsumer consumer, int n) {

for (int i = 0; i <= n; i++)

{

consumer.consume(i);

}

}

The usage of the yield keyword has been adopted from the Python program-
ming language [162]. The usage of the asterisk is suggested by its meaning “0
to n times” in regular expressions or in the notation V ∗ for all words (0 to n
symbols) over an alphabet V .

6.3.2 Range Operator

The expression

6.3 Generator Expressions 135

a : b

using the range operator also defines a generator expression. The range opera-
tor is defined for operand types int and long and yields the values a, a+1, . . . , b.
If a > b, no value is yielded at all. Because generator expressions are allowed
within an enhanced for statement, we may write such a loop as

for (int i : 0 : n) {

...

}

6.3.3 Array Generator

The array generator

a[:]

is a generator expression which yields all values of the elements of the array
a, starting with the element at index 0. For the purpose of for loops, there
is no need for such an expression because the Java programming language
already defines the syntax for (int v : a) {...}. But it is useful for implicit
loops such as System.out.println(a[:]); which prints all elements, or in
combination with aggregate methods as in sum(Math.abs(a[:])).

The expression a may also denote a generator function with void pa-
rameter, i. e., an instance of the interfaces VoidToBooleanGenerator, . . . ,
VoidToObjectGenerator, see Sect. 6.13.5 on page 188. In this case, the gen-
erator methods evaluateBoolean, . . . , evaluateObject, respectively, are in-
voked.

6.3.4 Guard Operator

The guard operator

a :: b

defines a generator expression which yields a if b is true and no value at all
if b is false. This is especially useful if a is a generator expression itself, then
the guard b filters the values yielded by a. The following generator expression
yields all lowercase letters from a String s:

char c;

...

(c = s.charAt(0 : s.length() - 1)) :: Character.isLowerCase(c)

136 6 Design of the Language

6.3.5 Filter Methods

Filter methods are a generalization of the guard operator. Their input is a
sequence of values. For each value, a filter method decides whether to yield
a result or not. In contrast to the guard operator, the result may differ from
the input in value or even in type. For example, we may have a filter method
which receives strings as input and yields their value as an int if they can be
parsed into an int and nothing otherwise. Or think of a filter method slice
such that slice(a, begin, end) for a generator expression a yields those
values with positions begin . . . end− 1 in the sequence.

The mechanism for filter methods invokes a filter method repeatedly with
the current value of the input generator expression. From this it follows that
the mechanism has to fulfil two requirements. First, there must be a possibility
for the filter method to remember its state (like a counter for the slice
method). Second, a filter method has to tell its invoker whether

• the value shall be ignored, i. e., no value shall be yielded as result of the
invocation,

• a result value shall be yielded which will be the last one,
• or a result value shall be yielded and there may be further ones.

The distinction between the last two cases allows a short circuit logic. If the
filter method knows that it will skip all remaining values (like the slice
method after end input values), it should indicate this so that the evaluation
of the input generator expression can be terminated. Both requirements are
fulfilled by the introduction of the interfaces

�interface�

FilterState

+ isAccepted(): boolean
+ isFinished(): boolean

�interface�

BooleanFilterState

+ getResult(): boolean

1_�qqqqq

. . .
�interface�

ObjectFilterState〈T〉
+ getResult(): T

2_M M M M M

in the package de.grogra.xl.lang and the convention that filter methods
whose result is of primitive type look like

F filter(F state, V value, ...)

where F is a subtype of the corresponding interface (BooleanFilterState,
. . .), and filter methods whose result is of reference type T look like

F filter(F state, Class<T> type, V value, ...)

where F is a subtype of ObjectFilterState<T>. For both cases, filter
stands for the method name, V is the type of the input generator expression,

6.3 Generator Expressions 137

and the ellipsis in an argument list indicates possible further arguments. Using
this setting, the first invocation of a filter method receives null as state pa-
rameter, and all following invocations receive the return value of the previous
invocation as state argument. Thus, a filter method can pass its state to its
next invocation. For reference types, the type argument has to be provided so
that a filter method knows the exact compile-time type of T also at run-time.
Now the methods of the FilterState interfaces inform the invoker of the fil-
ter method about the result of filtering, whether the value has been accepted
at all and if the filter is finished, i. e., if there will be no further values. A
compiler has to generate code which implements this mechanism so that the
programmer simply writes code like

slice(a, 0, n)

to apply a filter method

<T> ObjectFilterState<T> slice(ObjectFilterState<T> state, Class<T> type,

T value, int begin, int end)

to a generator expression a. For convenience, if the expression to be filtered
is an array expression, but the filter method expects values of the type of
elements of the array, then the array generator expression is implicitly used
to pass the value of each element to the filter method.

The implementation of the slice method could look like

<T> ObjectFilterState<T> slice(ObjectFilterState<T> state, Class<T> type,

T value, f inal int begin, f inal int end) {

class State implements ObjectFilterState<T> {

int index = 0;

T result;

public T getObjectResult() {

return result;

}

public boolean isAccepted() {

return (index >= begin) && (index < end);

}

public boolean isFinished() {

return index >= end;

}

}

State s = (State) state;

i f (s == null) {

s = new State();

} else {

s.index++;

}

138 6 Design of the Language

s.result = value;

return s;

}

6.3.6 Standard Filter Methods

The class de.grogra.xl.util.Operators contains the standard filter meth-
ods first and Operatorsslice for all primitive and reference types. slice
works as the example in the previous section, while first is a special case
thereof which filters the first n values of a sequence.

6.4 Aggregate Expressions

Generator expressions provide a convenient and efficient means to yield mul-
tiple values. Their counterpart are aggregate expressions which take multiple
values in succession as input and produce a single value as result, e. g., the
sum of all values. The XL programming language defines a single built-in ag-
gregating operator (the containment operator) and a mechanism for aggregate
methods.

6.4.1 Containment Operator

The containment operator

a in b

aggregates the logical or of a == b. Typical examples are a in (1 : 3) which
has true as result if and only if a equals 1, 2 or 3, or a in n.children() which
tests whether a node a is contained in the sequence of values returned by the
generator method n.children(). The containment operator terminates the
evaluation of the generator expression once it knows the final result, i. e., if
a == b has been true for some pair a, b.

The containment operator, like instanceof, does not follow the general
pattern that only symbols and no keywords are used for operators. However,
the keyword in is commonly used for the containment operators, for example
by the Python and D programming languages.

6.4.2 Aggregate Methods

Like filter methods, aggregate methods receive a sequence of values as input.
However, their result is a single value. To implement the mechanism, we use
a similar technique as for filter methods. Namely, we have the interfaces

6.4 Aggregate Expressions 139

�interface�

AggregateState

+ isFinished(): boolean

�interface�

BooleanAggregateState

+ getResult(): boolean

3̀�sssss

. . .
�interface�

ObjectAggregateState〈T〉
+ getResult(): T

�1_L L L L L

in the package de.grogra.xl.lang and the convention that aggregate meth-
ods whose result is of primitive type look like

A aggregate(A state, boolean finished, V value, ...)

whereA is a subtype of the corresponding interface (BooleanAggregateState,
. . .), and aggregate methods whose result is of reference type T look like

A aggregate(A state, boolean finished, Class<T> type, V value, ...)

where A is a subtype of ObjectAggregateState<T>. aggregate stands for
the name of the aggregate method. Like for filter methods, the first invocation
of an aggregate method receives null as state parameter, and all following
invocations receive the return value of the previous invocation as state argu-
ment. After all input values have been passed to invocations of the aggregate
method, it has to be invoked for a last time. Only for this last invocation
the argument finished is true to indicate that the aggregate method should
perform a final computation if any, the remaining arguments starting with
value are set to the null value of their type. One could also demand that
aggregate methods have to compute the current aggregated value within each
invocation so that the final step is not needed, but for a complex aggregation
this might be inefficient with respect to time. After the final invocation, the
aggregated result is obtained by invocation of the getResult method of the
corresponding AggregateState subinterface.

The method isFinished of the AggregateState interface informs the
invoker of the aggregate method if the final value of the aggregated value
is already known, even if there are further input values. For example, an
aggregate method which returns the first value of a sequence of values already
knows the aggregated value after the first input value. Now if isFinished
returns true, the evaluation of the generator expression has to be terminated,
and the aggregated value is obtained by the getResult method as before.

Again, a compiler has to generate code which implements this mechanism
so that the programmer simply writes code like

sum(0 : 100)

to apply an aggregate method

IntAggregateState sum(IntAggregateState state, boolean finished,

int value)

140 6 Design of the Language

to the generator expression 0 : 100. For convenience, if the expression to be
aggregated is an array expression, but the aggregate method expects values
of the type of elements of the array, then the array generator expression is
implicitly used to pass the value of each element to the aggregate method.

The implementation of the sum method could look like

IntAggregateState sum (IntAggregateState state, boolean finished,

int value) {

class State implements IntAggregateState {

int sum = 0;

public int getIntResult() {

return sum;

}

public boolean isFinished() {

return false;
}

}

State s = (State) state;

i f (s == null) {

s = new State ();

}

i f (!finished) {

s.sum += value;

}

return s;

}

6.4.3 Standard Aggregate Methods

The class de.grogra.xl.util.Operators contains a collection of standard
aggregate operations. Each operation is implemented by a set of methods, one
for each supported source type. For a sequence of values

• the method array converts this into an array,
• count counts its number of values,
• empty tests if it is empty, i. e., has no values at all,
• exist and forall return the logic or or the logic and, respectively, of its

boolean values (and use a short circuit logic),
• first and last return the first or last value,
• max and min the maximum or minimum value,
• prod and sum the product or the sum,
• mean the mean value for numeric types,
• string a string which contains a comma-separated list of the values, en-

closed in brackets.

6.5 Queries 141

Furthermore, four selection operations are provided:

• selectRandomly selects one value out of all values based on a pseudo-
random number generator. It chooses the value using a uniform distri-
bution. A variant exists which takes a further double parameter which
specifies the relative probability of choosing the corresponding value (e. g.,
selectRandomly(x = nodes(), prob(x)) randomly chooses one of the
objects yielded by nodes, the relative probability being given by some
function prob).

• selectWhere has a further boolean parameter. The first value of the se-
quence for which true is passed to this parameter is used as the result of
aggregation.

• selectWhereMax and selectWhereMin have a further numeric parameter.
The value of the sequence for which the corresponding parameter value is
maximal or minimal, respectively, is taken as the result of aggregation.

6.5 Queries

Queries are the most complex part of the XL programming language. A query
is specified by a pattern, and its evaluation at run-time finds all matches of the
pattern within the current graph. Queries can be specified as expressions on
their own right (Sect. 6.5.13 on page 158), but they are also used as left-hand
sides of rules (Sect. 6.8 on page 171). Examples for the first case are

graph.(* Node *)

(* f:F & (f.diameter > 0.01) *)

(* x:X [a:A] y:X *)

(* f:F, g:F, ((f != g) && (distance(f, g) < 1)) *)

(* x (<-successor-)* Basis *)

which find all nodes of type Node in graph, all nodes of type F with a diameter
greater than 0.01, all matches of the pattern of Ex. 4.52 on page 70, all pairs
f, g of distinct nodes of type F with a distance less than 1, or all nodes of
type Basis which can be reached from a given node x by traversing an arbi-
trary number of successor edges backwards, respectively. The third example
uses the traditional bracketed L-system syntax to textually represent a tree-
like structure. An example for a complete rule is the rule for the Sierpinski
grammar (Ex. 5.23 on page 113). It looks like

a:V -e0-> b:V -e120-> c:V -e240-> a

==>>

a -e0-> ab:V -e0-> b -e120-> bc:V -e120-> c

-e240-> ca:V -e240-> a,

ca -e0-> bc -e240-> ab -e120-> ca;

where the part before the arrow symbol is a query which specifies a circular
pattern.

142 6 Design of the Language

The design of the query syntax and its semantics was the most critical
part of the development of the XL programming language. On one hand, the
syntax had to be intuitive and familiar to those who had worked with the L-
system languages of GROGRA and cpfg. On the other hand, the syntax had
to provide the possibility to specify more complex relations between elements
like arbitrary edge types, relations and transitive closures thereof. And finally,
the semantics should not be bound to a specific graph model, but should be
defined on the basis of a rather general data model so that queries and the
underlying pattern matching algorithm can not only be used for RGG graphs,
which is of course the main requirement, but also for a variety of further
data structures such as polygon meshes, XML documents or scene graphs of
existing 3D tools. In this section, we will present and discuss the syntax for
queries and their meaning in a rather informal way. A precise specification is
given in [95]. In examples, we will make use of classes like Sphere and methods
like distance. Although we do not define their meaning, it should be obvious
what is meant.

6.5.1 Compile-Time and Run-Time Models for Graphs

At first, we have to make an abstraction for the structures on which queries
of the XL programming language shall operate. This abstraction is then the
common data model which we have to implement for concrete structures if we
want to use queries for them. For the sake of readability, we will call these
structures graphs, although they may also be just trees or even only entries
in some database.

The need for a data model arises from the implementation of the built-
in pattern matching algorithm of the XL programming language: there has
to be a way to obtain information about the topology, namely the nodes of
the current structure and, for a given node, its incident edges and adjacent
nodes. To be accessible by the pattern matching algorithm, this way has to
consist of universal interfaces. In general, it is common practice to define
syntactic support for higher-level features via specific interfaces. E. g., the
enhanced for-statement of the Java programming language uses the interface
java.lang.Iterable in cooperation with java.util.Iterator to provide
the programmer with a convenient syntax for the iteration over collections,
these interfaces can be seen as a minimal data model for iterable structures.

Due to the complexity of queries, the specification of a data model
has to be split into parts for compile-time and run-time. A compile-time
model provides static information about the data model to a compiler for
the XL programming language, it is represented by an implementation of
the interface de.grogra.xl.query.CompiletimeModel. For each compile-
time model, there is an associated run-time model, namely an instance of
de.grogra.xl.query.RuntimeModel. Concrete graphs are instances of the
interface de.grogra.xl.query.Graph which offers a set of requests and oper-

6.5 Queries 143

ations to be invoked by the run-time system of the XL programming language
in order to implement the semantics of queries.

RuntimeModelFactory

+ modelForName(name: String, loader: ClassLoader): RuntimeModel
. . .

�instantiates�

��

�

�

�

�

�

�
�

!

"

$

%

'

�interface�

CompiletimeModel

+ getNodeType(): Type〈?〉
+ getEdgeType(): Type〈?〉
+ getEdgeTypeFor(type: Type〈?〉): Type〈?〉
+ getStandardEdgeFor(edge: int): Serializable
+ needsWrapperFor(type: Type〈?〉): boolean
+ getWrapperTypeFor(type: Type〈?〉): Type〈?〉
+ getWrapProperty(type: Type〈?〉): Property
+ getProducerType(): Type〈? extends Producer〉
+ getRuntimeName(): String

�instantiates run−time model via�

OO�
�
�
�

�interface�

RuntimeModel

+ currentGraph(): Graph
+ isNode(node: Object): boolean
+ isWrapperFor(node: Object, type: Type〈?〉): boolean
+ unwrapBoolean(node: Object): boolean

. . .
+ unwrapObject(node: Object): boolean

�instantiates�

���
�
�
�

�interface�

Graph

+ getRoot(): Object
+ enumerateNodes(t: Type〈?〉, q: QueryState, p: int, c: MatchConsumer, arg: int)
+ enumerateEdges(node: Object, d: EdgeDirection, . . . , c:MatchConsumer, arg: int)

. . .

Figure 6.1. Class diagram of compile-time and run-time models for queries

144 6 Design of the Language

Figure 6.1 on the preceding page shows the class diagram of these three
interfaces. The methods getNodeType and getEdgeType of a compile-time
model tell a compiler the base types of nodes and edges of the graph model,
and getRuntimeName the name of the corresponding run-time model. The
only restriction on the types is that node types must not be primitive.

When a query is evaluated at run-time, it uses a current graph as data
source. Which graph is current is determined by the context: queries may be
used as part of query expressions (Sect. 6.5.13 on page 158) or rules (Sect. 6.8
on page 171), these either specify the current graph and its compile-time
model explicitly, or they may opt for an implicit determination of the current
graph on the basis of its compile-time model. In the latter case, the name
returned by the invocation of getRuntimeName on the compile-time model
is used at run-time as parameter to the method modelForName of the class
de.grogra.xl.query.RuntimeModelFactory in order to obtain the corre-
sponding run-time model. On the run-time model, the method currentGraph
is invoked to obtain the current instantiation of the model which is then taken
as the current graph. An implementation of currentGraph could use a per-
thread-association of instantiations. The method getRoot of a graph returns
its root, the method enumerateNodes delivers all nodes of the graph which are
instances of type t to the consumer c, enumerateEdges delivers all adjacent
nodes of a given node where the edge matches a given condition.

We will describe more details of the models in the following sections where
they are needed.

6.5.2 Node Patterns

A query pattern is composed of elementary patterns. The simplest patterns
are patterns for nodes. If X is a type (in the sense of the Java programming
language), then

X

within a query is a pattern which matches instances of X. A query variable
is declared implicitly, the built-in pattern matching algorithm of the XL run-
time system then tries to bind nodes of the current graph to such a variable in
order to match the associated patterns. The run-time system obtains the nodes
of the current graph by invoking enumerateNodes on it. With this simple kind
of pattern, we can already specify left-hand sides of non-parametric L-system
productions like X ==> Y. If we need to have a reference to a query variable,
we can assign an identifier as in

x:X

Then x behaves like a final local variable, its value is the currently bound
node of the structure. Note that this notation does not follow the Java pro-
gramming language, which declares variables using the syntax X x, because
this syntax is not convenient for queries: in order to be close to the notation

6.5 Queries 145

of L-system software, we have to use whitespace to separate node patterns
(see the following section 6.5.3). But our notation is well known from, e. g.,
the Pascal programming language or UML diagrams.

The special node pattern

x:.

with some identifier x matches any node. For syntactical reasons, a stand-alone
dot (i. e., without identifier) is not allowed.

Parameterized Patterns

L-system languages like those of GROGRA and cpfg also allow modules (pa-
rameterized symbols) on left-hand sides of rules as in X(a) ==> Y(2*a) (see
Sect. 3.7 on page 25). Thus, such a pattern shall also be allowed within a query.
It introduces additional query variables for each parameter, and if a node is
bound to the whole pattern, the values of its attributes are bound to these
parameter variables. Now there has to be a way to specify which attributes
correspond to which parameters. For parametric L-systems, this is easy be-
cause modules have an ordered list of parameters whose names are simply the
indices in the list. But within the context of object-oriented programming,
node types have named attributes and may only want to expose some of them
as parameters in a pattern, or provide several alternative patterns. So there
has to be a possibility to associate parameterized patterns with a node type X,
these patterns then define number and type of parameters and how they are
linked with the attributes of X. For this purpose, we define a mechanism based
on the abstract class de.grogra.xl.query.UserDefinedPattern. Each con-
crete subclass of UserDefinedPattern declares a user-defined pattern, where
the term “user-defined” distinguishes such a pattern from built-in patterns of
the XL programming language. The signature (number and types of parame-
ters) of a user-defined pattern is given by a special method named signature
which has no further purpose. If a user-defined pattern is declared as a mem-
ber of a type X, then there is a pattern named X with the signature of the
signature method. For the example X(a), we would write code like

class X extends Node {

float attr;

static class Pattern extends UserDefinedPattern {

private static void signature(@In @Out X node, float attr) {}

public Matcher createMatcher(Graph graph, XBitSet bound,

IntList requiredAsBound) {...}

...

}

}

Then

146 6 Design of the Language

X(a)

is a pattern whose node type is X and which has a parameter of type float. How
this parameter is linked to nodes is defined by the pattern matcher which is
returned by the implementation of the method createMatcher, this is shown
in Sect. 7.4 on page 200. The @In and @Out annotations in the signature are
needed when textually neighbouring patterns are connected, this is explained
in Sect. 6.5.11 on page 156. It may happen that we are not interested in the
values of parameters, then it is possible to write a dot instead of an identifier
as in X(.) or even to omit parameters as in Y(,,a,,b,).

Expressions as Patterns

With node types and user-defined patterns, we can specify patterns required
for equivalents of L-system productions. However, in practice it may also
be useful to have a pattern which only matches a fixed value. The left-hand
side of the Sierpinski example a:V -e0-> b:V -e120-> c:V -e240-> a ends
with such a pattern: the query variable a is used as last pattern to close the
loop. But we may also think of a general expression (possibly a generator
expression) whose results fix the value which has to be bound to the pattern.
An example of such a general expression pattern is the usage of a method

Node* findObjectsInSphere(Tuple3d position, double radius)

in the pattern

x:findObjectsInSphere(position, radius)

This fixes the values of x to the yielded values of the invocation.
The special node pattern

^

is also an expression pattern, it matches the root node of the current graph.
This is the node returned by the method getRoot of the Graph interface.

Unary Predicates

Patterns like X with a type X can be seen as predicates which test if a node
is an instance of X. A generalization thereof is the usage of boolean methods
as unary predicates. Say we have a method

boolean alive(Cell c)

Then we may write

x:alive

to find all nodes of type Cell for which alive returns true. Such a predicate
may also be parameterized as in

6.5 Queries 147

x:isInSphere(position, radius)

for the method

boolean isInSphere(Node node, Tuple3d position, double radius)

Combining Node Patterns

Sometimes, there is a need to combine several node patterns into a single
node pattern. For example, one might want to specify a pattern which finds
all nodes which are instances of some class C, but also of some interfaces
I1, I2. The Java programming language defines a syntax for the similar case
where a type variable shall have a bound consisting of at most one class and
several interfaces: a generic class declaration like

class X<T extends C & I1 & I2> {...}

can be instantiated for types T which are subtypes of C as well as I1 and
I2. We adopt this syntax and allow a &-separated list of node patterns as a
composed node pattern. This includes simple cases like

x:C & I1 & I2

but also more complex ones like

x:isInSphere(position, radius) & Cylinder(l, r)

which finds all nodes x that fulfil the isInSpere predicate and match the
Cylinder pattern, and which then binds length and radius of the cylinder
to the query variables l and r, respectively. In addition, this list may also
contain application conditions which are parenthesized boolean expressions:
for example, the node pattern

f:F & (f.diameter > 0.01)

finds all nodes of type F with a diameter greater than 0.01.

Syntactical Issues

Although it is in general possible to use expressions as node patterns which fix
values of query variables to their results, there are expressions which cannot
be directly used for syntactic reasons. For example, if we have some array
a and some index i, the expression a[i] cannot be used in a pattern like
X a[i] Y: this would be syntactically interpreted as four node patterns with
the third one being bracketed to define a branch (see Sect. 6.5.3 on the fol-
lowing page). The obvious solution to use parentheses like in X (a[i]) Y
does not work, too: this would be interpreted as two node patterns, the first
one being parameterized with parameter value a[i]. For such cases, we have
to use a trick. The XL programming language uses backquotes to define the
unary quote operator `a`. If not overloaded, it simply performs the identity
operation on its operand. Expressions as node patterns may use this operator
so that we can write

148 6 Design of the Language

X `a[i]` Y

Patterns for Wrapper Nodes

Queries of the XL programming language (and the underlying data model)
make a single assumption about the graph model, namely that nodes are
represented as objects. However, sometimes it may be useful to store values
of primitive type as nodes in the graph, or values of reference type which are
not nodes themselves. If the graph model provides types for corresponding
wrapper nodes, we can directly use them in the same way as normal nodes:

x: int

This pattern matches nodes which wrap int-values. It binds their wrapped
value to x. Furthermore, a query variable $x is declared implicitly to which
the wrapper node itself is bound. If x is used later on as a node pattern
(or even on the right-hand side, see Sect. 6.7.2 on page 164), it is implicitly
assumed that $x is meant. Whether a wrapper node is needed and which type
it has is defined by the methods needsWrapperFor and getWrapperTypeFor
of the compile-time model of the current graph (see Fig. 6.1 on page 143).
The related method getWrapProperty (see again Fig. 6.1) determines the
property of the wrapper type which corresponds to the wrapped value, this is
discussed in Sect. 6.10.4 on page 179.

We may also use a syntax similar to parameterized predicates

n: int(x) n:Comparable(x)

which declares query variables n for the wrapper node and x for the wrapped
value. If the type of wrapped values could also be a node type, this vari-
ant is necessary to force the wrapping mechanism. For example, the type
Comparable of the second example is an interface. In a pattern x:Comparable
this could be interpreted as a pattern for nodes implementing Comparable and
not as a pattern for nodes wrapping a Comparable.

6.5.3 Path Patterns

While 0L-systems only allow a single symbol on their left-hand side, we allow
arbitrary graphs for left-hand sides of rules of relational growth grammars.
In order to specify these graphs, we have to connect node patterns with edge
patterns or, more general, with path patterns which may encode arbitrary
relations (see also the discussion about relations in Sect. 5.7 on page 114).
For a query in the XL programming language, the simplest path pattern
is to not specify a path pattern at all and simply have two node patterns
with only whitespace between as in X Y. On the right-hand side of an L-
system production, this would stand for two successive symbols, their graph
representation according to Def. 5.2 on page 96 would consist of two nodes

6.5 Queries 149

connected by a successor edge. So we adopt this notation: if two node patterns
are separated by whitespace only, there is an implicit edge pattern between
them which matches a successor edge from the node bound to the left pattern
to the node bound to the right pattern. We also adopt the bracket notation:
a node pattern followed by a bracketed pattern starting with a node pattern
implies an edge pattern which matches a branch edge from the node bound
to the first node pattern to the node bound to the bracketed node pattern.
In general, a pattern which is a well-nested word over the alphabet of node
patterns implies those edge patterns which correspond to edges of its graph
representation.

Explicit Path Patterns

In order to be able to specify relations explicitly, path patterns of the form

-r-> <-r- -r- <-r->

are allowed where r specifies which relation to use. The first two variants
are used for directed relations, the third one for undirected relations, the last
one for bidirectional relations. This intuitive syntax follows the PROGRES
language (Sect. 4.8.1 on page 82). Like for node patterns, r may refer to a type
of the Java programming language (the type of matching edges), it may denote
a user-defined pattern, or it may be some expression. The interpretation of the
latter case depends on the implementation of the method enumerateEdges of
the current graph: the result of an expression r may be interpreted either as
an edge object, in which case it has to be checked whether its incident nodes
match the nodes bound to incident node patterns, or it may be interpreted as
a pattern itself which selects a subset of the edges of nodes bound to incident
node patterns. For example, within the GroIMP software (Appendix B) the
last option is used: edge types are represented by int values, and we have, e. g.,
the predefined constant successor which stands for successor edges. Thus, a
path pattern for successor edges would be specified as -successor->, i. e., the
value of successor is used as a pattern which matches only specific int values
as edge types. The pattern -successor- matches if there is a successor edge
in one or the other direction, while <-successor-> requires edges in both
directions.

If a bracketed pattern starts with a path pattern, the latter overrides the
default behaviour of assuming a branch edge. As an example, the pattern
a:A [-e-> B C] [<-f- D] -g-> E [a] corresponds to a pattern graph�� ��B

> //
�� ��C

�� ��D
f //

�� ��A
g //

e

OO

�� ��E
+
oo

150 6 Design of the Language

Standard Edge Patterns

There are the special shorthand notations

--> <-- -- <-->

which stand for edge patterns for any edge in the indicated direction, and the
notations

> < --- <->

+> <+ -+- <+>

/> </ -/- </>

which stand for edge patterns for successor, branch or refinement edges, re-
spectively, in the indicated direction.

The precise meaning of these edge types is not defined by the XL pro-
gramming language. This is rather left to the current compile-time model:
for the corresponding constants ANY EDGE, SUCCESSOR EDGE, BRANCH EDGE,
REFINEMENT EDGE the invocation of getStandardEdgeFor on the model re-
turns a representation of the edge type in the used graph model, this repre-
sentation is taken as the pattern expression for the path pattern.

Binary Predicates

As for node patterns, the possibility to use boolean methods as predicates is
convenient (see also Def. 5.26 on page 114). Therefore, if we have a method
like

boolean neighbour(Node a, Node b)

we may simply write

X -neighbour-> Y

as path pattern. Note that we have the same syntax for true edges and binary
predicates (relations), although (within the framework of relational growth
grammars) the first case is handled by edges of the graph of the left-hand
side, while binary predicates have to be represented as application conditions.

Node Functions as Path Patterns

Relations may also be expressed by functions which map a node to a set of
related nodes, see Def. 5.27 on page 115. Such a function is implemented as
a method like Node* neighbours(Node a) or, in case of at most one possi-
ble related node, Node parent(Node a), and we can specify a path pattern
X -neighbour-> Y using the same syntax as for binary predicate methods.
For both cases, we may also have additional parameters as in

X -neighbour(1)-> Y

for a method

6.5 Queries 151

Node* neighbours(Node a, double radius)

Furthermore, the method may have an additional last parameter of type
de.grogra.reflect.Type. Then an implicit argument is provided which rep-
resents the type of the query variable to which the result of the method invoca-
tion is bound. For example, a method Node* neighbours(Node a, Type t)
could look for all neighbours of type t, and its usage in X -neighbour-> Y
would provide the type Y to the method.

6.5.4 Composing Patterns

Node patterns, combined with path patterns, define a connected pattern
graph. Path patterns may be concatenated without node patterns between
as in

A > > +> > B

which finds all nodes of types A, B that are connected with a path of two
successor, a branch and a further successor edge. So far, there is no possibility
to define unconnected pattern graphs simply because if there is no explicit
path pattern between two node patterns, an implicit pattern for successor
edges is inserted. In order to compose several unconnected parts to build a
complete pattern graph, a comma is used as a separator like in the example

x:X, y:Y

which finds all pairs of nodes of types X and Y, respectively, and does not
impose any relation between the matches x and y. If a part of such a compound
pattern starts with an opening parenthesis, this part is considered to be an
application condition, i. e., a boolean-valued expression. An example is

f:F, g:F, ((f != g) && (distance(f, g) < 1))

which finds all pairs f, g of distinct nodes of type F with a distance less than 1.
An equivalent pattern could be specified by moving the condition to the second
node pattern as in f:F, g:F & ((f != g) && (distance(f, g) < 1)), but
this variant hides the symmetry of the condition.

6.5.5 Declaration of Query Variables

A query may start with the declaration of query variables in the usual syntax
of the Java programming language. The sole purpose of this is to shorten the
specification of a query with several variables of the same type. For exam-
ple, the left-hand side of the crossing-over production on page 103 could be
specified as

i:Gene j:Gene, k:Gene l:Gene, i -align- k

if Gene is the class for gene nodes. If we declare the query variables in advance,
the code becomes shorter:

152 6 Design of the Language

Gene i, j, k, l;

i j, k l, i -align- k

Because values are bound to query variables by the built-in pattern matching
algorithm, it is not allowed to specify initial values in initializers such as
Gene i = null;.

6.5.6 Transitive Closures

Transitive closures of relations (see Def. 5.28 on page 115) are often needed,
so their inclusion in the query syntax is desirable. For example, within a plant
model we might want to know all descendants of some given node p which
are of type Internode. Being a descendant is determined by the transitive
closure of being a child. Assuming a suitable relation child, we write

p (-child->)+ Internode

Here, we adopt the well-known syntax of regular expressions where patterns to
be repeated are enclosed in parentheses with a quantifier appended. Possible
quantifiers are

+ * ? {n} {n, m} {n,}

The quantifier + stands for 1-to-n repetitions, this yields the transitive clo-
sure. The quantifier * stands for 0-to-n repetitions, thus it corresponds to the
reflexive, transitive closure. The remaining quantifiers only specify subsets of
transitive closures: the quantifier ? denotes 0-to-1 repetitions, the quantifier
{n} forces exactly n repetitions, {n, m} stands for n-to-m repetitions, and {n,}
for at least n repetitions. The contained relation of such a closure may be arbi-
trarily complex: e. g., (-branch-> b:B (-successor->)*, (b.prod > 0))*
matches all paths which traverse a branch edge and a possibly empty se-
quence of successor edges alternatingly. In addition, target nodes of branch
edges have to be of type B and fulfil the condition b.prod > 0.

It is often the case that one is not interested in the complete transitive
closure, but only wants to find the nearest occurrences of some pattern when
traversing paths of a given basic relation. For example, assume that we want to
implement transport or signalling in virtual plants with a tree-like structure.
These processes shall use nodes of type X, but the plants do not only consist
of such nodes, but also of several nodes of other types between the X-nodes
like in the tree�� ��RL //

�� ��A // d
�� ��X //

�� ��B
�� ��RL //

�� ��A // f
�� ��X //

�� ��B

a
�� ��X //

OO �� ��RH // b
�� ��X //

��

�� ��RH // c
�� ��X //

OO �� ��B�� ��RL //
�� ��A // e

�� ��X //
�� ��B

.

6.5 Queries 153

Then for a local transport, only the nearest X-neighbours have to be consid-
ered. Thus, for a basipetal (downwards) transport, node c should consider
node b, but not node a, and for an acropetal (upwards) transport, node a
should consider nodes b and d, but not the other ones. Using the edge pattern
--> to match the edges of the tree structure, the transitive closures (<--)+
and (-->)+ would find these neighbours, but then traverse even deeper into
the structure. However, we are only interested in minimal elements. This can
be specified with the help of the syntax

(<--)+ : (X) (-->)+ : (X)

which tells the transitive closure to stop deepening the closure once a match
of the parenthesized pattern after the colon has been found. This can be com-
pared to non-greedy pattern repetitions for minimal matching within regular
expressions of the Perl programming language [145].

Usually, the pattern matching algorithm enforces the constraint of injec-
tivity of a match with respect to nodes (Sect. 7.3.4 on page 199). This would
exclude reflexivity of (subsets of) transitive closures, as reflexivity means that
both related node variables may be bound to the same node. Thus, practically
the meanings of the quantifiers * and + would coincide. To circumvent this
unwanted behaviour, an implicit folding clause (see Sect. 6.5.9 on page 155)
is added for the two node patterns incident with a transitive closure having a
quantifier different from +.

6.5.7 Single Match, Late Match and Optional Patterns

There are usually several matches for patterns or components of patterns. If
we want to restrict the set of matches to the first match, we write a single
match pattern

(: pattern)

where pattern is some pattern. For example, the pattern X (: Y) finds nodes
of type X from which we can reach a node of type Y by traversing a successor
edge. Even if there are several Y-children of an X-node, at most one total match
per X-node is yielded. For the graph

e
�� ��Y f

�� ��Y g
�� ��Y

a
�� ��X

> // b
�� ��X

> //

>
OO

c
�� ��X

>
OO

> // d
�� ��Y

the pattern X Y yields the matches (b, e), (c, d), (c, f), while X (: Y) yields
(b, e), (c, d) or (b, e), (c, f), depending on whether d or f is found at first. The
latter depends on the internal implementation of the pattern matching algo-
rithm and an order of edges within the graph and is not specified by the XL
programming language. There is some further speciality of the single match

154 6 Design of the Language

pattern: so far, all presented patterns could be combined to a compound pat-
tern, and the order in which the pattern matching algorithm tried to match
the individual patterns did not influence the set of total matches of the com-
pound pattern (of course with the exception of possible side effects due to the
invocation of methods). But as one can see from the example, matching of
single match patterns has to be done as late as possible in order to be useful.
Otherwise, we could start with binding g to Y. Then we would not find an
X-partner and actually no match at all since Y is enclosed in a single match
pattern. Matching as late as possible means that if a compound pattern con-
tains some single match pattern p, matching of p does not start unless all
other non-single-match components which do not depend on the match of p
have been matched.

The possibility to control the order of matching may be useful in general.
Some necessary constraints on the order might follow from side effects which
the pattern matching algorithm does not know. Or without a hint, it may
happen that the algorithm chooses a disadvantageous order with respect to
computation time. For such purposes, we use the late match pattern

(& pattern)

which is matched as late as possible just like the single match pattern, but
has no restriction concerning the number of matches.

A very useful variant of the late match pattern is the optional pattern. It
is also matched as late as possible, but if no match for the contained pattern
could be found, the optional pattern matches nevertheless. The syntax is

(? pattern)

The pattern X (? Y) would yield the matches (a,null), (b, e), (c, d), (c, f) for
the graph from above. As we can see, the value null is bound to query variables
of non-matched optional patterns if the variables have a reference type. Like-
wise, false, 0 and Not-a-Number are used for boolean, integral and floating-
point types, respectively. The optional pattern may be combined with the first
match pattern as in X (:? Y) or the equivalent variant X (?: Y) so that if
there are matches, only the first one is used.

6.5.8 Marking Context

The notion of context in the rule-based paradigm refers to some structure
which has to exist within the current host structure and which is related in
some way with the match, but which is not replaced on rule application. For
example, for the SPO production

L

a
�� ��A

x
�� ��X

OO //

R

a
�� ��A

�� ��A

x
�� ��X

OO >>||||

6.5 Queries 155

the left-hand side L is also the context graph since all objects of L reappear on
the right-hand side. In a way the node a and its incoming edge are even “more
context” than the node x since x receives a new outgoing edge on derivation.
A textual notation of the rule (see Sect. 6.8 on page 171 for the syntax of the
right-hand side) like

a:A < x:X ==>> a < x A;

is the direct representation of the production, but lengthy and error-prone
(we have to exactly repeat parts of the left-hand side). Therefore, parts of a
query may be marked as context by enclosing them in asterisked parentheses:
both rules

(* A < *) x:X ==>> x A;

(* A < x:X *) ==>> x A;

are equivalent to the original production, given that the underlying imple-
mentation of the rewriting mechanism has a suitable behaviour.

6.5.9 Folding of Query Variables

The pattern matching algorithm obeys several constraints. One constraint is
the injectivity of matches with respect to nodes, i. e., no two query variables
containing nodes may be bound to the same node of the graph. For the details,
see Sect. 7.3.4 on page 199. However, there are situations where this constraint
it too restrictive. One solution is then to completely disable the requirement
of injectivity, but a more fine-grained mechanism is given by folding clauses,
a feature which is also available in the PROGRES software [175]. Folding
clauses are suffixes of whole node patterns, separated by the symbol |, and
list the identifiers of those preceding node patterns which may be bound to
the same node:

a:Node --> b:Node --> c:Node|a

a:Node, b:Node, c:Node|a|b

The first pattern looks for a sequence of connected nodes which may be a cycle
(c may coincide with a). The second pattern searches for three unrelated nodes
where c may coincide with both a and b. Note that this also means that a
may coincide with b in the case that c coincides with a and b.

6.5.10 Query Initialization

If a whole query starts with an opening parenthesis, the parenthesized part
has to be a comma-separated list of expressions. These are evaluated once at
the beginning of the execution of the query and may serve to initialize the
query. Namely, within the parentheses the current query state (Sect. 7.1 on
page 193) is in scope in the same way as in with-instance expression lists
(Sect. 6.13.4 on page 187). Now methods which the query state provides to

156 6 Design of the Language

configure its behaviour can easily be invoked. For example, a query state
may provide a method noninjective which disables the default constraint of
injective matches, then a query

(* (noninjective()) a:A, b:A *)

also finds matches where a = b.

6.5.11 How Patterns are Combined

The combination of node patterns and path patterns to a compound pattern
graph has been informally described in the previous sections. We will give
some more details in this section, a thorough discussion is given in [95].

The query syntax is used to define pattern graphs, but as it is textual,
these graphs have to be given in a serialized way. A very basic way of such a
serialization would be to list the components, and to explicitly specify their
common parts by identifiers for the gluing points. For example, to specify a
pattern graph �� ��· g //

�� ��D

�� ��A

f

OO

e //
�� ��B

> //
�� ��C

where the dot stands for an arbitrary node type, we could use a syntax like

a:A, b:B, c:C, x:., d:D, a -e-> b, b -successor-> c, a -f-> x, x -g-> d

This is inconvenient in practice. In fact, we have not exploited the possibilities
of a textual notation: in a text, each symbol may have a left and a right
neighbour. This neighbourhood can be used to represent connections in an
intuitive, textual way as it has been presented in the previous sections. For
the example, two possible textual notations are

D <-g- <-f- A -e-> B C

A [-f-> -g-> D] -e-> B C

This syntax requires three underlying conventions:

• When a path pattern like -e-> is neighbouring with a node pattern, it
shares the query variable of the node pattern. This glues both patterns.

• When two path patterns are neighbouring, an implicit node pattern which
matches any node is inserted between.

• When two node patterns are neighbouring, an implicit path pattern for
successor or branch edges is inserted, depending on whether there is an
opening bracket between the patterns.

Here, we also have to consider patterns as neighbouring if they are only sepa-
rated by complete bracketed patterns and, optionally, a final opening bracket.

6.5 Queries 157

These conventions are implemented by the following definitions: A pattern
(be it a node pattern or a path pattern) has a number of parameters (at least
one) which are linked with the query variables of the query. For example, a
type pattern X has a single parameter of type X, a parameterized pattern X(a)
has two parameters (one for the node and one for the parameter a), an edge
pattern --> has two parameters for its incident nodes. A pattern either distin-
guishes a single parameter as its in-out-parameter, then it is a node pattern,
or it distinguishes a parameter as its in-parameter and a different one as its
out-parameter, then it is a path pattern. If a pattern p is followed by a pattern
q and at least one of p, q is a path pattern, the out-parameter of p is glued
with the in-parameter of q, i. e., both share the same query variable. Other-
wise, both patterns are node patterns, and they are joined by an implicit edge
pattern for successor or (if there is an opening bracket) branch edges whose
in-parameter is glued with the out-parameter of p and whose out-parameter
is glued with the in-parameter of q. For built-in patterns of the XL program-
ming language (i. e., all presented patterns with the exception of user-defined
ones), which parameter is the in-parameter and which is the out-parameter is
quite obvious and defined in the specification [95]. For user-defined patterns
(see Sect. 6.5.2 on page 145), this is defined by annotating the corresponding
parameters in the signature method with the annotations @In and @Out as
in

class ParameterizedX extends UserDefinedPattern {

private static void signature(@In @Out X node, float attr) {}

...

}

class Neighbours extends UserDefinedPattern {

private static void signature(@In Node a, @Out Node b,

double distance) {}

...

}

6.5.12 Declarations of User-Defined Patterns

The declaration of user-defined patterns as subclasses of UserDefinedPattern
(see Sect. 6.5.2 on page 145, Sect. 7.4 on page 200 and the previous section) is
very flexible, but there is no syntactical support for an easy implementation
of such patterns (we have to use imperative code for this). For the purpose
of reusability, a simple syntax is desirable which allows one to specify user-
defined patterns composed of other patterns. These could then be reused as
part of other patterns just like a method can be invoked from several places.
The syntax to do this is shown by the following example:

class xyzPath(@In Node a, @Out Node b) (

a -x-> -y-> -z-> b

158 6 Design of the Language

)

... X -xyzPath-> Y ...

A subclass xyzPath of de.grogra.xl.query.UserDefinedCompoundPattern
(which is a subclass of UserDefinedPattern) is declared. Its signature
method has the signature (@In Node a, @Out Node b), and it represents
a compound pattern a -x-> -y-> -z-> b, i. e., a path from a to b along
three edges of types x, y, z, respectively. The last line of the example uses
this pattern.

6.5.13 Query Expressions

A query can be used as an expression if it is enclosed in asterisked parentheses
like

(* f:F, g:F, ((f != g) && (distance(f, g) < 1)) *)

Such an expression finds all matches of the pattern by the algorithm de-
scribed in Chap. 7 and yields the currently bound value of the right-most
non-bracketed node pattern. It is a generator expression by its very na-
ture. The current graph for such a query expression is defined implicitly:
there has to be an enclosing declaration which has an annotation of type
@de.grogra.xl.query.UseModel. This annotation has a single element which
has to specify a concrete class to use as compile-time model. As an example,
the code

@UseModel(MyCompiletimeModel.class)
class Simulation {

void check() {

double len = sum((* F *).length);

...

}

}

would use an instance of MyCompiletimeModel as compile-time model for
the query. This then defines a current graph to be used at run-time, see the
discussion of the mechanism in Sect. 6.5.1 on page 142.

If we want to specify the current graph explicitly, it has to be prepended
in front of the query as in

graph.(* ^ (>)* Node *)

Then the current graph is the result of the prepended expression. The type
of the expression has to be a subtype of de.grogra.xl.query.Graph, and it
has to have or inherit an annotation of type @de.grogra.xl.query.HasModel
whose single element specifies the corresponding compile-time model. An ex-
ample would be

6.5 Queries 159

@HasModel(MyCompiletimeModel.class)
class MyGraph implements Graph {...}

class Simulation {

void check(MyGraph graph) {

double len = sum(graph.(* F *).length);

...

}

}

Of course, specifying the current graph explicitly is principally preferable com-
pared to having a current graph on some global basis. But since typical appli-
cations like plant models work with a single graph throughout their lifetime,
having an implicit graph or not is a matter of convenience.

Query expressions in combination with aggregate methods are a flexible
tool to specify globally sensitive functions. This has also been discussed from
an abstract point of view in Sect. 5.1 on page 89, but now we can verify
this from a practical point of view. For example, function 2 of the GROGRA
software computes the minimal distance from a given elementary unit c (the
turtle interpretation of an F symbol) to all other elementary units x, excluding
the parent unit and units shorter than a threshold t. Using a query expression
and an aggregate method min, this can be specified by

min(distance(c, (* x:Shoot, ((x != c) && (x.getLength() >= t)

&& (x != c.getParentShoot())) *)))

so that such a function is no longer a fixed part of the used modelling software,
but a part of the model itself.

Arithmetical-structural operators (Sect. 3.11 on page 30) were defined for
the GROGRA software to allow some amount of model-specific global sen-
sitivity, where the globality is restricted to all descendants of the current
elementary unit, all ancestors, or direct children, depending on the used op-
erator. Within the following piece of GROGRA source code

\var len length,
\var dia diameter,
...

sum(dia > 0.01, len)

the last expression uses the sum operator to compute the sum of the lengths
of all descendants of the current elementary unit c whose diameter exceeds
0.01. Such a computation can also be expressed using queries and aggregate
methods:

sum((* c (-->)* s:Shoot & (s.getDiameter() > 0.01) *).length)

160 6 Design of the Language

6.6 Operator Overloading

A lot of modern programming languages support operator overloading, i. e.,
the possibility to assign new domain-specific meanings to operators. In the C++

programming language [83], we may implement a class for complex numbers
like

class Complex {

public:
double real;

double imag;

Complex operator+(Complex b) {

return Complex(real + b.real, imag + b.imag);

}

...

}

and then simply write a + b for two Complex numbers a, b to compute their
sum according to the implemented overloading of the operator +.

Unfortunately, for the sake of simplicity the Java programming language
does not provide the programmer with a possibility to define overloading.
This does not restrict the expressiveness of the language because we may
invoke normal methods like add to perform specific operations, but it surely
restricts the conciseness. Were it only for this reason, the definition of operator
overloading for the XL programming language would be desirable, but not
mandatory. However, using operator overloading we can define the meaning
of right-hand sides of rules in a very general and versatile way. How this is
done precisely is given in the next sections, but a short example helps to
get an idea. Say that we want to have a syntax for right-hand sides similar
to the syntax for left-hand sides. Thus, typical right-hand sides of L-system
productions like RH(137) [RU(60) M] F(1) M shall be allowed and have the
corresponding meaning, but also right-hand sides with an extended syntax
like

x [-e-> Y] < Z, x W

The implementation of the actual actions to be taken for a right-hand side is
most suitably handled by some “producing device” producer, this could look
like

producer.addNode(x).push().addEdge(e).addNode(new Y()).pop()

.addReverseEdge(successor).addNode(new Z()).separate()

.addNode(x).addNode(new W())

with the assumption that the used methods return the producer itself or
some equivalent object so that we can do “invocation chaining”. While this is
already quite general because the actual operations are defined by the concrete
method implementations of the producer, a more elegant solution is to regard

6.6 Operator Overloading 161

right-hand sides as consisting of operators and expressions with a special
syntax such that symbols like [or < are simply operators for which a suitable
overload has to exist. Using the translation scheme defined in the next section,
the translation of the example results in

tmp1 = producer.producer$begin().operator$space(x);

tmp2 = tmp1.producer$push().producer$begin().operator$arrow(new Y(), e);

tmp2.producer$end();

tmp1.producer$pop(tmp2).operator$lt(new Z()).producer$separate()

.operator$space(x).operator$space(new W()).producer$end()

As can be seen from the example, operator overloading in the XL programming
language works with the help of operator methods whose name is composed
of the prefix operator$ and a suffix for the operator (like lt for < or add for
binary +). These methods can be declared either by a usual method declaration
like

Complex operator$add(Complex b) {...}

or, equivalently but more conveniently, by an operator method declaration

Complex operator+(Complex b) {...}

Although the $ character is a legal part of an identifier, there is a convention
that it should only be used within compiler-generated names [72]. This is
the case for operator method declarations, so the usage of $ within names of
operator methods is justified and prevents a name collision with non-operator
methods.

Now if there is an expression like a + b for which the XL programming
language does not define a meaning by itself, it has to be checked whether
applicable operator methods exist. For the example a + b, this could be an
instance method operator$add of the compile-time type of a with a sin-
gle parameter whose type is compatible with b so that the expression be-
comes translated to a.operator$add(b). Or there could be a method named
operator$add within the current scope which has two parameters of suit-
able type, then the expression becomes translated to operator$add(a, b).
Finally, also static methods declared in or inherited by the types of a and b
are considered. Unary operators are treated in a similar way. The operator []
is extended from a binary operator a[i] to an operator of arbitrary arity (at
least binary) a[i1, . . ., in].

Method invocations in the Java programming language look like q.n(a)
or n(a), where q is an expression or a type, n a simple name of a method
and a a list of arguments. For convenience, also such an invocation operator
() shall be overloadable, but this is different from the previously described
cases: for a method invocation the operands q.n or n are no valid stand-
alone expressions since the Java programming language has no built-in notion
of method-valued expressions (unlike, e. g., the C++ programming language
where n would evaluate to a pointer to function n). So only if there is no

162 6 Design of the Language

valid method invocation q.n(a) or n(a), it is tried to interpret q.n or n as an
expression and to find a suitable operator method operator$invoke.

A special handling is required for the operators ==, != and in. Since these
are defined for almost every type (except pairs of operand types which cannot
be tested for equality, for example boolean and int or String and Number),
the precedence of built-in operator semantics over operator methods would
preclude the usage of corresponding operator methods. While one may ar-
gue that the overloading of == and != is no good idea, this definitively does
not hold for the in operator which could, e. g., be overloaded to test the con-
tainment of an element in a set. For this reason, operator methods for these
operators have precedence over the built-in semantics.

In the Java programming language, an expression statement like

1 << 2;

would result in a syntax error. Although the operation is valid, its usage as
a statement is useless as the result is discarded and the operation has no
side effects. To detect such apparent programming errors, the designers of the
Java programming language chose to forbid this and similar constructs already
at syntactical level. However, with the possibility of operator overloading a
statement like

out << 2;

makes perfectly sense so that the XL programming language allows any ex-
pression to be used in an expression statement.

6.7 Production Statements

While left-hand sides of rules are specified by queries, right-hand sides consist
of production statements which have a special syntax and are mostly defined by
operator overloading. As an example for a complete rule, the representation of
the movement production on page 103 within the XL programming language
is given by the following code if we use successor edges for the chain of X-nodes
and branch edges to indicate where A-nodes are located:

x:X [a:A] y:X ==>> x y [a];

The execution of such a rule finds all matches of the left-hand side of the
rule arrow ==>>, and for each match the production statements of the right-
hand side (interpreted using operator overloading) are executed. But similar
to queries which may also be used outside of rules, production statements
do not only occur within replacement rules, but also as part of instantiation
rules of module declarations (Sect. 6.11.2 on page 182), and as part of normal
imperative code (Sect. 6.9 on page 174). The latter is useful if we want to
create a graph-like structure outside of a rule. In order to have not only
modelling-related examples, consider components of a GUI framework. These
are typically composed to a tree as in the Swing example

6.7 Production Statements 163

JPanel panel = new JPanel(new BorderLayout());

JLabel lbl = new JLabel("Message");

JTextArea text = new JTextArea();

JLabel status = new JLabel("Type in a message.");

JProgressBar progress = new JProgressBar(0, 100);

JSplitPane split = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT);

split.addComponent(status);

split.addComponent(progress);

panel.addComponent(lbl, NORTH);

panel.addComponent(text);

panel.addComponent(split, SOUTH);

JLabel JTextArea

JLabel JProgressBar

!!!!
ZZZ

JSplitPane

((((((((((
!!!!
PPPPP

JPanel

Using production statements within imperative code, this could be written in
a more convenient way:

awtProducer ==> panel:JPanel(new BorderLayout())

[-NORTH-> JLabel("Message")]

[JTextArea]

[-SOUTH-> JSplitPane(JSplitPane.HORIZONTAL_SPLIT)

[JLabel("Type in a message.")]

[JProgressBar(0, 100)]];

where awtProducer implements the mapping from production statements like
-NORTH-> JLabel("Message") to corresponding method invocations (in this
case panel.addComponent(lbl, NORTH), see next sections). Note that this
example is not a rule, but a normal statement which can be specified as part
of a usual code block.

The actual effects of the execution of production statements are not de-
fined by the XL programming language, they depend on the implementation
of special operator methods. For example, these methods may immediately
create nodes and edges in a graph. This is useful for cases like the previous
where a graph has to be constructed outside of a rule. Within rules such
an immediate mode could be used for sequential derivations, while parallel
derivations require that the actions are collected and applied at a later point
in time.

The most important production statements are node expressions like
panel:JPanel(new BorderLayout()), possibly prefixed by path expressions
like in -NORTH-> JLabel("Message"). The above examples also show the pos-
sibility to specify branches in brackets. In addition to these types of production
statements, we may embed conventional code blocks, and we may use control
flow statements. Within rules, the latter provide a means for the dynamic

164 6 Design of the Language

creation of the successor as described in Sect. 5.4 on page 105. The precise
mechanism of production statements is described in the next sections.

6.7.1 Execution of Production Statements and Current Producer

Contrary to queries, production statements do not make any reference to
run-time models. But within the context of production statements, a current
producer is defined which serves a similar purpose. It is an object according
to the Java programming language, the type of which is not restricted by the
specification of the XL programming language. The initial current producer is
given by the rule or the special production block which contains the produc-
tion statements. On execution, each production statement takes the current
producer as input, invokes some method on the producer, and provides a
new current producer for subsequent production statements. For an example,
reconsider page 161.

At the beginning of the outermost sequence of production statements (i. e.,
at the beginning of a right-hand side, of production statements within impera-
tive code, or of an instantiation rule), the method producer$begin is invoked
on the current producer. It is a compile-time error if this method does not ex-
ist. The result of the invocation is taken as new current producer. At the end of
the outermost sequence of production statements, the method producer$end
is invoked on the current producer. Again, it is a compile-time error if this
method does not exist.

Within production statements, fields and methods declared or inherited
by the type of the current producer can be referred to by their simple name.
For instance fields and methods, the current producer is used as the implicit
target reference similar to the implicit this in bodies of instance methods.
However, these fields or methods do not shadow members with the same
name in enclosing scopes, i. e., the latter have higher priority.

6.7.2 Node Expressions

Node expressions are used to specify nodes within production statements. The
introductory example for a rule

x:X [a:A] y:X ==>> x y [a];

contains three simple node expression on its right-hand side which refer to
the value of query variables, i. e., to matches of the left-hand side. The node
expressions are separated by whitespace and brackets to create successor and
branch edges, how this works in detail is described in the next section.

More general, we may use arbitrary non-void expressions as node expres-
sions like in the rules

x:X [a:A] ==>> x, Model.findNeighbours(x).chooseOneFor(a) [a];

x:X ==>> x new Y(42);

6.7 Production Statements 165

Rules often create new nodes. For example, L-system productions, translated
to graphs, do only specify new nodes. The L-system production for the Koch
generator

F→ F Left F Right Right F Left F

removes a node of type F and creates four new nodes of type F, two new
nodes of type Left and two new nodes of type Right. We could write such a
right-hand side as

new F() new Left() new F() new Right()

new Right() new F() new Left() new F()

However, this is very inconvenient in practice. Therefore, we introduce the
convention that the keyword new and empty pairs of parentheses can be
omitted. Then, the right-hand side of the Koch rule can be written as a
sequence of production statements

F Left F Right Right F Left F

The downside is that this introduces some amount of ambiguity since F may
denote both a type of which the constructor has to be invoked, a method or
a variable, but accepting this drawback is justified from a practical point of
view. How ambiguities are resolved is defined in the specification of the XL
programming language [95].

As for node patterns, a node expression may be prefixed by an identifier
and a colon. This declares a new local variable whose name is given by the
identifier and whose value is the result of the node expression. This can be
used if we need to reference a node at another code location, for example if
we want to create a loop within production statements:

a:A A A A a

Again as for node patterns, the ^ character may be used as a node expression
which returns the root of the current graph, or, to be more precise, the result
of the invocation of the method producer$getRoot on the current producer.
This is useful within rules if we want to attach new nodes to the root, irre-
spective of the location of the match of the left-hand side in the graph. For
example, in a plant model a fruit may become a seed which detaches from the
plant and gives rise to independent offspring. This could be specified as a rule

Fruit ==>> ^ Seed;

Like for node patterns, some expressions cannot be used directly for syn-
tactical reasons. We have to use the same trick, namely applying the quote
operator `a` to the expression.

Within production statements, there is also support for wrapper nodes.
First, if the left-hand side of a rule specifies a wrapper node pattern like i:int
and we use i as a node expression within the right-hand side, the wrapper node
$i is used instead (see Sect. 6.5.2 on page 148 for wrapper nodes in queries).
So if int is used to represent gene values, the crossing-over production on page
103 could be specified as

166 6 Design of the Language

int i, j, k, l;

i j, k l, i -align- k ==>> i l, k j;

If an expression which would normally be treated as a node expression has
void as its type, this is handled differently for convenience: such an expres-
sion is simply evaluated and has no further influence on the execution of the
production statements. A typical usage is for messages as in the rule

s:Sphere ==> b:Box println("Replaced " + s + " by " + b);

6.7.3 Prefix Operators for Node Expressions

Each node expression is prefixed by an operator. Both together constitute a
single production statement which passes the result of the node expression to
the current producer. In the simplest case, node expressions are prefixed by
whitespace only as in the Koch rule

F ==> F Left F Right Right F Left F;

For such a node expression, a method operator$space is invoked on the
current producer p with the result of the node expression as argument. The
result of the invocation is taken as new current producer p′. For the example,
this effectively leads to a chain of invocations

p′ = p.operator$space(new F()).operator$space(new Left())

.operator$space(new F()).operator$space(new Right())

.operator$space(new Right()).operator$space(new F())

.operator$space(new Left()).operator$space(new F())

But node expressions may also be prefixed by the operators

> < <-> --- >> << >>> in ::

+> <+ <+> -+- >= <= <=> ++ --

/> </ </> -/- + * / % **

--> <-- <--> | || & &&

For each operator, the corresponding operator method is invoked on the cur-
rent producer (for their names, see Table 6.1; the operator + is considered
unary here so that the name is operator$pos). But a producer class need
not implement all operator methods. In particular, they are not part of some
interface. If a prefix operator is used for which there is no operator method,
this is a compile-time error and indicates that the programmer wanted to use
an operator which is not provided by the current producer implementation.
As an example for the mechanism of node prefixes, the right-hand side

X < Y +> Z

is translated to

p′ = p.operator$space(new X()).operator$lt(new Y())

.operator$plusArrow(new Z())

6.7 Production Statements 167

The implementation of operator methods should be consistent with the mean-
ing of the operator symbols for left-hand sides. E. g., the operator < should
lead to a reverse successor edge and +> to a branch edge. However, this is
only a recommendation and not specified by the XL programming language.
Note that all prefix operators, when used on right-hand sides, have the same
syntactical priority and are applied in the order in which they appear. Thus,
while a > b * c would be interpreted as a > (b * c) in a normal expression
context, this does not hold in the context of production statements.

Besides the listed simple prefix operators, there are also the prefix opera-
tors

-e-> n <-e- n -e- n <-e-> n

where e is an edge expression. These become translated to invocations of
methods on the current producer p as follows:

• If e is an identifier (possibly followed by a parenthesized list of arguments)
which denotes a name of a method which is a member of the type of
p and which can be invoked with n as first argument and the optional
list as remaining arguments, then this method is invoked. The optional
list of arguments may start with an additional implicit argument of type
de.grogra.xl.query.EdgeDirection to which the direction of the oper-
ator is passed. For example, if the type P of the producer p declares the
methods

P insert(Node node);

P insert(Node node, EdgeDirection dir, int position);

then the sequence of production statements

-insert-> n -insert(3)-> m

is translated to

p′ = p.insert(n).insert(m, EdgeDirection.FORWARD, 3)

• Otherwise, e is treated as a normal expression. Depending on the used
operator, one of

p.operator$arrow(n, e)
p.operator$leftArrow(n, e)
p.operator$sub(n, e)
p.operator$xLeftRightArrow(n, e)

is invoked.

As has been said above, the result of an invocation of an operator method on
the current producer is taken as the new current producer. A producer may
choose to simply return itself. But it may also return some other producer,
even of another type. The implementation of a parallel vertex-vertex algebra
for the usage in XL programs (see Sect. 4.8.4 on page 85 and Sect. 10.6 on
page 335) makes use of this. There, for example, a component

168 6 Design of the Language

a b in v

of the right-hand side shall ensure that the vertices a, b are contained in this
order in the list of neighbours of vertex v. But incorrect code like a in v
or a b c in v shall be rejected since there is no corresponding operation of
vertex-vertex algebras. If we used the same producer for all operator method
invocations, the rejection would only be possible at run-time because a com-
piler would not know in which state the producer is at a specific operator
application. However, if the operator methods return a producer which im-
plements exactly those operator methods whose operators are allowed as next
prefix operators, incorrect code can already be detected at compile-time. We
may see this as a deterministic finite automaton where states correspond to
producer types, transitions to operator methods of the types, and where the
input is the sequence of production statements. If there is no suitable opera-
tor method for the given input in the current state, the input is rejected at
compile-time.

6.7.4 Subtrees and Unconnected Parts

Like for queries, the symbols [and] are used to enclose subtrees, and the
symbol , is used to separate unconnected parts of the right-hand side. These
symbols are not mapped to operator methods, but to special producer meth-
ods producer$push, producer$pop and producer$separate. Like for opera-
tor methods, a producer need not implement these methods, in which case it
is a compile-time error to use corresponding symbols within production state-
ments. It is even not specified by the XL programming language that these
symbols stand for subtrees or separations, but within typical implementations,
they will have this meaning.

The syntax of the XL programming language ensures that bracket symbols
have to appear pairwise and are correctly nested. For an opening bracket,
producer$push is invoked on the current producer p and producer$begin on
the result of this invocation. The result of the second invocation is taken as
the new current producer for the bracketed part. For each closing bracket, at
first producer$end is invoked on the producer q which is current at that time,
and then producer$pop is invoked on p with q as argument, where p is the
producer which has been current for the corresponding opening bracket. The
result of the latter invocation is taken as the new current producer p′ behind
the brackets. Thus, the right-hand side x y [a] is translated to

p = p.operator$space(x).operator$space(y);
q = p.producer$push().producer$begin().operator$space(a);
q.producer$end();
p′ = p.producer$pop(q);

The handling of the separation symbol , is very simple, it just leads to
an invocation of producer$separate on the current producer. As usual, the
result defines the new current producer:

6.7 Production Statements 169

p′ = p.producer$separate();

6.7.5 Code Blocks

When computations for node attributes are necessary, it is not always possible
or convenient to specify production statements as a plain sequence of (pre-
fixed) node expressions. It may happen that some computations would have
to be repeated, or that computations have to be split into several lines for
the sake of readability or because control statements like loops are necessary.
For the same reasons, L-systems were extended by imperative programming
statements (Sect. 3.10 on page 29) so that code blocks can be specified within
right-hand sides.

We adopt the syntax of such L-systems, which is also used by the L+C
programming language (Sect. 3.14 on page 33), and allow conventional im-
perative code blocks everywhere within production statements. They have to
be enclosed by curly braces:

F(x) ==> {float f = x/3;} F(f) RU(-60) F(f) RU(120) F(f) RU(-60) F(f);

In order to be able to access local variables declared in such a block (like f in
the example) within the rest of the production statements, a code block does
not introduce its own private scope, but has the same scope as its enclosing
production statement block.

6.7.6 Control Flow Statements

The definition of rules of relational growth grammars (Def. 5.12 on page 107)
introduces a mapping which assigns to each match of the left-hand side a
right-hand side to use for the actual production. As it has been discussed in
Sect. 5.4 on page 105, an application of this feature is plant growth where the
number of generated plant segments within a single step of the model depends
on the (possibly local) internal state of the plant. In practice, such a mapping
is most conveniently and versatilely specified by control flow statements within
production statements of the right-hand side. The language of the GROGRA
software defines the repetition operator as a loop-like control flow statement,
and the L+C programming language uses C++-style control flow statements.
The XL programming language takes a similar way: almost any control flow
statement is also allowed as a production statement, namely the compound
control flow statements if, for, do, while, switch and synchronized and the
simple control flow statements break, continue and throw. Compound control
flow statements may be prefixed with a label as in label:while(true) ...,
and after such a label it is also allowed to specify a block of production state-
ments in parentheses as in label:(F(1) [F(1)] ...). Compound control
flow statements contain substatements, these can be either further compound
control flow statements, or statement blocks in braces, or blocks of production

170 6 Design of the Language

statements in parentheses. The trailing semicolon of do and simple control
flow statements has to be omitted.

x:X [a:A] y:X ==>> x for (int i = 1; i <= a.energy; i++) ([A]) y [a];

Cycle(n) ==> {X first = null; int i = n;}

loop:

while (true) (

current:X

i f (--i == 0) (

first

break loop

) else i f (first == null) {

first = current;

}

);

Bud(type) ==>

switch (type) (

case INTERNODE:

Internode

break
case FLOWER:

Flower

break
);

The first rule specifies the example production of Sect. 5.4 on page 105. The
second (deliberately long-winded) rule replaces a Cycle-node with parameter
n by n nodes of type X which are arranged in a cycle. We can imagine the effect
of control flow statements as an expansion of their contained substatements to
production statements without control flow statements. The right-hand side
of the second rule with n = 3 expands to first:X X X first which is indeed
a cycle of length 3.

The general mechanism of control flow statements within production state-
ments is their usual mechanism within statement blocks with an additional
handling of the current producer. Namely, when using control flow statements,
there may be different execution paths by which a given code location can be
reached. But within production statements, the current producer has to follow
the execution path. Thus, if a statement can be reached by several execution
paths, the current producer is given by the current producer at the end of
the actually executed path. This means that we have to restrict its compile-
time type: the best what we can do is to assume that this type is given by
the least upper bound [72] of the producer types at the end of all execution
paths which can reach the statement. For an if-statement, this means that
the type is the least upper bound of the producer types at the end of the if-
and else-branches. For loop statements, their body may be executed repeat-
edly, so the producer which is current at the end of the body may become the

6.8 Rules 171

current producer at the beginning of the next repetition. In order for this to
be possible, the type of the current producer at the end has to be assignable
to the type of the current producer at the beginning. The same holds for the
type at continue-statements. Furthermore, the body of for- and while-loops
may not be executed at all. Together with the previous consideration, this
forces us to assume that the type of the current producer after such a loop is
the same as before the loop. Contrary, do-loops execute their body at least
once so that the type of the current producer after such a loop is the same as
at the end of its body. Statements can also be reached by break-statements,
then we have to take into account the type of the current producer when
computing the least upper bound of producer types at the end of the target
of the break-statement. Within switch-statements, the least upper bound has
to be computed for a statement group whose preceding statement group falls
through the label. For other statement groups, the current producer is the
current producer at the beginning of the switch-statement. synchronized and
throw do not require a special treatment.

6.8 Rules

The previous sections presented the two main building blocks for rules: queries
for left-hand sides and production statements (defined on top of operator
overloading) for right-hand sides. In order to combine queries and production
statements to rules, the XL programming language defines two arrow symbols
==>> and ==>, for which there were already some examples in the previous
section. It is not specified how their rules differ in semantics, this depends on
the implementation of the used producer. In our examples, we assume that
rules using ==> extend rules using ==>> by implicit connection transformations
according to Def. 5.6 on page 100. I. e., with ==> we can write L-system rules
just as we would do this in an L-system environment.

A third rule arrow ::> differs from the other two in that its right-hand
side is a single imperative statement. Such an execution rule executes the
statement for every match, in contrast to the previous structural rules whose
right-hand sides consist of production statements which define a successor
graph. For example, the execution rules

x:F & (x.diameter > 0.01) ::> println(x);

c:Cylinder ::> {

println(c);

println(" Radius = " + c.getRadius());

println(" Length = " + c.getLength());

}

simply print some information about each match of their left-hand side. Ex-
ecution rules are also useful if we do not want to modify the topology of
the current graph, but only its internal state, i. e., attribute values of nodes.

172 6 Design of the Language

This typically happens for functional plant models which, e. g., compute new
concentration values of nutrients, distribute produced carbon among plant
entities, or have some transport mechanism for mobile substances. Note that
in most cases, execution rules may be substituted by for loops as in

for ((* x:F & (x.diameter > 0.01) *)) {

println(x);

}

The difference is that execution rules implicitly provide a current producer,
see Sect. 6.8.2 on the facing page.

6.8.1 Rule Blocks

Rules are specified in rule blocks. While conventional imperative blocks of
statements use curly braces as delimiters, rule blocks use square brackets.
They can appear almost everywhere where a statement block may appear,
namely as whole method bodies and as individual statements. So it is possible
to write

1 void derive() [

2 Axiom ==> F Right Right F Right Right F;

3 F ==> F Left F Right Right F Left F;

4]

5

6 void update() {

7 i f ((++time % CONCENTRATION_DELTA) == 0) [

8 x:Substance ::> x.updateConcentration();

9]

10 }

A rule block is sequentially executed in textual order like a normal block.
Thus, the rule in line 3 is executed after the execution of the the rule in line
2 has finished. This may seem to contradict the intended parallel mode of
application of relational growth grammars, but in fact, it does not. For the
base implementation of the XL interfaces (Sect. 9.1 on page 235), it is only
the parallel production of the two-level RGG derivation which is constructed
sequentially, its final application is nevertheless a parallel derivation.

Simple rule blocks as the above examples use the same mechanism as
query expressions to determine the current graph implicitly (see Sect. 6.5.13
on page 158). In order to specify the current graph explicitly, we again use the
mechanism of query expressions for the current graph and its compile-time
model, namely we prepend the current graph in front of a rule block as in

graph.[

Sphere ==> Box;

]

Such a statement can appear everywhere where individual statements are
allowed, but not as an entire method body.

6.8 Rules 173

Besides rules, also normal statement blocks in braces can be inserted in
rule blocks. Thus, we can arbitrarily nest statement blocks and rule blocks.

6.8.2 Execution of Rules

The execution of a rule starts with the execution of the query of the
left-hand side. For each match of the query pattern which is found by
the algorithm described in Chap. 7, the implementation of the used graph
provides a producer p. This has to be an instance of the subinterface of
de.grogra.xl.query.Producer which is specified by the compile-time model,
see the class diagram in Fig. 6.2. Then, the method producer$beginExecution
is invoked on p, where the argument passed to arrow indicates the arrow
symbol of the rule: the constant SIMPLE ARROW is used for ==>, DOUBLE ARROW
for ==>> and EXECUTION ARROW for ::>. If this invocation returns false, the
right-hand side is not executed, and the method producer$endExecution is
invoked immediately with false as argument. Otherwise, the right-hand side
is executed with p as initial current producer, and producer$endExecution is
invoked afterwards on p with true as argument. This completes the processing
of the current match, and the control flow returns to the query in order to
find the next matches.

�interface�

CompiletimeModel

+ getProducerType(): Type〈? extends Producer〉
. . .

�interface�

Graph

+ createProducer(qs: QueryState): Producer
. . .

�creates�

���
�
�
�

�interface�

Producer

+ producer$getGraph(): Graph
+ producer$beginExecution(arrow: int): boolean
+ producer$endExecution(applied: boolean)

. . .

�modifies�

OO�
�
�
�

Figure 6.2. Class diagram for producers of rules

174 6 Design of the Language

The mechanism with a boolean result of producer$beginExecution
which controls whether the right-hand side is actually executed is useful for
the implementation of a sequential nondeterministic mode of derivation, see
Sect. 9.1.5 on page 245.

6.9 Stand-Alone Production Statements

Production statements can also be composed to single statements within im-
perative code. The syntax for such stand-alone production statements is

==> production statements;
p ==> production statements;

where p is an expression. The initial current producer for the production
statements of the first variant is given by the current producer of the innermost
enclosing production statement. If this does not exist, a compile-time error
occurs. For the second variant, the initial current producer is the result of
the expression p. Note that the syntax is similar to rules, but stand-alone
production statements occur as single statements or within normal statement
blocks, while rules occur within rule blocks. For an example, see Sect. 6.7 on
page 162.

6.10 Properties

The XL programming language defines properties of objects which have a
similar meaning as instance fields. However, they are addressed by a different
syntax, and additional colon-prefixed assignment operators exist. Contrary to
fields, the XL programming language does not specify a means to introduce
new properties, this is up to the implementation of a data model. Properties
are addressed by the syntax

e[n]

where e is an expression of reference type T and n is the name of a property
declared in T . The property access e[n] stands for a variable whose type is the
type of the property, and whose value is read and written by special methods
provided by a run-time model. The details are described in the following.

6.10.1 Compile-Time and Run-Time Models for Properties

Like graphs, also properties are defined by a data model which consists of
a compile-time model and a run-time model. These define which properties
exist and how their values are read and written. Thus, while a data model
for graphs is concerned with the topology, a model for properties is concerned
with internal state (e. g., attribute values).

6.10 Properties 175

The interface de.grogra.xl.property.CompiletimeModel together with
its nested interface Property represent static compile-time aspects of prop-
erties. For an expression e[n] where the type of e is T , it is checked if
the current scope has an enclosing declaration with an annotation of type
@de.grogra.xl.property.UseModel whose type element specifies a super-
type of T or T itself. If this is the case, an instance of the type specified by the
model element is used as the CompiletimeModel instance. Otherwise, the type
T has to have or inherit an annotation @de.grogra.xl.property.HasModel
whose single element defines the type to use for the CompiletimeModel in-
stance. The first possibility is used by the example

class Node {...}

class Label extends Node {...}

@UseModel(type=Node.class, model=MyCompiletimeModel.class)
class Test {

void test(Label n) {

System.out.println(n[text]);

}

}

while the following example makes use of the second possibility:

@HasModel(MyCompiletimeModel.class)
class Node {...}

class Label extends Node {...}

class Test {

void test(Label n) {

System.out.println(n[text]);

}

}

In both cases, the property access n[text] uses MyCompiletimeModel as
compile-time model.

The class diagram of the interfaces for properties is shown in Fig. 6.3
on the following page. The method getDirectProperty of the compile-time
model is invoked at compile-time with the arguments (T, n) to obtain the
corresponding compile-time representation of the property. For the example,
T would be Label and n would be text. If this invocation returns null, no
property named n is declared in T , and a compile-time error occurs. Other-
wise, the method getType of a property determines its type, i. e., the type of
the variable e[n], and getRuntimeType determines the type of the run-time
representation of the property. The latter has to be a subtype of the inter-
face RuntimeModel.Property which declares getter- and setter-methods to
read and write values of property variables. Run-time models for properties
are obtained in a similar way as run-time models for graphs: the run-time
name of the compile-time model (as reported by getRuntimeName) is used

176 6 Design of the Language

�interface�

CompiletimeModel

+ getDirectProperty(type: Type〈?〉, name: String): Property
+ getRuntimeName(): String

�instantiates�

���
�
�
�

�interface�

Property

+ getType(): Type〈?〉
+ getSubProperty(name: String): Property
+ getComponentProperty(): Property
+ getTypeCastProperty(type: Type〈?〉): Property
+ getModel(): CompiletimeModel
+ getRuntimeType(): Type〈? extends RuntimeModel.Property〉
+ getRuntimeName(): String

�interface�

RuntimeModel.Property

+ getter- and setter-methods

�interface�

RuntimeModel

+ propertyForName(name: String, loader: ClassLoader): RuntimeModel.Property
. . .

�instantiates�

OO�
�
�
�

Figure 6.3. Class diagram of compile-time and run-time models for properties

at run-time as input to a de.grogra.xl.property.RuntimeModelFactory in
order to obtain the corresponding RuntimeModel. The run-time name of the
compile-time Property is then passed to the propertyForName method of the
RuntimeModel to get the run-time representation p of the Property.

6.10.2 Access to Property Variables

A property access expression e[n] addresses a property variable which as-
sociates a value for property n with the instance that results from e. How
the value is associated is up to the implementation of the run-time prop-
erty p. Namely, the value is read by invocation of the getter-method of

6.10 Properties 177

RuntimeModel.Property which is suitable for the property type, and it is
written by invocation of the suitable setter-method. It is not specified by
the XL programming language that these methods are consistent, i. e., that a
getter-method returns the value which has been set by the last invocation of a
setter-method, although reasonable implementations will usually do so. Unlike
access to field variables, the method implementations may have side-effects.
E. g., writing a value may trigger the invocation of notification methods of
listeners which are associated with the property variable.

A property access may be concatenated as in sphere[position][z] if a
property declares subproperties itself; the declaration is done by the method
getSubProperty of the compile-time representation of the property. This may
be combined with type casts as in ((Matrix4d) group[transform])[m00],
see the method getTypeCastProperty. Furthermore, if the type of a prop-
erty is an array type or a subtype of java.util.List, the property may de-
clare component properties by the method getComponentProperty which are
addressed by an indexed access as in container[children][2][position].
Property access using such a concatenation of properties is still considered
as a single property access with the property being a compound property.
This means that while the expression container.children[2].position
which uses conventional field and array access is equivalent to the expression
((container.children)[2]).position, this does not hold for property ac-
cess: container[children][2][position] denotes the compound property
[children][2][position] of container, while the parenthesized expression
((container[children])[2])[position] denotes the property position of
the element at index 2 of the value of the property children of container.
While both variants should return the same value for reasonable implemen-
tations, there may be different side-effects when values are written to these
properties: in the first case, the container itself could be notified about the
modification, in the second case the element with index 2 of the children of
the container.

6.10.3 Deferred Assignments

Like for any variable of the XL programming language, values may be assigned
to property variables by the assignment operator =. Also compound assign-
ment operators like += are defined which at first obtain the current value of
the variable, then perform some operation on it and finally write the result
to the variable. Specifically for the usage with properties, the colon-prefixed
assignment operators

:= :**= :*= :/= :%= :+= :-=

:<<= :>>= :>>>= :&= :^= :|=

are introduced (but by overloading they may also be used for other purposes).
Although the XL programming language does not specify the semantics of im-
plementations of these operator methods, the convention is to use them for

178 6 Design of the Language

deferred assignments which are not executed immediately, but at some later
point. Within the context of relational growth grammars, these assignments
are deferred until the application of a parallel production is executed. Simple
deferred assignments correspond to assignments of values to node attributes,
compound deferred assignments to incremental modifications of attribute val-
ues (see Sect. 5.8 on page 115).

Deferred assignments help to solve a problem which was described by
Robert Floyd in his famous Turing Award Lecture [58]. As he points out, the
natural way to implement the update of some state vector is to just list the
individual update equations for the components. But, given the sequential
execution of the imperative programming paradigm, this natural way leads to
incorrect results: for the update equation of a component, it erroneously uses
the modified values for those components that have already been updated.
As an example, consider the Game of Life (Sect. 2.4 on page 14), whose cell
states can be regarded as a state vector. The transition rule which lets dead
cells (state 0) come to life (state 1) can be implemented as

x:Cell & (x[state] == 0) & (sum((* x -neighbour-> Cell *)[state]) == 3)

::> x[state] := 1;

If we used the assignment = instead of :=, cells would immediately come to
life within the ongoing execution of the rule for the current step. This then
influences the application conditions of the left-hand side for the remaining
matches of x:Cell, so that the overall behaviour depends on the order in
which these matches are found and does not conform to the Game of Life.
The usage of := as assignment operator defers the actual assignment of the
new state to the final application of the parallel production. This correctly
models the parallel mode of transitions of cellular automata, and it correlates
with the parallel application of rules. In general, the immediate assignment of
new values conflicts with parallel derivations.

The internal mechanism of deferred assignments is as follows: if the left-
hand side of a deferred assignment operator denotes a property variable and
the right-hand side some expression, it is tried to apply the operator as
a quaternary operator to the arguments consisting of the run-time repre-
sentation p of the property, the object to which the property variable be-
longs, an int-array of indices of component properties (having a length of
zero if no component property is used), and the value of the right-hand
side. For example, for the assignment x[value] :+= 1 the arguments are
(p, x, new int[]{}, 1) where p denotes the run-time representation of the
property named value. Then the usual resolution of operator overloading as
described in Sect. 6.6 on page 160 is applied (see Table 6.1 for the trans-
lation from symbols to operator method names). For the above example
and if p declares a suitable operator method on its own, the final trans-
lation of the example is p.operator$defAddAssign(x, new int[]{}, 1)
A translation of the assignment x[children][2][position][z] := 3 is
q.operator$defAssign(x, new int[]{2}, 3) where q denotes the run-time

6.11 Module Declarations 179

representation of the subproperty z of the subproperty position of the com-
ponent property of the property children of the type of x. The validity of
the index arrays is not guaranteed to persist after returning from the operator
method. Therefore, a compiler is free to choose other equivalent, but more effi-
cient ways to allocate the required int-arrays, for example by using some pool
of int-arrays instead of allocating a new array for each deferred assignment.

6.10.4 Properties of Wrapper Types

The compile-time model of a graph (Sect. 6.5.1 on page 142) specifies the
method getWrapProperty which takes the type of a wrapper node (Sect. 6.5.2
on page 148) as input and returns the property which contains the wrapped
value (or null if no such property exists). E. g., a node class ObjectNode wrap-
ping Object-values might declare a property value for the wrapped values.
Now consider a rule

v:Vector3d ::> v[z] = 0;

which shall set all z-components of vectors to zero. If Vector3d cannot be
used as node class, it has to be wrapped in an ObjectNode so that the pat-
tern actually looks for instances of ObjectNode which wrap a value of class
Vector3d. Now assume that the used implementation of properties only de-
fines properties with respect to node types, i. e., the non-node class Vector3d
has no property z, but each Vector3d-valued property of a node type has a
subproperty z (this is the case for the implementation of GroIMP, see Ap-
pendix B.10). Then the above rule has no direct meaning, but has to be
interpreted to set the subproperty z of the type-cast property to Vector3d of
the property value of each ObjectNode wrapping a Vector3d to zero. I. e., v
is implicitly replaced by ((Vector3d) $v[value]) with $v standing for the
wrapper node (Sect. 6.5.2 on page 148).

6.11 Module Declarations

Parametric L-systems define the notion of modules, i. e., parameterized sym-
bols (Sect. 3.7 on page 25). In our setting, the natural representation of such
symbols is as nodes of classes which declare a single instance field for every
parameter. For example, to model an L-system rule X(a) → X(a + 1), we
would declare a node class like

class X extends Node {

float a;

X(float a) {

this.a = a;

}

}

180 6 Design of the Language

and write X(a) ==> X(a+1);. The class declaration suffices for the right-
hand side which creates a new X node by invocation of the constructor, but
it does not provide a user-defined pattern (see 6.5.2) for the pattern X(a) of
the left-hand side – there is not yet a meaning what X(a) stands for as a
pattern. One could define that in this situation (and analogous ones), where
the argument a of a parameterized pattern X(a) denotes the name a of a
field declared in the node type X of the pattern, the compiler shall assume
a simple node pattern for the node type X, declare a query variable a and
bind the value of the field a for matched X nodes to this query variable. But
this conflicts with traditional L-systems which access parameters by position
only so that we may write X(a) in one rule and X(b) in another, with both
a and b being bound to the same parameter. If we really want to access
parameters by name, we have to write x:X ==> X(x.a+1);, but to access pa-
rameters by position, the declaration of a user-defined pattern by a subclass of
de.grogra.xl.query.UserDefinedPattern is mandatory. As this requires a
relatively large amount of coding, the XL programming language defines mod-
ule declarations which automatically declare a suitable user-defined pattern,
but otherwise are like normal class declarations.

6.11.1 Syntax

The basic syntax of module declarations is similar to the L+C programming
language (Sect. 3.14 on page 33). If there is a single parameter a of type float,
we write

module X(float a);

This is equivalent to a class declaration

class X extends N {

float a;

X(float a) {this.a = a;}

public static class Pattern extends UserDefinedPattern {

private static void signature(@In @Out X node, float a) {}

... // suitable implementation of abstract methods

}

}

The declaration uses an implicit superclass N which is determined by the
annotation @de.grogra.xl.modules.DefaultModuleSuperclass of the in-
nermost enclosing declaration which has such an annotation. If such an anno-
tation does not exist, Object is used as superclass.

Module declarations may also specify their superclass explicitly, use inher-
ited fields in the pattern, and contain an entire class body:

module Y(super.a, String b) extends X {

6.11 Module Declarations 181

public String toString () {return "Y[" + a + "," + b + "]";}

}

is equivalent to (given the previous declaration of X)

class Y extends X {

String b;

Y(float a, String b) {super(a); this.b = b;}

public static class Pattern extends UserDefinedPattern {

private static void signature(@In @Out Y node,

float a, String b) {}

... // suitable implementation of abstract methods

}

public String toString () {return "Y[" + a + "," + b + "]";}

}

It is also possible to declare the superclass constructor explicitly, to add a list
of expression statements to be included in the constructor (using the syntax
of with-instance expression lists, Sect. 6.13.4 on page 187), and to specify a
list of implemented interfaces:

module Z(super.a) extends Y(a, "Z").(a2 = a*a, System.out.println(this))
implements I {

float a2;

}

is equivalent to (given the previous declaration of Y)

class Z extends Y implements I {

float a2;

Z(float a) {super(a, "Z"); a2 = a*a; System.out.println(this);}

public static class Pattern extends UserDefinedPattern {

private static void signature(@In @Out Z node, float a) {}

... // suitable implementation of abstract methods

}

}

A further special syntax is possible within module declarations. To be able
to deal with situations where we want to use a field of a superclass as a
parameter, but do only have access to this field via get- and set-methods (due
to restricted visibility or even because the value is not stored directly in a
field, but by some other mechanism), we have to specify the get-method in
the declaration of the parameter:

module W(float a return getA()) extends X.(setA(a));

Note that this example assumes the existence of the methods getA and setA
in X, which is not the case for the definition of X from above.

182 6 Design of the Language

6.11.2 Instantiation Rules

Module declarations support one distinguished feature, namely the declara-
tion of instantiation rules. While all other features of the XL programming
language are not related to a specific field of application, instantiation rules
are of best use within the context of (2D and) 3D applications. Instantia-
tion in the context of the representation of geometry refers to the multiple
inclusion of the same geometric structure but with different locations in space
[59]. Thus, we need only one representation of the master (e. g., a detailed de-
scription of the 3D geometry of a tree), although it is displayed several times.
This of course helps to reduce memory consumption of the whole description.
A more general concept of instantiation is to algorithmically create complex
geometry out of a compact specification “on the fly”, i. e., when the actual
geometry has to be displayed or otherwise accessed [121, 37]. For example,
the specification could describe a set of parameters for a tree-construction al-
gorithm, the algorithm then creates the tree on demand without persistently
storing the geometry in memory.

Instantiation rules of modules can be used for both kinds of instantiation.
They consist of production statements (Sect. 6.7 on page 162) and are specified
with a leading arrow ==> as last part of a module declaration:

module X {

const Sphere sphere = new Sphere();

} ==> sphere;

module Y(int n)

==> for(1 : n)(Cylinder.(setShader(RED)) Cylinder.(setShader(WHITE)));

The first example creates a single sphere as master and instantiates this (fixed)
sphere when needed. The second example represents a simple geometry-
creating algorithm with a parameter n: it instantiates a sequence of 2n cylin-
ders with alternating colours.

Instantiation rules can be used for similar purposes as interpretive pro-
ductions of L-systems (Sect. 3.9 on page 28). Both assign additional structure
to objects which the objects do not have on their own. This may be used,
e. g., to define a geometric view of objects without having to deal with the
geometry when specifying the behaviour of the objects themselves. The dif-
ference between instantiation rules and interpretive productions is that the
former do not modify the persistent structure (the graph), but only create
temporary structure on demand, while the latter insert additional structure
into the persistent structure and remove the additional structure at a later
point. Concerning space and time efficiency and principles of clean software
design, instantiation rules are preferable, but they cannot have an effect on
objects in the persistent structure which is sometimes used by interpretive
productions.

The internal mechanism of instantiation rules makes use of the interface
de.grogra.xl.modules.Instantiator:

6.12 User-Defined Conversions 183

�interface�

Instantiator〈P〉
+ instantiate(producer: P)

For a declaration of an instantiation rule ==> production statements;, the an-
notation @de.grogra.xl.modules.InstantiationProducerType of the in-
nermost enclosing declaration which has such an annotation defines the type
P of the producer for the instantiation. The module class then implicitly
implements the interface Instantiator<P>. If the module does not declare
parameters, this looks as follows:

public void instantiate(P producer) {

producer ==> production statements;
}

Otherwise, if there are parameters, an additional method is declared. In case
of a single parameter float a, this looks like

public void instantiate(P producer) {

instantiate(producer, a);

}

public void instantiate(P producer, float a) {

producer ==> production statements;
}

So the body of the method instantiate consists of a single stand-alone
production statement which uses the parameter producer as initial current
producer and which contains the production statements of the instantiation
rule. (Thus, instantiation rules are nothing but useful “syntactic sugar”.) It
is up to the application which uses instances of modules with instantiation
rules to provide a suitable implementation of the producer, and to invoke the
instantiate method when needed.

6.12 User-Defined Conversions

The Java programming language defines automatic boxing and unboxing con-
versions from primitive types to their wrapper classes and reverse. I. e., in

int i = 0;

Integer j = i;

i = j;

the methods Integer.valueOf(int) and Integer.intValue() are invoked
implicitly to convert between the otherwise incompatible types Integer and
int. However, unlike the C++ and C# programming languages [83, 41], the Java
programming language does not allow user-defined conversions. These are of
particular use in combination with operator overloading to write expressions

184 6 Design of the Language

in a natural, uncluttered way. The C++ programming language allows conver-
sions by constructors and by conversion functions, which are declared as spe-
cial conversion operator functions, while the C# programming language only
allows conversions by conversion functions. The XL programming language
follows the C++ programming language and allows user-defined conversions by
constructors and conversion functions, but conversion functions are not de-
clared by operator methods. Instead of this, conversion functions are declared
by methods which conform to the following patterns often found in APIs for
the Java programming language:

class X {

X(S source);

static X valueOf(S source);

T toTs();

t tValue();
}

where X,S are types, T a reference type with Ts its simple name, and t a
primitive type. I. e., a type X may declare conversions from a source type
S to itself by a constructor or a static valueOf method, and it may declare
conversions from itself to target types T, t by instance methods toTs, tValue,
respectively. To be able to declare user-defined conversions between types
which do not know each other, it is also possible to declare static conversion
methods from S to T in some other class X:

class X {

static T toTs(S source);

}

But then the method toTs has to be statically imported so that it can be
found.

While the names valueOf and toTs for methods indicate that the methods
were specifically designed for conversion purposes, constructors do not always
convert values into their representation of another type. For example, the class
StringBuffer declares a constructor with a single int parameter, its initial
capacity. So an assignment StringBuffer b = 42; does not create a buffer
with the character sequence "42" as its content, but an empty buffer with
initial capacity 42. So in order to prevent programming errors, user-defined
conversions by constructors are disabled by default except for constructors
which are annotated with @de.grogra.xl.lang.ConversionConstructor as
in

class Int {

int value;

@ConversionConstructor

Int(int value) {this.value = value};

}

...

6.13 Minor Extensions 185

Int i = 10; // uses conversion constructor

Allowed conversions within source code can be controlled by the annotation
@de.grogra.xl.lang.UseConversions which specifies a list of a subset of
the values VALUE OF, TO TYPE, TO TYPE IN SCOPE, CONVERSION CONSTRUCTOR,
CONSTRUCTOR of the enumeration de.grogra.xl.lang.ConversionType:

@UseConversions({VALUE_OF, TO_TYPE, CONVERSION_CONSTRUCTOR, CONSTRUCTOR})

class Test {

StringBuffer buf = 42; // creates a StringBuffer of capacity 42

}

Besides user-defined conversions, also implicit conversions from double to float
are possible, see Sect. 6.13.2 on the following page.

6.13 Minor Extensions

This section presents the minor extensions of the XL programming language
with respect to the Java programming language. It concludes with a list of all
defined operators.

6.13.1 for statement

The Java programming language defines the basic for-statement as it is known
from the C programming language and an enhanced for-statement with the
syntax

for (T i : e) b

where i is the identifier of a local iteration variable to be declared for the loop
and T its type, e is an expression and b the body of the loop. For the Java
programming language, the type of e has to be either an array type in which
case i iterates over the values of the elements of the array, or the type of e
has to be a subtype of java.lang.Iterable in which case i iterates over the
values of the iterator returned by Iterable.iterator().

The XL programming language extends the syntax by also allowing en-
hanced for-statements without an iteration variable:

for (e) b

While this is useless for iterations over arrays, it may be useful for iterations
over an Iterable if we are interested in side-effects of the iteration only.
But it is most useful for the two new types of iterations defined by the XL
programming language. First, an enhanced for-statement may iterate over the
values of e. If e is a normal expression with a single value, this is not very
useful, but if e is a generator expression, the iteration is over every yielded
value of e. Using this type of iteration, we may write

186 6 Design of the Language

for (int i : 0 : 100) {...}

for (Shoot s : (* Shoot *)) {...}

for ((* s:Shoot *)) {...}

A second new usage of the for-statement is by expressions whose type I is
a subtype of the new interface de.grogra.xl.lang.DisposableIterator.
This interface is declared as follows:

�interface�

DisposableIterator

+ next(): boolean
+ dispose(exception: Throwable)

If the type I also has an instance method value(), the iteration over such a
disposable iterator is equivalent to the code

I #it = e;
Throwable #t = null;
try {

while (#it.next()) {

T i = #it.value();

b
}

}

catch (Throwable #u) {

#t = #u;

throw #u;

}

f ina l ly {

#it.dispose(#t);

}

So the next method governs the loop, the invocation of value obtains the
value for the current iteration, and the final invocation of dispose is guaran-
teed even in case of an exception. If I does not have a method value(), the
disposable iterator iterates over void, then an enhanced for-statement with-
out iteration variable has to be used. Such a for-statement can be used as a
counterpart of the using-statement of the C# programming language which
obtains a resource, then executes some statements and finally invokes Dispose
on the resource to indicate that the resource is no longer needed [41].

6.13.2 Implicit Conversions from double to float

Conversion from double to float are narrowing conversions and, thus, have to
be specified explicitly by a cast to float in the Java programming language. For
convenience, in the XL programming language it is possible to enable implicit
conversions from double to float where needed. This is done by the anno-
tation @de.grogra.xl.lang.ImplicitDoubleToFloat whose single boolean
element controls whether conversions from double to float shall be implicit
within the annotated entity or not.

6.13 Minor Extensions 187

@ImplicitDoubleToFloat // default value is true

class Test {

float x = 4.2; // OK, implicit narrowing conversion

@ImplicitDoubleToFloat(false)
void test() {

x = 4.2; // compile-time error

}

}

6.13.3 Expression Lists

The C programming language and most programming languages which syn-
tactically follow the C programming language define the comma operator a, b
which evaluates a, discards the result, and then evaluates b and returns the
result of the latter. The Java programming language does not define such
an operator (with the exception of statement lists for initializer and update
statements of for-loops). The XL programming language does not specify the
comma as an operator, too, but there are places where the Java programming
language only allows a single expression, while the XL programming language
allows a comma-separated expression list which may even declare local vari-
ables whose scope is the rest of the expression list. Most important, such a
list can be used within parentheses:

(int x = 0 : 100, x * x)

The usage of an expression list is helpful in conjunction with generator ex-
pressions if there is a need for some intermediate computations. For example,
assume that we want to analyse the branching angles within a plant struc-
ture composed of nodes of type Shoot. The query (* a:Shoot [b:Shoot] *)
finds all branching locations with the parent shoot a and the branching shoot
b. Given a suitable method angle and a suitable aggregate method mean, the
complete expression is

mean(((* a:Shoot [b:Shoot] *), angle(a, b)))

6.13.4 With-Instance Expression Lists

When several methods or fields of the same object have to be addressed,
with-instance expression lists are useful. Their syntax is

i.(e1, . . ., en)

where i is an expression of reference type and e1, . . . , en are expressions.
Within the parentheses, fields or methods which are members of the type
of i are in scope, i. e., they can be referred to by their simple name. If an
instance field or instance method is addressed, the result of i is taken as the

188 6 Design of the Language

target reference. This is similar to the implicit this within bodies of instance
methods. With-instance expression lists can be compared to with-statements
of the Pascal programming language. The result of a with-instance expression
list is the result of i. For convenience, the result of i can be addressed within
the expression list by the identifier $.

A typical case where one can benefit from with-instance expression lists is
the creation of a new object with a lot of attributes. Its class could provide a
constructor which configures all attributes, but the list of constructor param-
eters then is quite complex, and one has to remember the order of parameters
since one cannot use their name within an invocation:

panel.add(new JLabel(t, i, a));

Furthermore, the Java programming language does not define invocations with
default arguments, so we either would have to specify arguments for every
parameter, or the implementation of the class would have to declare a lot
of constructors with different sets of parameters and default values for the
remaining attributes. The alternative to complex constructors is to use an
invocation of a setter-method for each attribute. This is more flexible and
readable, but leads to unnecessarily lengthy code because we have to introduce
a temporary variable which holds the object to be configured:

JLabel lbl = new JLabel();

lbl.setText(t);

lbl.setIcon(i);

lbl.setHorizontalAlignment(a);

panel.add(lbl);

With the help of with-instance expression lists, this can be solved in an easy
way:

panel.add(new JLabel().(setText(t), setIcon(i),

setHorizontalAlignment(a)));

6.13.5 Anonymous Function Expressions

The Java programming language defines anonymous class declarations as a
syntactical shorthand. However, when such a declaration is only needed to
declare a single method as its member, there is still some amount of textual
overhead. For example, to implement a de.grogra.xl.lang.DoubleToDouble
function, one has to write

DoubleToDouble f = new DoubleToDouble() {

public double evaluateDouble(double x) {

return x * Math.sin(x);

}

}

6.13 Minor Extensions 189

Because the specification of functions like this is often necessary within mod-
els which contain numerical computations (e. g., parameter fitting), the XL
programming language provides a shorthand for anonymous function and gen-
erator expressions. The expressions

X x => Y e
X x => Y * e

return new instances of the interfaces X ′ToY ′ or X ′ToY ′Generator, respec-
tively, where X,Y are types, x is an identifier which can be accessed within
the expression e as a local variable of type X, and the type of e has to be
assignable to Y . For primitive types, X ′ is the name of the type with a capi-
talized first letter (e. g., Int for int). For reference types, it is Object, and the
type X is appended to the list of type parameters of the interface. The single
method of the interface is implemented by returning or yielding the value of
e. I. e., the above example can equivalently be written as

DoubleToDouble f = double x => double x * Math.sin(x);

and the anonymous generator declaration

ObjectToObjectGenerator<Node,Shoot> children

= Node parent => Shoot (* parent --> Shoot *);

is a shorthand for

ObjectToObjectGenerator<Node,Shoot> children

= new ObjectToObjectGenerator<Node,Shoot>() {

public void evaluateObject (ObjectConsumer<? super Shoot> cons,

Node parent) {

yield (* parent --> Shoot *);

}

}

The C# programming language defines anonymous method expressions [41]
and, in its latest extension which is not yet a standard, anonymous function ex-
pressions, also called λ-expressions due to their similarity with the λ-calculus
[128]. The latter have a syntax similar to the presented one.

6.13.6 const modifier

In the Java programming language, constants can be defined by field declara-
tions with both modifiers static and final. As a simplification, the new modifier
const can be used for this purpose in the XL programming language, i. e., we
may define constants like

const int N = 100;

const Shader leafShader = shader("leaf");

190 6 Design of the Language

6.13.7 New Operators

The XL programming language defines several new operators. The operators
a : b, a[:], a :: b and a in b as well as colon-prefixed assignment operators
have already been presented. There are also the arrow operators a -> b, a <- b,
a <-> b, a --> b, a <-- b, a <--> b, a --- b, a +> b, a <+ b, a <+> b, a -+- b, a /> b,
a </ b, a </> b, a -/- b whose main purpose is to be used within production
statements and which have no built-in meaning, i. e., they always refer to
operator methods. The new operators a ** b, a <=> b and `a` have a built-in
semantics which is described in the following. A complete list of all operators
including their precedence is given in Table 6.1.

Exponentiation Operator

The binary exponentiation operator

a ** b

is defined for operands of type float or double and computes the value a
raised to the power of b. The computation is implemented by the method pow
of java.lang.Math.

Comparison Operator

The binary comparison operator

a <=> b

is defined for operands of numeric type. Its result type is int, and the value
is 0 if a == b, 1 if a > b and -1 otherwise. The last case includes a < b, but also
cases where a or b is Not-a-Number.

Quote Operator

The unary quote operator

`a`

is defined for operands of any type and performs the identity operation, i. e.,
type and value are determined by the operand a. Thus, it is the same as (a),
but the quote operator may be overloaded. This operator can be used for
node patterns and node expressions if expressions have to be parenthesized,
but normal parentheses cannot be used for syntactical reasons.

6.13 Minor Extensions 191

List of all Operators

Table 6.1 lists all operators of the XL programming language in order of prece-
dence, starting with the operators with highest precedence. The operators
are grouped by horizontal lines, operators within one group share the same
precedence. The exponentiation operator ** and all assignment operators are
syntactically right-associative (e. g., a ** b ** c means a ** (b ** c)), all
other binary operators are left-associative. The rules for precedence and as-
sociativity follow the Java, C and Perl programming languages.

192 6 Design of the Language

Table 6.1. Operators of the XL programming language, sorted by precedence

Operator Description Operator method suffix Explanation

`a` Quote quote Sect. 6.13.7
a[b] Array access, property access index Sect. 6.10
a(b) Invocation invoke Sect. 6.6
a[:] Array generator generator Sect. 6.3.3
a -> b Arrow arrow
a <- b Left arrow leftArrow

a++ Postfix increment postInc
a-- Postfix decrement postDec

a ** b Exponentiation pow Sect. 6.13.7
++a Prefix increment inc
--a Prefix decrement dec
+a Unary plus pos
-a Negation neg
~a Bitwise complement com
!a Logical complement not

a * b Multiplication mul
a / b Division div
a % b Remainder rem

a + b Addition add
a - b Subtraction sub

a << b Left shift shl
a >> b Right shift shr
a >>> b Unsigned right shift ushr

a instanceof T Type comparison -
a < b Less than lt
a > b Greater than gt
a <= b Less than or equal le
a >= b Greater than or equal ge
a <=> b Comparison cmp Sect. 6.13.7
a in b Containment in Sect. 6.4.1
a <-> b Left-right arrow leftRightArrow
a --> b Long arrow longArrow
a <-- b Long left arrow longLeftArrow
a <--> b Long left-right arrow longLeftRightArrow
a --- b Line line
a +> b Plus arrow plusArrow
a <+ b Plus left arrow plusLeftArrow
a <+> b Plus left-right arrow plusLeftRightArrow
a -+- b Plus line plusLine
a /> b Slash arrow slashArrow
a </ b Slash left arrow slashLeftArrow
a </> b Slash left-right arrow slashLeftRightArrow
a -/- b Slash line slashLine

a == b Equality eq
a != b Inequality neq

a & b Bitwise and and

a ^ b Bitwise exclusive or xor

a | b Bitwise inclusive or or

a && b Conditional and cand

a || b Conditional or cor

a :: b Guard guard Sect. 6.3.4
a ? b : c Conditional -
a : b Range range Sect. 6.3.2
a = b Assignment -
a := b Deferred assignment defAssign Sect. 6.10
a op= b Compound assignment sAssign
a :op= b Compound deferred assignment defSAssign Sect. 6.10

op ∈ {**, *, /, %, +, -, <<, >>, >>>, &, ^, |} s ∈ {pow, mul, div, . . .}
S ∈ {Pow, Mul, Div, . . .}

7

Pattern Implementation
and Matching Algorithm

The run-time implementation of the semantics of a query requires a pattern-
matching algorithm which finds all matches of the query. This algorithm is
a fixed component of the run-time system of the XL programming language.
Following the divide-and-conquer paradigm, it is spread over several classes
in the package de.grogra.xl.query which are responsible for specific types
of patterns (e. g., node patterns, edge patterns, transitive closures, compound
patterns), see the lower part of the class diagram in Fig. 7.1 on the next page.
The whole pattern graph of a query is then represented as a hierarchy of such
patterns.

7.1 Common Semantics of Patterns

Each pattern has to find valid matches for the query variables with which
it is linked. Some query variables may already be bound when a pattern is
asked to find matches, then the already bound variables have to be taken as
constraints, and only the remaining query variables have to be matched. For
example, the simple pattern graph�� ��A

> //
�� ��B

consists of two type patterns for nodes (A and B) and an edge pattern which
matches successor edges. The edge pattern shares its query variables for the
source and target node with the incident node patterns. If the pattern graph is
matched from left to right, at first the A pattern has to scan the whole graph
for nodes of type A. It binds them to a query variable which also represents the
source node of the edge pattern. The edge pattern takes this query variable
as fixed input, finds all outgoing successor edges of the source node and binds
the edge and its target node to corresponding query variables. Finally, the
B pattern has to check whether the already bound value of its single query
variable has type B.

194 7 Pattern Implementation and Matching Algorithm

QueryState

+ getGraph(): Graph
+ isBound(param: int): boolean
+ isNull(param: int): boolean
+ unbind(param: int)
+ nullbind(param: int)
+ ibind(param: int, val: int): int
+ ibound(param: int): int

. . .
+ abind(param: int, val: Object): int
+ abound(param: int): Object

. . .

�interface�

MatchConsumer

+ matchFound(qs: QueryState, arg: int)

Matcher

+ findMatches(qs: QueryState, c: MatchConsumer, arg: int)
. . .

�yields matches to�

BB�
�

�
�

�
�

�
�

�
�

�
�binds variables�

OO�
�
�
�

Pattern

+ getParameterCount(): int
+ getParameterType(param: int): Type〈?〉
+ getParameterKind(param: int): int
+ createMatcher(g: Graph, bound: XBitSet, requiredAsBound: IntList): Matcher

�1

0..∗

�instantiates�

OO�
�
�
�

BuiltInPattern

8c�xxxxxxxxx
UserDefinedPattern

	.]IIIIIIIIII

. . .

. . .

=f�}}}}}}}}}} EdgePattern

. . .

_�2

CompoundPattern

. . .

�1_LLLLLLLLLLL

�
0..1

1

UserDefinedCompoundPattern

+ getPattern(): CompoundPattern

_�2

Figure 7.1. Class diagram for patterns and their matching

7.1 Common Semantics of Patterns 195

A pattern is linked with query variables by its parameters. For example,
a simple node pattern A has a single parameter of type A which is asso-
ciated with a query variable of the query. An edge pattern has three pa-
rameters, where the parameters for the source and target node are associ-
ated with the same query variable as the parameters of the incident node
patterns (see also the discussion how patterns are combined in Sect. 6.5.11
on page 156). In general, the number n of parameters of a pattern is given
by the method getParameterCount. For each parameter indexed from 0 to
n − 1, the method getParameterType determines the type of the param-
eter, and getParameterKind the kind, which is a combination of the bit
masks NODE MASK, INPUT MASK, OUTPUT MASK, CONTEXT MASK with the follow-
ing meanings:

• If NODE MASK is present, the parameter is a node parameter whose asso-
ciated query variable contains nodes. Such a variable is treated specially
when injective matching is required: then two different variables for nodes
must not contain the same value.

• The mask INPUT MASK indicates an input parameter. Its variable has to be
bound to a value before the pattern is asked to find matches.

• The mask OUTPUT MASK indicates an output parameter. This is just a hint
to the search plan generator (Sect. 7.3.1 on page 197) which indicates that
it is a very cheap operation for the pattern to bind values to the associated
variables.

• If CONTEXT MASK is present, the query variable is considered to be in the
context of the query. Context variables are treated specially if the query
is the left-hand side of a rule, see Sect. 7.6 on page 201.

The most important method of Pattern is createMatcher: this method cre-
ates a Matcher which is able to find matches for the specific pattern in a
Graph. The parameter bound of createMatcher is a bit set which indicates
the parameters of the pattern whose query variables are already bound when
the matcher is invoked (i. e., the set contains bit j if and only if the query
variable of parameter j is already bound when findMatches is invoked on the
matcher). If the matcher needs additional parameters being bound in advance,
createMatcher has to add their indices to the list requiredAsBound. If for
the initial configuration bound no matcher can be created, createMatcher
has to return null.

The single abstract method findMatches of the class Matcher receives a
current QueryState, a MatchConsumer and some argument arg. Within the
process of matching, the binding of query variables is performed through the
methods of the query state: isBound tells whether the query variable of the
parameter with index param is currently bound to a value. If so, the methods
ibound, lbound, fbound, dbound, abound can be invoked to determine the
value, where the method has to correspond to the type: values of type boolean,
byte, short, char and int are obtained through ibound, where non-int values
are encoded as int values in the same way as for the Java virtual machine, the

196 7 Pattern Implementation and Matching Algorithm

other methods are responsible for the types long, float, double and Object,
respectively. If some query variable has not yet been bound, the matcher has
to do this via one of the bind methods. Their return value indicates the success
of binding: the value BINDING PERFORMED represents a successful binding, the
value BINDING MATCHED means that the variable has already been bound to
the same value, and BINDING MISMATCHED means that the variable has already
been bound to a different value so that the desired binding does not match
the existing one. When all query variables have been bound, the matcher has
found a match for its pattern, and the match consumer has to be invoked with
the query state and arg as arguments. Afterwards, the method unbind of the
query state has to be invoked to remove the binding for newly bound query
variables.

If optional patterns (Sect. 6.5.7 on page 153) are used, the value of a query
variable may be a null value which indicates that no match for the optional
part could be found. Whether this is the case is determined by the method
isNull of the query state, and a null value can be bound to a query variable
by the method nullbind. This is different from binding the value null via
abind: in the latter case, null is regarded as an actual value, and isNull
returns false.

7.2 Built-In Patterns

The implementation of most of the built-in patterns is straightforward. For
example, an edge pattern expects at least one of the query variables for its
incident nodes to be bound in advance. The matcher of an edge pattern then
delegates to the method enumerateEdges of the current Graph (see Fig. 6.1
on page 143), i. e., which edges a given node has is determined by the graph
model.

The TransitiveClosure pattern makes use of a set of package-visible
methods of the query state to create a new set of query variables for each
recursion depth. This is necessary in order to keep track of the complete
binding of query variables for each currently instantiated repetition of the
contained pattern.

7.3 Compound Pattern

The implementation of the matcher for compound patterns is crucial with
respect to the time efficiency of pattern matching. The matcher has to decide
in which order subpatterns are matched, and this has a great influence on the
required computation time. An extreme example is a complex pattern which
contains a subpattern for nodes of a type of which there are no instances in
the current graph. If this subpattern is matched at first, the algorithm will

7.3 Compound Pattern 197

terminate quickly. On the other hand, if it is matched at last, a lot of compu-
tation time will be wasted in finding matches for the other subpatterns, which
then cannot be extended to the whole pattern. In general, wrong matching
attempts should be terminated as early as possible according to the first-fail
principle in constraint satisfaction systems [200].

7.3.1 Search Plans and Their Cost Model

The order in which subpatterns of a compound pattern are matched is called a
search plan in the literature [200, 80, 7]. Finding good search plans requires a
cost model in order to compare different search plans and to determine which
search plan is good or even optimal. Our cost model is similar to the ones
in [200, 7]: for each matcher m of a subpattern, there is an estimated base
cost c(m) for a single invocation of the matcher and a branching factor f(m)
which is the estimated number of matches per invocation. These values are
obtained by methods of the matcher:

Matcher

. . .
+ getBaseCosts(): float
+ getBranchingFactor(): float

. . .

Now the estimated total costs of a search plan of n matchers m1, . . . ,mn are
given by the formula

C(m1, . . . ,mn) =
n∑

i=1

c(mi)
i−1∏
j=1

f(mj) . (7.1)

I. e., the base costs for each matcher are multiplied with the estimated number
of its invocations, and the sum of these products gives the total costs. The
cost model of [7] is a special case of (7.1) if we set c(m) = f(m).

Currently, the values for base costs and branching factors of patterns are
chosen heuristically without reference to the current graph. This could be
improved by an analysis of the actual costs and branching factors for typical
graphs. Ideally, the values would be chosen on the basis of the current graph.
For example, the exact branching factor of a pattern for nodes of some given
type is the current number of such nodes in the graph. This number could be
provided by the graph as part of some graph statistics. Of course, it may vary
from one evaluation of a query to the next.

7.3.2 Generating a Search Plan

The current implementation of compound patterns computes the optimal
search plan by a recursive backtracking algorithm. In order to not explore

198 7 Pattern Implementation and Matching Algorithm

the full space of search plans, the algorithm sorts the not yet included match-
ers with respect to their branching factor and appends matchers to the search
plan in increasing order of branching factor. If the total cost of the currently
constructed (partial) search plan is greater than the total cost of the currently
optimal search plan, the current recursion branch is terminated since it cannot
lead to a new optimal search plan.

The whole algorithm is invoked once per query, namely when the query
is evaluated for the first time. Thus, the computation time required for the
generation of an optimal search plan accrues only once and can be neglected
for practical applications.

Of course, the best solution with respect to computation time of the query
itself (i. e., without the time for search plan generation) would be to compute
an optimal search plan for each evaluation of the query based on the current
graph. But then, the computation time for search plan generation dominates
in some situations. This could be an interesting starting point for future work:
is there an efficient way to detect when it pays off to generate a new search
plan, and if so, how can this be implemented? One could observe changes in
the statistics of the graph (e. g., number of nodes or edges of specific types).
Most likely, then also the algorithm to find an optimal search plan has to be
improved with respect to computation time. This might result in an algorithm
which does not find the optimal search plan, but a good one in reasonable time.

Patterns of the class UserDefinedCompoundPattern are treated specially
when a search plan is generated. These patterns wrap a CompoundPattern.
Now the usual way to generate a search plan would be to treat the wrapped
compound pattern as an atomic pattern within the search plan. However, if
we flatten the hierarchy and replace the compound pattern by its components
in the search plan, it might be possible to find a better search plan. Thus, for
performance reasons we leave the divide-and-conquer paradigm and replace
a compound pattern within a compound pattern by its components when a
search plan is generated. This approach is also mentioned in [194].

7.3.3 Enumeration of Nodes

Patterns typically require some of their query variables for nodes to be already
bound when their matcher is invoked. For example, an edge pattern requires
either the source node or the target node to be bound in advance. If such a
pattern is used within a compound pattern and no other subpattern has bound
a node to the query variable, compound patterns add an implicit pattern
of class de.grogra.xl.query.EnumerateNodesPattern. The matcher of the
latter pattern obtains all nodes which are instances of the type of the query
variable by invocation of the method enumerateNodes on the current graph
(Fig. 6.1 on page 143, this might be a costly operation with a large branching
factor).

7.3 Compound Pattern 199

7.3.4 Checking Constraints

After each found match for a subpattern, the matcher for compound patterns
checks constraints for node parameters. The constraints are given by three
methods in the types QueryState and RuntimeModel:

QueryState

. . .
+ excludeFromMatch(o: Object, context: boolean): boolean
+ allowsNoninjectiveMatches(): boolean

�interface�

RuntimeModel

. . .
+ isNode(): boolean

For each node parameter of a subpattern, the bound value has to be a node as
defined by the method isNode of the current run-time model. Furthermore,
the method excludeFromMatch is invoked on the query state with the node as
first argument and a boolean value as second argument which is true if and
only if the node parameter is in the context of a query or not a direct part of
the query of a rule. If the result of the invocation is true, the current match for
the subpattern is rejected. Finally, if the current (partial) match for the whole
query already contains a binding of the same node to another query variable,
the invocation of allowsNoninjectiveMatches on the query state returns
false, and if there is no folding clause (Sect. 6.5.9 on page 155) which allows
the binding of both query variables to the same node, the match is rejected,
too, in order to ensure injectivity of the match with respect to nodes. But
note that the match may be noninjective with respect to non-nodes.

Using the method excludeFromMatch, a useful mechanism known from
L-system software like GROGRA and L-Studio (Sect. 3.15.1 on page 35 and
Sect. 3.15.2 on page 36) can be implemented. This software handles the case
that there are several rules with the same symbol as predecessor in a different
way than the theory: while an L-system with such rules is nondeterministic in
theory according to Def. 3.1 on page 18, in practice the first rule (in textual
order) is chosen for which the application conditions are fulfilled. The applica-
tion conditions may be the context, some conditions on the parameter values
of the symbol, or a stochastic condition to implement stochastic L-systems.
Within the framework of relational growth grammars, we can generalize this
mechanism. Rules are executed in order of the control flow of the XL program-
ming language, and each execution of a rule is able to detect which nodes will
be deleted on derivation as a result of the execution. These nodes have been
“consumed” in a way and should not be used for further matches of the same
parallel derivation. So each node which is known to be deleted on derivation
is excluded from the set of candidates for further matches. Note that this
is not a requirement specified by the XL programming language, but just
a possible application of the mechanism of matchers of compound patterns
if the method excludeFromMatch is implemented suitably by a subclass of
QueryState. This is done by the XL base implementation, see Sect. 9.1.5 on
page 245.

200 7 Pattern Implementation and Matching Algorithm

7.4 User-Defined Patterns

As it has been explained in Sect. 6.5.2 on page 145 and Sect. 6.5.11 on
page 156, user-defined patterns are subclasses of UserDefinedPattern which
declare a special signature method to define the parameters. They have
to implement the abstract method createMatcher and return a suitable
matcher. As an example, the complete implementation of the class X and
its parameterized pattern from Sect. 6.5.2 on page 145 could be the following:

class X extends Node {

float attr;

class Pattern extends UserDefinedPattern {

private static void signature(@In @Out X node, float attr) {}

public Matcher createMatcher(Graph graph, XBitSet bound,

IntList requiredAsBound) {

i f (!bound.get(0))

// we need the node parameter as input for the matcher

requiredAsBound.add(0);

return new Matcher(1) {

public void findMatches(QueryState qs, MatchConsumer c,

int arg) {

Object o = qs.abound(0); // obtain node

i f (!(o instanceof X))

return; // not an instance of X, does not match

// now bind value of attr to variable 1

switch (qs.fbind(1, ((X) o).attr)) {

case QueryState.BINDING_PERFORMED:

// OK, value has been bound

c.matchFound(qs, arg);

// remove binding of value

qs.unbind(1);

break;
case QueryState.BINDING_MATCHED:

// OK, but the same value has already been

// bound to the variable

c.matchFound(qs, arg);

break;
}

}

};

}

public int getParameterKind(int param) {

return (param == 0) ? INPUT_MASK : OUTPUT_MASK;

}

}

}

7.6 Support for Application of Rules 201

The case that the result of the binding is BINDING MATCHED, i. e., that the
query variable for attr has already been bound to the same value as o.attr,
can for example occur for patterns like n:X(7) where all X nodes with a fixed
attr value of 7 shall be found.

7.5 Storage of Named Query Variables

If query variables are named by an identifier like the query variables for the
node and a parameter in x:X(a) (the identifiers being x and a, respectively),
they can be used by the programmer like any other (final) local variable.
For example, they may be used in expressions within the query itself as in
x:X(a), (a > 1), or they may be used outside of the query, but within their
scope as in

for ((* a:A b:B *)) {

System.out.println(a + " has successor " + b);

}

However, the internal representation of query variables has to be very different
from that of local variables. Local variables are stored as part of a frame within
the stack of the Java virtual machine. This cannot be used for query variables
as the latter have to be accessible by the query state, but there are no methods
to access the stack of the Java virtual machine. Thus, query variables have to
be stored at another place where they can be addressed by method invocations.
For this purpose, an instance of the interface de.grogra.xl.query.Frame
is used which provides storage for a set of query variables. The latter are
represented by instances of de.grogra.xl.query.Variable which the query
state uses to obtain and modify their values within its frame, see Fig. 7.2
on the following page. A compiler for the XL programming language has to
choose a suitable implementation of these interfaces, and it has to produce
code which provides a frame and its variables to the query state (see also
Sect. 8.4.1 on page 213).

7.6 Support for Application of Rules

If a query is the left-hand side of a rule, we need an additional functionality
of the pattern implementation, namely the possibility to delete (parts of)
matches. In principle, the decision when and which objects shall be added or
deleted by the application of a rule has to be made by the producer which is
used for the right-hand side (see Sect. 6.8.2 on page 173), but in order to be
able to do so, the producer needs some support by the query implementation:

1. The producer has to know the nodes and edges of the match.
2. Deletion of objects which are in the context of the left-hand side (Sect. 6.5.8

on page 154) has to be prevented.

202 7 Pattern Implementation and Matching Algorithm

QueryState

- frame: Frame

. . .

�interface�

Variable

+ isSet(f: Frame): boolean
+ isNull(f: Frame): boolean
+ unset(f: Frame)
+ nullset(f: Frame)
+ iget(f: Frame): int
+ iset(f: Frame, int value)

. . .
+ aget(f: Frame): Object
+ aset(f: Frame, Object value)

�stores value in� //___________

0..1

0..∗

�ii������������

�interface�

Frame

0..1

1

N N
333333333333333333333

Figure 7.2. Class diagram of frames for query variables

3. For a user-friendly integration of rules of L-system type, the producer has
to be able to add implicit connection transformations according to Def. 5.6
on page 100. For this, it needs knowledge about the matches of the textu-
ally leftmost and rightmost node patterns. E. g., for a rule A B ==> C D;
the producer should implicitly add connection transformations from the
matched A-node to the new C-node and from the matched B-node to the
new D-node.

The methods shown in Fig. 7.3 on the next page provide this support. The
query state maintains a map from matched nodes to instances of NodeData.
These instances are also available as a linked list, the anchor being given
by the method getFirstNodeData of the query state. This addresses the
first issue with respect to nodes. The flag context of a node data indicates
whether the matched node is within the context, this addresses the second
issue with respect to nodes. For the third issue, the methods getInValue and
getOutValue return the matches of the textually leftmost and rightmost node
patterns, respectively (to be more precise, of the in- and out-parameters of the
whole compound pattern of the query, see Sect. 6.5.11 on page 156). Finally,
the invocation of the method visitMatch on the query state is delegated to
the whole pattern hierarchy by invoking visitMatch on each matcher whose
pattern is not part of the context. The implementation of this method for the
matcher of edge patterns invokes producer$visitEdge on the producer, this
addresses the first two issues with respect to edges.

7.6 Support for Application of Rules 203

Matcher

. . .
visitMatch(qs: QueryState, p: Producer)

EdgePattern.Matcher

.\	nnnnnnnnnnn

�call�

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

CompoundPattern.Matcher

�5bPPPPPPPPPPP

�marks context�

���
�
�
�
�
�
�
�
�
�
�
�
�

QueryState

. . .
+ getNodeData(node: Object): NodeData
+ getFirstNodeData(): NodeData
+ getInValue(): Object
+ getOutValue(): Object
+ visitMatch(p: Producer)

NodeData

+ listNext: NodeData
+ node: Object
+ context: boolean

1

0..n

Z++Z
E

E
E

�interface�

Producer

. . .
+ producer$visitEdge(ep: EdgePattern)

�call�

OO�
�
�
�
�
�
�
�
�
�

Figure 7.3. Class diagram of support for application of matches

8

Compiler Implementation

In order to execute a program written in the XL programming language, a
compiler is needed. In general, a compiler translates a program written in
a source language into an equivalent program in a target language. A set of
highly developed techniques assist in constructing a compiler, having their ba-
sis in language theory, but also in algorithms and data structures. The famous
“Dragon Book” [2] is the standard work in the field of compiler construction,
it was used for the implementation of our compiler. The terminology of the
book will be used in the sequel.

In our special case, we may think of several source languages: obviously,
the XL programming language has to be one of the supported source lan-
guages of the compiler. But, within the context of the GroIMP software, it
is also desirable to support the language for sensitive growth grammars of
the GROGRA software and, if necessary, other existing L-system based sys-
tems. As we will see later in Sect. B.15 on page 414, such additional source
languages can be integrated if there exists a semantics-preserving mapping
from the syntax of the source language in question to the syntax of the XL
programming language.

Usually, the target language of a compiler is the machine language of a
computer. This computer may be virtual – a virtual machine. Several virtual
machines have been defined in the past, among them the P-Code machine
[135], the Java virtual machine (JVM for short, [120]), and the virtual ma-
chine of the Common Language Runtime (CLR for short, [42]). Although
these machines are equipped with a sufficiently large instruction set and run-
time system such that it should be possible to compile from a large variety
of source languages, they were designed with a specific source language in
mind: UCSD Pascal in case of the P-Code machine, Java for the Java vir-
tual machine, and several .NET-languages like C# for CLR. The compilation
from these source languages to the language of their virtual machine is then
relatively straightforward, while other source languages may require intricate
constructions.

206 8 Compiler Implementation

Since the XL programming language is specified as an extension of the Java
programming language, we chose the language of the Java virtual machine as
target language of the compiler. As we will see in Sect. 8.5 on page 224,
there is a translation of every feature of the XL programming language to
bytecode (code for the JVM), although some features require additional run-
time support and have no direct representation as a short and simple sequence
of bytecode.

According to [2], a compiler can be logically organized into consecutive
phases, see Fig. 8.1: the input stream of characters is grouped into a token
stream by the lexical analyzer, this token stream is structured hierarchically
by the syntax analyzer according to the syntax of the source language. The
result is an (abstract) syntax tree and processed by the semantic analyzer.
Its output is translated to intermediate code. These first phases are known
as the front end of the compiler, the intermediate code being the interface to
the back end which optimizes intermediate code and, in a final step, generates
code for the target language.

Front End

Back End

Input
Characters // Lexical

Analyzer

Tokens // Syntax
Analyzer

Abstract Syntax Tree // Semantic
Analyzer

Intermediate Code

��
Output Code

Generator

Target Codeoo Optimizer
Optimized Intermediate Codeoo

Figure 8.1. Structure of a compiler

The code for virtual machines shares characteristics with intermediate
code. For example, the JVM and CLR are stack machines, code for which
is a popular form of intermediate code. Generating code for such a virtual
machine considerably simplifies the task of writing a compiler: basically, one
only has to write the front end of the compiler, the back end being trivial
because the intermediate code is the final code. We can also assign the role of
the back end to the implementation of the virtual machine: then a compiler
for a virtual machine is actually just the first half, namely a front end with a
clearly defined interface (the virtual machine) to the back end. It is the task of
the implementation of the virtual machine to perform optimization and code

8.1 Lexical Analysis 207

generation for the concrete machine and, in doing so, to complete the compiler
pipeline from source code to target code. For example, Sun’s HotSpot virtual
machine reads bytecode for the JVM, performs optimizations on the code and
produces true code for the target machine, but only for code being considered
a hotspot (executed often, which is a dynamic property). Its optimizations
include but are not limited to inlining, constant propagation and folding,
global value numbering, loop unrolling, and range check eliminations.

Given the previous remarks, the structure of the XL compiler is summa-
rized by Fig. 8.2. The individual phases will be described in the following
sections. As implementation language, Java was chosen; the figure also shows
the names of the implementing Java classes. It turned out that an interme-
diate code representation in terms of an expression tree is advantageous, this
will be discussed in Sect. 8.3 on page 209.

XL Source
Characters

char

//
Lexical
Analyzer
XLTokenizer

Token

Tokens //
Syntax
Analyzer
XLParser

AST

Abstract Syntax Tree //
Semantic
Analyzer
Compiler

Class File

Code
Generator
BytecodeWriter

byte

JVM Bytecodeoo
Expression

Expression Treeoo

Figure 8.2. Structure of the XL compiler

8.1 Lexical Analysis

During lexical analysis, the character stream representing the program in the
source language is grouped into a stream of tokens (terminal symbols of the
source language). There are several techniques for the construction of scan-
ners which perform this task: At first, they can be coded by hand. This is
most flexible, since it does not pose restrictions on the lexical structure of the
source language. If the lexical structure can be described by regular expres-
sions, there exist tools like lex to automatically create a scanner having a
deterministic finite automaton as its basis. Similar tools are available if the
lexical structure can be described by a context-free grammar, which is more
general than regular expressions.

We chose to implement the scanner by hand, represented by the classes
de.grogra.xl.parser.XLTokenizer. The advantage is that it can be reused
for a set of source languages: instead of encoding the set of keywords and
operators indirectly by the transition diagram of a finite automaton, they
are represented directly in tables. By filling these tables with different sets of

208 8 Compiler Implementation

keywords and operators, the scanner is used not only for the XL programming
language, but also the Java programming language, the language of sensitive
growth grammars of the GROGRA software, and some pure data formats as
part of the GroIMP software.

The scanner implements the interface antlr.TokenStream so that it can
be used as input to ANTLR generated parsers [140]. This interface consists
of the single method

antlr.Token nextToken() throws antlr.TokenStreamException;

which simply returns the next token in the stream.

8.2 Syntax Analysis

During syntax analysis, the incoming token stream is structured hierarchically
according to the syntax by the parser. Again, if the syntax can be described
by a context-free grammar, there exist tools to create a parser from a gram-
mar definition. A popular parser generator is yacc or its GNU implementa-
tion bison, however, both generate C source code. The tool ANTLR [140]
generates Java code, thus it was chosen to generate the parser for the XL
programming language.

While yacc produces LR-parsers, ANTLR produces linear approximate
LL(k) parsers [141]. The addition linear approximate refers to the lookahead.
A full LL(k) parser uses the sets FIRSTk(α) (the set of all strings up to
length k that can begin any sentence derived from the sentential form α) and
FOLLOWk(A) (the set of all strings up to length k that can appear immedi-
ately to the right of nonterminal A in some sentential form) in combination
with the current lookahead in order to disambiguate between alternatives.
ANTLR’s linear approximation simplifies these sets by merging the possi-
ble terminals at a given lookahead depth. E.g., as FIRST set it considers all
strings x1 . . . xj , j <= k such that for every terminal xi there is a string in
FIRSTk(α) which has xi as its i-th symbol, and there exists some string of
up to j terminals in FIRSTk(α). The benefit of the approach is the reduced
lookahead complexity (from O(|T |k) to O(k|T |) where |T | is the size of the
input vocabulary), but of course, there are situations where this leads to an
artificial nondeterminism and which must therefore be handled specially by
additional mechanisms.

The parser for the XL programming language uses a linear approximate
lookahead of k = 2 tokens together with syntactic predicates wherever this
finite lookahead is not sufficient to disambiguate alternatives. Syntactic pred-
icates are a feature of ANTLR and make use of backtracking in order to allow
an arbitrary lookahead. The output of the parser is an abstract syntax tree
whose nodes are instances of the interface antlr.collections.AST. This tree
is generated in a complete pass, i. e., the action of the parser is not interwoven
with the semantic analyzer.

8.3 Semantic Analysis and Expression Tree Generation 209

As a simple example, consider the following fragment of input:

{ x = Math.abs(-42);

y = x + 2 * 3f; }

Listing 8.1. Source code fragment

This is translated by the parser to the following abstract syntax tree, where
lexemes of identifiers and literals are shown in parentheses:

IDENT(x)

IDENT(Math) IDENT(abs)

���
bbb

DOT

INT LITERAL(-42)

ARGLIST

����
PPPPP

METHOD CALL

 J
J

ASSIGN

IDENT(y)

IDENT(x)

INT LITERAL(2) FLOAT LITERAL(3f)

!!!!
HHHH

MUL

�������
J
J

ADD

�������
J
J

ASSIGN

hhhhhhhhhh

BLOCK

8.3 Semantic Analysis and Expression Tree Generation

The semantic analysis is the main part of the XL compiler. Its tasks are
manifold, they include:

• Declared entities have to be stored in symbol tables.
• The meaning of names has to be determined; e. g., whether a name in an

expression refers to a local variable, an instance variable, a class variable,
or some other entity, or nothing so that a semantic error has to be reported.

• Static type checking has to be performed.
• Overloading of operators and methods has to be resolved on the basis of

the argument types.
• Constant expressions have to be evaluated.
• Control flow analysis has to verify that no uninitialized variables are read,

that final class and instance variables are definitely assigned exactly once,
and that there does not exist unreachable code.

• An intermediate code representation has to be constructed.

8.3.1 Passes of the Semantic Analysis

Semantic analysis is performed in the style of a tree walker which visits nodes
of an abstract syntax tree and performs some node-specific actions. Three
passes are used: The first pass traverses the abstract syntax tree and collects
class, interface and field declarations in symbol tables. Likewise, the second
pass collects method and constructor declarations. The third pass traverses
the abstract syntax tree for the last time and creates an intermediate code
representation in terms of an expression tree.

210 8 Compiler Implementation

While the use of more than one pass obviously leads to an increase of
compilation time, this is a common technique to deal with forward references.
The Java and XL programming languages generally allow forward references,
the potential places of forward references are:

• Types (classes, interfaces and modules) may be forwardly referenced by
extends and implements clauses of type declarations, by the type of field
declarations, by parameter and return types and throws clauses of method
declarations (we subsume constructors under methods), by annotations,
and within expressions.

• Fields may be forwardly referenced within expressions and by module dec-
larations with inherited fields (Sect. 6.11 on page 179). Note that the latter
kind of forward reference is needed to declare the constructor of the mod-
ule class and the signature method of the pattern class of the module, and
to implement the constructor body and the pattern class.

• Methods may be forwardly referenced within expressions.
• There are no forward references to entities declared within statements and

expressions (local variables, local classes, labels).

The dependence of expressions on types, fields and methods is resolved by the
split between the first two passes (declaration of types, fields and methods)
and the third pass (compilation of statements and expressions to intermediate
code). The dependence of module constructors and signature methods on
types and fields is resolved by the split between the first and second pass.
Obviously, the dependence of types on types cannot be resolved this way.
Instead we have to use placeholders for not yet resolvable references to types
and resolve them after the first pass. This is also used for the types of field
declarations, so that both type and field declarations can be handled in the
first pass.

In principle, the technique of using placeholders (also called backpatching)
could be used to further reduce the number of passes. But we found that this
would unnecessarily complicate the implementation of the compiler with just
a slight gain of compilation time. A further disadvantage of multiple passes is
the demand on memory, because the complete generated information of one
pass has to be kept in memory for the following pass. But again, we found
that this disadvantage is justifiable, given a typical XL program and a typical
computer on which the compiler runs.

8.3.2 Scopes and their Symbol Tables

The Java and XL programming languages define the notion of a scope. Scopes
are contiguous regions of a program within which declared entities can be
referred to using their simple name. For example, a type (class or interface)
declaration induces a scope within which the declared and inherited members
of the type are referable by their simple name. The body of a method induces
a scope within which its parameters can be accessed. Scopes are nested: e. g.,

8.3 Semantic Analysis and Expression Tree Generation 211

the scope of a method body is nested within the scope of its enclosing type
declaration.

Scopes are closely related to symbol tables, which maintain the association
between names and their meaning. Several more or less efficient data struc-
tures for symbol tables exist [2], some of which already include the scoping
information in the table. For the sake of clean and simple code, we chose a so-
lution where there exists a symbol table for each scope. Namely, we represent
scopes by subclasses of de.grogra.xl.compiler.scope.Scope, each of which
has its own class-specific symbol table. E.g., a BlockScope for blocks of state-
ments manages its declared local variables and classes within a symbol table.
A TypeScope needs to keep track of its declared members, these members are
actually stored in an instance of de.grogra.xl.compiler.CClass to which
the TypeScope refers: CClass has similar methods to java.lang.Class, how-
ever, the latter represents a compiled class having been loaded by the JVM,
whereas the former represents the currently available information about the
class being compiled.

Each scope has a reference to its enclosing scope, this reflects the lexical
nesting of scopes and also helps in determining the meaning of a name, which
starts at the current scope and progresses to enclosing scopes until a suit-
able entity of the given name has been found, following the rules of the XL
programming language.

8.3.3 Generation of Expression Trees

We chose to not use bytecode, but expression trees as intermediate represen-
tation. An expression tree is similar in structure to an abstract syntax tree,
but it contains the complete semantic information. For example, the meaning
of names and types of operators have been resolved in an expression tree. In
principle, it is possible to reuse the abstract syntax tree for the representation
of this information by the addition of attributes to its nodes (this is called
annotating the tree). However, in doing so one frequently has to collect a se-
quence of basic operations in a single node (e. g., type conversions, implicit
this). In order to ensure an as direct as possible correspondence between nodes
of an expression tree and basic (bytecode) operations, we decided to create
an own tree for the representation of expressions (and statements) and their
semantic information.

As an example, consider Fig. 8.3 on the next page. It corresponds to the
code fragment 8.1 on page 209, where the context scope of the fragment is
assumed to contain a local variable x of type java.lang.Integer and to be
part of a class Test having a non-static field y of type double. Compared to
its abstract syntax tree, one can identify several differences:

• Token types are replaced by expression classes which represent specific
operations.

• Types have been resolved. E.g., the Add operation knows that it operates
on operands of type float.

212 8 Compiler Implementation

IntConst[int](-42)

InvokeStatic[int](Math.abs(int))

InvokeStatic[Integer](Integer.valueOf(int))

AssignLocal[Integer](x)

Block[void](sequential)

GetLocal[Test](this)

GetLocal[Integer](x)

InvokeVirtual[int](Integer.intValue())

Cast[float] FloatConst[float](6)

����
PPPP

Add[float]

Cast[double]

((((((((
PPPP

AssignField[double](Test.y)

Block[void](sequential)

(((((((((((
aaaa

Block[void]

Figure 8.3. Expression tree of example 8.1 on page 209

• Names have been resolved. Math.abs has been identified as the static
method abs of java.lang.Math with int argument. x has been identi-
fied as a local variable, so operations GetLocal and AssignLocal are used
to read and assign its value. y has been identified as an instance variable,
so the operation AssignField is used to assign its value. These operations
store their associated variable as attribute, so in contrast to the case of
the abstract syntax tree, there are no extra nodes for the identifiers of
variables.

• Constant expressions have been evaluated.
• There are additional nodes corresponding to casting conversion (Cast),

boxing conversion (invocation of Integer.valueOf(int)), unboxing con-
version (invocation of Integer.intValue()) and the implicit this.

• Expression statements are prefixed by a sequential Block node.

Besides true expressions like arithmetic expressions or method invocations,
also statements (blocks, loops, exception handlers, control transfer state-
ments) are represented within the expression tree, its root being the node
for the entire method body. Such statement nodes treat their children as
substatements which are executed in the order which is prescribed by the
semantics of the statement.

8.4 Extension of the Virtual Machine

In this section, we present some classes and mechanisms which in a way ex-
tend the Java virtual machine. They provide support for an analogue of nested
routines, namely a stack with the possibility to access enclosing stack frames,
and a mechanism to transfer control out of the current method to a specific

8.4 Extension of the Virtual Machine 213

point in an enclosing method (informally, we may think of a goto to an en-
closing method invocation). Although the presented classes do not extend the
Java virtual machine in the proper meaning of the word, they do this from
a conceptual point of view. In fact, it would be most efficient to actually ex-
tend the Java virtual machine to an XL virtual machine by the integration
of the functionality of the auxiliary classes as built-in features of the virtual
machine. However, this is beyond the scope of the presented work.

The central class of the extension is de.grogra.xl.vmx.VMXState. There
is a current instance of this class for each thread, it can be obtained by the
static method current.

The usage of the mechanisms of this section within compiled code of the
XL programming language is not mandatory. Our compiler implementation
produces code which makes use of the mechanisms, but other compilers may
opt to define their own mechanisms or even to produce code for a true XL
virtual machine as it has been suggested in the previous paragraph.

8.4.1 Stack Extension

The Java virtual machine provides a stack for each thread. For each invocation
of a method, a new frame is pushed onto the stack which contains the local
variables for that invocation and an area for the operand stack which holds
temporary results. The current frame can be accessed by instructions of the
Java virtual machine. There is no possibility to access the current frame by
other means, e. g., by access methods, and there is no possibility at all to
access other frames than the current frame, even not by instructions of the
Java virtual machine.

Being able to access enclosing frames of the current frame would be desir-
able for the implementation of generator method invocations. Namely, assum-
ing that produce is a generator method like the one in Sect. 6.3.1 on page 133,
the translation of the code

int sum = 0;

for (int value : produce(100)) {

sum += value;

}

System.out.println(sum);

to the conventional Java code

int sum = 0;

produce(new IntConsumer() {

public void consume(int value) {

sum += value;

}

}, 100);

System.out.println(sum);

214 8 Compiler Implementation

does not work because the consume method has no access to the local variable
sum of the enclosing method. The solution on page 133 wraps the value of sum
in an array:

f inal int[] sum = {0};

produce(new IntConsumer() {

public void consume(int value) {

sum[0] += value;

}

}, 100);

System.out.println(sum[0]);

This works since the array sum itself is declared final and only read within
consume, so that the value of the local variable sum can be copied to an implic-
itly declared field of the anonymous IntConsumer class when the constructor
of the latter is invoked. Using arrays can be compared to using pointers: the
array sum can be regarded as a pointer to its single element.

The drawback of this solution is that it could lead to a lot of heap traffic
and garbage if generator methods are invoked frequently: each invocation
allocates a new consumer and an array for each local variable which is used
within the consumer. Although allocation is a relatively cheap operation for
current implementations of the Java virtual machine, the subsequent need for
garbage collection is not.

For this reason, we chose to implement a stack similar to the one of the
Java virtual machine, but represented as part of the class VMXState with
methods to access the current and enclosing frames. To be more precise, the
stack frame of (direct or transitive) statically enclosing method invocations
can be accessed, where the direct statically enclosing method invocation is the
nearest invocation of the (textually) enclosing method of the current method.
This is discussed in detail in [2] for nested routines which are possible within
languages like Pascal, but not for the Java programming language. If we store
the variable sum on this stack, it is possible to access it within the nested
method consume.

The stack-related methods of VMXState are shown in Fig. 8.4 on the
facing page. A new frame is entered by invocation of enter on the cur-
rent VMXState, and it is left by leave. The current frame can be ob-
tained by invoking getFrame. A frame is represented by an instance of
de.grogra.xl.vmx.VMXState.VMXFrame. It stores a link to its parent frame
(the frame which has been current on invocation of enter) and a staticLink
to the frame of the statically enclosing method invocation. The get- and
set-methods of VMXState read and write the value of local variables in the
context of the current frame. Local variables are represented by instances
of de.grogra.xl.vmx.VMXState.Local, where index is the storage location
within a frame and nesting specifies the frame to use. If nesting is zero, this
is the current frame, otherwise nesting static links to frames of statically en-
closing invocations have to be followed.

8.4 Extension of the Virtual Machine 215

The classes VMXFrame and Local implement the interfaces Frame and
Variable, respectively, for the pattern matching algorithm (see Sect. 7.5 on
page 201). Thus, code generated by our compiler stores query variables within
a frame of the VMXState.

Besides frame-based access, the stack can also be used by traditional
push/pop methods in the manner of an operand stack. The implementation of
VMXFrame guarantees that only values added with push may be popped with
pop, i. e., pop cannot be used to access contents of a frame.

VMXState

- currentFrame: VMXFrame

+ enter(size: int, auth: Authorization)
+ leave(auth: Authorization)
+ getFrame(auth: Authorization): Frame
+ iget(local: Local, auth: Authorization): int
+ iset(local: Local, value: int, auth: Authorization)
+ ipush(value: int, auth: Authorization)
+ ipop(auth: Authorization): int

. . .
+ aget(local: Local, auth: Authorization): Object
+ aset(local: Local, value: Object, auth: Authorization)
+ apush(value: Object, auth: Authorization)
+ apop(auth: Authorization): Object

. . .

Local

˜ nesting: int
˜ index: int

. . .

_�2
�
�
�
�
�

VMXFrame

˜ parent: VMXFrame
˜ staticLink: VMXFrame
˜ auth: Authorization

_�2
�
�
�
�
�

�
1

0..∗

Authorization

�interface�

Variable

. . .

�interface�

Frame

Figure 8.4. Class diagram of the stack extension

216 8 Compiler Implementation

Security Considerations

Because the VMXState of a thread can be obtained by any code by just invok-
ing VMXState.current() within that thread, we have to pay special attention
to security issues if we do not want to spoil the sophisticated security mech-
anism of the Java virtual machine. Namely, if the methods to read and write
variables on the stack or to enter or leave frames can be invoked by anyone,
malicious code would be able to access variables of enclosing method invoca-
tions which might contain sensitive private data. For this reason, each frame
is marked with an instance of de.grogra.xl.vmx.Authorization, namely
with the argument passed to the auth parameter of the method enter. Each
method which accesses a frame has an auth parameter, too. Only if this is
the same instance as the one of the frame, the access is allowed. Otherwise,
a SecurityException is thrown. The same holds for the push/pop mecha-
nism, i. e., the auth parameter for pop has to match the auth parameter of
the corresponding invocation of push.

The compiler makes use of this mechanism in the following way: for each
class which contains a method that needs a frame within the VMXState, it de-
clares a private static final field within that class which holds a newly created
instance of Authorization. Thus, only code within the class itself has access
to the instance. This guarantees that the corresponding content of frames may
not be accessed by other classes.

Of course, security considerations play no relevant role within applications
related to plant modelling. However, as the design of the XL programming lan-
guage is very general, one may also think of other applications where security
is an important issue.

8.4.2 Descriptors for Nested Method Invocations

Using the VMXState, our example

int sum = 0;

for (int value : produce(100)) {

sum += value;

}

System.out.println(sum);

would be compiled into an equivalent of the conventional Java code

private static f inal Local sumLocal = new Local(0, 0);

private static f inal Local sumNested = new Local(1, 0);

private static f inal Authorization auth = new Authorization();

...

f inal VMXState vmx = VMXState.current();

vmx.enter(1, auth);

vmx.iset(sumLocal, 0, auth);

produce(new IntConsumer() {

public void consume(int value) {

8.4 Extension of the Virtual Machine 217

vmx.iset(sumNested, vmx.iget(sumNested, auth) + value, auth);

}

}, 100);

System.out.println(vmx.iget(sumLocal, auth));

vmx.leave(auth);

What is still missing in this code is a mechanism to set the parent frame
of the invocation of consume to the frame of the outer code. Languages
with support for pointers to nested routines like Pascal solve this by actu-
ally using a descriptor instead of a mere pointer [2]. The descriptor contains
both a pointer to the routine and a static link to the stack frame which
shall become the parent frame of the invocation. This mechanism is imple-
mented in our extension of the virtual machine by a simple callback interface
de.grogra.xl.vmx.Routine which stands for a pointer to a nested method
and a class de.grogra.xl.vmx.RoutineDescriptor whose instances store
both such a pointer and a stack frame as static link, see Fig. 8.5 on the fol-
lowing page. RoutineDescriptor also implements all consumer interfaces by
letting the consume methods push their received value onto the stack of the
VMXState. A correct Java code for our example is then

private static f inal Local valueParam = new Local(0, 0);

private static f inal Routine body = new Routine() {

// frame for body contains a single value for the "value" parameter

public int getFrameSize() {return 1;}

public int getParameterSize() {return 1;}

public void execute(VMXState vmx) {

// obtain "value" from frame

int value = vmx.iget(valueParam, auth);

vmx.iset(sumNested, vmx.iget(sumNested, auth) + value, auth);

}

};

...

vmx.iset(sumLocal, 0, auth);

RoutineDescriptor rd = vmx.createDescriptor(body, -1, auth);

produce(rd, 100);

System.out.println(vmx.iget(sumLocal, auth));

8.4.3 Control Transfer to Enclosing Method Invocations

The usage of nested methods for generator method invocations not only re-
quires access to enclosing stack frames, but also needs a mechanism to transfer
control to an enclosing method. The following code illustrates this:

boolean check(Reader chars) {

outerLoop:

while (true)

218 8 Compiler Implementation

VMXState

. . .
+ createDescriptor(r: Routine, nesting: int, auth: Authorization): RoutineDescriptor
˜ invoke(rd: RoutineDescriptor)

. . .

�instantiates�

���
�
�
�

�interface�

Routine

+ execute(vmx: VMXState)
+ getFrameSize(): int
+ getParameterSize(): int

rLLr

RoutineDescriptor

˜ routine: Routine
˜ staticLink: VMXFrame

+ invoke()
+ consume()

. . .
+ consume(value: Object)

_�2
�
�
�
�

VMXFrame

�̂̂ �pppppppppppppppppppppp
consumer interfaces

Figure 8.5. Class diagram for routine descriptors

{

for (char value : prefix()) {

int i = chars.read();

i f (i < 0) {

return false;
} else i f (i != value) {

continue outerLoop;

}

}

return true;
}

}

The method check compares the character stream represented by chars with
the sequence of values yielded by the generator method prefix. If the read
characters match the sequence, true is returned. Otherwise, the test is re-
peated starting with the first not yet read character. If no match was found,
false is returned. Now the compiler moves the body of the for loop to a nested
consume method so that

1. the continue statement has a target which is in an enclosing method,

8.4 Extension of the Virtual Machine 219

2. the return statement has to return control to the invoker of the enclosing
method,

3. exceptions which might be thrown in the nested body (an IOException
as a result of chars.read() or NullPointerException if chars is null)
have to be hidden from the generator method prefix. This might not
be obvious, but recall that prefix invokes the consumer method which
contains the body of the for loop. So any exception thrown by the body
passes through prefix and, thus, could be caught there. But the excep-
tions thrown by the body should not be visible to prefix because the
latter is completely independent of the body.

The only mechanism which the Java virtual machine provides for such nonlocal
transfer of control is that of throwing and catching exceptions. I. e., continue
and return in the above example have to throw an exception which is then
caught in the enclosing method and treated accordingly. Also this exception
has to be hidden from the intermediate invocation of prefix. Unfortunately,
a complete hiding is not possible with the the Java virtual machine. The best
what we can do is to use a subclass of java.lang.Error to transfer control
and information from the nested method to the enclosing method as such
exceptions are usually not caught by normal code.

The class de.grogra.xl.vmx.AbruptCompletion contains subclasses for
the different abrupt completions (break and continue, return, throw; the term
abrupt completion is defined in [72] and stands for a transfer of control). Fur-
thermore, it contains the class Nonlocal which wraps an abrupt completion
and can be thrown to transfer control and information to the enclosing method
invocation specified by frame. The classes are shown in Fig. 8.6 on the next
page.

Exceptions of type Nonlocal have to be caught in enclosing method in-
vocations in order to check whether these invocations are the target of the
nonlocal transfer of control, i. e., if their frame is the same as the frame of
the Nonlocal instance. This is done by invoking the method getReason on
the exception. This returns the reason if the frames match, or it re-throws
the exception otherwise. The following code shows a Java equivalent of the
example:

1 private static f inal Local charsLocal = new Local(0, 0);

2 private static f inal Local charsNested = new Local(1, 0);

3 private static f inal Local valueParam = new Local(0, 0);

4 private static f inal int outerLoopCont = 2;

5 private static f inal Authorization auth = new Authorization();

6 private static f inal Routine body = new Routine() {

7 public int getFrameSize() {return 1;}

8 public int getParameterSize() {return 1;}

9

10 public void execute(VMXState vmx) {

11 char value = (char) vmx.iget(valueParam, auth);

12 int i = ((Reader) vmx.aget(charsNested, auth)).read();

220 8 Compiler Implementation

Error

AbruptCompletion.Nonlocal

˜ reason: AbruptCompletion
˜ frame: VMXFrame

+ getReason(auth: Authorization): AbruptCompletion

�Lr

AbruptCompletion.Break

˜ label: int

+ getLabel(): int

� Lr AbruptCompletion

�
1

1

AbruptCompletion.Return

˜ ival: int
. . .

˜ aval: Object

+ iget(): int
. . .

+ aget(): Object

/]
ooooooooooooooooooo

AbruptCompletion.Throw

˜ cause: Throwable

+ getCause(): Throwable

_�2

Figure 8.6. Class diagram for abrupt completions

13 i f (i < 0) {

14 // return false, encoded as int-value 0

15 throw vmx.newNonlocal(1, vmx.ireturn(0), auth);

16 } else i f (i != value) {

17 // perform a nonlocal jump to outerLoop

18 throw vmx.newNonlocal(1, vmx.newBreak(outerLoopCont), auth);

19 }

20 }

21 };

22

23 boolean check(Reader chars) {

24 VMXState vmx = VMXState.current();

25 vmx.enter(1, auth);

26 try {

27 vmx.aset(charsLocal, chars, auth);

28 outerLoop:

29 while (true)
30 {

31 RoutineDescriptor rd = vmx.createDescriptor(body, -1, auth);

32 try {

33 prefix(rd);

34 } catch (Nonlocal e) {

35 AbruptCompletion reason = e.getReason();

36 switch (reason.getLabel()) {

8.4 Extension of the Virtual Machine 221

37 case Throw.LABEL: // reason is a thrown exception

38 throw ((Throw) reason).getCause();

39 case Return.LABEL: // decode boolean return value

40 return ((Return) reason).iget() != 0;

41 case outerLoopCont:

42 continue outerLoop;

43 default: // should not happen for correct code

44 throw new AssertionError(e);

45 }

46 }

47 }

48 } f ina l ly {

49 vmx.leave(auth);

50 }

51 return true;
52 }

If an exception is thrown within the execute method (lines 11 to 19), the
implemented RoutineDescriptor/VMXState mechanism automatically wraps
this exception in a Nonlocal instance with a Throw reason. For the other two
reasons for a nonlocal transfer of control (the continue and return state-
ments), the code explicitly creates the wrapping Nonlocal instance by invo-
cation of the corresponding factory methods on the current VMXState (lines
15 and 18). In any case, the reason for abrupt completion is unwrapped within
the enclosing method in line 35 and then handled correspondingly.

8.4.4 Minor Issues

Two further minor issues related to generator method invocations have to be
addressed. The first issue arises in situations where a generator method is
invoked as part of an expression which already contains some subexpressions
to the left of the generator method invocation. Examples are

println((x + 1) * produce(100));

for (int i : Math.min(limit(), produce(100))) {

doSomething(i);

}

The subexpressions x + 1 or limit(), respectively, are evaluated before the
generator method invocation. However, their values are combined with the
yielded values of produce within the implicitly generated consumer methods.
Thus, these values have to be passed to the consumer methods as auxiliary
variables on the stack extension:

private static f inal Local aux0 = new Local(0, 0);

private static f inal Local aux0Nested = new Local(1, 0);

private static f inal Local valueParam = new Local(0, 0);

private static f inal Routine body = new Routine() {

222 8 Compiler Implementation

public int getFrameSize() {return 1;}

public int getParameterSize() {return 1;}

public void execute(VMXState vmx) {

int aux = vmx.iget(aux0Nested, auth);

int value = vmx.iget(valueParam, auth);

println(aux * value);

}

};

...

vmx.iset(aux0, x + 1, auth);

RoutineDescriptor rd = vmx.createDescriptor(body, -1, auth);

try {

produce(rd, 100);

} catch (Nonlocal e) {

...

}

...

The second issue arises when an aggregate method is invoked as part of an
expression which already contains some subexpressions to the left, and when
the aggregate value is based on a generator method invocation. A simple
example is

int x = 3 * first(produce(100));

The problem here is that the operand stack of the Java virtual machine is not
empty when the aggregation starts (for the example it contains a single value
3). The aggregation then invokes the generator method produce. But this may
result in a Nonlocal exception caught within the aggregation, for example if
the aggregation wants to terminate produce because the aggregated value is
already known (see Sect. 6.4.2 on page 138). Now the Java virtual machine
clears the whole operand stack on catching an exception, so the still needed
stack content would get lost. For this reason, we have to move the exception
handler to an auxiliary method invokeProduce (which has its own operand
stack):

static AbruptCompletion invokeProduce(IntConsumer cons, int param) {

try {

produce(cons, param);

return null;
} catch (Nonlocal e) {

return e.getReason();

}

}

...

RoutineDescriptor rd = vmx.createDescriptor(body, -1, auth);

AbruptCompletion reason = invokeProduce(rd, 100);

i f (reason != null) {

switch (reason.getLabel()) {

8.4 Extension of the Virtual Machine 223

...

}

}

...

8.4.5 Expression Tree Transformation for Invocations
of Generator Methods

As it has been discussed on the previous pages, the invocation of generator
methods has to be handled specially. Although we have shown Java equivalents
of the required code for generator method invocations, the compiler performs
transformations not at the level of source code, but on expression trees. It
constructs a valid expression tree out of a preliminary one with not yet valid
invocations. As an example, the code

out.println((x + 1) * produce(100));

results in a preliminary expression tree

GetField[PrintWriter](Test.out)

GetLocal[int](x) IntConst[int](1)

����
PPPP

Add[int]

IntConst[int](100)

InvokeStatic[int*](Test.produce(int))

����
hhhhhhhh

Mul[int]

(((((((((
PPPP

InvokeVirtual[void](PrintWriter.println(int))

Block[void](sequential)

As this contains the generator method invocation of produce, a transfor-
mation has to be applied. The nearest enclosing Block which is marked as
sequential is used as the implicit loop block of the iteration over all yielded
values of the invocation, i. e., its contained statements are to be repeated.
Subexpressions before the generator method invocation are evaluated once
and stored in auxiliary local variables on the stack extension, and then the
generator method is invoked:

GetField[PrintWriter](Test.out)

AssignLocal[PrintWriter](aux0)

GetLocal[int](x) IntConst[int](1)

!!!!
aaaa

Add[int]

AssignLocal[int](aux1)

GetLocal[RoutineDescriptor](rd)

IntConst[int](100)

##
PPPPP

InvokeStatic[int*](Test.produce(int))

(((((((((((��
hhhhhhhhhhh

Block[void](sequential)

The implementation of the Routine for the loop body contains the rest of the
original expression tree. The already evaluated expressions are replaced by
references to the auxiliary variables, the invocation of the generator method
by a reference to the value parameter of the consumer method:

224 8 Compiler Implementation

GetLocal[PrintWriter](aux0,nesting=1)

GetLocal[int](aux1,nesting=1) GetLocal[int](value)

�����
`̀ `̀ `̀ `

Mul[int]

((((((((((
hhhhhhhh

InvokeVirtual[void](PrintWriter.println(int))

Block[void](sequential)

8.5 Bytecode Generation

The final task of the XL compiler is the translation of the expression tree
representation to true class files for the Java virtual machine. We use the
ASM library for this purpose [138]. This library facilitates the translation
by providing a small but useful framework. It already includes the complete
management of constant pools and structural information (e. g., class name,
superclass name, signatures of declared fields and methods) of the class files
to be generated, so it is easy to transfer the structural information from ex-
pression trees to class files. It remains to translate the method bodies from
their intermediate representation as expression trees to bytecode instructions.
Even here the ASM framework helps, since it automatically handles the com-
putation of branch offsets for both forward and backward branches.

As has been stated above, the intermediate representation has been de-
signed such that the translation to bytecode is mostly straightforward. The
bytecode equivalent of the expression tree depicted in Fig. 8.3 on page 212
(see also its source code in 8.1 on page 209) is

bipush -42

invokestatic java/lang/Math.abs:(I)I;

invokestatic java/lang/Integer.valueOf:(I)Ljava/lang/Integer;

astore 1
aload 0
aload 1
invokevirtual java/lang/Integer.intValue:()I

i2f
ldc 6.0f

fadd
f2d
putfield Test.y:D

The translation of this example and most other expressions of the XL pro-
gramming language can be implemented by a post-order traversal which emits
a suitable bytecode for each visited node. This procedure generates the postfix
notation of the expression tree which has the right order for a stack machine
like the JVM. However, control statements like loops require bytecode to be
emitted before and after their children. Thus, a simple post-order traversal

8.5 Bytecode Generation 225

is not sufficient for every node of the expression tree, the type of traver-
sal depends on the specific class of a node. As a solution, the base class
de.grogra.xl.expr.Expression declares the method

public void write(BytecodeWriter writer, boolean discard);

whose task is to write the bytecode equivalent of the expression node using the
writer. By default, this method invokes itself on the children of the current
node and then writes a class-specific bytecode operator (post-order traversal).
This method can be overridden in subclasses in order to implement a different
traversal.

8.5.1 Representation of Run-Time Models, Properties and Queries

In Sect. 6.5.1 on page 142 and Sect. 6.10.1 on page 174 run-time models for
graphs and properties were presented which are identified by a name and
which are obtained at run-time by the invocation of modelForName methods
on corresponding factories. Conceptually, these models are core components
of the run-time system of the XL programming language, but the Java virtual
machine does not provide direct support for them (e. g., in the manner of
the support for fields which are described in the constant pool of class files
and referenced by bytecode instructions). Therefore, a compiler for the XL
programming language has to generate suitable code to efficiently manage the
models. It is clear that for efficiency run-time models should be obtained only
once by invoking modelForName and then stored. Subsequent references to
run-time models then only use the stored values. Basically, this is implemented
by a static field MODEL with an initializer:

static f inal RuntimeModel MODEL

= RuntimeModelFactory.getInstance().modelForName(name, loader);

Then MODEL can be used within code to reference the run-time model with
name name.

However, if this code is part of the class in which the usage of the run-time
model occurs, the run-time model is instantiated early, namely when the class
is initialized. There are situations where it is required that the instantiation of
the run-time model occurs lazily (as late as possible), i. e., when it is actually
needed for the first time. For example, we might want to configure the factory
in advance within the class which also contains the usage of the run-time
model. Then that class is initialized before the configuration of the factory so
that the latter occurs after instantiation of the run-time model and thus has
no effect. As a solution to this problem, our compiler creates for each run-time
model an auxiliary class which contains the above field declaration. Then the
usage of the run-time model has to refer to the field MODEL in that auxiliary
class. Now the lazy class initialization mechanism of the Java virtual machine
guarantees the desired lazy instantiation.

226 8 Compiler Implementation

Within the auxiliary class of a run-time model for properties also all used
properties of that run-time model are instantiated as part of the class initial-
ization. I. e., for every used property, the auxiliary class contains a declaration

static f inal Property PROPERTYn = MODEL.propertyForName(name, loader);

Likewise, within the auxiliary class of a run-time model for graphs all queries
belonging to it are instantiated and stored within static final fields. The repre-
sentation of the query data within bytecode is by bytecode instructions, i. e.,
the bytecode contains (nested) constructor invocations for the query and the
hierarchy of constituting patterns.

8.6 Compiler Extensions

The implemented XL compiler supports a mechanism for adding an extension
which may modify the output of the compiler. Whenever a type declaration
has an enclosing annotation @de.grogra.xl.compiler.UseExtension, the
specified extension class is instantiated, and the compiler invokes the methods
of the extension instance at certain points:

�interface�

Extension

+ preprocess(scope: TypeScope scope, pass: int)
+ postprocess(scope: TypeScope scope, pass: int)
+ forcesDefaultConstructorFor(type: Type): boolean

For each of the three passes of the semantic analysis (Sect. 8.3.1 on page 209)
and each type for which the extension is active, preprocess is invoked be-
fore the compiler processes the type in that pass and postprocess is invoked
afterwards. If forcesDefaultConstructorFor returns true, the compiler im-
plicitly creates a default constructor without arguments.

8.7 Invocation of the Compiler

The XL compiler is included in the modelling platform GroIMP ([101], see
also Appendix B). As it is common for integrated development environments,
GroIMP implicitly invokes the compiler if a source file is saved. But the XL
compiler can also be executed as a command line tool. For this purpose, the
class de.grogra.xl.compiler.Main exists which can be invoked as a Java
application. Its command line invocation is compatible with the javac com-
piler of Sun’s Java Software Development Kit, i. e., it supports the standard
command line options of the latter.

8.9 Comparison with Java Compilers 227

8.8 Current Limitations

As of GroIMP, version 0.9.8.1 [101], the XL compiler can not yet compile
source code which makes use of generic types. As the mechanism for aggregate
and filter methods as specified in Sect. 6.4.2 on page 138 and Sect. 6.3.5 on
page 136 relies on generic types, the XL compiler currently implements a
different mechanism, but this will be removed once a sufficient support for
generic types is implemented.

8.9 Comparison with Java Compilers

Our implementation of an XL compiler is the only one which currently exists.
Thus, in order to compare it with other compilers, we have to make use of
the fact that the XL programming language is an extension of the Java pro-
gramming language and restrict the comparison to the compilation of source
code of the Java programming language. We compare our XL compiler (as
contained in GroIMP, version 0.9.8.1; invoked as a command line tool) with
three commonly used Java compilers: the javac compiler of Sun’s Java Soft-
ware Development Kit, version 1.6.0 03, the jikes compiler of IBM, version
1.22, and the compiler of the Eclipse Java Development Tools, version 3.2.1
(invoked as a command line tool and not as part of the Eclipse GUI). Possible
criteria for a compiler comparison are the efficiency of the generated output,
the required compilation time, the memory demand of the compiler, and the
usefulness of error messages. Regarding the latter issue, we do not present an
in-depth analysis, but simply mention that messages of the jikes compiler
were used as a guideline which we found to be useful.

8.9.1 Efficiency of Output

Concerning the efficiency of the generated output, there is no major difference
between the compilers. All four compilers do not optimize the bytecode at all.
As an example, for the input

{

int x = 1;

x = 1;

for (x = 1; x < 1; x++) {}

int y = 0;

}

the XL compiler, IBM’s jikes and the compiler of the Eclipse JDT produce
exactly the same bytecode, namely

0: iconst 1
1: istore 0
2: iconst 1

228 8 Compiler Implementation

3: istore 0
4: iconst 1
5: istore 0
6: goto 12

9: i inc 0, 1

12: iload 0
13: iconst 1
14: if icmplt 9

17: iconst 0
18: istore 1

Sun’s javac produces a slightly different bytecode for the loop:

0: iconst 1
1: istore 0
2: iconst 1
3: istore 0
4: iconst 1
5: istore 0
6: iload 0
7: iconst 1
8: if icmpge 17

11: i inc 0, 1

14: goto 6

17: iconst 0
18: istore 1

But as we can see, all tested compilers do not even apply simple optimiza-
tions: repeated assignments of the same value to a variable without usage of
the value are not removed, loops which never get executed are not detected,
local variable allocation does not reuse addresses whose previous content is
no longer needed, local variables which are not used at all are not discarded.
(There is one exception to the latter case: the Eclipse compiler can be config-
ured such that unused local variables are discarded, this removes the last two
instructions.) The similarity or even exact matching of bytecode among the
four compilers holds not only for the presented case, but also in general. The
reason for this is that there is a more or less straightforward translation from
Java source code to bytecode, and that implementations of the Java virtual
machine typically optimize at run-time so that optimizations of bytecode itself
are not necessary.

Table 8.1 shows the number of class files and their total size for the four
compilers if we use the source code of GroIMP, version 0.9.3.2 [101], as input,
and if we choose compatibility with Java 1.4 for source code and bytecode.
Note that we have to use this old version of GroIMP as the current one uses
generic types, which the compiler can not yet handle. The source code consists
of 2,586 files. The XL and Eclipse compilers produce the least number of class
files. This is caused by their code for class literals (e. g., String.class), which
never needs auxiliary class files. The other two compilers produce code which

8.9 Comparison with Java Compilers 229

needs an auxiliary class if class literals are used in the initializer of an interface.
For the differences in the total size of all class files there are several reasons:
the different treatment of class literals is one, another one is the option to
perform inlining of instance initializers or finally-blocks.

Table 8.1. Size of compiled bytecode

Compiler Number of Class Files Total Size (Byte)

XL compiler 3,886 9,505,663
javac 3,905 9,532,771

Eclipse JDT 3,886 9,345,307
jikes 3,907 9,578,956

8.9.2 Efficiency of Compilation Process

To measure the efficiency of the compilation process, we used the same test
case as before (source code of GroIMP, version 0.9.3.2) and measured the
total compilation time and the peak demand on memory. We used a SUSE
Linux 10.1 system equipped with a 2 GHz Intel Pentium 4M CPU and 1 GiB
RAM. As Java runtime environment we chose Sun’s JRE, version 1.6.0 03.
Time measurements were done with the time command of Linux, where we
used the sum of the user and system time as result. Memory measurements
were done with the top command of Linux, where we used the peak physical
memory as result (no swapping occurred during our tests). For the three
compilers which are implemented in the Java programming language (XL,
javac, Eclipse JDT), we set up the maximum heap size using the command
line option -Xmx to a value such that the compilation time was not significantly
increased compared to the setting with maximum possible heap size, but that
further reduction of the heap size would significantly increase the compilation
time (namely, due to an increased frequency of garbage collection). Thus, the
demand on memory could be slightly reduced at the cost of compilation time.
The results are shown in Table 8.2. As we can see, our compiler is least efficient
with respect to both computation time and demand on memory. This is what
we expected as efficiency issues played no major role in the development. For
example, the high demand on memory results from the choice to have multiple
passes which necessitates to keep the complete information of one pass in
memory for the following pass. But the low efficiency is no significant problem
as it is relatively unusual to compile 2,586 files simultaneously (e. g., GroIMP
is split into projects which can be compiled separately if the compilation order
respects project dependences). In particular, applications within the field of
plant modelling are of much less size than GroIMP.

230 8 Compiler Implementation

Table 8.2. Compilation time (average of 5 runs) and memory demand

Compiler Compilation Time (s) Required Memory (MiB)

XL compiler 85,5 511
javac 30,8 167

Eclipse JDT 22,4 85
jikes 10,9 105

The distribution of compilation time among the several phases and passes
is as follows. The joint lexical and syntactical analysis are responsible for
about 32% of the total time. The first pass of the semantic analysis consumes
about 3%, the second pass about 8%. The final third pass, which constructs
the expression tree and produces bytecode, requires about 57%.

Part III

Applications

233

In this part, we present a collection of rule-based applications of the XL
programming language. At first, we describe an abstract base implementation
of the graph and producer interfaces which will be used by all applications.
Its graph rewriting mechanism conforms to relational growth grammars. It
serves as a basis for an implementation with a minimalistic graph model, for
an implementation which operates on XML DOM trees, for implementations
for the scene graphs of the commercial 3D modellers 3ds Max and Maya, and
for an implementation for the scene graph of the modelling platform GroIMP.
The latter implementation is the most sophisticated one and is described in
an own chapter together with applications from various fields.

9

Base Implementation and Its Applications

9.1 Base Implementation

The package de.grogra.xl.impl.base defines the abstract base implemen-
tation. It implements the XL interfaces for graphs and producers for a sim-
ple but efficient, still abstract graph model. The conformance with relational
growth grammars, in particular the mechanism of parallel (two-level) deriva-
tions (Def. 5.16 on page 108), is achieved by the usage of modification queues
which represent the current (still partial) parallel production.

9.1.1 Graph Model

The base implementation and all of its applications have a relatively simple
abstract graph model. Nodes are objects in the sense of the Java programming
language, where each concrete graph model specifies a base type for its nodes
so that nodes may be instances of any subtype of this base type. Edges are
directed, untyped, but attributed with a single int-value. Parallel edges are
not allowed. The base implementation does not provide a means to restrict
the allowed node types for an edge.

At first sight, this graph model differs from the one of RGG type graphs
(Def. 5.3 on page 98): there, edges do not carry attributes, but they are typed;
furthermore, the type graph may contain restrictions on the node types for a
given edge type. Concerning the latter issue, it is left to concrete subimple-
mentations of the base implementation to allow the specification of a sophisti-
cated type graph and to perform corresponding integrity checks. Concerning
the first issue, we may reinterpret the single int-valued attribute as a set of 32
independent bits which encodes the presence or absence of unattributed edges
of 32 (concrete) edge types. As bitwise operations are in natural correspon-
dence to set-theoretic operations, this gives rise to an efficient representation
of edges and abstract and concrete edge types. For example, an abstract edge
type of an RGG type graph (see Def. 5.3 on page 98) is simply represented by

236 9 Base Implementation and Its Applications

an int-value having more than one bit set (one bit for each concrete subtype).
Or, an RGG edge of a given edge type T exists from a node to another if
there is an edge with bits b such that the bitwise ‘and’-operation b &T yields
a non-zero value.

For practical purposes, the edge encoding is a bit more complex: the higher
24 bits are exactly interpreted as described above, i. e., they independently
switch 24 normal edge types on or off, but the lower 8 bits are interpreted
as a single number that, if non-zero, represents one of 255 special edge types
which, thus, are mutually exclusive.

Having only 32 bits to encode edge information between an ordered pair
of nodes is of course a restriction, but for all applications which have been
considered so far, this did not pose any problem. The main advantage that
outweighs this restriction is the efficient representation: as it has been men-
tioned in Sect. 5.2.2 on page 97, most edges in typical applications have types
drawn from a small set; for these edges the bit-encoding is very well suited
and memory-efficient. In case it does not suffice, one can make use of auxil-
iary nodes which play the role of edges. This is also the standard solution if
attributed edges are required, see the discussion in Sect. 5.2.2.

The graph model is reflected in the implementation of the classes and
methods. Figure 9.1 shows a class diagram for the implementation of the
graph-related XL interfaces, a more detailed description can be found in the
API documentation [101].

�interface�

CompiletimeModel

. . .

�interface�

RuntimeModel

. . .

�interface�

Graph

. . .

CompiletimeModel

. . .

. . .

_�2�
�
�
�
�
� RuntimeModel

+ addEdgeBits(s: Object, t: Object, e: int)
+ getEdgeBits(s: Object, t: Object): int
+ setCurrentGraph(graph: Graph)

. . .

_�2�
�
�
�
�

Graph

. . .

. . .

_�2�
�
�
�
�
�

de.grogra.xl.query

de.grogra.xl.impl.base

Figure 9.1. Class diagram for base implementation

The class RuntimeModel also declares a collection of int-valued constants
which represent predefined edge types. The constants SUCCESSOR EDGE and
BRANCH EDGE encode the relations known from L-systems and axial trees (see

9.1 Base Implementation 237

Sect. 5.2.1 on page 95). The edge type REFINEMENT EDGE is associated with
edge symbols like />, </ following a notation for multiscaled structures in [67].
The constants CONTAINMENT EDGE, CONTAINMENT END EDGE and MARK EDGE are
used for the representation of interpretive structures within the graph (see
Sect. 9.1.6 on page 248). Finally, the constant MIN USER EDGE is the minimal
edge type which has no predefined meaning and can be used freely by the
user. Here, ‘minimal’ means minimal as a bit mask, i. e., all other unused edge
types can be obtained by shifting the bits of MIN USER EDGE to the left.

9.1.2 Modification Queues

The XL programming language in itself does not define what exactly hap-
pens when a match for the left-hand side of a rule has been found and the
right-hand side is executed. This is completely the responsibility of the imple-
mentation of the producer which is used for the execution of the right-hand
side, see Sect. 6.8.2 on page 173. On the other hand, for relational growth
grammars we explicitly demand a parallel mode of rule application based on
the single-pushout approach, see Sect. 5.5 on page 106. Thus, for relational
growth grammars the producer has to implement such a parallel mode.

Given that the XL programming language has a conventional sequential
control flow, we have to simulate the parallel mode. The discussion about
RGG derivations in Sect. 5.5 already gives a hint how to do this: a parallel
RGG derivation can be seen as a two-level derivation where the first level
combines elementary SPO productions and connection edges into a single
parallel production and the second level performs a direct sequential derivation
using the final parallel production. So if the execution of a right-hand side does
not modify the graph directly, but only adds some entries to a representation
of the parallel production to be constructed, we have an implementation of the
first level. The second level then consumes all collected entries, thus applying
a derivation using the parallel production. Note that this application is not
invoked by the rules themselves, whose sole effect is the addition of entries,
but by some external mechanism (e. g., an invocation of a dedicated method).

As a representation of the parallel production, it turns out that a collection
of modification queues is suitable. In order to be able to add an elementary
SPO production L ↪→ R, we need four types of queue entries:

1. Addition of nodes. Each node of R which is not contained in L, i. e., each
new node, leads to such an entry.

2. Addition of edges. Likewise, each new edge of R has to be represented as
a corresponding entry.

3. Deletion of nodes. Nodes of (the match of) L which are not part of R,
i. e., which shall be deleted, are recorded in a deletion entry.

4. Deletion of edges. Likewise, edges which shall be deleted are recorded.

Then, to perform the derivation using the combined parallel production we
have to execute the actions associated with the entries, thereby modifying the

238 9 Base Implementation and Its Applications

�

1

1

QueueCollection

. . .

+ getGraph(): Graph
+ getQueue(d: QueueDescriptor): Queue
+ process(segments: int[]): boolean

. . .

�interface�

Queue

+ getDescriptor(): QueueDescriptor
+ process(segments: int[]): boolean

. . .

�1
0..n

QueueDescriptor

+ createQueue(c: QueueCollection): Queue
queuesToProcessBefore(): QueueDescriptor[]
queuesToProcessAfter(): QueueDescriptor[]

�instantiates�
66nnnn

AddNodeDescriptor

...
DeleteNodeDescriptor

_�2

GraphQueue

+ addNode(n: Object)
+ deleteNode(n: Object)
+ addEdgeBits(s: Object, t: Object, e: int)
+ deleteEdgeBits(s: Object, t: Object, e: int)
+ connectIncoming(s: Object, t: Object, o: Operator)
+ connectOutgoing(s: Object, t: Object, o: Operator)
+ copyIncoming(s: Object, t: Object, e: int,

copy: int, add: int)
+ copyOutgoing(s: Object, t: Object, e: int,

copy: int, add: int)
+ moveIncoming(s: Object, t: Object, e: int)
+ moveOutgoing(s: Object, t: Object, e: int)
+ connectAdjacent(l: Object, r: Object)

. . .

_�2�
�
�
�
�
�
�
�
�
�
�

Graph

. . .
+ getQueues(): QueueCollection
createQueue(c: QueueCollection, d: QueueDescriptor): GraphQueue

. . .

de.grogra.xl.impl.queues

de.grogra.xl.impl.base

Figure 9.2. Class diagram for modification queues

9.1 Base Implementation 239

current graph from the host graph to the derived graph. At first, all entries
which add nodes have to be processed, then all entries which add edges, then
all edge-deleting entries and finally all node-deleting entries, where the dele-
tion of a node also removes all dangling edges. This order ensures the correct
SPO behaviour: as deletions are executed at last, they may undo previous
additions of edges and are thus favoured. An efficient way to ensure this or-
der of processing of entries is to use a collection of queues which contains
an own queue for each type of queue entries. Then the queues have to be
processed in the correct order, while the order within a single queue is irrele-
vant (we use first-in-first-out queues). To include the mechanism of connection
transformations, we insert a further connection queue between the node- and
edge-adding queues. Its entries specify individual connection transformations
which potentially lead to further additions of edges.

The implementation of such a collection of queues is split into two parts,
see the class diagram in Fig. 9.2 on the preceding page. The first part is
contained in the package de.grogra.xl.impl.queues and is independent of
the the rest of the base implementation, i. e., it can also be used for other
graph models or the modification of properties in parallel, see Sect. 9.1.8
on page 251. This part contains a QueueCollection and an interface Queue
together with an abstract class QueueDescriptor which serves as a factory
for queues and also specifies the order of processing of queues. The invocation
of the method process on a queue collection invokes process on all of its
queues, where the order of invocation conforms to the specifications made
by the methods queuesToProcessBefore and queuesToProcessAfter of the
descriptors.

The package de.grogra.xl.impl.base contains an abstract queue imple-
mentation GraphQueue. Its methods like addNode and addEdgeBits append
entries to the queue, where the concrete data (e. g., int values for edges) is spe-
cific to the graph model of the base implementation. For each required queue,
there is a dedicated descriptor class (e. g., AddNodeDescriptor). Such a class
delegates the instantiation of its queue to the method createQueue of the
associated graph; this abstract method then has to return a suitable concrete
queue. The graph of the base implementation also maintains a queue collec-
tion and provides the method derive to trigger the processing of all queues.
I. e., this method marks the end of the current parallel two-level derivation
and performs a derivation using the constructed parallel production.

The methods connectIncoming and connectOutgoing of GraphQueue add
connection transformations entries to the queue. The methods copyIncoming,
copyOutgoing, copyIncoming, copyOutgoing, and connectAdjacent serve a
similar purpose. This is explained in the next section.

9.1.3 Implementation of Connection Mechanism

A connection transformation of relational growth grammars (Sect. 5.5 on
page 106) of the form (s, (A, d, γ, h), t) with a node s from the left-hand side

240 9 Base Implementation and Its Applications

of a rule, a node t from the right-hand side, an operator A, a direction d, a
concrete edge type γ and a flag h is added to the current parallel production
by invocation of connectIncoming or connectOutgoing (depending on d) on
the connection queue. These methods have three parameters, namely for s, t
and an operator A which indirectly specifies edge type γ and flag h by the
methods shown in Fig. 9.3.

�interface�

Operator

+ evaluateObject(cons: ObjectConsumer〈? super NodeEdgePair〉, node: Object)
+ match(node: Object, op: Operator, nodeEdge: NodeEdgePair): int
+ getUnilateralEdgeBits(node: Object, nodeEdge: NodeEdgePair): int

���
�
�

NodeEdgePair

+ node: Object
+ edgeBits: int

Figure 9.3. Class diagram for operators

When the connection queue is processed, for each entry (s, t, A) the method
evaluateObject is invoked on the operator A with s as node-parameter.
This yields all nodes s′ ∈ AG(s) together with a concrete edge type γ to
the specified consumer cons, where (s′, γ) are stored in a NodeEdgePair. In
fact, γ may have more than one bit set, which then stands for a whole set
of concrete edge types for potential connection edges. Now given s′, for any
potentially matching entry (s′, t′, A′) with the opposite direction the method
match is invoked on A′ with the arguments (s,A, (s′, γ)). If the type (or set
of types) γ′ for connection edges potentially created by A′ does not overlap
with γ, the connection transformation has no matching edge type, and the
method match returns 0. Otherwise, at least edge type and direction of both
connection transformations match. If furthermore s ∈ A′

G(s′), both connection
transformations match completely, and a connection edge between t and t′ is
created whose type (or set of types) is determined by the returned value of
match. Otherwise, only edge type and direction match, then the special value
ONLY EDGE TYPE MATCHES is returned.

Now if for an entry (s, t, A) and a node s′ ∈ AG(s) all invocations of
match for entries (s′, t′, A′) with the opposite direction return 0, there is no
connection transformation for s′ and a matching edge type. Then the method
getUnilateralEdgeBits is invoked on A with the arguments (s, (s′, γ)) to
determine the type (or set of types) of the connection edge to be created
between s′ and t. Thus, the method getUnilateralEdgeBits is responsible

9.1 Base Implementation 241

for the implementation of the h-flag of an RGG rule: if this is 0, the method
has to return 0 to prevent the creation of connection edges with only one
involved connection transformation.

Given A, γ, h of a connection transformation of an RGG rule, the interface
Operator would be implemented as follows:

class Op implements Operator {

public NodeEdgePair* evaluateObject(Object x) {

yield (AG(x), γ);
}

public int match(Object node, Operator op, NodeEdgePair nodeEdge) {

i f ((γ & nodeEdge.edgeBits) != 0) {

// non-empty intersection of sets of edge types

i f (node ∈ AG(nodeEdge.node)) {

return γ & nodeEdge.edgeBits;

} else {

return ONLY_EDGE_TYPE_MATCHES;

}

} else {

return 0;

}

}

public int getUnilateralEdgeBits(Object node, NodeEdgePair nodeEdge) {

return (h == 1) ? γ : 0;

}

}

The class de.grogra.xl.impl.base.Neighbor implements Operator for the
operator Nd

γ . It makes use of the possibilities of the presented mechanism to
represent all connection transformations required for a single node of a right-
hand side of a translated L-system production (Def. 5.6 on page 100) by a
single entry in the connection queue.

The determination if a connection edge shall be created involves simulta-
neous knowledge of the connection transformations of both s and s′ ∈ AG(s).
Regarding an efficient processing, it would be preferable to process each con-
nection transformation individually. This way, we cannot obtain an imple-
mentation of connection transformations which fully conforms to theory, but
for the operators Nd

µ there is a solution which “sufficiently” conforms to the-
ory for translated L-system productions. Namely, a connection transformation
(s, (Nd

µ , d, γ, h), t) creates, for every µ-typed edge of s with direction d, a γ-
typed edge between the adjacent node s′ and t with the same direction with
respect to s′; all connection transformations are processed sequentially as part
of the connection queue. As an example, consider the following setting, where
∗ denotes the single edge type:

242 9 Base Implementation and Its Applications

G =

t1© t2©

s1© //s2©

, Z =
{
C1 = (s1, (Nout

∗ , out, ∗, 1), t1),
C2 = (s2, (N in

∗ , in, ∗, 1), t2)

}

According to theory, the two connection transformations of Z would establish
a connection edge from t1 to t2:

G′ =

t1© //t2©

s1© //s2©

.

The sequential application could of course depend on the order of processing
of connection transformations. In this case, it does not:

t1©

��??????? //t2©

s1© //

??�������
s2©

C2←−−

t1©

��???????
t2©

s1© //s2©

C1←−− G C2−−→

t1© t2©

s1© //

??�������
s2©

C1−−→

t1©

��??????? //t2©

s1© //

??�������
s2©

.

As we can see, the result of the sequential application contains the desired
connection edge, but also two additional edges. However, if the predecessor
nodes s1, s2 are deleted as part of the rule, these additional edges are short-
lived, and the final result coincides with the theory.

This variant of the connection mechanism is implemented by the methods
copyIncoming and copyOutgoing of GraphQueue, see Fig. 9.2 on page 238.
The methods moveIncoming and moveOutgoing are similar, but delete the
original edge.

The important method connectAdjacent adds an entry to the connection
queue which can be used to handle non-axis-propagating L-system produc-
tions. When such an entry with the parameters (l, r) is processed, for any
incoming successor or branch edge (s, γ, l) of l and any outgoing successor or
branch edge (r, µ, t) of r an edge from s to t is created. It is a branch edge if
at least one of γ, µ is a branch, otherwise it is a successor edge. Furthermore,
all outgoing edges (r, µ, t) are deleted. As an example, the application of two
such entries (b, b), (c, c) leads to the following sequence:

G
a©

>
//b©

+
//c©

>
//d© (b,b)−−−→ a©

>
//

+
((b© c©

>
//d©

(c,c)−−−→

G′

a©
>
//

+
((

+

$$
b© c© d©

.

If we reversed the order, the final result would be the same. The effect is
that the adjacent nodes of (l, r) become neighbours as if we had removed the
symbols B, C from the word AB[CD], resulting in A[D], and considered the cor-
responding graph. But the nodes b, c are still in the graph so that connection

9.1 Base Implementation 243

transformations, which take effect after entries created by connectAdjacent,
can use their incoming edges. For example, for the non-axis-propagating L-
system productions B→ [E], C→ ε and the word AB[CD], the result is A[E][D].
The corresponding derivation of the graph G at first moves edges as above,
resulting in G′, then applies the connection transformations of B→ [E], which
create a branch edge from a to the new E-node due to the successor edge from
a to b, and finally removes b, c. The result is the correct graph representation
of A[E][D].

9.1.4 Producer Implementation

The class de.grogra.xl.impl.base.Producer is an abstract implementation
of the producer interface of XL (Sect. 6.8.2 on page 173). All methods spec-
ified by this interface are implemented, but methods for prefix operators of
production statements (Sect. 6.7.3 on page 166) are not provided. Instead of
this, there are several useful methods to which such operator methods can
delegate:

Producer

pushImpl()
popImpl()
separateImpl()
addNodeImpl(node: Object, addEdge: boolean)
addEdgeImpl(first: Object, second: Object, bits: int, dir: EdgeDirection)
nodeUsed(node: Object)

The first three methods provide the basic behaviour needed for the im-
plementation of the producer methods producer$push, producer$pop and
producer$separate which were discussed in Sect. 6.7.4 on page 168. They
modify the internal state of the producer, which consists of the previous node
and the default edge type for the next edge. For example, pushImpl pushes
this state onto a stack and sets the default edge type to BRANCH EDGE. This
ensures that a branch edge is used by default after an opening bracket.

The method addNodeImpl uses this internal state: if the flag addEdge is
true and there is a previous node, then an edge with default type from the
previous node to the new node is created, the previous node is updated to
be node, and the default edge type is set to SUCCESSOR EDGE. This already
ensures that for production statements a [b c] d a branch edge from a to
b and a successor edge from b to c and from a to d is created. To be more
precise, an edge is not immediately created, the producer just registers that an
edge shall be created afterwards, i. e., when the derivation is performed. Fur-
thermore, addNodeImpl invokes nodeUsed which informs the producer that a
node appeared on the right-hand side. This is important for nodes which stem
from the left-hand side as it tells the producer that these are reused on the
right-hand side and, thus, must not be deleted within the SPO derivation. In
addition, nodeUsed appends an entry to the node-adding queue. On invocation

244 9 Base Implementation and Its Applications

of the method addEdgeImpl, the producer registers that an edge of specific
type and direction between the given nodes shall be created afterwards.

The implementation of the method producer$beginExecution specified
by the common producer interface mainly serves to control the derivation
mode by its boolean return value, see Sect. 9.1.5 on the facing page. The
method producer$endExecution, which is invoked at the end of the execution
of a right-hand side, has a more complex task. At first, it visits the current
match in order to receive information about matched non-context edges, see
Sect. 7.6 on page 201. Then, in order to ensure the correct SPO behaviour, it
adds for each edge of the right-hand side which does not exist as a matched
non-context edge an entry to the edge-adding queue, and for each matched
non-context edge without counterpart on the right-hand side an entry to the
edge-deleting queue.

The next actions of producer$endProduction depend on the derivation
mode. The normal behaviour is to append an entry to the node-deleting queue
for each matched non-context node which is not reused on the right-hand side,
and, if the used rule arrow is ==>, to append entries to the connection queue.
The latter entries are controlled by the following methods:

Producer

+ setConnectionEdges(bits: int)
+ setInConnectionEdges(bits: int)
+ setOutConnectionEdges(bits: int)
+ cut()
+ useOperators(value: boolean)

By default, a connection transformation entry (s, t, A) is added for the treat-
ment of the L-node in Def. 5.6 on page 100 with s being the match of the textu-
ally leftmost node pattern (the node returned by the invocation of getInValue
on the query state, see Sect. 7.6 on page 201) and t being the first node of the
right-hand side which is not in brackets and not behind a separating comma.
A similar entry is responsible for the rightmost node pattern and the last node
of the right-hand side (or the first part thereof if a comma is used as separa-
tor), this implements the treatment of the R-node in Def. 5.6. Furthermore,
for each node of (the first part of) the right-hand side which is in brackets,
but has no previous node, we append an entry corresponding to the handling
of B-nodes in Def. 5.6. Normally, these entries copy all edges from old to new
nodes, but the types of copied edges can be restricted by the above listed
methods in the way indicated by their name. The invocation of the method
cut is equivalent to setOutConnectionEdges(0);, i. e., no outgoing edges
are copied. This can be used to implement the cut-operator % of L-systems.
As an example, the rule A B ==> [[C] D] E, F; has connection transforma-
tions for all incoming edges from the A-node to the E-node, for all outgoing
edges from the B-node to the E-node, and for all incoming edges from the A-
node to the C- and D-nodes, but changing the type to branch edges. The rule
A ==> B cut; only has connection transformations for incoming edges from

9.1 Base Implementation 245

the A-node to the B-node (recall that methods of the producer can be invoked
by their simple name, see Sect. 6.7.1 on page 164).

If the right-hand side of a ==>-rule has no leftmost node (e. g., in case of
a non-axis-propagating L-system production), an additional entry is added to
the connection queue by the method connectAdjacent with the matches of
the textually leftmost and rightmost node patterns as arguments. As we have
desribed in the previous section, this ensures a suitable behaviour for such
cases.

Normally, ==>-rules delete their predecessor. But this is not mandatory
and we may write a rule like a:A ==> B a. The intended meaning of such a
rule is that an A-node creates a B-node and inserts this node below itself as
in the sequence �� ��C //a

�� ��A ⇒
�� ��C //

�� ��B //a
�� ��A .

But with the mechanism described so far, we would get a different final graph:�� ��C //
;;

�� ��B //a
�� ��A .

Therefore, for any node which is not deleted and for which a connection trans-
formation is added, all existing edges which match the connection transfor-
mation are deleted as part of the edge-deletion queue. This yields the desired
derivation.

By invoking the method useOperators with a false argument, the mech-
anism based on the methods copyIncoming and copyOutgoing is used in-
stead of the default operator-based mechanism using connectIncoming and
connectOutgoing, see the previous section.

If the flag INTERPRETIVE FLAG is set for the derivation mode, nothing is
added to the node-deleting queue, and entries to embed the right-hand side as
interpretive structure are appended to the connection queue. This is discussed
in more detail in Sect. 9.1.6 on page 248.

9.1.5 Derivation Modes

Rules of the XL programming language are executed when the control flow
reaches them. The execution of a rule finds all matches of the left-hand side
and, for each match, performs the statements of the right-hand side. Thus, for
a producer implementation which constructs a parallel production, the control
flow in the sense of relational growth grammars (Def. 5.20 on page 112) uses
the family of all executed rules and applies each rule via every possible match
in the current graph. This is a true parallel mode of derivation.

If one wants to restrict the actually used rules or their matches, there are
two possibilities: either one has to add corresponding logic for the control
of rule application to the program itself, or the implementation of the XL
interfaces provides some common mechanism. The first possibility is of course

246 9 Base Implementation and Its Applications

the most general one, but there are some usual restrictions of the used matches
which can be controlled by the implementation of the XL interfaces:

• A sequential mode of derivation selects a single rule with a single match
per step. The selection could be deterministic (e. g., the first found match)
or nondeterministic (pseudorandom choice among all matches of all rules).

• A nondeterministic parallel mode extends the behaviour of nondeterminis-
tic L-systems to parallel graph grammars: if several matches would delete
the same node, all but one are discarded on the basis of a random choice.

A problem in choosing rules and matches is that at no point of execution
the set of available rules is known. A rule simply is available if it is reached
by the control flow of the Java virtual machine, and when the control flow
leaves it, the rule is forgotten. The only knowledge about the rule consists in
side-effects of its execution, namely the addition of queue entries in case of
the base implementation.

Fortunately, this knowledge suffices to implement the above listed modes of
derivation. Namely, for the deterministic sequential mode which uses the first
found match we have to remember whether we have already found a match. If
so, further matches have to be ignored, which can be effected by the producer
if it returns false on invocation of its method producer$beginExecution, see
Sect. 6.8.2 on page 173. Of course, this is a very inefficient implementation as
all remaining rules are still executed, i. e., it is still looked for all matches of
their left-hand sides, although we know that we do not need these matches.

For the nondeterministic sequential mode, each found match is a potential
candidate for the actually used match. A reasonable nondeterminism is to
randomly choose the actual match among all matches with equal probability.
Thus, if there are n matches in total, the probability of a single match is 1

n .
But we do not know n in advance. Fortunately, there is a simple solution
which does not require the knowledge of n. Namely, the first found match is
preliminarily taken as actual match, i. e., the corresponding right-hand side is
executed and leads to entries in the modification queues. Then, if there is a
second match, with a probability of 1

2 this match is taken as new preliminary
match by removing the previous entries from the queues and executing the
right-hand side for the second match, leading to new entries. Otherwise, the
second match is ignored. This procedure continues until all matches have been
processed, using a probability of 1

i for match i to replace the previously used
match. The probability of match i to be the final actual match is as desired:

1
i

n∏
j=i+1

j − 1
j

=
1
n
.

For the nondeterministic parallel mode, right-hand sides are executed for each
match. In addition to the default deterministic mode, the queues are par-
titioned into segments, one segment for each match. When the queues are
processed, a random order for the segments is chosen, and the segments are

9.1 Base Implementation 247

processed in this order. But a segment is excluded if it would delete a node
which has already been deleted by a previous segment. If the application of
each individual match deletes at most a single node, this corresponds to an
equal probability for each match within a group of matches which delete the
same node. However, as left-hand sides may contain more than one node, the
application of a match may delete more than one node and the sets of deleted
nodes of matches may overlap in an arbitrary way. For example, consider the
case that the application of a match m1 deletes two nodes a, b, the application
of a match m2 deletes a and the application of a match m3 deletes b. Then,
if m1 is applied as first, the other ones are excluded. If m2 or m3 is applied
as first, m1 is excluded.

The implementation of both nondeterministic modes is supported by the
possibility to partition the queues into segments which are addressed by values
of type int. The related methods are shown in Fig. 9.4. At first, the start of a
new segment has to be externally triggered by invocation of startNewSegment
on the queue collection. For the sequential mode, this happens for the first
match, while for the parallel mode, this happens for each match. Then, for
the sequential mode resetToSegment is invoked for each new preliminary
match in order to clear any previous data (resulting from the old preliminary
match) in the segment. The parallel mode is more complicated. Firstly, the
process-method of the queue collection is invoked with a random order of
the segments (specified as argument to the parameter segments). This is
the order in which the segments shall be processed, but before doing so, the
queue collection invokes clearSegmentsToExclude on each of its queues to
give them an opportunity to remove segments from the order. This is actually
used by the node-deleting queue, it removes all segments which delete nodes
that are also deleted by previous segments. Finally, process is invoked on
each queue with the modified order.

QueueCollection

. . .
- currentSegment: int

. . .
+ process(segments: int[]): boolean
+ startNewSegment(): int
+ resetToSegment(segment: int)

�interface�

Queue

. . .
+ process(segments: int[]): boolean
+ markSegment(segment: int)
+ resetToSegment(segment: int)
+ clearSegmentsToExclude(segments: int[])

Figure 9.4. Class diagram for segmentization support of queues

To choose the derivation mode, the class Graph of the base implementa-
tion provides the method setDerivationMode and a set of constants to use
as argument, namely PARALLEL MODE, PARALLEL NON DETERMINISTIC MODE,
SEQUENTIAL MODE and SEQUENTIAL NON DETERMINISTIC MODE. These constants

248 9 Base Implementation and Its Applications

can be combined with two flags as modifiers, EXCLUDE DELETED FLAG and
INTERPRETIVE FLAG, as in

graph.setDerivationMode(PARALLEL_MODE | EXCLUDE_DELETED_FLAG);

This is also the default derivation mode. The flag EXCLUDE DELETED FLAG is
useful in combination with PARALLEL MODE to obtain a variant of the deter-
ministic parallel mode where a node is deleted at most once. Namely, when the
execution of the right-hand side for a match leads to the deletion of a node,
this is remembered, and this node is excluded from the set of candidates for
further matches by the mechanism described in Sect. 7.3.4 on page 199 (i. e.,
the method excludeFromMatch of the query state returns true for such nodes).
In effect, this means that the first match which deletes a node is used and
all further possible matches are disabled. Concrete examples for all described
derivation modes can be found in Sect. 10.2.1 on page 278.

9.1.6 Interpretive Structures

The modifier INTERPRETIVE FLAG for the derivation mode activates a special
embedding mechanism which emulates interpretive productions as known from
L-systems (Sect. 3.9 on page 28). Figure 3.6 on page 31 shows the derivation
mechanism of L-systems if sensitivity is included, we repeat it here:

α
G +3 µ1

G +3

PI ��

µ2
G +3

PI ��

. . .

µ′1
I ��

µ′2
I ��

S1

CC�
�

�
�

�
�

S2

CC�
�

�
�

�
�

The set PI of interpretive productions derives the original word µ to another
word µ′ which is then interpreted to a geometric structure S by the turtle I.
The generative productions in G can make use of this structure when deriving
a new generation.

Unfortunately, this mechanism does not fit well to our graph-based setting.
Firstly, we have true scene graphs in mind. They represent geometric struc-
tures by themselves so that there is no turtle interpretation and no additional
structure S. This would lead to a mechanism

µ1
G +3

PI ��

µ2

µ′1

99t
t

t
t .

But this requires two graphs µ, µ′ at the same time, which wastes time and
space for large graphs, or some representation of the changes made by PI

within µ. Furthermore, in this setting sensitive rules of G can not always be
stated in a natural way. For example, think of a rule which needs access to
the next node of type F on the path to the root:

9.1 Base Implementation 249

Bud (* (<--)+ : (f:F) *), (!isShadowed(f)) ==> Internode Bud;

Now if this F-node is the result of an interpretive rule

Internode ==> F(...);

the matching of the pattern Bud (* (<--)+ : (f:F) *) would have to allow
only nodes from µ for the pattern Bud, but has to include also nodes from µ′

for the context pattern.
Therefore, we change the mechanism to an alternating application of the

rules of G and PI :

µ1
P ′I +3 µ′1

G′ +3 µ2 .

Actually, we use modified versions G′ and P ′
I . G′ contains the rules of G, but

also a mechanism to remove all structures created by interpretive rules. In
order for this to be possible, the latter must not delete anything, and they
must provide information in the graph where and how new objects were added.
This information is set up by the modified version P ′

I of the interpretive rules.
The precise procedure is as follows. Firstly, only rules of L-system type are
allowed as interpretive rules, i. e., the (non-context part of) the left-hand side
must consist of a single node which is replaced by the right-hand side which
consists of new nodes only. For example, consider the interpretive rule�� ��A →

�� ��B
> //

�� ��C .

Now if there is an A-typed node in the graph as in

�� ��X

ν
##+ //
�� ��A

γ //
�� ��Y

the application of the interpretive rule does not really replace this node, but
prepends its right-hand side in front:

�� ��X

ν

&&+ //

{
55
�� ��B

> //

AAAAAAAA
�� ��C

> //

}
55
�� ��A

γ //
�� ��Y

�� ��IM

#

OO

Incoming edges of type branch or successor are moved from the A-node to
the new B-node, all other edges are left unchanged (the ν, γ-typed edges in
the example). Furthermore, a successor edge from the C-node to the A-node
is created. Finally, the new interpretive structure is marked as such in two
ways:

1. A node of a special type IM (which stands for ‘interpretive mark’) is
created. Its two incident edges of type ‘mark’ (symbolized by #, internally

250 9 Base Implementation and Its Applications

represented by the constant MARK EDGE, see Sect. 9.1.1 on page 235) point
to those nodes of the interpretive structure which are the connectors to the
outer graph. This helps to identify the locations of interpretive structures
when the latter shall be removed.

2. The two edges which establish the links between connectors and the outer
graph are supplemented with edges of type ‘containment’ (symbolized by
{, internally represented by CONTAINMENT EDGE) and ‘end of containment’
(symbolized by } and internally represented by CONTAINMENT END EDGE).
These edges help to get from connectors to the outer graph. The usage of
the term ‘containment’ is motivated by the typical usage of interpretive
rules to specify which detailed geometric components an entity of the
model contains.

This is not equivalent to interpretive productions in L-systems: the A-node
is still there, while it is not contained in the interpreted L-system word, and
the local context of the A-node, which could be used in a generative rule, is
changed. On the other hand, the solution has several advantages.

• It is simple to implement and efficient with respect to the memory con-
sumption as there is no need to create a copy of the whole graph.

• Interpretive structures are visible within generative rules. This is impor-
tant for global sensitivity if, for example, this tests for some geometric
conditions, but the geometry is only defined by interpretive rules.

• Interpretive structures are immediately in front of their inducing node.
This helps to implement the sensitive functions of the GROGRA software
(Sect. 3.15.1 on page 35) which are usually defined for the “current unit”
which is the last created shoot, including shoots created by an interpretive
production for the current symbol. For example, if the current word is
Fa, the F symbol is the current unit when a sensitive function within a
production for a is invoked. However, if there is an interpretive production
like a → F, the latter F is taken as the current unit. In our setting, both
cases can be handled by traversing the graph downwards to the root until
the first shoot node is found.

• Interpretive structures may have an influence on the subsequent structure.
For example, the L-system word aF with the interpretive production a→
RU(45) is drawn as a cylinder with a prepended rotation of 45 degrees.
The same effect is achieved by our setting if we interpret the graph as a
3D scene graph.

If the current derivation mode is interpretive, the special embedding of right-
hand sides is performed as part of the connection queue. To add corresponding
entries, the method embedInterpretive is declared in the class GraphQueue.

9.1.7 Injectivity of Matches

By default, matches for nodes of a query have to be injective, see Sect. 7.3.4
on page 199. This is controlled by the method allowsNoninjectiveMatches

9.2 Simple Implementation 251

of the QueryState. The base implementation overrides this method in the
class Graph.QState order to be able to turn off the enforcement of injectivity.
Three methods control the behaviour:

Graph

+ allowNoninjectiveMatchesByDefault(allow: boolean)
. . .

Graph.QState

+ noninjective()
+ injective()

. . .

The first one sets the behaviour for all queries subsequently executed within
the graph. The two methods of QState control the behaviour of the current
query and can be invoked at the beginning of a query as in the following code
(see also Sect. 6.5.10 on page 155):

(* (noninjective()) a:A, b:A *) // also a == b is a match

9.1.8 Implementation of Properties

The package de.grogra.xl.impl.property contains abstract implementa-
tions of the compile-time and run-time models for properties (Sect. 6.10.1 on
page 174). These implement only very basic methods of the model interfaces,
most interesting is a collection of subinterfaces of RuntimeModel.Property as
shown in Fig. 9.5 on the following page. For each primitive type and Object,
there is a specialized subinterface which declares methods for deferred assign-
ments (see Sect. 6.10.3 on page 177) for those operators which have a natural
meaning for the type. For example, for numeric types there are methods for
the operators :=, :+=, :-=, :*=, :/=.

The base implementation does not provide an implementation of these
property interfaces. However, the provided general mechanism of modification
queues is useful for the implementation of deferred assignments. I. e., in con-
crete implementations, the operator methods for deferred assignments could
add modification entries to a corresponding queue. If this queue is processed
together with the other queues for structural changes, we achieve a parallel
derivation which includes both structural and internal changes. Entries of this
queue which were created by compound deferred assignments like :+= can be
seen as representations of incremental modification edges which were intro-
duced in Sect. 5.8 on page 115, while processing these entries corresponds to
the sequential cumulation of these edges into the property value.

9.2 Simple Implementation

The package de.grogra.xl.impl.simple contains a simple, mostly concrete
implementation on top of the base implementation. Its central class and at

252 9 Base Implementation and Its Applications

�interface�

RuntimeModel.Property

. . .

�interface�

RuntimeModel.BooleanProperty

+ operator$defAssign(o: Object, indices: int[], value: boolean)
+ operator$defXorAssign(o: Object, indices: int[], value: boolean)
+ operator$defAndAssign(o: Object, indices: int[], value: boolean)
+ operator$defOrAssign(o: Object, indices: int[], value: boolean)

Sy$
�����������������

�interface�

RuntimeModel.ByteProperty

+ operator$defAssign(o: Object, indices: int[], value: byte)
+ operator$defXorAssign(o: Object, indices: int[], value: byte)
+ operator$defAndAssign(o: Object, indices: int[], value: byte)
+ operator$defOrAssign(o: Object, indices: int[], value: byte)
+ operator$defAddAssign(o: Object, indices: int[], value: byte)
+ operator$defSubAssign(o: Object, indices: int[], value: byte)
+ operator$defMulAssign(o: Object, indices: int[], value: byte)
+ operator$defDivAssign(o: Object, indices: int[], value: byte)

Y�*
�������������������������������������

. . . (same for short, char, int, long)

�interface�

RuntimeModel.FloatProperty

+ operator$defAssign(o: Object, indices: int[], value: float)
+ operator$defAddAssign(o: Object, indices: int[], value: float)
+ operator$defSubAssign(o: Object, indices: int[], value: float)
+ operator$defMulAssign(o: Object, indices: int[], value: float)
+ operator$defDivAssign(o: Object, indices: int[], value: float)

[�-
���

. . . (same for double)

�interface�

RuntimeModel.ObjectProperty〈T〉
+ operator$defAssign(o: Object, indices: int[], value: T)

_�2

de.grogra.xl.property

de.grogra.xl.impl.property

Figure 9.5. Class diagram for property subinterfaces

9.2 Simple Implementation 253

the same time the only abstract class is the class Node, which represents nodes
of the graph and declares four abstract methods:

Node

˜ index: int

+ getAdjacentNodes(c: ObjectConsumer〈? super Node〉, outgoing: boolean)
+ addEdgeBitsTo(target: Node, bits: int)
+ removeEdgeBitsTo(target: Node, bits: int)
+ getEdgeBitsTo(target: Node): int

�1

0..n

Graph

+ size(): int
. . .

de.grogra.xl.impl.simple

These methods serve to inspect and modify adjacent nodes of the current
node, and the Graph class uses them to implement all the abstract methods
specified by its supertypes. I. e., how edges are represented is completely left
to the implementation of the methods of Node in subclasses. The advantage
of this is the possibility of very lightweight representations of graphs.

9.2.1 Sierpinski Triangles

Such a lightweight representation is especially important if large graphs of
millions of nodes have to be represented and modified. The Sierpinski case
study of the AGTIVE ’07 conference is a typical example thereof [191]. The
task was to implement a grammar for the (topological) Sierpinski triangle
construction, where nodes play the role of vertices and edges serve to connect
vertices to triangles. The corresponding relational growth grammar was al-
ready described in Ex. 5.23 on page 113. An implementation using the simple
implementation of the XL interfaces can be easily done. At first, we have to
declare a concrete subclass of Node for the vertices, this class also has to store
the adjacency information. As the relational growth grammar uses three edge
types e0, e120, e240, of which each vertex has at most a single outgoing edge,
we can represent outgoing edges by providing a pointer for each edge type:

class Vertex extends Node {

Node v0;

Node v120;

Node v240;

... // implementation of methods specified by Node

}

254 9 Base Implementation and Its Applications

Then traversing edges in their direction is the fast operation of following a
pointer, while traversing edges in opposite direction requires (in general) scan-
ning the whole graph. If we are interested in a fast bidirectional traversability,
we would have to provide also pointers for incoming edges, but for the Sier-
pinski grammar, this is not necessary.

The edge types themselves are declared by bit mask constants (Sect. 9.1.1
on page 235):

const int e0 = MIN_USER_EDGE;

const int e120 = MIN_USER_EDGE << 1;

const int e240 = MIN_USER_EDGE << 2;

They are used for the bits-parameters of the methods of Node. As an example
of the implementation of these methods, consider the method addEdgeBitsTo:

public void addEdgeBitsTo (Node target, int bits) {

i f ((bits & e0) != 0) {

v0 = target;

}

i f ((bits & e120) != 0) {

v120 = target;

}

i f ((bits & e240) != 0) {

v240 = target;

}

}

Now the single rule of the Sierpinski grammar (see again Ex. 5.23 on page 113)
can be written as

a:Vertex -e0-> b:Vertex -e120-> c:Vertex -e240-> a ==>>

a -e0-> ab:Vertex -e0-> b -e120-> bc:Vertex -e120-> c

-e240-> ca:Vertex -e240-> a,

ca -e0-> bc -e240-> ab -e120-> ca;

However, we have to embed this rule in a complete program of the XL pro-
gramming language. For this purpose, the simple implementation contains a
class RGG which can be used as a superclass of a relational growth grammar
and provides the necessary integration within the run-time system of the XL
programming language:

RGG

graph: Graph

init()
+ derive()

This class has a constructor with a single boolean parameter. It creates a
new instance of Graph, where the parameter tells the new graph whether the
method getAdjacentNodes of nodes provides a bidirectional traversability or
not. Then, the new graph is set up as the current graph (see Sect. 6.5.1 on
page 142), the method init is invoked, and finally the method derive. By

9.2 Simple Implementation 255

default, init does nothing, but derive delegates to the method derive of
the graph. This method performs the derivation using the parallel production
which has been collected by previous rule executions (Sect. 9.1.2 on page 237).
Using the class RGG, a complete program for the Sierpinski grammar is

import de.grogra.xl.impl.simple.*;

@de.grogra.xl.query.UseModel(CompiletimeModel.class)
public class Sierpinski extends RGG {

const int e0 = RuntimeModel.MIN_USER_EDGE;

const int e120 = RuntimeModel.MIN_USER_EDGE << 1;

const int e240 = RuntimeModel.MIN_USER_EDGE << 2;

static class Vertex extends Node {

Node v0;

Node v120;

Node v240;

... // implementation of methods, see above

}

Sierpinski() {

super(false);
}

protected void init() [

==>> a:Vertex -e0-> Vertex -e120-> Vertex -e240-> a;

]

void rule() [

a:Vertex -e0-> b:Vertex -e120-> c:Vertex -e240-> a ==>>

a -e0-> ab:Vertex -e0-> b -e120-> bc:Vertex -e120-> c

-e240-> ca:Vertex -e240-> a,

ca -e0-> bc -e240-> ab -e120-> ca;

]

void run(int n) {

for (int i : 1:n) {

rule();

derive();

System.out.println("Step " + i + ": " + graph.size()

+ " nodes.");

}

}

public static void main(String[] args) {

new Sierpinski().run(Integer.parseInt(args[0]));

}

}

We will use this grammar for a benchmark in Sect. 10.8.3 on page 359.

256 9 Base Implementation and Its Applications

9.3 Document Object Model Implementation

A very popular representation of hierarchical structures is the textual XML
data format (extensible markup language [15]). Besides some meta-information
in the header, an XML document consists of a tree of elements, represented
by textual tags, that may have attributes and contain other elements. An
example is the document (from [85])

<?xml version=”1.0” encoding=”UTF−8”?>
<!DOCTYPE X3D PUBLIC ”ISO//Web3D//DTD X3D 3.0//EN”

”http://www.web3d.org/specifications/x3d−3.0.dtd”>
<X3D version=”3.0” profile=”Interchange”>
<head>
<meta name=”filename” content=”RedSphereBlueBox.x3d”/>

</head>
<Scene>
<Transform>

<DirectionalLight/>
<Transform translation=”3.0 0.0 1.0”>
<Shape>
<Sphere radius=”2.3”/>
<Appearance>
<Material diffuseColor=”1.0 0.0 0.0”/>

</Appearance>
</Shape>

</Transform>

<Transform translation=”−2.4 0.2 1.0” rotation=”0.0 0.707 0.707 0.9”>
<Shape>
<Box/>
<Appearance>
<Material diffuseColor=”0.0 0.0 1.0”/>

</Appearance>
</Shape>

</Transform>

</Transform>

</Scene>
</X3D>

It conforms to the X3D specification [84, 85] and, as such, represents 3D
content primarily meant for interactive web applications.

As an XML document represents a tree of elements, an obvious memory-
internal representation is as a tree of objects. The Document Object Model
(DOM) standard [3] specifies such a representation, an implementation thereof
for the Java programming language is contained in the package org.w3c.dom
and subpackages of javax.xml. As this is a standard of the Java run-time
environment, being able to let rules of the XL programming language oper-
ate on DOM trees would open the door for various applications where XML
documents shall be inspected or transformed. Therefore, we created a DOM
implementation of the XL interfaces on top of the base implementation. It uses

9.3 Document Object Model Implementation 257

instances of org.w3c.dom.Node as nodes. XML does not specify analogues of
edge types, but we can identify three relations: the relation of a node being a
child of another node, the relation of a node being the next sibling of another
node (note that children are ordered), and the relation of a node being an
attribute node of an element node. For the latter two relations, edge types
SIBLING and ATTRIBUTE are defined, while the child relation is modelled by
the existence of a branch or a successor edge. I. e., these two edges types are
considered equivalent within the DOM implementation.

The implementation is contained in the package de.grogra.xl.impl.dom.
Its structure is the same as for the simple implementation, i. e., the class
Graph implements the graph model, but now for DOM trees, and the class
RGG provides an easy integration within the run-time system of the XL pro-
gramming language. The DOM implementation also contains an implemen-
tation of properties: in XML documents each element node (an instance of
org.w3c.dom.Element) may have attributes, these can be accessed as proper-
ties. The DOM implementation allows any possible name to be used, although
XML documents typically restrict the set of attributes for an element by a
document type definition or an XML schema. Attribute values are exposed
as instances of de.grogra.xl.util.Variant by the DOM implementation.
Variants can hold boolean values, numbers or strings and declare overloads
for common operators so that the user can work with them in a convenient
way without having to tell the compiler the exact type of an attribute. A
more sophisticated DOM implementation could use a document type defini-
tion or a schema to determine the allowed attributes and their types already
at compile-time.

The class RGG declares some auxiliary methods. The method execute
parses its parameters into the names of an input and an output file and a
number n of steps to be applied. The input file is then read as an XML file
into the graph, the method init is invoked, n derivations using the method
run are performed, the method finish is invoked, and the final result is writ-
ten to the output file. To facilitate the usage of the DOM implementation,
there are two auxiliary methods with the name E in class RGG:

public static boolean E(Element node, String name) {

return (node.getNodeType() == Node.ELEMENT_NODE)

&& node.getTagName().equals(name);

}

public Element E(String name) {

return document.createElement(name);

}

The first method can be used as a unary predicate (Sect. 6.5.2 on page 146)
to test whether a given node is an element tagged with name. The test for
elements is necessary as XML documents contain not only element nodes, but
also nodes for the whole document, for text, attributes etc. The second factory
method creates an element node tagged with name. E. g., the rule

258 9 Base Implementation and Its Applications

E("big") ==> E("small");

transforms the part

<big>This is some text.</big>

of an XHTML document, which is represented in the DOM tree as a big-tagged
element node with a single text node as child, to the part

<small>This is some text.</small>

Note that the rules for resolution of ambiguities between overloaded methods
prefer methods with more arguments so that the left-hand side in fact uses
the predicate method with two arguments, although the factory method is
applicable, too.

9.3.1 Simple Model of Young Maple Trees

Now, let us use the DOM implementation for a first simple plant model of
young maple trees. To have a representation of geometry, the X3D standard
[84] is a natural choice: this already defines an interpretation of an XML
document as a 3D scene graph, it allows the declaration and use of proto-
types (comparable to classes in object-oriented programming), and it can be
displayed in a lot of freely available browsers. For our model, we need five
types of nodes: Leaf represents a leaf object (a rectangle with a leaf image as
texture), F an internode (a cylinder along the local y-axis, for the botanical
meaning see Sect. 5.2.1 on page 95 and [67]), and RL, RU, RH shall stand for
rotations about the local x-, z- or y-axis, respectively. The names for the last
four types are adopted from the GROGRA software (Sect. 3.15.1 on page 35,
note that the role of the y- and z-axis is interchanged in X3D compared to
GROGRA, the y-axis points upwards). Leaf objects always look the same,
while the other types have geometric attributes (angle for rotations, length
and radius for cylinders). To represent these entities of the model as nodes of
an X3D document, we could therefore use a fixed master node (which can be
multiply instantiated, see also Sect. 6.11.2 on page 182) for leaves and declare
suitable prototypes for other types. The master node for leaves uses a very
flat Box as geometry:

<Transform DEF=”Leaf” translation=”0 0.075 0”>
<Shape>
<Box size=”0.15 0.15 0.0001”/>
<Appearance>
<ImageTexture url=”MapleLeaf.png”/>

</Appearance>
</Shape>

</Transform>

To instantiate such a leaf, one has to reference the master node as in

<Transform USE=”Leaf”/>

9.3 Document Object Model Implementation 259

But for our model, we need two additional non-geometric attributes for leaves.
order shall stand for the branching order of the leaf (which is zero for the
main stem, one for main branches etc.), vitality for the vitality which in
our model shall be fixed by the topological position of the leaf. Furthermore,
as the leaf type shall be used as pattern on left-hand sides and in queries, it
is more convenient to represent the type directly by the tag name of the leaf
node as in

<Leaf order=”0” vitality=”2”/>

This is no valid X3D node, but we can easily transform our model-specific
nodes to X3D nodes in a final step by the XL rule

E("Leaf") ==> E("Transform").($[USE] = "Leaf");

The right-hand side makes use of a with-instance expression list (Sect. 6.13.4
on page 187) in which the special identifier $ addresses the result of the expres-
sion E("Transform"). We use this to set the USE-attribute of the Transform-
node to "Leaf". If we declare a special predicate method for leaves in our
model

static boolean Leaf(Element node) {

return E(node, "Leaf");

}

we can write the rule in a more convenient way:

Leaf ==> E("Transform").($[USE] = "Leaf");

The representation of F-nodes is more complicated. The turtle command F
draws a cylinder of the given length and radius and then translates the local
coordinate system along the axis of the cylinder so that consecutive elements
are stacked on top of each other. But X3D does not define such a node.
Transform nodes can translate the coordinate system, but have no geometry,
Cylinder nodes have geometry, but do not translate the coordinate system.
Therefore, we have to declare a prototype, which in case of a fixed length 1
could look like

<ProtoDeclare name=”F”>
<ProtoInterface>
<field name=”radius” type=”SFFloat” accessType=”initializeOnly”/>
<field name=”children” type=”MFNode” accessType=”initializeOnly”/>

</ProtoInterface>
<ProtoBody>
<Transform translation=”0 1 0”> <!−− shift of coordinate system −−>
<Group>
<IS> <!−− insert child nodes of F in shifted coordinate system −−>
<connect nodeField=”children” protoField=”children”/>

</IS>
</Group>
<Transform translation=”0 −0.5 0”> <!−− undo half of translation −−>

260 9 Base Implementation and Its Applications

<Shape>
<Cylinder height=”1”> <!−− insert cylinder −−>
<IS><connect nodeField=”radius” protoField=”radius”/></IS>

</Cylinder>
<Appearance><Material diffuseColor=”0.7 0.55 0.4”/></Appearance>

</Shape>
</Transform>

</Transform>

</ProtoBody>
</ProtoDeclare>

For a variable length, we have to insert the length as the y-component of the
first translation and as the length of the cylinder, and we have to use half of the
negated length as the y-component of the second translation. Unfortunately,
we cannot specify this by a prototype declaration with a single field length
of type SFFloat in the interface as X3D does not provide built-in means to
convert an SFFloat value to an SFVec3f value or to compute the negated half
of an SFFloat value. The simplest way which we found is to use a single field
scale of type SFVec3f which contains the value (1, d, 1), d being the length.
If we enclose the translated cylinder of unit length by an additional Transform
node with such a scaling, the cylinder has the desired size. Furthermore, we
can use the scaling as a translation vector, too, if we prepend an additional
translation by (−1, 0,−1):

<ProtoDeclare name=”F”>
<ProtoInterface>
<field name=”scale” type=”SFVec3f” accessType=”initializeOnly”/>
<field name=”radius” type=”SFFloat” accessType=”initializeOnly”/>
<field name=”children” type=”MFNode” accessType=”initializeOnly”/>

</ProtoInterface>
<ProtoBody>
<Transform translation=”−1 0 −1”>
<Transform>

<IS><connect nodeField=”translation” protoField=”scale”/></IS>
<Group> ... </Group>
<Transform>

<IS><connect nodeField=”scale” protoField=”scale”/></IS>
<Transform translation=”0 −0.5 0”> ... </Transform>

</Transform>

</Transform>

</Transform>

</ProtoBody>
</ProtoDeclare>

An instance of this prototype is specified like

<ProtoInstance name=”F”>
<fieldValue name=”radius” value=”0.04”/>
<fieldValue name=”scale” value=”1 0.2 1”/>
<fieldValue name=”children”>

9.3 Document Object Model Implementation 261

<!−− child nodes of F, e.g., <Transform USE=”Leaf”/> −−>
</fieldValue>

</ProtoInstance>

Again, this representation is not feasible for direct use in our model. A repre-
sentation like

<F radius=”0.4” scale=”1 0.2 1”>
<!−− child nodes −−>

</F>

is more convenient and can be transformed to a correct X3D structure by a
single rule:

f:F ==>

E("ProtoInstance").($[name] = "F")

for((* f -attr-> a:Attr *)) (

[E("fieldValue").($[name] = a.getName(),

$[value] = a.getValue())]

)

E("fieldValue").($[name] = "children");

This rule creates a ProtoInstance node with a fieldValue child for each attribute
of the original node and a final fieldValue child to which all children of the
original node are moved by the implicit connection transformations of the
rule arrow ==>. For the left-hand side, we again have to declare a predicate
method for F-tagged elements.

The three rotation types RL, RU, RH could also be represented by proto-
types, but as we will not need them on left-hand sides, this is not necessary.
We can simply forget their original type and use standard Transform nodes
with suitable rotations. This is most easily handled by factory methods like

Element RL(float angle) {

return E("Transform").($[rotation] = "1 0 0 "

+ Math.toRadians(angle));

}

which have to be included in the code of our model, but could also be provided
by some general library for XL-based modelling of X3D scenes. We also declare
factory methods for F and Leaf:

Element F(float length, float radius) {

return E("F").($[scale] = "1 " + length + " 1", $[radius] = radius);

}

Element Leaf(int o, float v) {

return E("Leaf").($[order] = o, $[vitality] = v);

}

After having defined the types of our model, we start with the initialization
of the model. This is done in the init method which is automatically invoked
(see above):

262 9 Base Implementation and Its Applications

protected void init() [

s:E("Scene") ==>> s Leaf(0, 2);

]

This appends a new Leaf node to the single Scene node which has to be
present (together with the prototype declaration for F and the definition of
the master node for leaves) in the input XML document. This leaf shall now
be the germ out of which the whole tree grows. I. e., in botanical terms, a
Leaf node represents also a bud. The structure of a typical growth rule with
opposite leaf arrangement, as it is the case for maple trees, is

Leaf ==> F [RU(a) Leaf] [RU(-a) Leaf] F Leaf;

with the branching angle a: this rule creates a first internode with two
branches, which initially only consist of a leaf (which is at the same time
a bud), on opposite sides of the growth axis, and then a second internode
with a terminal leaf (and bud) that continues the current axis. Depending on
plant species and growth conditions, there may also emerge more than one
branch-bearing internode in a single growth step. For our model, we use a
loop which creates two branch-bearing internodes. Furthermore, we take into
account that the leaf arrangement of maple trees is opposite-decussate (ad-
jacent pairs of opposite leaves are at right angles) and distinguish between
growth of the main stem and growth of the branches. With a more or less
guessed parameterization (i. e., the parameters do not stem from measure-
ments, but only from manual optimization of the subjective impression of the
3D outcome), we arrive at this growth rule:

x:Leaf ==>

{

int o = x[order];

float v = x[vitality]; // vitality of leaf/bud

// reduce vitality for new branches by order-dependent factor

float bv = v * ((o == 0) ? 0.8f : 0.77f);

float len = 0.1f * (v + 1)**0.6f; // length of new internodes

}

// if not on main stem, let shoot emerge only with a vitality-

// dependent probability

i f ((o == 0) || (rnd.nextFloat() < v - 0.5f)) (

F(len, 0)

for (int i : 1:2) (// two branch-bearing internodes

i f (o == 0) (

// main stem

[RL(normal(60, 15)) Leaf(o+1, bv)]

[RL(normal(-60, 15)) Leaf(o+1, bv)]

// decussate growth: rotate by 90 degrees

RH(normal(90, 10))

F(len, 0)

) else (

// branches

9.3 Document Object Model Implementation 263

[RU(normal(52, 11)) Leaf(o+1, bv)]

[RU(-normal(52, 11)) Leaf(o+1, bv)]

// some random angle

RU(normal(0, 10))

// damped decussate growth

RH(normal((i == 1) ? 10 : -10, 10))

F(len, 0)

)

)

// terminal leaf, reduce vitality only within branches

Leaf(o, (o == 0) ? v : v * 0.9f)

);

In this rule, the radii of internodes were initialized with 0. To compute their
actual values, we use a variant of the pipe model [37]. In its simplest form,
this model has already been stated by Leonardo da Vinci and says that the
sum of the cross sections behind a branching is the same as the single cross
section before the branching. In our variant, we compute in a recursive post-
order traversal for each internode F the sum of the cross sections of its direct
internode children plus the sum of the cross sections of the leaves which the
internode bears. The result is taken as the cross section of the internode, and
a new radius is computed. Only if this exceeds the current one, we use this
radius as the new radius of the internode. If the new radius even falls below
half of the current radius, the supply with assimilates by leaves is assumed to
be insufficient, and the internode falls off. This is a simple implementation of
self-pruning of the tree.

static float computeCrossSection(Element node) {

// sum up contribution of direct children

float cs = sum(computeCrossSection((* node (-child->)+ : (F) *)))

// and direct leaves (the condition !F(c) ensures that the closure

// of the child relation does not pass internodes). A fixed cross

// section of 5 mm^2 is assigned to each leaf

+ 5e-6f * count((* node (-child-> c:Element & !F(c))+ Leaf *));

// compute radius, add some amount

float r = (float) Math.sqrt(cs / Math.PI) + 0.004f;

i f (r > node[radius]) {

node[radius] = r; // secondary growth: increase radius

}

else i f (r < 0.5f * node[radius]) [

node ==>> ; // self-pruning: fall off due to insufficient supply

]

return cs;

}

The above growth rule has to be combined with the computation of cross
sections to a single step of the model in the run method. A derivation using the
parallel production which results from the application of the growth rule has
to be performed before cross sections are updated. The derivation is triggered

264 9 Base Implementation and Its Applications

by the method derive (Sect. 9.1.2 on page 237), so we have to invoke this
method before computeCrossSection:

protected void run() {

[

x:Leaf ==> ... ; // growth rule, see above

]

derive(); // perform derivation, so results are visible from now on

computeCrossSection((* ^ (-child->)+ : (F) *));

}

The argument of computeCrossSection is a query which starts at the root
node (symbol ^) and finds the first internode. The final two rules for Leaf
and F which transform the model representation to a true X3D document are
specified as the body of the finish method:

protected void finish() [

f:F ==> ...; // see above

Leaf ==> ...; // see above

]

Figure 9.6. Outcome of the maple model after ten steps

9.4 Implementation for Commercial 3D Modellers 265

Now if we apply this model to an initial XML document which contains
an empty X3D scene and the definitions of the master node for leaves and
the prototype for internodes, we obtain an X3D document as result which
represents a virtual maple tree after having grown the specified number of
steps. The outcome can be visualized within an X3D browser, Fig. 9.6 on the
preceding page shows a result after ten steps.

The main advantage of the approach of using XL in combination with
X3D for plant modelling is the utilization of international standards. We do
not need some specialized L-system software or a complex proprietary 3D
system, we only need the XL programming language in combination with its
DOM implementation and an X3D browser. Already this system enables us
to specify global interactions between the model entities like the self-pruning
due to an insufficient number of leaves. On the other hand, the introduction
of types of the model into X3D by prototypes and master nodes is relatively
complicated, and the run-time performance is far from good. Also the inclusion
of spatial sensitivity is not possible with this simple system as it is only the
browser which equips the structure with a 3D interpretation. We would have
to provide a set of X3D-aware methods to compute, within the DOM tree,
properties like the global position of nodes in 3D space or their distance.
Furthermore, for a convenient modelling workflow we would need an integrated
development environment.

For XML documents, there also exist standards to query information and
to transform a document, namely XPath [25] and XQuery [12] for queries and
XSLT [24] for transformations. We have not yet made a thorough comparison
of these standards with the query and transformation possibilities of the DOM
implementation, but this is clearly an interesting topic. For example, the two
model transformations in the method finish of the maple tree model would
be typical applications of XSLT if we had implemented them using XSLT.

9.4 Implementation for Commercial 3D Modellers

The flexibility of the graph interface of the XL programming language allows
an implementation for any given custom graph model. A very attractive appli-
cation thereof is the implementation for existing 3D modellers. These represent
3D content as a scene graph, which is normally edited manually. Examples are
CAD applications in engineering and architecture, visual effects in animated
films, or even complete animated films. But of course, manual editing has its
limits, and this is where automated content creation by graph grammars and
other techniques comes into play.

The following three implementations were done by students as part of their
bachelor theses. As the native programming language of the used modellers is
C++, the Java Native Interface [185] had to be used to link their scene graph
with the XL programming language.

266 9 Base Implementation and Its Applications

9.4.1 CINEMA 4D

René Herzog was the first to implement the XL interfaces for a commercial
3D modeller, namely for CINEMA 4D [78, 126]. The structure of the scene
graph turned out to be suitable for rule-based modelling, in particular it was
possible to implement several L-systems in the same way as for dedicated
L-system software. We do not give the details as they can be found in the
thesis. Figure 9.7 on the facing page shows some figures which were created
with the developed XL4C4D plug-in. Unfortunately, the XL interfaces have
been considerably changed since then, but an adaptation should be possible
with reasonable effort.

9.4.2 3ds Max

Uwe Mannl implemented a plug-in for the 3D modeller 3ds Max [125, 4]. As
for CINEMA 4D, the scene graph structure allowed a direct translation from
L-system symbols to scene graph nodes. Figure 9.8 on the next page shows
two models taken from the thesis.

9.4.3 Maya

Udo Bischof wrote a plug-in for the 3D modeller Maya [10, 5]. This modeller
has a very sophisticated scene graph where even simple geometric objects
like spheres are represented by several cooperating nodes with connecting
dataflow edges. While this is a very powerful technique in principle, it hindered
a straightforward implementation of the XL interfaces: if Maya nodes and XL
nodes were in a one-to-one correspondence, the user would have to specify
several nodes in XL rules to address a single entity in terms of the model.
Thus, the implementation had to simplify the graph structure which is visible
through the XL interfaces so that the user only sees a structure similar to
axial trees of L-system words and suitable for rule-based modelling.

Besides providing the basic functionality, Udo Bischof also implemented
several useful features for global 3D sensitivity. E. g., it is possible to query
information about the closeness to a given geometric structure. This was used
in the models shown in Fig. 9.9 on page 268: the city generator uses a manually
modelled landscape and (invisible) bounding objects to govern the “growth” of
the city, the second example lets plants creep along a predefined head-shaped
surface.

9.4 Implementation for Commercial 3D Modellers 267

Figure 9.7. CINEMA 4D window displaying a field of flowers

Figure 9.8. Game of Life and simple bush made with the XL plug-in for 3ds Max

268 9 Base Implementation and Its Applications

Figure 9.9. Using XL within Maya: city generator on a curved landscape and
creeping plants on a head-shaped surface

10

Applications within GroIMP

In this chapter, we present a diverse collection of applications of the XL pro-
gramming language within the modelling platform GroIMP (see Appendix A).
The RGG plug-in of this platform contains the most sophisticated currently
existing implementation of the XL interfaces and is especially tailored for the
needs of 3D modelling, in particular virtual plant modelling. Most of the ex-
amples of this chapter are available in the example gallery which is contained
in GroIMP distributions [101]. And most of the examples make use of the
simplified RGG dialect of the XL programming language (Sect. B.4).

The examples often refer to classes and methods of GroIMP and the RGG
plug-in. More detailed explanations can be found in Appendix A and B and
in the API documentation [101].

10.1 Introductory Examples

This short section shows three simple examples. They are the implementation
of examples from the introduction (Chap. 2) and illustrate the basic use of
the XL programming language within GroIMP.

10.1.1 Snowflake Curve

The snowflake curve was presented in Sect. 2.1 on page 11 as a classical ex-
ample for the rule-based paradigm. Its implementation using L-systems was
shown in Sect. 3.2 on page 19 and, for the concrete syntax of GROGRA, in
Sect. 3.15.1 on page 35. But these two implementations did not take into ac-
count the size reduction to one third. This is improved in our implementation
using the XL programming language within GroIMP. If we use the simplified
RGG dialect, the complete source code is:

public void rules() [

Axiom ==> F(10) RU(120) F(10) RU(120) F(10);

F(x) ==> F(x/3) RU(-60) F(x/3) RU(120) F(x/3) RU(-60) F(x/3);

]

270 10 Applications within GroIMP

As the method rules is parameterless and public, a button to invoke the
method is created within the RGG toolbar of GroIMP (see Fig. 10.1 on the
facing page). The body of the method consists of two rules with rule arrow ==>,
i. e., the RGG implementation automatically adds connection transformations
so that the rules behave like L-system rules, but in a graph setting (Sect. 9.1.3
on page 239).

The first rule replaces nodes of class Axiom by a chain of F nodes with RU
nodes between. The class Axiom is a member of the package de.grogra.rgg
which is imported automatically when the RGG dialect is used. The initial
graph contains exactly one such Axiom node if we use the class RGG as su-
perclass for our model, which is again implicit for the RGG dialect. Thus,
the first rule is applicable exactly once. The classes used on the right-hand
side, F and RU, are members of the package de.grogra.turtle which is also
imported automatically. This package contains a collection of turtle command
classes, but now seen as nodes of a scene graph. Their names and parameters
were chosen to conform with the GROGRA software (Sect. 3.15.1 on page 35,
[103]). I. e., an instance of RU is a scene graph node without geometry, but
which transforms the local coordinate system by a rotation about the local
y-axis. An instance of F has a cylinder as geometry whose base point (centre
of the base cap) coincides with the origin of the local coordinate system and
which extends along the z-axis. Furthermore, the local coordinate system of
children of F nodes is transformed along the axis of the cylinder such that
the local origin for children coincides with the top point (centre of the top
cap) of the cylinder. The node expression RU(120) refers to a constructor de-
clared in the class RU, i. e., the expression new RU(120) is evaluated which
creates a new RU node with an angle of 120 degrees. Likewise, F(10) refers to
a constructor for F and creates a cylinder with a length of 10 (and a default
diameter). As the right-hand side separates nodes by whitespace, its applica-
tion creates a chain of scene graph nodes which are connected by successor
edges (Sect. 9.1.4 on page 243). This chain represents an equilateral triangle
with side length 10.

The second rule replaces nodes of class F by a representation of the gen-
erator shape of the Koch construction. It makes use of a user-defined pattern
declared in F with the signature (@In @Out F node, float length): this is
a parameterized pattern which matches nodes of class F and associates their
length with its parameter length. So in the rule, the query variable x is bound
to the length of the matched F, and we use one third thereof for the length of
the four F nodes of the successor graph of the right-hand side.

Now when the user clicks on the button labelled “rules”, the method rules
is invoked once, and as an implicit final step the method derive is invoked
on the graph. The latter triggers the parallel derivation using the previously
executed rules, see Sect. 9.1.2 on page 237. The first derivation replaces the
Axiom node by the initiator of the snowflake curve, further derivations apply
the generator rule. The size of the graph grows quickly: after n applications
of the generator, 3 · 4n F nodes and 3 · 4n − 1 RU nodes have been created.

10.1 Introductory Examples 271

(a)

(b)

(c) (d)

Figure 10.1. GroIMP window showing the snowflake example: (a) after two steps;
(b) one cylinder selected and its length modified; (c) after two further steps; (d)
deletion of a node and its subgraph

272 10 Applications within GroIMP

Figure 10.1(a) on the previous page shows the GroIMP window with the RGG
toolbar containing the “rules” button and the 3D visualization of the graph.

It is now possible to interact with the model: by clicking on a cylinder with
the mouse, the corresponding F node becomes selected, and its attributes are
shown in the attribute editor where they may also be modified. In general,
it depends on the model whether such a modification is taken into account
within further steps of the model or not. In this case, the model uses the
current value of the length parameter as variable x in the generator rule.
Thus, we may modify the length as shown in Fig. 10.1(b) and obtain the
result that the part of the curve which emerges out of the modified F has
a different size than the other parts even after applications of the generator
rule. This is shown in Fig. 10.1(c). It is also possible to delete a selected node.
This implicitly deletes all children of this node, too, or to be more precise,
all nodes which are no longer connected with a distinguished root node of
the graph after deletion of the selected node. An example thereof is shown in
Fig. 10.1(d).

10.1.2 Sierpinski Triangles

The next example implements the rules of the Sierpinski triangle (Sect. 2.3
on page 13) in a graph setting. We use the variant described in Ex. 5.23 on
page 113 and [191] which was also implemented using the simple implemen-
tation of the XL interfaces (Sect. 9.2.1 on page 253). The declaration of a
class for vertices, of edge types and the methods init and rule are similar to
the latter implementation with the exception that we do not need to define
a mechanism to store and query edge information as the graph of GroIMP
manages edges itself. I. e., the whole model can be specified by:

module Vertex;

const int e0 = EDGE_0;

const int e120 = EDGE_1;

const int e240 = EDGE_2;

protected void init() [

Axiom ==>> ^ a:Vertex -e0-> Vertex -e120-> Vertex -e240-> a;

]

public void rule() [

a:Vertex -e0-> b:Vertex -e120-> c:Vertex -e240-> a ==>>

a -e0-> ab:Vertex -e0-> b -e120-> bc:Vertex -e120-> c

-e240-> ca:Vertex -e240-> a,

ca -e0-> bc -e240-> ab -e120-> ca;

]

Here, the initiator rule is contained in the special method init which is in-
voked automatically by GroIMP as part of the initialization of a model. For

10.1 Introductory Examples 273

the three model-specific edge types, we use the edge types EDGE 0, EDGE 1,
EDGE 2 which have no specific meaning within GroIMP. These edge types are
declared in the library class de.grogra.rgg.Library, as static members they
are automatically imported in the RGG dialect.

In the simple version, there is no visualization of the Sierpinski graph.
For a 3D visualization, we have to compute suitable locations in 3D space for
vertices, and vertices have to be represented by some geometry. To address the
first issue, we use the class de.grogra.imp3d.objects.Null as superclass for
vertices by the declaration

module Vertex extends Null;

Null objects have no geometry, but store a transformation of the local coor-
dinate system. In usual terms of scene graphs (e. g., see the X3D specification
[84] and Sect. 9.3.1 on page 258), they represent transform groups. We set the
positions of the initial three vertices right in the initiator:

Axiom ==>>

^ // append the three initial vertices as direct children

// of the root node and place them in 3D space

[a:Vertex.(setTransform(-1, 0, 0))]

[b:Vertex.(setTransform(1, 0, 0))]

[c:Vertex.(setTransform(0, Math.sqrt(3), 0))],

// finally create the edges for the triangle

a -e0-> b -e120-> c -e240-> a;

In order for this to work as desired, it is important how the graph of GroIMP
is interpreted as a scene graph (see Sect. A.3.1 on page 379). The scene graph
is taken to be the part of the original graph which can be reached by following
successor or branch edges from the root, and this subgraph has to be a tree
to avoid ambiguities for derived attributes like the local coordinate system.
I. e., the three model-specific edge types of our example are irrelevant for
3D visualization, and we have to create additional edges. This is done in
the first lines of the rule which connects all vertices directly with the root,
which is represented by the symbol ^. In such a flat hierarchy, the coordinate
transformations of the vertices (namely translations) do not interfere with
each other.

Now the generator rule has to be modified in a similar way. To com-
pute the new positions, we make use of operator overloading and user-
defined conversions. The class de.grogra.vecmath.VecmathOperators con-
tains operator overloads to compute the sum of 3D points (represented by
javax.vecmath.Point3d) and to divide 3D points by a scalar value, and the
class de.grogra.rgg.Library contains a conversion method which converts
nodes into their 3D locations. Thus, for two nodes a, b the expression (a+b)/2
computes the centre of these nodes in 3D space. We then write the rule as
follows:

a:Vertex -e0-> b:Vertex -e120-> c:Vertex -e240-> a ==>>

274 10 Applications within GroIMP

^ // create the three new vertices as direct children of the

// root node, compute their 3D position

[ab:LLVertex.(setTransform((a+b)/2))]

[bc:Vertex.(setTransform((b+c)/2))]

[ca:LLVertex.(setTransform((c+a)/2))],

// create the new edges for the triangles

a -e0-> ab -e0-> b -e120-> bc -e120-> c -e240-> ca -e240-> a,

ca -e0-> bc -e240-> ab -e120-> ca;

As a result, vertices are placed at their correct location. However, they still do
not have geometry. One possibility would be to let Vertex extend from classes
with geometry like de.grogra.imp3d.objects.Sphere instead of Null, but
then we would have to shrink the size of the geometry of each vertex in each
step. We use another possibility: we declare a single sphere as a member of
the RGG class:

Sphere sphere = new Sphere().(setShader(YELLOW));

The method setShader is used to set the visual appearance of the sphere.
Here, we set it to the plain colour YELLOW which is declared in the class
de.grogra.imp3d.shading.RGBAShader. (Note that static members of this
class are automatically imported by the RGG dialect.) The single sphere is
shrunken in each step:

public void rule() {

[

... // rule as above

]

// shrink sphere

sphere[radius] *= 0.5;

}

This uses a property access sphere[radius] to modify the property radius
of the sphere, see Sect. 6.10 on page 174. Now we use the technique of object
instancing (see Sect. 6.11.2 on page 182) to represent each vertex by the
geometry of this single sphere:

module Vertex extends Null ==> INSTANCE.sphere;

Note the usage of the special field INSTANCE which is automatically declared
in each RGG class by the RGG dialect. As we declared sphere as an instance
member (i. e., not as a static member) of the RGG class, we can only address
sphere in the context of an instance of the RGG class. Usually, RGG classes
are singletons, i. e., there exists only a single instance of such a class within
a single GroIMP project. This single instance can be accessed by the static
field INSTANCE.

If we also want to visualize the edges of the Sierpinski triangle graph, we
can again make use of instantiation rules. Now, for each outgoing edge of a
vertex we additionally draw a thin white cylinder along the edge:

10.1 Introductory Examples 275

module Vertex extends Null ==>

INSTANCE.sphere

for ((* this -(e0|e120|e240)-> t:Vertex *)) (

[

Cylinder(0, 0.4 * INSTANCE.sphere[radius])

.(setEndPoints(ORIGIN, t - this),
setShader(WHITE))

]

);

The computation of the base and top points of the cylinder has to be relative
to the vertex. I. e., the base point is the local origin (0, 0, 0), for which the con-
stant ORIGIN defined in Library can be used, and the top point is given by the
difference vector of the locations of the two adjacent vertices. For this compu-
tation, we may simply write t - this as Library defines a user-defined con-
version from nodes to positions and de.grogra.vecmath.VecmathOperators
a suitable overload of the subtraction operator. The result after 4 steps is
shown in Fig. 10.2.

Figure 10.2. GroIMP window showing the Sierpinski example with edges

10.1.3 Game of Life

The Game of Life (Sect. 2.4 on page 14) can be implemented easily using XL
and GroIMP [96, 109]. The package de.grogra.rgg contains the class Cell
which has an int-valued attribute named state and is drawn as a cylinder
with a state-dependent colour and radius. The initial world of the cellular
automaton is created in the init-method as a square grid of 10 by 10 cells,
where we assume initialState to be an int-valued method which defines the

276 10 Applications within GroIMP

initial state at cell (x, y). For the Game of Life, we use the value 0 for dead
cells and 1 for living cells.

protected void init() [

Axiom ==>> ^

for (int x : 1:10) for (int y : 1:10) (

[Cell(x, y, 0, initialState(x, y))]

);

]

The graph structure does not yet reflect the topology of the grid. For the Game
of Life, we need the Moore neighbourhood of all eight surrounding cells, see
Fig. 10.3. This can be defined in geometric terms if we use the maximum norm
L∞ where the distance between two points is the maximum of the distances
in each dimension, i. e., d∞(a, b) = mini=0...2 |bi − ai| for three dimensions.
The class Cell provides the method distanceLinf to compute this distance
so that we can define a neighbourhood-relation

static boolean neighbour(Cell c1, Cell c2) {

return c1.distanceLinf(c2) <= 1.1;

}

We use 1.1 instead of 1 to account for numerical imprecision.

s
s
s
s
s

s
s
s
s
s

s
s
s
s
s

s
s
s
s
s

s
s
s
s
s

f

d = 1.1

Figure 10.3. Moore neighbourhood

Using this relation, we can compute the number of living neighbours of a
cell x by a combination of a query with the aggregate method sum declared in
the automatically imported class de.grogra.xl.util.Operators (Sect. 6.4.3
on page 140): sum((* x -neighbour-> Cell *)[state]). This expression is
used in the two transition rules of the Game of Life:

public void transition() [

x:Cell(1), (!(sum((* x -neighbour-> Cell *)[state]) in (2 : 3)))

::> x[state] := 0; // dead due to loneliness or overcrowding

10.1 Introductory Examples 277

x:Cell(0), (sum((* x -neighbour-> Cell *)[state]) == 3)

::> x[state] := 1; // cell comes to life

]

The class Cell also declares an operator overload for invocation which takes
a single int-argument. It implements a shortcut for the assignment of a new
state value, i. e., we could also write x(0) instead of x[state] := 0. Fig-
ure 10.4 shows a part of the famous glider sequence.

Figure 10.4. Game of Life with the glider pattern. After four steps, the pattern
reproduces itself, but displaced diagonally in the grid

The geometric definition of the neighbourhood has two advantages: it is
simple to specify, and if we do not arrange cells in a regular lattice, we can
study the effects of lattice defects and dislocations. On the other hand, the ge-
ometric definition leads to an inherently inefficient implementation as within
each transition and for each cell, the whole graph has to be scanned for neigh-
bours. Given a grid size of n×n, this amounts to a complexity of O(n4) for a
transition. An O(n2)-implementation can be obtained if the neighbourhood-
relation is “materialized” by edges in the graph. Most easily, we implement
this on top of the geometric definition, i. e., in a single preprocessing step
(with complexity O(n4)) we create edges for nodes which are in geometric
neighbourhood:

const int nb = EDGE_0;

protected void init() [

Axiom ==>> ...; // rule from above

{derive();}

c1:Cell, c2:Cell, (neighbour(c1, c2)) ==>> c1 -nb-> c2;

]

Then the number of living neighbours is computed by the O(1)-operation
sum((* x -nb-> Cell *)[state]). Note the invocation of derive: this trig-
gers the derivation which actually inserts the initial grid into the graph, see

278 10 Applications within GroIMP

Sect. 9.1.2 on page 237. Without this invocation, the following rule would not
see the grid, but still only the initial Axiom.

The Game of Life example shows that, within relational growth grammars
and the XL programming language, we can easily and naturally represent
and use arbitrary relations between entities. As the variant with a geometric
neighbourhood relation does not make use of the graph structure, an imple-
mentation by an L-system would be possible, too, if the used software supports
a query for the neighbours. An L-system implementation of the variant with
explicit neighbourhood edges, if possible at all, would be very intricate as
the two-dimensional structure of the grid has to be somehow encoded in the
one-dimensional structure of the L-system word.

10.2 Technical Examples

The two examples of this section are of abstract, technical nature and shall
illustrate the supported derivation modes and the possibility to nest rules.

10.2.1 Derivation Modes

The aim of this example is the illustration of the different derivation modes of
the base implementation presented in Sect. 9.1.5 on page 245. The basic modes
of sequential or parallel derivations exist in deterministic and nondeterministic
variants, and the deterministic parallel mode can also be modified so that a
node is deleted at most once. The example consists of the following code:

module A;

module B;

module C;

module D;

protected void init() {

[

Axiom ==>> ^ -EDGE_0-> A for (1:4) (A);

]

derive();

setDerivationMode(PARALLEL_MODE | EXCLUDE_DELETED_FLAG);

for (applyUntilFinished()) {

println(graph().toXLString(false));
[

A ==> B;

A ==> C;

A ==> D;

]

}

}

10.2 Technical Examples 279

The initialization creates a linear chain of five A nodes connected by successor
edges. An edge of the general-purpose type EDGE 0 connects the head of this
chain with the root node (symbol ^). Thus, the A nodes are not reachable
from the root by branch or successor edges, and the restriction for these
edges types to span only a tree (Sect. 10.1.2 on page 273) does not apply.
The invocation of derive ensures that the effects of the initialization rule
are applied to the graph. Then we set the derivation mode to the default
PARALLEL_MODE | EXCLUDE_DELETED_FLAG, i. e., all rules shall be applied in
parallel, but if the execution of the right-hand side of a rule leads to a node
deletion entry in the queue collection, then the corresponding node is excluded
from further matches. This induces a rule priority given by the control flow,
i. e., rules which are executed at first have a higher priority. This is common
practice in L-system software and allows to list alternatives as in
A(x) & (x > 1) ==> ...;

A(x) & (x > 0) ==> ...;

A(x) ==> ...;

The first applicable rule then replaces the A node, the following are not taken
into account.

In the example, we use the method applyUntilFinished to execute three
rules as long as possible, i. e., as long as there is a change to the graph. As the
rule A ==> B; is executed at first, it has the highest priority for the chosen
derivation mode. Thus, all A nodes are replaced by B nodes in a single step.
This can be seen by the textual output of the println-statement which uses
the method toXLString to represent the graph as a string in the syntax of
right-hand sides. After removing surrounding constant text for the root node
and the EDGE 0 edge, the output is
A A A A A

B B B B B

Changing the derivation mode to SEQUENTIAL MODE, we obtain a different
output:
A A A A A

B A A A A

B B A A A

B B B A A

B B B B A

B B B B B

For a single derivation step, the sequential mode only uses the first match
of all matches of all rules, thus the rule A ==> B; has highest priority again.
That the nodes are processed from left to right in the textual output is a
result of the order in which the nodes were added in the initialization: for two
nodes of the same class, the older node is found at first.

The derivation mode SEQUENTIAL NON DETERMINISTIC MODE chooses one
match out of all possible matches. A possible derivation sequence is the fol-
lowing:

280 10 Applications within GroIMP

A A A A A

C A A A A

C A D A A

C B D A A

C B D C A

C B D C B

But the actual sequence of course depends on the used pseudorandom num-
bers.

The derivation mode PARALLEL NON DETERMINISTIC MODE is based on all
possible matches. For a pair of matches with overlapping sets of nodes to
delete, it pseudorandomly discards one of the matches. A possible derivation
is

A A A A A

D C D B D

The most complex result is obtained by the mode PARALLEL MODE without
EXCLUDE DELETED FLAG. This applies each rule to each match in parallel. In
the example, each A node is replaced by a B node, a C node and a D node in
parallel. The result is then no longer a chain of nodes, but a true graph with
successor edges as connections:�� ��B //

##FFFFFFFFF

��444444444444444

�� ��B //

##FFFFFFFFF

��444444444444444

�� ��B //

##FFFFFFFFF

��444444444444444

�� ��B //

##FFFFFFFFF

��444444444444444

�� ��B

�� ��C //

##FFFFFFFFF

;;xxxxxxxxx �� ��C //

##FFFFFFFFF

;;xxxxxxxxx �� ��C //

##FFFFFFFFF

;;xxxxxxxxx �� ��C //

##FFFFFFFFF

;;xxxxxxxxx �� ��C

�� ��D //

;;xxxxxxxxx

EE

 �� ��D //

;;xxxxxxxxx

EE

 �� ��D //

;;xxxxxxxxx

EE

 �� ��D //

;;xxxxxxxxx

EE

 �� ��D

The internal mechanism of the different derivation modes was explained in
Sect. 9.1.5 on page 245. The crucial point for the two nondeterministic modes
is that it is not possible to pseudorandomly choose the rule and match to
apply in advance as there is no knowledge about all available rules. The run-
time system rather executes all rules and finds all matches. In the parallel
mode, for each match the corresponding right-hand side is also executed. In
the sequential mode only some right-hand sides are executed (see Sect. 9.1.5 on
page 245). But not any execution of a right-hand side leads to a change in the
graph. At first, such an execution only leads to some entries in the modification
queues. The run-time system then processes not all of these entries, but only
those belonging to a subset of executed right-hand sides, where the chosen
subset depends on the derivation mode. In order to see which right-hand sides
are executed, we add textual output as follows:

A ==> B print("b ");

A ==> C print("c ");

A ==> D print("d ");

10.2 Technical Examples 281

Then the sequence of nondeterministic sequential derivations yields the follow-
ing output, where we can see that if more than one right-hand side is executed
in a single step, only the last execution is the one whose modification entries
in the queues are actually processed:

A A A A A

b c

C A A A A

b b b c c c d

C A D A A

b

C B D A A

b b c

C B D C A

b

C B D C B

In the nondeterministic parallel mode, the right-hand sides are executed for
each match:

A A A A A

b b b b b c c c c c d d d d d

D C D B D

We obtain a more interesting example for the nondeterministic parallel mode
if the left-hand sides are of different size so that the overlap of matches may
be partial:

A A ==> B B;

A A A ==> C C C;

A A A A ==> D D D D;

Starting with a sequence of ten A nodes, the results of four different derivations
are

C C C D D D D B B A

A C C C A C C C B B

D D D D A C C C B B

B B D D D D B B B B

Thus, the run-time system has pseudorandomly chosen nonoverlapping matches
out of all found matches. This may lead to parts not covered by matches as
we can see from the remaining A nodes.

10.2.2 Amalgamated Two-Level Derivations

We presented amalgamated two-level derivations in Sect. 4.3.1 on page 64
and showed an example on page 65 which specifies an edNCE embedding.
The example replaces a single A node by a single B node and transfers all
edges from the old node to the new node. Usually, we would implement such
a rule by just writing

282 10 Applications within GroIMP

A ==> B;

But the example on page 65 does not make use of connection transformations,
so we must not use the arrow ==> for its implementation. The basic rule rather
has to be written as
A ==>> B;

which in isolation would not transfer edges from the old A node to the new B
node. But we may add nested rules to the right-hand side:
a:A ==>> b:B

{

[

n:. -e-> a ==>> n -e-> b;

a -e-> n:. ==>> b -e-> n;

]

};

Thus, for each match a, we delete a and create a new node b, but we also
execute a rule which transforms each incoming e-typed edge of a to an in-
coming edge of b (keeping the adjacent node n), and a corresponding rule for
outgoing edges. These two rules correspond to the productions qi, qo of the
example on page 65, while the main rule is the common part q = pij . I. e., the
amalgamation works by specifying the common part as outer rule so that we
may glue together the nested inner rules on the basis of a given binding for the
outer part. We could also retype or mirror edges by changing the edge type
or direction on the right-hand side. A drawback of this mechanism compared
to connection transformations is that if the whole rule is applied in parallel
to two adjacent A nodes, the result is not what is probably expected. Namely,
new edges are created between new B nodes and old neighbours n of old A
nodes and not between both new B nodes.

The example requires the true parallel derivation mode PARALLEL MODE
(without the exclusion of deleted nodes, Sect. 9.1.5 on page 245) for the nested
rules as these have to be applied in parallel and each such application deletes
a on its own.

10.3 Artificial Life

This section contains two examples from artificial life. In fact, although the
primary field of application of this work is the description and modelling of
botanical real life, artificial life models formed a helpful basis for the abstrac-
tion of the requirements for relational growth grammars and, ultimately, for
the design of the XL programming language.

10.3.1 Biomorphs

Biomorphs are the creatures created by the well-known “Blind Watchmaker”
program, an algorithm written by the zoologist Richard Dawkins [35] and

10.3 Artificial Life 283

inspired by the seemingly blind and undirected yet enormously effective phe-
nomenon of evolution by mutation and selection. The algorithm is based on
a rather simple genotype-phenotype model and was specified by Dawkins in
Pascal [36]. In this original version, it consists of two procedures: the first is
responsible for the reproduction of the genotype, thereby producing a num-
ber of new individuals and introducing some random chance mutation. The
second provides a developmental scheme in which the genotype is expressed
following a simplified recursive tree-drawing routine with the genes’ values
used as parameters (depth of recursion, directions of branches). The genotype
consists of nine genes, eight of which have 19 alleles ranging from −9 to +9,
the ninth a range from 0 to 9, in integral steps. The latter gene determines
the depth of recursion. The other genes are translated into components of a
matrix which represent the horizontal, respectively vertical offsets in a global
coordinate system which are to be used in the subsequent developmental steps
of the growing binary tree. The program is started off with an initial set of
alleles, which is then modified in the offspring by applying random mutations
with given probability.

In our implementation [98, 99], the gene is represented as a sequence of
nodes containing int-values, i. e., we use the wrapper class IntNode of the
package de.grogra.rgg (Sect. B.10 on page 404). For the whole genome, we
declare the class Genome which carries its gene nodes as a branch, and we use
a node of type Population which contains all further nodes of our model. The
initialization then looks like

Axiom ==> Population Genome [1 1 1 1 1 0 ‘-1‘ ‘-1‘ 5];

The backquotes are required for syntactical reasons, see Sect. 6.5.2 on page 147.
Now based on the single genome of the population, but with random muta-
tions of the gene values we create five biomorphs, represented by the type
Biomorph:

[

p:Population g:Genome ==>>

p

for (1:5) (

Translate(2,0,0) Biomorph [<-encodes- cloneSubgraph(g)]

);

{derive();}

k: int ==>

i f (probability(0.2)) (

irandom(-9, 9)

) else (

break
);

]

The first rule sets the genome of the biomorphs to identical copies of the orig-
inal genome, using the method cloneSubgraph of de.grogra.rgg.Library.

284 10 Applications within GroIMP

Biomorphs and genomes are linked by model-specific edges of type encodes.
The second rule then replaces each int-wrapper with a probability of 20% by
a new such wrapper with a random value between −9 and 9.

Now the recursive tree-drawing routine of Dawkins’ model can be easily
implemented by instantiation rules (Sect. 6.11.2 on page 182). For this pur-
pose, we define a class

module Tip(int[][] d, int depth, int dir)

==> i f (depth > 0) (

Line(0.02 * depth * d[dir][0], 0, 0.02 * depth * d[dir][1], true)
[instantiate(d, depth-1, (dir+7) % 8)]

[instantiate(d, depth-1, (dir+1) % 8)]

);

where d is Dawkins’ offset matrix (to be computed from the genome), depth
the current recursion depth and dir a value indicating the current direc-
tion. The instantiation rule corresponds to the one specified by Dawkins,
it recursively invokes itself (recall from Sect. 6.11.2 on page 182 that the
rule is implemented as a method instantiate having the module parame-
ters as its parameters; we could equally well write Tip(d, ...) instead of
instantiate(d, ...), but this would allocate a new Tip instance for each
recursion). The drawing is triggered by the instantiation rule of Biomorph,
initializing d with values derived from the genome:

module Biomorph extends Sphere(0.2)

==> { Genome g = first((* this <-encodes- Genome *));

int depth = Math.min(Math.abs(g[8])+1, 6);

int[][] d = {{-(int)g[1], g[5]}, {-(int)g[0], g[4]},

{0, g[3]}, {g[0], g[4]}, {g[1], g[5]}, {g[2], g[6]},

{0, g[7]}, {-(int)g[2], g[6]}}; }

Tip(d, depth, 2);

Now the five biomorphs are displayed on the screen, and the user, by applying
what Dawkins calls Darwinian (artificial) selection, chooses one of the indi-
viduals as parent for the next generation by selecting it with the mouse. To
determine which biomorph has been selected, the class Library provides the
method isSelected. We write

long c = count((* b:Biomorph, (isSelected(b)) *));

i f (c == 1) [

Population, b:Biomorph <-encodes- g:Genome, (isSelected(b)) ==>>

^ Population g;

]

I. e., if the user has selected a single biomorph, the whole population is re-
moved, a new one is created, and it contains the genome of the selected
biomorph. Now we have the same structure as after initialization, but with
a selected genome, and iterate this kind of “artificial evolution” by applying
the rules for biomorph creation and genome mutation. By piling-up mutations
in a certain direction, which is completely at the bias of the user, a shortcut

10.3 Artificial Life 285

is taken through the multidimensional genotypic and phenotypic parameter
space with its thousands of millions of combinatorial possibilities, thereby
arriving at astonishing biomorphs, i. e., structures that closely resemble or-
ganismal morphologies.

As an addition to the original specification by Dawkins, we provide a
possibility to select two parent individuals from which offspring is generated
using the genetic operation of crossing-over:

... // from above

else i f (c == 2) [

Population, b1:Biomorph <-encodes- g1:Genome,

b2:Biomorph <-encodes- g2:Genome,

(isSelected(b1) && isSelected(b2)) ==>>

^ Population g1 -mate-> g2;

{derive();}

int j, k, l, m;

j k, l m, (* j -axisparent-> -mate-> <-axisparent- l *),

(* j -align- l *) ==>>

i f (probability(0.3)) (

j m, l k {println("crossing-over at " + $j.getIndex());}

)

else (break);

g:Genome -mate-> Genome ==>> g;

]

The first rule creates a new population which consists of the two selected
genomes, connected by an edge of the model-specific type mate. Although
the left-hand side of this rule is symmetric with respect to b1, b2, i. e., the
match having these and their genomes interchanged is also a match, the right-
hand side is executed only for the first found match: already this match adds
both biomorphs to the deletion queue, but the default derivation mode ex-
cludes nodes from matches which have been added to the deletion queue
(Sect. 9.1.5 on page 245). The second rule is the crossing-over rule which was
already shown as Ex. 5.3.2 on page 103. j k and l m stand for two subse-
quences of genomes. The method axisparent of de.grogra.rgg.Library
follows successor edges in reverse direction until it finds a reverse branch edge
whose source node is returned. I. e., in terms of axial trees (Sect. 5.2.1 on
page 95), the method returns the parent node of an axis. Now the context
(* j -axisparent-> -mate-> <-axisparent- l *) ensures that the sub-
sequences j k and l m stem from the genomes of the two selected parents.
The second context (* j -align- l *) uses the alignment relation

static boolean align(Node a, Node b) {

return a.getIndex() == b.getIndex();

}

286 10 Applications within GroIMP

Figure 10.5. Three generations of biomorphs. The biomorph of the first generation
drawn by thick lines is the single parent of the next generation. In this generation,
two biomorphs were chosen as parents for the third generation

which states that the indices (within the axes) of aligned nodes have to be
the same. I. e., if a is the p-th gene of the first genome, then also b has
to be the p-th gene of the other genome. The crossing-over rule is applied
with a probability of 30%, otherwise break ensures that nothing happens
for the current match. The final rule g:Genome -mate-> Genome ==>> g;
removes the second selected genome, it is applied in parallel together with the
crossing-over rule. Figure 10.5 shows three generations of biomorph evolution,
the biomorphs drawn with thick lines are the chosen parents for the next
generation.

The Biomorph implementation demonstrates the capability of the XL pro-
gramming language to represent genetic operations like mutation and crossing-
over in a natural way. A single crossing-over rule, applied in parallel, models
all possible crossing-over exchange events (no crossing-over at all, single, dou-
ble, triple crossing-over etc.). An implementation of mutation by L-systems is
easy (we can mutate the parameter of a gene module), but the implementa-

10.3 Artificial Life 287

tion of crossing-over becomes tedious. One solution is to use a single module
for both genomes as in

G(g0,g1,g2,g3,h0,h1,h2,h3)

for a genome length of four, and to specify all possible exchange events ex-
plicitly [98, 99]. For example, the rule

G(g0,g1,g2,g3,h0,h1,h2,h3) ==> G(g0,g1,g2,h3,h0,h1,h2,g3);

models a single crossing-over event between the last two genes, but we need six
further rules for the complete set of possible exchanges for a genome length of
four. This can be improved by modelling the three possible single exchanges
as independent events (with specific probabilities):

G(g0,g1,g2,g3,h0,h1,h2,h3) ==>

{

boolean x1 = probability(p1);

boolean x2 = probability(p2);

boolean x3 = probability(p3);

}

G(g0, x1?h1:g1, (x1^x2)?h2:g2, (x1^x2^x3)?h3:g3,

h0, x1?g1:h1, (x1^x2)?g2:h2, (x1^x2^x3)?g3:h3);

However, the problem of a hard-coded genome length remains. This contra-
dicts the rule-based paradigm: its main philosophy is to specify what to do
with data, but it is left to the formalism (and its implementation) to find
the locations where to apply the rules. So for a true rule-based crossing-over,
we only want to specify a rule for a single crossing-over. Whether there are
several possible locations where this rule can be applied in parallel or not has
to be detected by the run-time support, not by hand-coding.

10.3.2 Artificial Ants

Artificial ants were already presented in the introduction (Sect. 2.5 on page 15)
as an example for agent-based modelling. A simplistic simulation of artificial
ants, which nevertheless shows an interesting behaviour, can be implemented
easily using the XL programming language [96]. Our ant agents move in a
rectangular grid and have the following properties:

• An “excitation state” determines the amount of pheromone to be laid
down at the current grid cell. Its value is increased when the ant is on a
food source cell, otherwise it is decreased in each time step.

• A memory records the last twenty cells visited.
• In each time step, the cell to move to is chosen among the neighbouring

cells which have not yet been recorded in the memory. The choice is influ-
enced by the pheromone values of the cells, a tendency to keep the current
direction and a random effect. Cells may also be obstacles.

288 10 Applications within GroIMP

The rectangular grid consists of cells containing an amount of pheromone
which decays step by step. We use the Cell class, which was already presented
in Sect. 10.1.3 on page 275, and store the pheromone content in the length-
attribute and the property of being a food source, an obstacle or a normal
cell in the state-attribute (with values 1, -1, 0, respectively). To speed up
the query for neighbourhood in the grid, we use the technique described in
Sect. 10.1.3 on page 277, i. e., we create edges of type neighbour between
neighbouring cells, which are again the eight surrounding cells.

For ants, we use a subclass of de.grogra.imp3d.objects.Cylinder, the
length-attribute being used for the excitation state of an ant. The use of the
length-attribute in both cases has the advantage of a direct visualization of
the corresponding values. Ants have additional attributes dx, dy to store the
current moving direction:

public module Ant extends Cylinder(1, 0.1).(setShader(WHITE)) {

// current moving direction

int dx;

int dy;

}

At a given point in time, each ant sits on a single cell. This is modelled by
a successor edge with the advantage that the 3D visualization of the ant is
automatically placed at the correct location, namely at the origin of the local
coordinate system of the cell. For the representation of ant memory, the best
would be to use memory edges from an ant to all cells which it visited during
the last twenty steps. To implement a forgetful memory, these edges have to
carry a counter for their lifetime which is initialized with 20 and decremented
in each step until it reaches zero, in which case the edge is removed. The graph
of GroIMP does not support such attributed edges, but we can use the trick
to model such an edge by a triplet of a node with two auxiliary edges. In fact,
the implementation of the XL interfaces for the graph of GroIMP already
implements this trick (see Sect. B.7 on page 401): defining a node class

module Memory(int counter);

we may write a -Memory(20)-> c on right-hand sides and a -Memory-> c on
left-hand sides. This implies auxiliary edges of type EDGENODE IN EDGE from a
to the memory node and of type EDGENODE OUT EDGE from the memory node
to c.

Using the above declarations, the main rule set of the model consists of
three rules:

m:Memory(c) ==>> i f (c > 0) (m {m[counter] :-= 1;});

c:Cell ::> c[length] :-= 0.03 * c[length];

c:Cell a:Ant ==>>

n:nextCell(c, a) a -Memory(20)-> c

{

10.3 Artificial Life 289

a[dx] := (int) Math.round(n[x] - c[x]);

a[dy] := (int) Math.round(n[y] - c[y]);

float total = a[length] + 3 * c[state];

float laidDown = total * 0.1;

a[length] := total - laidDown;

c[length] :+= laidDown;

};

The first rule decrements the counter of each memory node if it has not yet
reached zero, otherwise the memory node (together with its two auxiliary
edges) is removed. The second rule implements an exponential pheromone
decay. The last rule specifies ant movement: an ant a sitting on cell c is
moved to the cell n which is computed by the method nextCell based on a
and c, furthermore a memory edge to the previous cell c is created. In the
code block, at first the new moving direction of the ant is computed. Then, the
total amount of available pheromone of the ant is the sum of the old value and
3 * c[state], which is zero for normal cells and 3 for food sources. A fraction
laidDown is laid down at the cell, the rest is the new pheromone content of the
ant (i. e., its excitation state). Note that we use deferred assigments :=, :+=
which take effect later, namely when the derivation is processed (Sect. 9.1.8 on
page 251). This ensures that we consistently use the same (old) values within
a single step. The central method nextCell looks as follows:

static Cell nextCell(Cell c, Ant a) {

float dx, dy;

Cell next = selectWhereMax

((* c -neighbour-> n:Cell,

((n[state] >= 0) && empty((* a -Memory-> n *))) *),

(dx = (n[x] - c[x]) - a[dx], dy = (n[y] - c[y]) - a[dy],

rank(n[length], dx*dx + dy*dy)));

return (next != null) ? next : c;

}

The next cell is chosen among all neighbours n of the current cell c which
are no obstacles (n[state] >= 0) and which are not recorded in the memory
of the ant. The aggregate method selectWhereMax (Sect. 6.4.3 on page 140)
chooses the candidate n for which the second expression is maximal. Here
this expression is the result of the method rank and based on the amount of
pheromone at n and the square of the distance between the previous moving
direction and the new one that would result from moving to n. The imple-
mentation of rank ranks those candidates higher which have a higher amount
of pheromone or whose direction is closer to the previous direction, but it also
contains a random effect:

static float rank(float pheromone, float deltaDirSquared) {

float t = random(0, 1);

return (pheromone + 0.14 * (8 - deltaDirSquared)) + 0.7 * t;

}

290 10 Applications within GroIMP

(a)

(b) (c)

(d) (e)

Figure 10.6. Execution of Ant Model: (a) early situation with ants exploring the
world, note the Objects panel with an entry named Ant for the predefined ant
geometry; (b) stable path through all food sources (yellow cylinders) after 680 steps;
(c) addition of a new food source and an obstacle (red boxes), deletion of a food
source; (d) some ants have found the new food source after 200 steps; (e) stable
path through all food sources after another 200 steps

10.3 Artificial Life 291

Its parameters have been chosen manually so that the behaviour of ants is
at the border between erratic and too deterministic. As a result, ants of our
model are able to find short paths through all food sources after several steps,
and even if such a stable path has been found, the addition or deletion of
food sources is detected by the ants after a while so that they find a new
path through the food sources. Figure 10.6 shows this behaviour. For a nice
visualization, we add an ant-shaped geometry by means of an instantiation
rule in the class Ant:

module Ant extends Cylinder(1, 0.1).(setShader(WHITE)) {

... // declarations from above

const Reference geometry = reference("Ant");

const Null[][] transforms = new Null[3][3];

static {

... // initialization of transforms

}

} ==> ‘transforms[dx+1][dy+1]‘ P(DARK_GRAY) geometry;

I. e., an ant is not only drawn as a cylinder, it also instantiates a sequence of
a coordinate transformation transforms[dx+1][dy+1], a P-command to set
the shader to DARK GRAY, and finally the node geometry which is a reference
to the object named "Ant". Such an object is defined in the Objects panel of
GroIMP (see Fig. 10.6(a) on the preceding page and Sect. A.5 on page 387),
here we import a manually created mesh of polygons (Sect. A.6 on page 388,
Sect. B.13.5 on page 411). The array transforms has to be initialized such
that, when indexed by the pair (dx + 1, dy + 1), the transformation places
the referenced geometry at the right location and rotates the ant such that it
looks in moving direction. The backquotes around the transformation serve as
parentheses, they are necessary for syntactical reasons as the brackets would
otherwise be interpreted as branch delimiters (Sect. 6.5.2 on page 147). As
a further step, we turn the whole grid upside down such that the cylinders
of cells and ants point downwards, while the ant geometry is placed above.
Finally, by a second instantiation rule we represent obstacle cells by boxes:

module GridCell(super.state) extends Cell(0, 0, 0, state)

==> i f(state < 0) (RU(180) Box);

The ant model benefits from the possibility to establish arbitrary edges be-
tween nodes. We use edges to mark the current cell of an ant, thereby auto-
matically defining the 3D position of the ant, to encode the neighbourhood
in a time-efficient way, and to represent the memory of an ant consisting of
the last twenty cells visited. All ingredients of the model can be coded in a
natural way, resulting in a very short and concise specification. Apart from
the initialization and the handling of ant geometry, the model consists of less
than 40 lines. This is not possible with L-systems, the major reason being
their pure string data structure.

292 10 Applications within GroIMP

10.4 Artificial Chemistry

A calculus which got some attention in the artificial life community is arti-
ficial chemistry (see [61]), i. e., the attempt to model the dynamics of large
numbers of artificial “molecules” (which can be numbers, code fragments,
graphs or other abstract objects with nontrivial pairwise interaction) in a
virtual solution. We present two simple examples: a rather abstract prime
number generator, and a more physical model of atoms which roam around
and, when they are in proximity, create chemical bonds, leading to polymer-
like molecules.

10.4.1 Prime Number Generator

A “chemical” prime number generator [176] consists of a soup of positive
integers as molecules and a single interaction in the case of a collision: if the
integer values of two colliding molecules are given by a, b such that a divides
b, then a remains in the soup, but b reacts to b

a . Using XL, we initialize such
a soup as a set of wrapper nodes for random int-values:

Axiom ==>> for(1:20) (^ irandom(2, 200),);

This appends the wrapper nodes at the root (symbol ^), the comma is neces-
sary to separate the structure created by one execution of the body from the
next one (Sect. 6.5.4 on page 151). The reaction is given by

(* a: int *), b:int, ((a != b) && ((b % a) == 0)) ==> ‘b / a‘;

a is in the context of the rule so that it remains in the soup. Only b is
replaced by the quotient if the application condition holds. The application of
this rule benefits from the default derivation mode (Sect. 9.1.5 on page 245)
which excludes nodes which are already enqueued for deletion from subsequent
matches. For example, if the soup contains the numbers 2, 3, 6, then both (2, 6)
and (3, 6) are matches for (a, b), but only the first found match is actually
used for rule execution as it enqueues 6 for deletion. Without this mechanism,
the parallel application would create two new molecules out of a single one.

The following shows a random initial content of the soup and its devel-
opment in five steps to a final state (i. e., a fixed-point). Prime numbers are
marked with an asterisk.

57 74 169 115 20 66 87 10 133 48 23* 165 36 112 99 103* 176 74 84 129

57 74 169 5* 2* 66 87 10 133 48 23* 165 36 112 99 103* 176 74 84 129

57 37* 169 5* 2* 33 87 5* 133 24 23* 33 18 56 99 103* 88 37* 42 129

57 37* 169 5* 2* 33 87 5* 133 12 23* 33 9 28 3* 103* 44 37* 21 129

19* 37* 169 5* 2* 11* 29* 5* 133 4 23* 11* 3* 14 3* 103* 22 37* 7* 43*

19* 37* 169 5* 2* 11* 29* 5* 19* 2* 23* 11* 3* 2* 3* 103* 2* 37* 7* 43*

As we can see, all but one non-prime numbers have reacted to prime numbers.
The non-prime number 169 = 132 is still in the soup as its single divisor 13 is
not present.

10.4 Artificial Chemistry 293

Even this simple example would not be possible with L-systems without
global sensitivity in the presented, concise way. While for the former examples
the string data structure of L-systems turned out to be too limited, it contains
too much information for this example: we do not need any neighbourhood
information, just the presence of molecules in a set. The rule simply queries
for a pair of nodes, ignoring their topological relation. I. e., from a topological
point of view, both nodes may have a “global distance” so that (locally)
context-sensitive L-systems are not sufficient.

10.4.2 Polymerization Model

Our second model of artificial chemistry consists of spherical atoms (or
monomers) enclosed in a two-dimensional rectangular region [109]. They move
in random initial directions with constant velocity, the boundaries of the re-
gion are reflecting. Atoms may have chemical bonds to other atoms; such
bonds are established when two atoms are in proximity. This leads to a poly-
merization of the initially unbonded atoms. With respect to the (mechanical)
kinetics, a bond behaves like a spring, its rest position being given by the
situation when the bond was created.

For the atoms, we define a subclass of Sphere with additional attributes
for the current velocity and the mass:

module Atom(float vx, float vy, float mass) extends Sphere

.(setShader(LIGHT_GRAY))

{

Atom(float x, float y, float vx, float vy, float mass) {

this(vx, vy, mass);

setRadius((0.001 * mass)**(1.0/3));

setTranslation(x, y, 0);

}

}

The rule for movement with constant velocity (Newton’s first law) is simply

a:Atom ::> {a[x] :+= DELTA_T * a[vx]; a[y] :+= DELTA_T * a[vy];}

where DELTA T is a constant defining the time step of the Euler-like numerical
integration. We also have a rule implementing the reflection at the boundaries
of the rectangular region [−1, 1]× [−1, 1]:

a:Atom ::> {

i f (((a[x] >= 1) && (a[vx] > 0))

|| ((a[x] <= -1) && (a[vx] < 0))) {

a[vx] = -a[vx];

}

i f (((a[y] >= 1) && (a[vy] > 0))

|| ((a[y] <= -1) && (a[vy] < 0))) {

a[vy] = -a[vy];

}

}

294 10 Applications within GroIMP

For the representation of bonds, we define a second node class which carries
attributes related to spring-like behaviour:

module Bond(float springRate, float friction, float dx, float dy);

As a bond relates two atoms, it can be seen as an attributed edge in terms of
the model, although it is a node in the underlying graph of GroIMP. Just like
for the memory relation in the ant example (Sect. 10.3.2 on page 288), this
detail is hidden in the syntax, i. e., we can write -Bond->.

The single “chemical” reaction takes place when two atoms are closer than
the sum of their radii, multiplied by 1.5:

a1:Atom, a2:Atom,

((a1 < a2) && (distance(a1, a2) < 1.5 * (a1[radius] + a2[radius]))

&& empty((* a1 -Bond-> a2 *))) ==>>

a1 -Bond(1, 0.1, a2[x] - a1[x], a2[y] - a1[y])-> a2;

To compute the distance, we use the corresponding method in the class
Library. We further add the condition a1 < a2 to prevent the match with
both atoms exchanged (note that Library defines a total order on nodes by
overloading the comparison operators), and the condition that there does not
yet exist a bond from a1 to a2. On the right-hand side, we create a bond
whose parameters define its properties as a spring.

For bonds, we have to add another rule which computes the resulting
spring force and computes changes in velocity due to Newton’s second law.
Given a spring constant k, a friction r and a neutral extent d of the axis of
the spring, the force for a current extent x and a relative velocity v of the
end point is given by

F = D(x− d) + rv .

Dividing the force by the individual masses, we obtain the accelerations and,
using the discrete time step DELTA T, the increments in velocities:

l:Atom -Bond(rate, fr, dx, dy)-> r:Atom ::> {

float fx = rate * (r[x] - l[x] - dx) + fr * (r[vx] - l[vx]);

float fy = rate * (r[y] - l[y] - dy) + fr * (r[vy] - l[vy]);

l[vx] :+= DELTA_T * fx / l.mass;

l[vy] :+= DELTA_T * fy / l.mass;

r[vx] :+= DELTA_T * -fx / r.mass;

r[vy] :+= DELTA_T * -fy / r.mass;

}

To visualize the bonds, we use the technique of the Sierpinski example to
visualize edges by thin cylinders (Sect. 10.1.2 on page 274). Here, we add an
instantiation rule to the definition of Atom:

module Atom ... // see above

==> for ((* this -Bond-> a:Atom *)) (

[

Cylinder(0, 0.03).(setEndPoints(ORIGIN, a - this),
setShader(YELLOW))

10.4 Artificial Chemistry 295

]

);

Figure 10.7 shows an initial state with ten atoms, two intermediate steps and
the final polymer in which all atoms are bonded. Like the previous example
of the prime number generator, this example starts with an unstructured
set of atoms and considers pairwise interactions, now based on the geometric
quantity of distance. But when a reaction happens, the example adds structure
to the set by means of bond edges. This again shows the versatility of our
approach, here in combination with a library of geometric functions. We can
also see the benefits of deferred assignments: the physical laws of kinetics can
be written down (in a time-discretized form) in a very natural way. There may
be several simultaneous contributions to the same variable, but these do not
interfere with each other as it is only after the execution of all rules that the
run-time system merges the simultaneous individual changes to a resulting
change (Sect. 9.1.8 on page 251).

(a) (b)

(c) (d)

Figure 10.7. Polymerization: (a) initial situation with unbonded atoms; (b) some
bonds have been created; (c) two polymers remaining; (d) final single polymer

296 10 Applications within GroIMP

10.5 Virtual Plants

The previous examples were not taken from the realm of plants, but from sev-
eral other fields of application. The main intent was to highlight the diverse
spectrum of possibilities of relational growth grammars and the XL program-
ming language, embedded in GroIMP, at simple yet instructive examples.
But the examples did not make use of the power of L-systems. Returning
to botany with a collection of virtual plants or even virtual forest stands,
this aspect of relational growth grammars becomes essential, but now, within
the extended framework, the expressiveness is considerably enhanced. As the
models are relatively complex, we do not give the complete source code, but
explain the main ideas and rules. However, the complete source code of most
of the models is available as part of the example gallery of GroIMP distribu-
tions. In addition, all presented models of this section were published in some
form. The author expresses his gratitude to the co-authors of the publications
for the fruitful cooperation, and, where the author was not involved in the
development of the models, to the authors for kindly providing their models.

10.5.1 ABC Model of Flower Morphogenesis

As an example of the new possibilities that arise from the combination of L-
system-like growth rules with more general graph rewriting rules of relational
growth grammars, let us consider flower morphogenesis controlled by a genetic
regulatory network. The ABC model of flower morphogenesis describes this
process using three genes A, B, C with corresponding transcription factors
[27]. According to the dynamics of a regulatory network, these factor con-
centrations change in time, thereby leading to a time-variant expression of
functions that control morphogenesis. Depending on the current state, differ-
ent flower organs are formed. Finally, the sequence and type of organs formed
constitutes the mature flower.

From a structural point of view, flower morphogenesis can be described
by L-system rules, but for the ABC mechanism these rules have to be influ-
enced by the state of a regulatory network, i. e., by a graph. In Sect. 3.15.4 on
page 38, we briefly presented the program L-transsys which addresses the re-
quirements of such an integrated model of flower morphogenesis [94]. However,
both model levels, the L-system controlling morphogenesis and the regulatory
network, reside in their own, separate domains of the underlying formal lan-
guage. Using relational growth grammars and the XL programming language,
we can concisely specify both levels in the same language.

Our implementation of the ABC model [96] is a direct translation of the
implementation of [94]. At first, we have to encode the gene regulatory net-
work. Such a network consists of nodes for genes and transcription factors.
Genes encode factors, so there may exist edges from genes to factors, and
factors activate or repress genes. The latter is best represented by edges from
factors to genes, which carry the two attributesKm, vmax of Michaelis-Menten

10.5 Virtual Plants 297

kinetics. Genes have a single attribute c which specifies a rate of production
for their encoded factors from some external source. Factors have a single at-
tribute d for their decay. The simple oscillatory network from Sect. 3.15.4 on
page 38 can be depicted by

A
�� ��Factor(0.1)

activates(0.01,1)

wwooooooooooo
activates(1,10)

&&MMMMMMMMMM

ag
�� ��Gene(0.01)

encodes

77ooooooooooo
rg

�� ��Gene(0)
encodes

xxqqqqqqqqqq

R
�� ��Factor(0.1)

activates(1,−1)

88qqqqqqqqqq
activates(0.1,−1)

ggOOOOOOOOOOO

where we have modelled repressions by activation edges with negated value of
vmax. Declaring classes for genes, factors and activation edges and a simple
edge type for ‘encodes’ edges

module Gene(double constitutive);

module Factor(double concentration, double decay);

module Activates(double spec, double max);

const int encodes = EDGE_0;

we set up the example network by

... ==>> ...

ag:Gene(0.01) -encodes-> A:Factor(0, 0.1),

rg:Gene(0) -encodes-> R:Factor(0, 0.1),

A -Activates(0.01, 1)-> ag, A -Activates(1, 10)-> rg,

R -Activates(0.1, -1)-> ag, R -Activates(1, -1)-> rg;

In the same way, but with six genes (A, B, C and three auxiliary genes) and
six factors we specify the original ABC network of [94]. The dynamics of such
a network as given in [94] can be specified by two execution rules. The first
one is responsible for the decay:

f:Factor(c, d) ::> f[concentration] :-= c * d;

In principle, this should be a numerical solver for the ordinary differential
equation of decay; however, the original model, which we want to reimplement
here, already uses this discrete form. The second rule is responsible for the
Michaelis-Menten kinetics of the regulatory network [11]. Given a factor f
which is encoded by a gene g, we have to consider all factors a activating or
repressing g. The individual contribution to the change in the concentration
of f is

∆a→g→f =
vmaxca
Km + ca

where ca is the concentration of a and vmax,Km the Michaelis-Menten con-
stants of activation or repression. The model of [94] adds all contributions

298 10 Applications within GroIMP

and the constitutive effect of g, and uses the resulting change, where negative
values are cut off:

f:Factor <-encodes- g:Gene(gc) ::> f[concentration] :+= Math.max(0,

sum(((* Factor(ca,) -Activates(s,m)-> g *), m*ca / (s+ca))) + gc);

When using the ABC network with the original values, we obtain the develop-
ment of concentrations of the factors for A, B, C as shown in Fig. 10.8. Now
according to the ABC model of flower morphogenesis, these concentrations
determine the type of flower organ to which the flower meristem differenti-
ates. In [94], the following thresholds were used: b > 80, c > a leads to a
stamen, b > 80, c ≤ a to a petal. When b ≤ 80, a > 80, c > 80, the meris-
tem differentiates to a shoot, for b ≤ 80, a > 80, c ≤ 80 to a sepal. Finally,
b ≤ 80, a ≤ 80, c > 80 yields a carpel and b ≤ 80, a ≤ 80, c ≤ 80 a pedicel. In
Fig. 10.8, the organ type for the corresponding set of concentrations is indi-
cated. The resulting order (pedicel, sepal, petal, stamen, carpel) is the usual
order of the wild type.

To implement this morphogenesis, we use a simple L-system for a flower
meristem, but this meristem is connected to the gene regulatory network and
creates organs depending on the current concentrations. The meristem itself
is defined as

const int SHOOT = 0, PEDICEL = 1, SEPAL = 2, PETAL = 3,

STAMEN = 4, CARPEL = 5, TERMINATE = 6;

module Meristem(int type, float mass);

Figure 10.8. Development of concentrations and resulting type of flower organ

10.5 Virtual Plants 299

where its attribute type is one of the constants for organ types. On initializa-
tion of the model, we create a single meristem which bears the factors a, b, c, cc
of the network (cc is one of the three auxiliary factors of [94]):

Axiom ==>>

... , // creation of the regulatory network, see above

^ Meristem(SHOOT, 1) [-factors-> a b c cc];

This meristem then creates new organs which are differentiated according to
the current concentrations:

m:Meristem(type, mass)

(* -factors-> Factor(a,) Factor(b,) Factor(c,) Factor(cc,) *) ==>

{ // Classification of next organ type

int t = ((c > 80) && (cc > 1)) ? TERMINATE

: (b > 80) ? ((c > a) ? STAMEN : PETAL)

: (a > 80) ? ((c > 80) ? SHOOT : SEPAL)

: (c > 80) ? CARPEL : PEDICEL;

}

i f (t == type) (

{m[mass] :+= 1;}

break
) else (

switch (type) (

case SHOOT:

Cylinder(0.45*mass, 0.6).(setColor(0x808000))

break
case PEDICEL:

Cylinder(0.18*mass, 0.6).(setColor(0xb8e070))

break
case SEPAL:

P(0xb8e070) M(0.1)

for (0:3) (RH(90) [RL(80) M(0.5) Scale(3) sepal])

break
case PETAL:

P(0xd7d9cb) RH(45)

for (0:3) (RH(90) [M(-0.5) RL(30) M(0.9)

RH(180) Scale(5) petal])

break
case STAMEN:

P(0x909778) M(0.1)

for (0:5) (RH(60) [RL(20) M(0.9) Scale(2) stamen])

break
case CARPEL:

P(0xa8b204) M(0.1)

for (0:1) (RH(180) [M(0.5) RL(-5) Scale(3) carpel])

break
)

i f (t != TERMINATE) (

{m[type] := t; m[mass] := 1;}

300 10 Applications within GroIMP

m

) else (

cut

)

);

To be more precise, if the new type t is the same as the previous one type
(which is stored as part of the state of the meristem), the organ is not yet
created, but its prospective mass is incremented. If the new type differs from
the previous one, an organ according to the previous type is created, and the
new type is recorded in the meristem. If the special condition for termination
holds, which makes use of the auxiliary factor cc, growth terminates by cutting
away the meristem together with its network (note that the invocation of cut
corresponds to the cut-operator % of L-systems, see Sect. 9.1.4 on page 244).

The individual organs are represented by nodes with suitable 3D geometry.
For sepals, petals, stamens and carpels, we use Bézier patches which were
modelled interactively. Like the ant geometry in Sect. 10.3.2 on page 287,
these can be imported in the Objects panel and then used via a Reference
node (Sect. B.13.5 on page 411):

const Reference sepal = reference("sepal");

...

The final outcome of the model is shown in Fig. 10.9(a) on the next page.
There we also see a plot of the development of concentrations. This can
be obtained within GroIMP by the built-in chart functionality based on the
JFreeChart library [137]:

const DatasetRef concentrations = new DatasetRef("concentrations");

protected void init() {

concentrations.clear()

.setColumnKey(0, "A").setColumnKey(1, "B").setColumnKey(2, "C");

chart(concentrations, XY_PLOT);

... // initialization of ABC model

}

public void run() {

...

m:Meristem(type, mass) // growth rule from above

(* -factors-> Factor(a,) Factor(b,) Factor(c,) Factor(cc,) *) ==>

{ concentrations << a << b << c;

... // see above

}

... ;

}

On initialization, the dataset referred by concentrations is cleared, and the
labels for its three columns are set. Then in each step of the model, a new row

10.5 Virtual Plants 301

(a)

(b) (c)

Figure 10.9. Simulation of ABC model: (a) GroIMP window showing wild type
and plot of development of concentrations; (b) “loss-of-B” mutant with petals and
stamens missing; (c) “gain-of-A” mutant with sepals and petals repeating

is added which contains the current concentration values a, b, c. The addition
of the values makes use of the overloading of the operator <<.

It is easily possible to modify the gene regulatory network, either by mod-
ifying its parameters or by even modifying its topology. Such mutations also
occur in nature and then lead to a morphogenesis different from the wild type.
Figure 10.9(b) shows a “loss-of-B” mutant where the encodes-edge from gene
B to its factor has been removed. Figure 10.9(c) shows a “gain-of-A” mu-
tant where the constitutive-attribute of gene A has been set to 500. Both
mutants are qualitatively correct [94], i. e., they can also be found in nature.

The ABC example shows how we can easily represent processes at different
scales and of different nature within the framework of relational growth gram-
mars. Both network dynamics and morphogenesis fit well into this framework,
and their combination gives rise to an interesting functional-structural model

302 10 Applications within GroIMP

of a flower. The advantage over the original approach of [94] is that the latter
used the specialized system L-transsys with two separated language domains,
whereas we concisely specify the complete model in a single framework.

A disadvantage of this approach to model gene regulatory networks is
that we mix the specification of the network with instances where the net-
work shall be active. E. g., factors have both the attribute decay, which is a
common property of the network and valid for all locations where this network
occurs, and the attribute concentration, which represents the current state
at a single location. If the network shall be used at more than one place in
our model (e. g., a single plant with several flowers or even several plants),
we would have to duplicate not only the state variables, but also the com-
mon specification of the network. A cleaner solution would be to remove the
attribute concentration from factors, and to regard the network as a spec-
ification of a kind of rule that can be applied to entities like meristems or
cells and modifies concentration values within these entities. We will see such
a solution in the next example.

10.5.2 Barley Breeder

The next example is a multiscaled ecophysiological model of barley develop-
ment [19, 20]. It was developed as part of the work within the research group
“Virtual Crops” consisting of a number of scientists of different plant and
information science disciplines. Similar to the ABC model, the barley model
consists of a set of morphogenetic rules having the overall shape of L-system
rules, and of a regulatory network at a lower level. Here, the network is a
metabolic regulatory network which simulates the biosynthesis of gibberellic
acid (GA1). This plant hormone is responsible for internode elongation both
in nature and in our model.

A further ingredient of our model is the representation of a simplified bar-
ley genome. Like for the biomorph example (Sect. 10.3.1 on page 282), a set of
barley individuals is presented to the user, and the user can choose one or two
as parents for a next generation, which again undergoes the genetic operations
of mutation and crossing-over. Thus, the model could be used as a basis for a
“breeder’s tool” where a plant breeder can manually or automatically find a
breeding path from a given input population to a desired phenotype.

The implementation of the genetic operators and the user selection is very
similar to the biomorph example. The main difference is that the genome of
barley is diploid, i. e., we have two chromosome sets instead of a single one.
Therefore, we add a further node class ChromoSet representing single chromo-
some sets. Furthermore, the class Genome of the biomorph example is replaced
by a class GenEnv which also contains some environmental parameters, and
instead of Biomorph, we use Individual as root node for barley plants. From
an individual we reach the genome-and-environment node by an edge of type
env:

10.5 Virtual Plants 303

module ChromoSet;

module Individual extends TextLabel;

module GenEnv(int time, int maxRank, double[] tsum);

const int env = EDGE_0;

The initialization of a single genome then looks like

Axiom ==> Population GenEnv [ChromoSet [0 1 1 0 0 1 1]

ChromoSet [0 1 1 0 1 0 0]];

The seven genes (now with the only possible values 0, 1) stand for cer-ze
(responsible for a wax layer on the epidermis, conferring a blue-green colour),
lks2 (awn length), vrs1 (number of spikelet rows), Zeo (dwarfing gene affecting
lengths of all internodes), Blp (lemma and pericarp colour), glo-b (globe-
shaped grain) and cul2 (uniculm, i. e., branching is suppressed).

The genome is reproduced in the same way as for biomorphs, leading
to five barley individuals, and their initially identical genomes are mutated
randomly. What has to be handled differently is the case of crossing-over for
sexual reproduction. This happens before the actual reproduction as part of
the meiosis when diploid cells divide into haploid cells (i. e., with only a single
chromosome set). The reproduction then combines two haploid cells (one of
each parent) into a single diploid cell. In our implementation, we create a co
edge between the two chromosome sets of each selected parent and already
combine the first chromosome sets to the new diploid genome of the offspring:

Population, i1:Individual [-env-> GenEnv [c11:ChromoSet c12:ChromoSet]],

i2:Individual [-env-> GenEnv [c21:ChromoSet c22:ChromoSet]],

((i1 < i2) && isSelected (h1) && isSelected (h2)) ==>>

^ Population GenEnv [c11 [-co-> c12] c21 [-co-> c22]];

We then apply the crossing-over rule from the biomorph example, but now
with a position-dependent probability of crossing-over to account for different
gene distances and with co instead of mate [99, 19]. Finally, we remove the
second chromosome set:

c:ChromoSet -co-> ChromoSet ==>> c;

The usage of the actual gene values has to combine the corresponding values
of both chromosome sets. In case of dominant inheritance, the presence of a
1-value in at least one set suffices to activate the corresponding function. If g
is the GenEnv-node, this is specified by expressions like

i f (((int)g[0][6] | (int)g[1][6]) != 0) {

... // function of uniculm gene (index 6)

}

The genetic level is the basic level of our model. On top of it, we specify the
metabolic level. For this level, we choose a simplified network of GA1 (gib-
berellic acid) synthesis. The network is shown in Fig. 10.10 on the following
page. GA19 is produced in apical meristems, the amount being a function of

304 10 Applications within GroIMP

production in
apical meristems

��

GA19

GA19-oxidase

��

transport

feedback control�

GA20

3β-hydroxylase
//

GA1

2β-hydroxylase

��

//____ internode
elongation

catabolite

Figure 10.10. Simplified scheme of GA biosynthesis pathway as used in the model

time and of some control by the dwarfing gene Zeo. Catalyzed by the enzymes
GA19-oxidase and 3β-hydroxylase, GA19 is converted via the intermediate
GA20 into the bioactive GA1 which controls internode elongation and is itself
degraded by 2β-hydroxylase into an inactive catabolite. GA1, on the other
hand, competes with GA19 for the binding site on GA19-oxidase, thus com-
petitively inhibiting the production of GA20 and, ultimately, its own produc-
tion. As a first simplified hypothesis of metabolite transport, we also include
basipetal transport of GA19 and acropetal transport of GA1 along the stem.

For the implementation of the metabolic network we could use the ap-
proach of the previous ABC model of flower morphogenesis. However, as we
pointed out at the end of the description of the ABC model, this is disad-
vantageous if there are several instances of the network as we would have to
duplicate the whole network specification for each instance. Therefore, we use
another technique. We define an abstract class for substances and concrete
subclasses for each metabolite GA1, GA19 and GA20:

module Substance (double concentration);

module GA1(super.concentration) extends Substance;

10.5 Virtual Plants 305

module GA19(super.concentration) extends Substance;

module GA20(super.concentration) extends Substance;

Now each internode and each meristem is a place where reactions according to
the metabolic network take place and which participates in the transport of
substances. For internodes and meristems, we use a common base class Organ
whose instances bear one node for each metabolite. The specification of the
Michaelis-Menten kinetics [11] from GA20 to GA1 is then given by

Organ [s:GA20] [p:GA1] ::> michaelisMenten(s, p, 0.2 * DELTA_T, 1);

I. e., for each organ which contains the substances GA20, GA1, we invoke a
method for Michaelis-Menten reaction. This method is specified as part of
the model, but could also be provided as part of a common library due to its
generic nature:

void michaelisMenten(Substance s, Substance p, double max, double km) {

double r = max * s[concentration] / (km + s[concentration]);

s[concentration] :-= r;

p[concentration] :+= r;

}

DELTA T is the time step for discretization. The choice of the parameters
vmax = 0.2,Km = 1 (and of all following parameters) was done by “man-
ual optimization”, i. e., such that the outcome looks useful. This means that,
whatever we obtain as a result from our model, can only be seen as a proof of
concept for the ability of relational growth grammars to represent a functional-
structural plant model from the genetic level via the metabolic level up to the
morphologic level. We do not claim that this is a physiologically validated
model.

The reaction from GA19 to GA20 with competitive inhibition by GA1 is
modelled very similar, now invoking another method which implements the
numerics of competitive inhibition [11]:

Organ [s:GA19] [p:GA20] [f:GA1] ::>

competitiveInhibition(s, p, f, 0.1 * DELTA_T, 2, 0.4);

Both the production of GA19 by apical meristems and the catabolism by 2β-
hydroxylase are assumed to depend on time and, for production of GA19, also
on the genotype. Time (measured in days) and genotype can be obtained by
the GenEnv-node of the barley in question. We write

Meristem [ga:GA19] -ancestor-> Individual -env-> g:GenEnv ::>

ga[concentration] :+= ga19Prod(g[time], g) * DELTA_T;

Organ [s:GA1] -ancestor-> Individual -env-> g:GenEnv ::>

catabolism(s, ga2betaActivity(g[time]) * DELTA_T, 1);

with the functions for GA19 production and 2β-hydroxylase activity

static double ga19Prod(GenEnv g) {

306 10 Applications within GroIMP

return ((g[time] > 20) && (g[time] < 40))

? (((int)g[0][3] | (int)g[1][3]) == 0) ? 0.5 : 0.1

: 0;

}

static double ga2betaActivity(double t) {

return (t < 60) ? 0.8 : 0;

}

ancestor refers to a method in de.grogra.rgg.Library which finds the
closest ancestor of a given node that has a specified type. Here, we are looking
for the Individual as the ancestor of all of its organs.

From Fig. 10.10 it remains to implement the transport. In our model,
GA1 is transported acropetally, i. e., from the root to the tips. Furthermore,
we assume that this transport is only active during the first forty days:

Organ [a:GA1] -ancestor-> Organ [b:GA1]

-ancestor-> Individual -env-> g:GenEnv, (g[time] <= 40) ::> {

double r = 0.04 * b[concentration] * DELTA_T;

b[concentration] :-= r;

a[concentration] :+= r;

}

This rule specifies that for each organ with an ancestor organ, GA1 is moved
from the ancestor to the organ, the rate being the concentration in the ancestor
multiplied by 0.04. We also need access to the time-attribute of the GenEnv
node.

GA19 is transported basipetally. The rule is similar to the previous one:

Organ [a:GA19] (? -ancestor-> Organ [b:GA19]) ::> {

double r = 0.01 * a[concentration] * DELTA_T;

a[concentration] :-= r;

i f (b != null) {

b[concentration] :+= r;

}

}

But now the ancestor is put into an optional pattern (? ...) (see Sect. 6.5.7
on page 154). This means that even from the root, which has no ancestor, we
have a basipetal transport to some imaginary organ. Put into other words,
the root acts as a sink for GA19.

Now on top of the two low levels of genetics and metabolism we specify
the high level of barley morphogenesis. In principle, this specification consists
of a set of rules which are the translation of an already existing pure L-system
model of barley [16]. We do not give the details here, but show two exemplary
rules for the combination of morphology with genetic and metabolic levels.
The complete source code is part of the GroIMP distribution.

The influence of the metabolic level on morphogenesis is through GA1

controlling internode elongation, see Fig. 10.10 on page 304. We model this

10.5 Virtual Plants 307

as a process which consumes GA1 at a rate of its concentration multiplied by
0.1, and which increases the internode length by a rate proportional to the
consumption rate:

i:Internode(rank) [s:GA1], (rank > 3) ::> {

double r = 0.1 * s[concentration] * DELTA_T;

s[concentration] :-= r;

i[length] :+= 30 * r;

}

The influence of the genetic level on morphogenesis is both indirect and di-
rect. The indirect influence is via the metabolic level as the dwarfing gene Zeo
reduces the production of GA19 and, consequently, the production of GA1,
leading to a decreased rate of internode elongation. The direct influence is
mostly of discrete nature, i. e., the presence or absence of genes switches be-
tween different parts of the right-hand sides of growth rules. As an example, if
the uniculm gene is set to zero for both chromosome sets, there is no branch-
ing. We specify this directly in the growth rule for a Meristem, where the
condition ((int)g[0][6] | (int)g[1][6]) != 0 tests for at least one gene
set to one:

m:Meristem(pc, rank, order) (* [ga19:GA19] [ga20:GA20] [ga1:GA1]

-ancestor-> Individual -env-> g:GenEnv *) ==>

...

i f ((((int)g[0][6] | (int)g[1][6]) != 0)

&& (rank <= 3) && (order < 3)) (

[RH(57) RL(40) // create branch, copy concentration values

Meristem(1.5 * PLASTOCHRON, rank, order + 1)

[cloneNode(ga19)] [cloneNode(ga20)] [cloneNode(ga1)]

]

)

... m ...;

Figure 10.11 on the next page shows five full-grown barley individuals with
their genome.

The presented barley breeder model has been extended to detect shade
using information on the local distribution of radiation at different wave-
lengths [18]. For this purpose, the built-in radiation model of GroIMP is used
(Sect. B.14 on page 412). Sensors attached to meristems measure the radiation
in the red and far-red regions of the spectrum. This radiation is a result of
the complex interaction of light, emitted by light sources, with geometry and
optical properties of the growing barley individuals. In the extended model,
the coefficients for reflection and transmission of leaves are set to higher val-
ues for the far-red spectrum compared to the red spectrum. Consequently,
far-red light is less absorbed by the leaves, leading to a lower red:far-red ratio
in shaded regions than in unshaded regions.

Plants typically react to shade by shade avoidance reactions, among them
internode elongation, suppression of lateral branches and early flowering [18].

308 10 Applications within GroIMP

Figure 10.11. Five barley individuals with their genome. Uniculm (second from
the left), dwarf (centre) and cer-ze (blue-green wax layer, centre and its neighbours)
can easily be identified

Figure 10.12. Simulated barley canopies at different settings for plant spacing and
branching threshold φ (from [18]). Increased spacing and decreased threshold lead
to increased branching

10.5 Virtual Plants 309

In our model, we make the production of GA19 dependent on the red:far-red
ratio, and suppress branching if the ratio is below a given threshold. The
result for different spacings and thresholds is visualized in Fig. 10.12 on the
preceding page. More details about this extension can be found in [18].

The extension presented in [18] also contains a model for object avoid-
ance during leaf growth. This was explained in more detail in [17]. The first
prerequisite of such a detailed model of leaf growth is to abandon the repre-
sentation of leaves by fixed, predefined surfaces (e. g., interactively modelled
Bézier surfaces like in the basic version of the barley breeder) and, instead of
this, to model the leaf as a chain of vertices along which a leaf profile curve
is extruded. For this purpose, GroIMP provides several NURBS construction
techniques [149]. We initialize such a leaf by code like
const Curve leafProfile = curve("leaf2");

...

Mark GrowingLeaf(size, 10, 0) NURBSSurface(leafProfile)

...

where the NURBSSurface node extrudes the interactively modelled curve ref-
erenced by leafProfile along the path defined by Vertex nodes between
the nearest Mark ancestor and the surface. Initially, there are no vertices, but
these are created by the growth rule for a GrowingLeaf:
gl:GrowingLeaf(size, n, l) ==>

...

{de.grogra.vecmath.geom.Cone cc = cone(gl, false, 65.9);}

i f (empty((* f:F, ((distance(gl, f) < n + 20) && (f in cc)) *))) (

// way is clear

RV(0.5)

Vertex(calcLeafSize(l / (300*size)))

M(n)

GrowingLeaf(size, min(n + 1, 10), n + 1)

) else (// objects in the way, try to evade

RU(random(-10, 10)) RL(random(-5, 5))

Vertex(calcLeafSize(l / (300*size)))

M(3)

GrowingLeaf(size, 3, l + 3)

)

... ;

The rule computes a one-sided cone cc with a half opening angle of 65.9
degrees. Its tip coincides with the location of the GrowingLeaf gl. (The com-
putation is actually done by the method cone of de.grogra.rgg.Library.)
If there is no F node (i. e., no internode) close to gl whose base point lies in
cc, the way is clear, a new Vertex is inserted after an RV-node for a tendency
to grow downwards (see Table B.2), a leaf growth of length n happens, and
this growth length n is increased for the next step. Otherwise, a small random
rotation is performed in order to try another, possibly better direction, a new
Vertex is inserted, only a short growth of length 3 happens, and this length is
also set to 3 for the next step. The factor in the constructor of Vertex scales

310 10 Applications within GroIMP

Figure 10.13. Enhanced barley model with detailed model of leaf shape and colli-
sion avoidance

the leaf profile, the used function calcLeafSize is such that the leaf surface
starts and ends with small widths, but has a maximal width in the middle
part. Figure 10.13 shows an individual barley grown with this mechanism of
object avoidance.

Note that the growth rule of leaves only considers F nodes as obstacles,
but nodes of leaves are not regarded. This could easily be changed by the
inclusion of Vertex nodes in the condition for a clear way.

10.5.3 Carrot Field with Rodent

The next example is a simplistic model of a carrot field [100]. Individual car-
rots are modelled by a single cone-shaped root of type Carrot and a branched
above-ground structure created by a single L-system rule (see [100] and the
source code in the example gallery), internodes being represented by F nodes
and leaves by the model-specific class Leaf. Already in the initialization the
complete structure is set up, but all internodes have a length of zero. Their
growth is governed by carbon that is produced in Leaf-objects and is trans-
ported downwards to the root. Carbon is represented by particles of class
Carbon with a value-attribute for the amount of carbon. The stochastic pro-
duction rule appends such a particle to each leaf with a probability of 5%:

10.5 Virtual Plants 311

x:Leaf ==>>

i f (probability(0.95)) (break)
x [Carbon(0.03 / (1+0.8*first((* x -ancestor-> Carrot *)[shadow])))];

The carbon amount depends on the shadow-attribute of the carrot, which is
a measure for the shading due to other carrot plants and will be discussed
below. Now carbon particles are moved downwards along internodes:

n:. [c:Carbon] -ancestor-> a:F ==>> n, a[c];

Recall that the symbol . is a wildcard so that n matches nodes of any type.
For each carbon particle c at an internode n, there is a choice. Either the

internode is the basal internode, i. e., it is directly connected with the Carrot
root m, then we remove the particle and let the root grow. Otherwise, the
internode consumes an amount of carbon and n elongates proportionally:

n:F [c:Carbon] ==>>

{Carrot m = first((* n < Carrot *));}

i f (m != null) (

// If n is the immediate successor of a carrot m

n // keep n in the graph, but delete c

// and let the carrot grow (note that scale is negative)

{m[scale] :-= 0.014 * c[value];}

) else { // else allocate an amount v of carbon

float v = 0.2 * c[value];

c[value] :-= v;

// and elongate the internode n.

n[length] :+= v;

break; // Do not apply any structural changes to the graph.

};

As we have already indicated, our model includes competition based on the
shadow-attribute of carrots as a measure for mutual shading. For each carrot
c, the value is taken to be the total length of all internodes F of other carrots
d that have a base in c’s light cone, which has its centre at the centre point of
c’s leaves, reduced to 30% in height, and a half opening angle of 50 degrees:

c:Carrot ::> { // Compute the centre of c’s leaf origins

Tuple3d m = mean(location((* c (-(branch|successor)->)* Leaf *)));

// and reduce it along the z-axis.

m.z *= 0.3;

// The shadow-field will contain the total shadowing length.

c[shadow] := sum // For every neighbouring d

((* d:Carrot, ((d != c) && (distance (c, d) < 3)),

// find all internode descendants f

d (-(branch|successor)->)* f:F,

// within a light cone around m

(f in cone(m, HEAD, 50)) // HEAD = (0, 0, 1): upwards

// and sum up their length.

*)[length]);

}

312 10 Applications within GroIMP

This rule demonstrates how query expressions of the XL programming lan-
guage and the 3D-algorithms of GroIMP like distance, cone and the over-
loading of the in-operator cooperate, allowing the modeller to implement both
flexibly and concisely the competition for light. The modeller is not bound to
a set of predefined functions that are provided as black boxes by the modelling
software.

Until now, the carrot field model has a tree-like structure; it makes no
use of true graphs. The structure changes if we include a water vole (Arvicola
terrestris, a rodent) which feeds on carrot roots and digs a burrow system,
thereby creating a true graph. The vole is represented either by an instance of
Vole or by an instance of DiggingVole, depending on its state. The burrow
system consists of nodes of type Burrow, connected with edges of type net.
The vole and burrow nodes are represented by spheres, burrow connections
(i. e., net edges) by cylinders using the instancing technique of the Sierpinski
example (Sect. 10.1.2 on page 274). Burrow nodes have an attribute scent
which is used as a scent mark: its value is increased when the vole is at the
node, but there is also an exponential decay. This helps the vole to find out the
recently visited burrow nodes. The rule for exponential decay is very simple:

b:Burrow ::> b[scent] :-= b[scent] * 0.3;

The next rule describes a non-digging vole that feeds on close carrot roots
and moves along the existing burrow network:

b:Burrow [v:Vole] ==>>

{ // reinforce scent mark

b[scent] :+= 1;

Carrot c = first((* x:Carrot, (distance(v, x) < 0.5) *));

i f (c != null) { // there is a close carrot

c[length] :*= 0.9; // gnaw off a bit

c[topRadius] := 1 - 0.2*c[length];

for ((* c -minDescendants-> r:RL *)) // and let the carrot

r[angle] := 13 + (5-c[length]) * 6; // leaves sink down

}

}

i f ((c != null) // we have just gnawed, no need to dig a new tunnel

|| probability (0.8)) (

{ // randomly select a neighbouring burrow n of b, preferring

// burrow nodes with a less intensive scent mark

Burrow next = selectRandomly((* b -net- n:Burrow *),

Math.exp(-n[scent]));

i f (next == null) {

next = b;

}

}

b, next [v]

) else (// no carrot found, try to find one by digging a new tunnel

b RU(random(-90, 90)) M(1) DiggingVole

);

10.5 Virtual Plants 313

The first part of this rule contains an important modification of the geom-
etry of the above-ground part of carrots: if the vole gnaws off a bit from a
close carrot root, the angles of all first RL rotations are modified such that the
whole above-ground part sinks down. The path c -minDescendants-> r:RL
is equivalent to c (-(branch|successor)->)+ : (r:RL), but uses the more
efficient method minDescendants of de.grogra.rgg.Library. By the compe-
tition model from above, the sinking down leads to an increased shadow-value
of the affected carrots and, thus, to a decreased carbon production and a re-
duced elongation rate of internodes. The second part of the rule moves the
vole to a neighbouring burrow node, or it changes the vole to a digging vole.
This happens with a probability of 20% if the vole could not find a close car-
rot. It then randomly chooses a starting direction for digging and moves one
unit in this direction by the turtle command M.

Being a digging vole, the animal shows a different behaviour. Given that
it has not moved too far from the centre, it finds the closest burrow node x
within a disc of radius 1 and in a cone in the movement direction with a half
opening angle of 60 degrees. If such a node exists, the vole digs to this burrow
node x and becomes a non-digging vole. Otherwise, it creates a new burrow
node n, selects the closest carrot c, rotates towards this carrot in the manner
of a positional tropism, but with an additional random rotation, and digs a
distance of 0.5 in the new direction.

v:DiggingVole -ancestor-> b:Burrow ==>>

i f (ORIGIN.distance(v) > 5) (

b [Vole] // The vole has moved too far: Stop digging.

) else (

// Of all burrow nodes t close to v and within the forward cone

// of the vole, select that burrow x with minimal distance to v.

{Burrow x = selectWhereMin((* t:Burrow,

((t != b) && (distance(t, v) < 1)

&& (t in cone(v, false, 60))) *),

distance(t, v));}

i f (x != null) (// If such a burrow x exists, create

b -net-> x, x [Vole] // a tunnel to it and stop digging.

) else (// Otherwise, create a new burrow node n with tunnel,

n:Burrow(1) [<-net- b]

// select the closest carrot c,

{Carrot c = selectWhereMin((* d:Carrot *), distance(d, v));}

// and move v towards c.

tropism(v, c, Math.exp(-0.1*distance(c, v)))

RU(random(-10, 10)) M(0.5) v,

// Embed n at the graph location of v.

moveIncoming(v, n, -1)

)

);

The used cone-method is another one as in the rule for shadow computation.
The axis of the returned cone coincides with the local z-axis of the first argu-

314 10 Applications within GroIMP

ment v, i. e., with the movement direction of the vole (Sect. B.12 on page 406).
The second boolean parameter is set to false, this controls whether the tip
of the cone is given by the base or top point of v. As we represent a vole
by a sphere, both points are the same (namely the centre of the sphere), but
they might be different for other objects like cylinders. The last statement
invokes the method moveIncoming on the current producer, which delegates
the invocation to the underlying connection queue (Sect. 9.1.2 on page 237).
On derivation, incoming edges of v are moved to n if they are of the type
specified by the third argument. The provided argument -1 is an abstract
edge type which is a supertype of any edge type: recall that edge types are
encoded by bitmasks, and we have γ &−1 = γ 6= 0 for any edge type γ.

The preceding rules are put into a complete program that models a carrot
field with a water vole. The invocation of the single rules is controlled by the
application step in order to implement different time resolutions for the vole,
the carrots and the relatively time-consuming shadow calculation:

i f ((step % 25) == 0) [...] // shadow calculation

i f ((step % 5) == 0) [...] // carrot growth

[...] // vole rules

step++;

Figure 10.14 on the facing page shows a snapshot of the model after a number
of steps and with a user intervention.

10.5.4 Spruce Model of GROGRA

This example does not make use of the new features of GroIMP compared to
GROGRA, it just demonstrates that source code in the language of GROGRA
can also be used (Sect. B.15 on page 414). Figure 10.15 on the facing page
shows the result of the L-system of a young spruce tree described in [106] at
an age of 17 years.

10.5.5 Analysis of Structural Data of Beech Trees with XL

This example differs from the other ones as we do not use the XL programming
language to specify growth or dynamics of a structure, but to analyse an
existing plant structure. Such analysis is an important issue in functional-
structural plant modelling, especially in the context of parameterization and
validation. This holds equally for structures resulting from measurements of
real plants and for modelled structures, i. e., the outcome of virtual plant
simulations. The analysis has to consider both the topology of the structure
and the values of parameters of its constitutive entities like geometry-related
parameters or the internal state. For example, one may be interested in the
number of internodes of growth units as a function of their age (a purely
topological property) or in the branching angles, which also includes geometric
information.

10.5 Virtual Plants 315

Figure 10.14. Snapshot of the carrot field model. The user has intervened by
cutting off two leaves of the second carrot from the right; this favours its neighbours.
However, the median carrot and its left neighbour suffer from being damaged by the
vole

Figure 10.15. Spruce model of [106], executed and rendered within GroIMP

316 10 Applications within GroIMP

The AMAPmod software [68] is an example of a sophisticated program
which has been specifically designed for plant structure analysis. Existing
structures (the results of measurements or virtual plant simulations) are read
in, the user then extracts the desired information by the querying language
AML, and results can be visualized as a 3D-model or via several types of
plots. But also the XL programming language can be used for analysis due to
its graph query features. As an example, let us consider a tree represented by
a structure of only DTGShoot nodes. This can be obtained within GroIMP by
the import filter from DTD files which contain morphological descriptions of
trees usually coming from measurements (Sect. A.6.2 on page 390 and [108]).
Having such a structure, the expression

((* p:DTGShoot [b:DTGShoot], (p.order == 0) *),

angle(direction(p), direction(b)))

yields the branching angles between all parent shoots p of order zero and their
branching shoots b. The methods angle and direction are defined in the
class de.grogra.rgg.Library. If we apply the aggregate method statistics
of de.grogra.rgg.Library to this expression, we obtain a statistics of the
branching angles including mean value and deviation.

For the beech model of the next section, we analyse data of young beech
trees (Fagus sylvatica L.) which were measured in 1995 in the Solling (German
midland mountains) [180, 76]. Their age ranges from 7 to 14 years. The com-
plete topology was recorded with annual shoots being the elementary units,
and for each shoot its length, number of internodes, branching angle and some
further parameters were measured. Now we extract two simple properties out
of the data. At first, the branching angle is analysed as explained above. Ap-
plied to the measured data, we obtain 64◦ ± 15◦ for order zero and 50◦ ± 11◦

for higher orders. As a second property, the relation between the length of a
shoot and the number of its internodes is studied. For each shoot a which is not
a short shoot (longer than 8 mm), the pair (a.length, a.internodeCount)
is written to a table, where we use different rows of the table for different
orders:

const DatasetRef table = dataset("Internode Count / Length");

...

for ((* a:DTGShoot, (a.length > 0.008) *)) {

table.getRow(a.order).add(a.length, a.internodeCount);

}

This table can be exported to various formats like CSV or XLS if one wants
to use external tools to further analyse the data. But it can also be plotted
within GroIMP by

chart(table, SCATTER_PLOT);

Figure 10.16 shows the resulting plot for five imported beech trees. A linear
relation n(l) = p0l + p1 between length l and number n seems to be suitable.

10.5 Virtual Plants 317

Figure 10.16. GroIMP window showing imported beech trees and result of analysis

By an anonymous function expression (Sect. 6.13.5 on page 188), we set up
this relation as a DoubleToDouble function and specify initial values for p0, p1:

f inal double[] p = {25, 2};

DoubleToDouble n = double x => double p[0]*x + p[1];

The method fitParameters of de.grogra.rgg.Library can be used to com-
pute the optimal values for p0, p1 (namely 0.287 cm−1 and 2.28, respectively):

fitParameters(n, table, p, new double[]{0.01, 0.0001});

The last argument to fitParameters defines the desired precision. A plot
of the resulting function is also shown in Fig. 10.16, it is generated by the
method plot:

plot(n, 0.01 * (1:25));

10.5.6 Beech Model and Tree Competition

This model is a relatively complex functional-structural model of young beech
trees (Fagus sylvatica L.). It consists of several parts: The radiation model of
GroIMP (Sect. B.14 on page 412) is used to compute the amount of absorbed
light for each leaf. By a photosynthesis model, this amount is converted into
carbon assimilates and allocated in the tree both by basipetal transport and
global distribution, leading to secondary growth in girth or self-pruning if the
supply is insufficient. From the availability of carbon assimilates we compute
a vitality for buds, this then controls the number and lengths of created inter-
nodes in an annual step. At the end of this section, we will combine the model
with an enhanced version of the spruce model from above to simulate a young
mixed spruce-beech stand [76].

318 10 Applications within GroIMP

Entities of the Model

For the beech model, we use five specific classes for its entities. A BeechLeaf
is a rectangular Parallelogram with a scanned image of a beech leaf as tex-
ture. The size of (the enclosing rectangle of) a new leaf is determined by two
normally distributed random numbers with mean value 6 cm by 4.3 cm (note
that we use coherent SI units throughout this section). A BeechLeaf has an
attribute producedCarbon which stores the amount of produced carbon as-
similates in a single step, the unit being mol C.

module BeechLeaf extends Parallelogram(normal(0.06, 0.015),

normal(0.043, 0.01))

.(setShader(leafShader)) {

float producedCarbon;

}

The next class Organ is the superclass for internodes and the single root
compartment. An organ has a cylindrical shape with an initial radius of almost
zero. It will grow in girth as part of secondary growth, but the length will stay
constant. The topological order (i. e., the stem has order 0, main branches have
order 1 etc.) is stored in the attribute order. allocatedCarbon contains the
amount of carbon allocated by the organ as part of the basipetal transport of
carbon, exportedCarbon the exported part which is transported to the next
organ in basipetal direction. producedCarbon is the total amount of carbon
produced in all leaves above the organ. The attribute preference is a measure
for the preference of the organ resulting from its carbon supply compared to
other organs.

module Organ(super.length, int order) extends Cylinder(length, 0.0001) {

float allocatedCarbon;

float exportedCarbon;

float producedCarbon;

float preference = 1;

}

The single Beech node of the model represents a compartment which stands
for all roots. This is a typical simplification of plant models as relatively less
is known about the detailed below-ground growth of plants.

module Beech extends Organ(0.01, 0).(setShader(EGA_6));

Also Internode inherits from Organ, here we set the shader depending on the
order.

module Internode(super.length, super.order) extends Organ

.(setShader((order==0) ? stemShader:branchShader), setScaleV(true));

The effect of the invocation setScaleV(true) is used when the texture image
for bark is mapped on an internode: by default, such an image is wrapped
exactly once around the cylindrical surface. But as the internodes have differ-
ent lengths, the global scale of the bark differs from internode to internode,

10.5 Virtual Plants 319

which is not desirable. By setting the scaleV-attribute to true, the global
scale along the axes is the same for all internodes.

The final specific entity of the model is the Bud. Like an organ, it stores
the topological order. The attribute vitality is a measure for the vitality of
the bud and results from carbon production. sign alternates between −1 and
1 in order to implement alternate growth. internode, leaf and beech are
references to the bearing internode, the leaf in whose axil the bud emerges,
and the beech individual to which the leaf belongs, respectively.

module Bud(int order, float vitality, int sign, Internode internode,

BeechLeaf leaf, Beech beech);

Primary Growth

Beech growth is implemented by a single L-system rule which specifies the
annual growth of a bud into a shoot composed of several internodes with
lateral and terminal leaves and buds. At first, we compute several parameters
for the rest of the rule:

b:Bud(o, v, s,,, t) ==>

{

boolean createShort = v < 2.2;

int count;

float len;

i f (createShort) {

count = 3;

len = 0.01;

} else {

count = (int) v;

i f (probability(v - count)) {

count++;

}

len = Math.max((count - 2.28) / 28.7, 0.02);

}

int budmin = count - Math.round(0.666f * (v - 0.875f));

int sign = s;

float[] lenDist = lengths(count);

}

... ; // rest of growth rule, see below

createShort specifies if the bud shall give rise to a short shoot, i. e., to a shoot
which does not elongate significantly and whose lateral buds normally do not
grow out into shoots in the next year. This is assumed to be the case if the
vitality v of the bud is below the threshold 2.2. count determines the number
of internodes of the shoot. If the bud does not create a short shoot, it is set to
a rounded value of v with a stochastic component such that the expectation
value equals v. len specifies the total length of the shoot. For normal shoots,
this is computed by the relation which was obtained from experimental data

320 10 Applications within GroIMP

in the previous section on page 317. If the internodes are numbered from 1 to
count, all (non-terminal) internodes with a number greater than or equal to
budmin will have a lateral bud. Like the relation between internode count and
length, the formula for the relation between vitality and the number of buds
was derived from the data of [180] (with the substitution of vitality by the
internode count). sign is initialized with s, this will be multiplied by −1 for
each internode to implement alternate growth. The last parameter lenDist
is the normalized distribution of the total length among the individual inter-
nodes and was taken directly from an analysis done in [180].

Having these parameters, the growth rule continues by creating count
internodes. Each internode bears a leaf. The terminal internode and some
intermediate internodes also bear terminal and lateral buds, respectively.

1 b:Bud(o, v, s,,, t) ==>

2 ... // computation of parameters, see above

3 for (int i : 1 : count) (

4 {

5 sign = -sign;

6 boolean terminal = i == count;

7 float q = ((float) i / count) ** VIT_POWER_0;

8 float vit = Math.max(v*VIT_A*q / (1 + VIT_B*q), VIT_MIN);

9 }

10 x:Internode(lenDist[i-1] * len, o)

11

12 RU(sign * normal((o == 0) ? 0 : 15, (o == 0) ? 5 : 10))

13 RH(normal(0, (o == 0) ? 20 : 10))

14

15 i f (terminal) (

16 i f (o == 0) (RD(HEAD, 0.5))

17 [RL(90) RD(sun, 0.4) RL(-90) l:BeechLeaf]

18 Bud(o, vit, sign, x, l, t)

19) else (

20 [

21 i f (o == 0) (

22 RL(sign * normal(64, 15))

23) else (

24 RU(-sign * normal(50, 11))

25)

26 AdjustLU

27 [RL(90) RD(sun, 0.4) RL(-90) l:BeechLeaf]

28 i f (!createShort && (i >= budmin)) (

29 Bud(o + 1, vit, sign, x, l, t)

30)

31]

32)

33);

The rotation angles are guessed from the visual appearance with the exception
of the branching angles in lines 22, 24 which were taken from the analysis of

10.5 Virtual Plants 321

the previous section (page 316). In order to orientate the leaves such that
their surface receives a high amount of sunlight, we use a directional tropism
de.grogra.rgg.RD towards the direction sun, which is a parameter of the
model and set to (−1, 0, 0.5) (lines 17, 27). But we have to enclose the tropism
in a sequence RL(90) RD(sun, 0.4) RL(-90), otherwise the growth direction
(i. e., the longitudinal axis) and not the surface normal of the leaves would be
rotated towards the sun.

The computation in lines 7, 8 has the vitality vit of bud i as its result.
It is computed as the vitality v of the shooting bud b, multiplied by a factor
between 0 and 1 which is a function of the fraction i/count. The parameters
of this function have been chosen such that the vitality of the lower buds is
nearly zero, while the terminal bud has the same vitality as the shooting bud.

Photosynthesis

Up to now, the model is a purely structural model. Now we integrate a func-
tional component which computes carbon production and allocation and re-
moves branches with insufficient supply. The starting point for this functional
component is the inclusion of a photosynthesis model. This is driven by the
interception of light in leaves. An accurate way to compute this interception
is the built-in radiation model of GroIMP (Sect. B.14 on page 412) which
takes into account the complete geometry and optical properties of plants
and possible further objects.

const LightModel radiation = new LightModel(1000000, 6, 0.001);

This line initializes the radiation model with 1, 000, 000 light rays per compu-
tation, a maximum ray depth of 6 and a threshold of 0.001 W for the power
of light rays which shall be ignored. Furthermore, we have to assign suitable
shaders to the leaves and the other plant organs (e. g., the reflection and trans-
mission coefficients have to be set correctly) and to define one or more light
sources. If this is done, the invocation

radiation.compute();

computes the amount of absorbed light for each node of the scene. This can
be queried for a given node n by

radiation.getAbsorbedPower(n)

The result is an instance of the interface de.grogra.ray.physics.Spectrum
which, in general, represents the spectral decomposition of some quantity.
However, by the method integrate we can obtain the integrated value over
the whole spectrum. We use this to define the method produceCarbon in the
declaration of BeechLeaf:

public float produceCarbon() {

float ppfd = radiation.getAbsorbedPower(this).integrate()
* (PPFD / AREA);

322 10 Applications within GroIMP

float x = (EFFICIENCY * ppfd + Pmax) * (1 / (2 * M));

float y = (EFFICIENCY * Pmax / M) * ppfd;

float p = x - Math.sqrt(x * x - y);

float c = AREA * Math.max(0, DURATION * p

- SPECIFIC_MASS * C_FRACTION / (C_MASS * GROWTH_RESPIRATION_LEAF));

this[producedCarbon] = c;

return c;

}

The amount of absorbed light (measured in W) is divided by the average AREA
of a leaf to compute the specific absorbed power. Then it is multiplied by PPFD
to convert from W m−2 to the photosynthetically active photon flux density,
measured in mol CO2 m−2 s−1. The latter is generally used in biology due
to the direct stoichiometric relation 8:1 between absorbed photons and the
binding of CO2 molecules. Based on an average wavelength of λ = 550 nm, we
have PPFD = λ

8hcNA
≈ 5.75× 10−7 mol CO2 J−1. In principle, we also have to

take into account the spectral composition of light as the photosynthetically
active part of the spectrum ranges only from wavelengths between 400 and
700 nm, but as the whole model is rather a sophisticated toy model than
a precise validated growth model, we neglect this fact. The computed ppfd
is not directly the amount of produced carbon as the efficiency is far from
100%. In general, there is a linear relationship (with efficiency factor α) at
low irradiance values and a maximum carbon production rate Pmax in the
light-saturated case. The above code uses the formula

P =
αi+ Pmax

2M
−

√(
αi+ Pmax

2M

)2

− αiPmax

M
(10.1)

of [150] to compute the assimilation rate with i = ppfd, α = EFFICIENCY =
0.2, Pmax = 1.4 × 10−4 mol CO2 m−2 s−1,M = 0.98 [150, 134]. This rate is
multiplied by DURATION = 4.32 × 106 s to compute the produced carbon per
leaf area for the whole year. Assuming an active leaf lifetime of 120 days, this
corresponds to 10 hours of full light per day. From the produced carbon per
leaf area, we subtract the amount required for growth of the leaves themselves.
The latter results from the specific dry mass of beech leaves (SPECIFIC MASS =
35 gm−2), the contribution of carbon to dry mass (C FRACTION = 0.48), the
molar weight of carbon (C MASS = 12.0107 gmol−1), and the ratio between
carbon growth and available carbon (GROWTH RESPIRATION LEAF = 1/1.2 [39],
the difference is needed for growth respiration). Finally, we multiply by AREA
to obtain the produced carbon for the single leaf. This carbon is available for
the rest of the plant and remembered in the attribute producedCarbon of the
leaf.

Allocation and Transport

The produced carbon is distributed in the plant by an allocation model.
We assume a basipetal transport of carbon. Each organ receives an amount

10.5 Virtual Plants 323

imported of imported carbon from its organ children and an amount produced
of produced carbon from the leaf which it bears, if any. The carbon is allocated
in a method transportCarbon of Organ:

void transportCarbon(float imported, float produced, float above) {

imported += produced;

float q = radius / 0.0025;

float ex = imported * Math.exp(-0.7 * length * (1 + q) / q);

this[allocatedCarbon] = imported - ex;

this[exportedCarbon] = ex;

this[producedCarbon] = above + produced;

}

At first, produced is added to imported in order to compute the total amount
of carbon transported into the organ. A fraction ex thereof is exported down-
wards. Assuming that a fixed fraction κ of transported carbon is allocated
per unit length of passed through tissue, the exported fraction for an organ
of length l is given by an exponential law e−κl. The implementation makes κ
dependent on the radius of the organ so that the allocated fraction is higher
for thin organs (about 2.5 mm and below). This has been chosen solely by a
manual optimization with respect to the visual appearance. The additional
parameter above is the total amount of produced carbon of all leaf descen-
dants which are not direct children. In the last line, we add the contribution
by direct leaf children and store the sum in producedCarbon.

As the model executes a single step for a whole year, the complete trans-
port from the leaves to the root has to be performed in that single step. Thus,
transportCarbon has to be invoked on all organs. For a basipetal transport
within a single step, all children of an organ have to be processed before the
organ is processed itself, so that we may not choose an arbitrary order of the
organs, but have to use a postorder traversal (see also Sect. 9.3.1 on page 263
with a similar problem for the pipe model). Specifically for this purpose, the
pattern de.grogra.rgg.basipetal is defined. It is used as a path pattern
and performs a postorder traversal along branch or successor edges starting
at the in-parameter. For our model we write:

Beech -basipetal(Organ.class, children,

BeechLeaf.class, leaves)-> x:Organ ::>

x.transportCarbon(sum(children[:][exportedCarbon]),

sum(leaves[:].produceCarbon()),

sum(children[:][producedCarbon]));

x is successively bound to all organs which are descendants of the found
Beech node. This binding is in postorder traversal. The four parameters
of basipetal in parentheses have the following meaning. Organ.class de-
fines the type of nodes which shall be traversed. children is then of type
VoidToObjectGenerator<Organ> and is a generator which yields all children
of the current organ x when the operator [:] is applied to it (Sect. 6.3.3 on
page 135). These two parameters suffice for the specification of a postorder

324 10 Applications within GroIMP

traversal, but we need two additional parameters as we are additionally in-
terested in the leaves belonging to an organ, i. e., those leaves which can be
reached from an organ without passing another organ (for our beech model,
there is at most one such leaf). These parameters are similar to the first two
parameters: BeechLeaf.class specifies the type of leaf nodes, leaves holds
the found nodes for each organ x. The right-hand side of the rule invokes
the method transportCarbon from above. It uses the photosynthesis model
(method produceCarbon) to compute the amount of carbon produced in the
leaves.

The carbon which is exported from the Beech node b of an individual
tree cannot be transported downwards as such a node is the root node of the
tree. Therefore, a fraction of this carbon amount is distributed over the whole
plant, while the rest is allocated at the root node:

float distributed = 0.7 * b[exportedCarbon];

b[allocatedCarbon] += b[exportedCarbon] - distributed;

The distribution uses a weight which is computed for each organ by the
method distributionWeight based on the demand of the organ due to main-
tenance respiration, the amount of allocated carbon, the preference attribute
and the order. The details can be found in the source code in the example
gallery of GroIMP. The resulting amount of distributed carbon for an indi-
vidual organ is passed to the method grow of the organ:

float f = distributed

/ sum((* b -descendants-> Organ *).distributionWeight());

(* b -descendants-> o:Organ *).grow(f * o.distributionWeight());

Here, we do not have to take care of the order of traversal and use a sim-
ple query to find all organ descendants of the beech b. The method grow
of class Organ implements secondary growth (growth in girth) with the sum
of allocated and distributed carbon, reduced by an amount for maintenance
respiration, as carbon input:

void grow(float distributedCarbon) {

float input = allocatedCarbon + distributedCarbon

- maintenanceRespiration();

i f (input >= 0) {

float m = input * (GROWTH_RESPIRATION_WOOD * C_MASS

/ C_FRACTION);

this[radius] =

Math.sqrt(this[radius]**2 + m / (DENSITY*Math.PI*length));

}

this[mark] = (order > 0) && (input < 0);

}

The computation converts from the amount of carbon, multiplied by a factor
GROWTH RESPIRATION WOOD = 1/1.38 [39] to account for growth respiration,
to the resulting biomass m and, ultimately, to the corresponding new radius.

10.5 Virtual Plants 325

The last line sets a mark on non-stem organs having a negative input. Their
supply by carbon is insufficient so that they fall off as a result of self-pruning.
The same happens for all leaves as beech trees lose their leaves in autumn:

o:Organ & (o[mark]) ==>> ;

BeechLeaf ==>> ;

Maintenance respiration is assumed to be proportional to the surface of
organs with an annual mean factor MAINTENANCE RESPIRATION = 1.92 ×
10−7 mol CO2 m−2 s−1 (derived from [182]).

float maintenanceRespiration() {

return 3600 * 24 * 365 * MAINTENANCE_RESPIRATION * 2 * Math.PI

* radius * length;

}

In principle, the model is now complete. However, we have added an ad-
hoc mechanism which modifies the preference attribute of organs and the
vitality attribute of buds by an acropetal propagation, weighted by pro-
duced carbon at branching points. This implements a reaction of the plant to
favour those parts with a better carbon supply, i. e., with less shading. The
source code can be found in the example gallery.

Results

Figure 10.17. Beech individuals with different light conditions after ten years.
From left to right: 50Wm−2, 100W m−2, 200W m−2

Figure 10.17 shows three outcomes of the simulation after ten years with dif-
ferent light conditions. The effect of light is in evidence. But this is of course
only a very coarse measure of the plausibility of the model, one has to com-
pare the results in more details and dimensions with experimental data. The
analysis of results can be done with expressions of the XL programming lan-
guage just like the analysis of experimental data (Sect. 10.5.5 on page 314).

326 10 Applications within GroIMP

For example, we may study the distribution of annual shoot lengths (which
is an emergent property of the beech model) and compare it with the mea-
sured data obtained in Sect. 10.5.5 on page 314. Corresponding histograms
are shown in Fig. 10.18, where again measurements from [180] were used. The
distribution of simulated shoot lengths differs in shape from the distribution
of measured shoot lengths. This could be the starting point for refinements of
the model.

The current state of the model should be understood as a “proof of con-
cept”: the model itself is not meant to be realistic in the sense that it could be
used to precisely predict beech growth, but it shows that the XL programming
language, combined with the environment GroIMP, is in principle suitable for
the implementation and analysis of sophisticated functional-structural plant
models.

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

N
um

be
r

O
f S

ho
ot

s

Shoot Length [cm]

(a)

 10

 100

 0 2 4 6 8 10 12 14 16 18 20

N
um

be
r

O
f S

ho
ot

s

Shoot Length [cm]

(b)

Figure 10.18. Distribution of shoot lengths: (a) measured data; (b) simulated data

Mixed Spruce-Beech Stand

The beech model was combined with an enhanced version of the model for
young spruce trees of [106] (see also Sect. 10.5.4 on page 314). This enhanced
version takes the received light by spruce needles into account, but not in
the manner of the beech model. It rather uses the amount of received light
as a limiting modifier for the otherwise context-free L-system-like growth. By
combining both models and seeding several individuals of each species, one
gets an interesting simulation of a mixed spruce-beech stand [76]. Figure 10.19
on the next page shows the result of a chessboard-like arrangement of 8 by 8
trees with an additional pavilion. The number of light rays for the radiation
model had to be increased to 30 million to ensure the required accuracy. The
simulation correctly shows the effects of shading: in the shade of the pavilion
and neighbouring trees, growth is reduced. Figure 10.20 on page 328 uses the
same model, but about 700 trees with a more irregular placement on a hilly
landscape with a river.

10.5 Virtual Plants 327

(a)

(b) (c)

Figure 10.19. Simulation of spruce-beech model with direct sunlight coming from
the left and diffuse light from the sky: (a) view on stand with pavilion after 11
years; (b) orthographic view from above; (c) exploded view, the shading effect of
the pavilion and neighbouring trees can easily be seen

328 10 Applications within GroIMP

Figure 10.20. About 700 trees grown for 11 years. The final scene contained more
than 11 million visible objects. It was computed on a 64-bit machine with 32GiB
RAM, an account for which was kindly provided by Andreas Hotho and Jörn Dreyer
from the Knowledge and Data Engineering Group of the University of Kassel

10.5 Virtual Plants 329

10.5.7 Canola Model for Yield Optimization

This model is the result of a Diploma thesis [73]. The task was to implement
a functional-structural model of canola (Brassica napus L.), including mor-
phogenesis, nitrogen budget and carbon budget. The main purpose was to use
this model to carry out virtual experiments for the optimization of yield with
respect to the amount and time of nitrogen fertilization. The practical use of
such an optimization is the reduction of nitrogen gift in order to both increase
the efficiency of crop growing and decrease the environmental damage.

The developed model contains detailed submodels for physiological pro-
cesses like senescence, respiration, remobilization and photosynthesis. Envi-
ronmental parameters like temperature, humidity, day length, cloudiness and,
most important for this study, nitrogen gift during the growth period are
taken into account. Two optimization algorithms (hill climbing and threshold
accepting) are used to find optimal fertilization strategies for a given mor-
phology, or, with fixed fertilization strategy, to find an optimal morphology
(which in practice would have to be achieved by breeding).

Figure 10.21. Visualization of the canola model after 70 and 80 days, respectively
(from [73])

330 10 Applications within GroIMP

The results obtained with the model were consistent with empirical data
and, concerning the computed optimal fertilization strategy, with agronomic
recommendations. Thus, the model could be used as a good starting point for
a refined version with increased prediction capabilities, but this was beyond
the scope of the Diploma thesis. Figure 10.21 on the previous page shows the
outcome of the model.

10.5.8 GroIMP as HTTP Server in an E-Learning Project

This example presents a system which was developed as part of a project
within the “eLearning Academic Network Niedersachsen” [113]. The system
allows students to explore virtual forest stands, make decisions on the fate
of individual trees, and see a prognosis according to a growth model on the
basis of their decisions. Thus, the aim is to have an interactive, collaborative
e-learning system to teach models of forest growth.

The structure of the system is shown in Fig. 10.22 on the facing page.
Several Virtual Forester clients connect to a central Elan Sim server which
provides the clients with a scene description encoded in the VRML language
[82]. Each client has a graphical 3D user interface in which the scene can be
explored interactively. One may mark or fell trees, which is communicated to
the server and from this to all other clients by events. When the exploration
and manipulation of the current forest stand is complete, the Elan Sim server
sends this current stand, again encoded as a VRML scene, to a growth engine
via the POST method of the Hypertext Transfer Protocol (HTTP, [57]). The
task of the growth engine is to compute a prognosis of the forest stand in a
given number of years based on a growth model and the current stand. After
completion of the computation, the Elan Sim server fetches the prognosis as
a new VRML scene from the growth engine via the GET method of HTTP.
The clients then may opt to switch to the prognosis in order to investigate
the effects of the previously made decisions.

The interface between the Elan Sim server and the growth engine allows a
wide variety of growth engines. The main requirement is that the growth en-
gine can be addressed as an HTTP server by the HTTP protocol. For GroIMP
to be used as a growth engine for the Elan Sim server, we implemented a sim-
ple HTTP server component which parses HTTP requests and passes them
to GroIMP projects which are addressed by the URL part of the request.

Such a project was developed for conifer stands as part of a doctoral thesis
[113]. At first, it scans the incoming VRML scene and extracts the necessary
data. Each tree is represented by its position, height, diameter at breast height,
crown height and diameter, age, biomass and species. The trees are used as
input to the growth model of [148]. It incorporates photosynthesis based on a
simplified crown representation, respiration and allocation, and it computes a
prognosis which is put to a VRML file. This may be accessed by later HTTP
GET requests of the Elan Sim server.

10.5 Virtual Plants 331

Virtual Forester clients

(a)
OO

VRML

OO

events

��

(d)
OO

VRML

Elan Sim server

(b)

growth model//

��

VRML via POST

(c)

VRML via GET

OO

GroIMP HTTP server

Figure 10.22. Usage of GroIMP as growth generator for the Elan Sim server: The
Elan Sim server sends a VRML scene description to all connected Virtual Forester
clients (a). Interactions made within the clients like marking or felling of trees are
communicated by events through the Elan Sim server. After a complete thinning, the
VRML scene description is sent to the GroIMP HTTP server by the POST method
of HTTP (b). This starts a growth generator, implemented by a relational growth
grammar, and its result (c) is obtained as a new VRML scene by the Elan Sim
server via the GET method of HTTP. It may be passed on to the Virtual Forester
clients (d). Screenshots taken from [113]

332 10 Applications within GroIMP

10.5.9 Reproducing an Alder Tree of the Branitzer Park

This model is the result of a bachelor thesis [165]. The task was issued in the
framework of a larger project “Virtueller Branitzer Park” where a 3D model
of the famous Branitzer Park in Cottbus, consisting of several buildings and
about 8000 trees, is developed for display in VRML browsers. Within the
thesis, several techniques were studied to create 3D models of trees, among
them the rule-based technique on the basis of the XL programming language
and GroIMP. It was possible to roughly reconstruct the shape of a specific
given alder tree (Alnus glutinosa), see Fig. 10.23(a) and (b) on the next page.

The result of such a detailed rule-based model is a very complex geometry.
For an interactive visualization of the whole park of 8000 trees, the geometry
has to be simplified substantially. For trees very distant from the viewer, a
common technique is to use a simple billboard, i. e., a single rectangle with a
rendered view of the tree as texture and which is rotated such that it faces
the viewer. However, when the viewer comes close to such a billboard, the
simplification becomes noticeable. Dynamic billboards solve this problem by
using several views from different perspectives. Usually, n lateral views are
rendered by rotating the camera around the object and dividing the circle
into n equal sectors. On display, we choose the view for the sector in which
the viewer is located.

Figure 10.23(c) on the facing page shows such a dynamic billboard for the
alder tree. The 72 lateral view were computed by the integrated raytracer Twi-
light of GroIMP (Sect. A.7.1 on page 392). The camera placement was done
automatically by an algorithm implemented as part of the bachelor thesis.
This also supports some further billboard techniques.

10.5.10 Ivy Model

The ivy model uses a mechanism provided by the class AvoidIntersection
which allows to (approximately) move at a given distance along the surface
of an object, thus simulating the behaviour of a climbing plant [179]. The
mechanism shoots a number of test rays in order to scan the neighbourhood
for obstacles or for the surface to follow, and computes a rotation so that the
movement direction is adjusted accordingly. The result is shown in Fig. 10.24
on page 334 with a wall and an invisible sphere as surfaces to follow. Models
for climbing plants were also implemented with open L-systems [129].

Figure 10.25 on page 335 shows a nice picture where the ivy model was
combined with the spruce and alder models from above and models for grass,
daisy and fern.

10.5 Virtual Plants 333

(a) (b)

(c)

Figure 10.23. Alder tree (from [165]): (a) rendered view of tree; (b) photograph
of original tree in Branitzer Park; (c) dynamic billboard with 72 sectors, displayed
in a VRML browser

334 10 Applications within GroIMP

(a)

(b)

Figure 10.24. Ivy model (from [179]): (a) growing on a wall; (b) growing on an
(invisible) sphere

10.6 Graph Rotation Systems and the Vertex-Vertex Algebra 335

Figure 10.25. Combination of ivy model with alder and spruce models from above
and further models for fern, daisy and grass (from [179])

10.6 Graph Rotation Systems
and the Vertex-Vertex Algebra

A very interesting usage of the XL programming language is the specification
of a parallel variant of the vertex-vertex algebra. This algebra is the underlying
formalism of the vv system (see Sect. 4.8.4 on page 85 and [178, 177]) which
allows the programmed manipulation of graph rotation systems, a special
representation of polygon meshes where each vertex stores a circular list of
its neighbours. Table 10.1 shows the editing operations of the vertex-vertex
algebra and their syntax in the vv system. Some of the operations were already
presented in Sect. 4.8.4.

In the original approach, the editing operations of the algebra were applied
immediately to the mesh. Due to the sequential mode of execution, this leads
to several problems concerning the order of the individual operations as differ-
ent orders may lead to different results. As a solution, the vv system provides
the synchronize statement (page 87) which makes a copy of the current state
and allows subsequent operations to refer to this static copy while modifying
the mesh.

From the implementation of parallel derivations with the help of modifica-
tions queues (Sect. 9.1.2 on page 237) we know another mechanism to elimi-

336 10 Applications within GroIMP

Description vv statement XL statement

set neighbourhood of v to
circular list (a, b, c)

make {a, b, c} nb of v v [a b c]

erase x from
neighbourhood of v

erase x from v ~x in v

substitute x for a
in neighbourhood of v

replace a with x in v a >> x in v

insert x after a
in neighbourhood of v

splice x after a in v a x in v

insert x before a
in neighbourhood of v

splice x before a in v x a in v

split edge from a to b
by insertion of x

- a <+ x +> b

Table 10.1. Editing operations of the vertex-vertex algebra and their notation in
the vv system and the XL programming language when VVProducer is used

nate the dependence on execution order. This mechanism can easily be utilized
for the implementation of a true parallel version of the vertex-vertex algebra
by defining an own modification queue for the operations of Table 10.1. Fur-
thermore, the syntax of production statements (Sect. 6.7 on page 162) allows
a convenient syntax for these operations if we provide a suitable specialized
producer. The producer de.grogra.rgg.model.VVProducer was designed for
this purpose and provides all operations as shown in Table 10.1. Each such
statement leads to a corresponding entry in the vertex-vertex modification
queue which is executed on invocation of the method derive together with
all other entries of this and the other modification queues.

The chosen mapping to XL statements raises the interesting question how
to prevent undefined operations already at compile-time. For example, the user
may write a x in v or ~x in v, but not ~a x in v or x in v. In Sect. 6.7.3
on page 167 we discussed how the mechanism of production statements, where
each statement returns the producer for the next statement, can be used to
specify a deterministic finite automaton where states correspond to producer
types and transitions to operator methods of the types. By doing its usual
job, the compiler checks if the input is accepted by the automaton. For the
syntax of Table 10.1, we have the automaton of Fig. 10.26 on the facing page.

As example for the translation of the automaton to producer types and
operator methods, consider the state V . The corresponding producer type is
the class InsertReplaceSplitSet nested in VVProducer with the methods
shown in the following class diagram:

10.6 Graph Rotation Systems and the Vertex-Vertex Algebra 337

start

��?>=<89:;B

node

��
~node

%%LLLLLLLLLLLLLLLLLLLLLLLLLLLLL

?>=<89:;V

[

ttiiiiiiiiiiiiiiiiiiiiiiiiii

>> node

yyrrrrrrrrrrrrr

node

��

<+ node

%%LLLLLLLLLLLLL

?>=<89:;A

]

**UUUUUUUUUUUUUUUUUUUUUUUUUU

node

�� ?>=<89:;R

in node

%%LLLLLLLLLLLLL ?>=<89:;I

in node

��

?>=<89:;S
+> node

yyrrrrrrrrrrrrr
?>=<89:;D

in node

ttiiiiiiiiiiiiiiiiiiiiiiiiii

?>=<89:;76540123E

Figure 10.26. Deterministic finite automaton for the syntax of the XL statements
of Table 10.1. node stands for an arbitrary vertex-valued node expression

InsertReplaceSplitSet

+ operator$space(v: GRSVertex): InsertReplaceDelete
+ operator$shr(v: GRSVertex): InsertReplaceDelete
+ operator$plusLeftArrow(v: GRSVertex): Split
+ producer$push(): AddNeighbor
+ producer$pop(p: AddNeighbor): End

The producer class InsertReplaceDelete is used for the states I,R,D where
a final innode is expected. Split corresponds to S, AddNeighbor to A and
End to E.

The mechanism of VVProducer operates on the implementation of graph
rotation systems as provided by GroIMP. There, a MeshNode has to be con-
figured with a GRSMesh and has to bear all vertices of class GRSVertex as
direct children (i. e., for each vertex there is an edge from the mesh node to
the vertex). A GRSVertex has the list of neighbouring vertices as attribute.
This list is the target of operations of the VVProducer. The class GRSVertex
defines several useful operations on the list of neighbours which correspond
to selection operations of the vv system:

GRSVertex

+ getNeighbors(): ObjectList〈GRSVertex〉
+ nextTo(v: GRSVertex): GRSVertex
+ prevTo(v: GRSVertex): GRSVertex
+ next(v: GRSVertex): GRSVertex
+ prev(v: GRSVertex): GRSVertex
+ first(): GRSVertex

. . .

338 10 Applications within GroIMP

The methods nextTo and prevTo return the vertex which follows or precedes,
respectively, the vertex v in the list of neighbours of the current vertex. next
and prev return the vertex which follows or precedes, respectively, the cur-
rent vertex in the list of neighbours of v (i. e., a.nextTo(b) is equivalent to
b.next(a)).

With the presented implementation of a parallel vertex-vertex algebra, the
Loop subdivision scheme for triangular polygon meshes can be specified in a
very similar way as for the original vv system. The original code is shown in
Sect. 4.8.4 on page 86, its translation to the XL programming language looks
as follows:

1 p:GRSVertex ::> {

2 int n = p.valence();

3 double w = 0.625 - (0.375 + 0.25 * cos(PI*2/n))**2;

4 Vector3d x = p[position] * (1-w);

5 for ((* p -neighbors-> q:. *)) {

6 x += (w / n) * q[position];

7 i f (p < q) {

8 Vector3d t = 0.375 * p[position];

9 t += 0.375 * q[position];

10 t += 0.125 * (p.nextTo(q))[position];

11 t += 0.125 * (p.prevTo(q))[position];

12 ==> vv p <+ GRSVertex(t) +> q;

13 }

14 }

15 p[position] := x;

16 }

17

18 {derive();}

19

20 x:newGRSVertices -first-> p:GRSVertex -next(x)-> q:GRSVertex

21 ==>> vv x [x.next(q) q x.prev(q) x.next(p) p x.prev(p)];

The first rule splits each edge, i. e., each unordered pair (p, q) of neighbouring
vertices by the insertion of a new vertex. The splitting operation is specified
in line 12 where we make use of a stand-alone production statement (Sect. 6.9
on page 174). Its producer is implicitly given by the surrounding execution
rule, it is the normal RGGProducer of GroIMP (Sect. B.8 on page 401). By the
specification of vv, we switch to the VVProducer. Internally, this is achieved
by a simple trick: the class RGGProducer contains the definitions

public VVProducer vv() {

... // return corresponding VVProducer

}

public VVProducer operator$space(VVProducer prod) {

return prod;

}

10.6 Graph Rotation Systems and the Vertex-Vertex Algebra 339

I. e., vv returns the VVProducer associated with the RGGProducer, and, by the
second method, this may be used as a non-prefixed node expression in produc-
tion statements handled by the latter producer. However, such usage does not
lead to any modification or side effect; by the return value of operator$space
it simply switches to the VVProducer so that the following production state-
ment is handled by this producer. The same trick is also used in line 21
where the neighbourhood of all new vertices is completed. The used method
newGRSVertices in line 20 is defined in de.grogra.rgg.Library and yields
all new vertices which were added by the vertex-vertex modification queue on
derivation.

The main difference between our implementation and the original one lies
in the temporal coordination of the application of changes. The original imple-
mentation initially creates a copy of the mesh by the synchronize statement,
sequentially modifies the current mesh, and references the old state by the
backquote syntax of vv when necessary. For our implementation, there is no
need to copy the whole mesh: topological changes are deferred by means of
the vertex-vertex modification queue, changes to attribute values (here, the

(a) (b) (c)

(d) (e) (f)

Figure 10.27. Loop subdivision: (a) initial tetrahedron; (b) result of first step; (c)
result of second step; (d) interactive manipulation of vertex positions; (e) subdivision
of manipulated mesh; (f) after a further step the result is quite smooth

340 10 Applications within GroIMP

assignment of a new position by the operator := in line 15) are deferred by
means of the property modification queue. As a counterpart to synchronize,
we have to invoke derive in line 18 to mark the end of the current parallel
derivation, i. e., to apply all collected entries of the modification queues. From
a theoretical point of view, this true parallel mode is more elegant and fits
well to specifications of subdivision schemes which are typically meant to be
executed in parallel. From a practical point of view, it can easily be used on
true parallel processors. If the number of operations is small compared to the
size of the mesh, it is more memory-efficient to store the modification oper-
ations in a queue than to copy the whole mesh. Furthermore, our approach
introduces a declarative, rule-based way of the specification of algorithms for
polygon meshes. This can best be seen in purely topological rules like the
second one in lines 20, 21, while the rule-based character is obscured by the
amount of imperative code in rules like the first one which also compute and
modify attribute values.

Figure 10.27 shows the application of the Loop subdivision algorithm to
an initial mesh (see also Fig. 4.7(a) on page 87). It also shows a modification
of vertex positions made interactively within GroIMP, the result of which is
smoothed by two additional subdivision steps. It was also possible to translate
the vv model of a growing apical meristem presented in [177] to XL. The
outcome of the original model is shown in Fig. 4.7(b) on page 87, the result
of the XL model can be seen in Fig. 10.28 on the facing page. This model
is a biological model, but it differs from all other presented examples for
virtual plants in that we have a detailed model of the growing surface of the
apical meristem, i. e., a locally two-dimensional structure. The other models
represent the plant as a locally one-dimensional structure, and its extension
to three dimensions is only a matter of geometric interpretation based on
attributes like length and radius.

The relative easiness of the implementation of a parallel vertex-vertex
algebra together with a convenient syntax is evidence of the versatility of the
XL programming language. This special application was not considered when
the XL programming language was designed, nevertheless the implementation
was straightforward. Contrary, the implementation of the original vv system
has several limitations due to parsing problems when translating from vv
source code to C++ source code [177]. The translation is done at a relatively
low syntactic level where situations like the mutual nesting of vv and C++

code cannot be handled correctly. This is a further justification of the effort of
defining and implementing the XL programming language as a true extension
of the Java programming language, including a complete compiler.

10.7 Architecture

The XL programming language, when operating on a scene graph like that
of GroIMP, can be utilized as a versatile tool to create geometry out of an

10.7 Architecture 341

(a)

(b)

(c) (d)

Figure 10.28. Growth of apical mersitem: (a) initial situation of apical meristem
without primordia; (b) first primordium appears, subdivision of its region; (c) pri-
mordium grows by further subdivision at its tip; (d) several primordia have been
created and have grown

algorithmic description. This can of course not only be used for virtual plants,
but for any kind of application whose objects are defined by geometry. A
prominent example is architecture, and the application of rule-based systems
for architecture dates back to 1971 where shape grammars were described
[181], originally for painting and sculpture. This was only three years after
the paper of Lindenmayer in the domain of biology. In this section, we show
some architectural and urban planning examples created with GroIMP. The
focus lies in the aesthetic design, so it is not the intent to specify or consider
the functional structure of buildings (e. g., which rooms should be connected).
This can of course also be described by graphs [190, 189, 75].

10.7.1 Results of Students of Architecture

In a seminar “Artificial Growth Processes” for students of architecture at
BTU Cottbus in the winter term 2006/2007, the potential of the XL program-
ming language and GroIMP to algorithmically design (proto-)architecture was
explored. The motivating idea was that the creativity of designers can be
enhanced by not designing buildings themselves, but designing algorithmic
processes that then create buildings. Two expectations are that the use of
algorithms in design can lead to designs that would not have been conceived

342 10 Applications within GroIMP

(a) (b)

(c) (d)

Figure 10.29. Algorithmic specification of staircases: (a) spiral staircase by Liang
Liang, postprocessed with 3D modeller; (b) staircase by Simon Winterhalder; (c)
staircase by Christopher Jarchow; (d) spiral staircase by Jennifer Koch

of without algorithms, especially in terms of the complexity and the combi-
nation of components, and that it is easier to adjust an algorithmic design to
the specifics of a given situation [6, 97].

The latter issue was addressed by the task to create an algorithmic de-
scription of a staircase. The dimensions of the staircase were easily modifi-
able parameters of the XL-coded specification. Some examples are shown in
Fig. 10.29.

10.7 Architecture 343

Figure 10.30. Algorithmic design study of high-rise building (by Christopher Jar-
chow, from [6])

The first expectation was confirmed by the observation that the develop-
ment of algorithmic designs by the students “oscillated between precise inten-
tionality and creative interpretation of unforeseen results” [6]. Figure 10.30
shows a study of an algorithmic design of a high-rise building, where a beam of
boxes and spheres in vertical direction was created with GroIMP and postpro-
cessed with another 3D modeller. Further examples can be seen in Fig. 10.31
on the following page. It has to be emphasized that for most of the students
this was their first experience of programming; nevertheless, interesting results
were obtained.

10.7.2 City Generator

The city generator was designed by the author as an example for the inclusion
of context. In this toy model of urban planning, an initial context is given by
existing buildings and trees. New buildings are placed on not yet occupied
locations, and their outline grows until it comes close to other buildings or
trees.

Context to be respected by the outline growth is represented by nodes of
type Obstacle.

module Obstacle(NURBSSurface owner, float dist) extends Vertex;

The attribute owner specifies the building if the obstacle belongs to a growing
building, otherwise it is null. The attribute dist defines the distance which has
to be respected by growing buildings. There are three subclasses of Obstacle:

344 10 Applications within GroIMP

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10.31. Some further results of the seminar “Artificial Growth Processes”:
(a, g) by Christopher Jarchow; (b, e) by Manuela Fritzsche; (c, d) by Liang Liang;
(f) by Jennifer Koch; (h) by Simon Winterhalder; (a, c, d, g) were postprocessed
with 3D modellers

10.7 Architecture 345

module ContextPoint(float height, super.dist)
extends Obstacle(null, dist);

module TreePoint extends Obstacle(null, 8)

==> Cylinder(7, 0.5).(setShader(EGA_6)) Sphere(3).(setShader(GREEN));

module OutlinePoint(super.owner, boolean done)

extends Obstacle(owner, 15) {

{setTransforming(false);}
}

ContextPoint nodes are placed on a regular grid at positions where the initial
context already contains buildings. Their attribute height specifies the height
of the tallest such building at the position (there may be overlapping initial
buildings). TreePoint nodes define the location of trees and are represented
by a simple cylindrical stem and a spherical crown. OutlinePoint nodes define
the outline of growing buildings, their flag done indicates if growth of the point
has terminated due to an obstacle in proximity. Initial context buildings have
a simple box-shaped geometry and are represented by nodes of Context:

module Context(super.length, super.width, super.height, float dist)

extends Box;

Now the initialization of the model creates trees along a fixed curve and places
Context buildings at random positions without testing for overlapping with
other buildings or trees. Then a regular grid is scanned for context buildings,
and ContextPoint nodes are placed on grid positions with buildings, their
height- and dist-attributes being given by the maximum of the correspond-
ing values of the found buildings:

Point3d point = new Point3d(0, 0, 0.0001);

for (point.x = -200; point.x <= 200; point.x += 4)

for (point.y = -200; point.y <= 200; point.y += 4) {

Context[] a = array((* c:Context, (point in volume(c)) *));

float h = max(a[:][length]);

i f (h > 0) [

==>> ^ ContextPoint(h, max(a[:][dist])).(setTransform(point));

]

}

This regular grid is a discretization of the actual geometry of context. Ideally,
GroIMP would provide algorithms to compute the (minimal) distance of a
point to an arbitrarily shaped geometry, but this is not yet the case. For this
reasons, we have to use such a discretization.

As a next step, the growing buildings are “sown”. Within a loop, we choose
a random point and test for obstacles. If the random point respects all dis-
tances to obstacles, this is the location of the next building to create, and we
compute its height h such that heights of neighbouring context buildings are
respected. Then a new NURBSSurface node is created to represent the new
building by a generalized cylinder, its profile being given by a sequence of
initially ten OutlinePoint nodes arranged on a circle.

346 10 Applications within GroIMP

point = new Point3d(random(-150, 150), random(-150, 150), 0.0001);

i f (empty((* o:Obstacle(, d), (point.distance(o) < d) *))) {

double h = lognormal(0.5, 0.1)

* Math.min(min(((* c:ContextPoint *),

c[height] * point.distance(c) / c[dist])),

100);

[

==>> ^ s:NURBSSurface(...)

[for (int i : 0 : 9) (

OutlinePoint(s, false)
.(setTransform(5 * Math.cos(i*Math.PI/5),

5 * Math.sin(i*Math.PI/5), 0))

)

];

]

}

A possible result after initialization is shown in Fig. 10.32.

Figure 10.32. City generator after initialization. Trees are shown as circles, context
buildings as grey boxes with context points at their floor. The new buildings (black
cylinders) are placed such that they respect distances to the complete context. Fur-
thermore note that they also respect the height of the initial context buildings: close
to these buildings, the height of the cylinders is small, while it increases towards
the back. During growth, the black points defining the outline of the (generalized)
cylinders will be moving away from the centre until they come into proximity of an
obstacle

10.8 AGTIVE ’07 Tool Contest 347

The growth of buildings is specified by two rules. The first one centrifu-
gally shifts outline points away from the centre as long as there is no close
obstacle and a maximum size of 20 has not yet been reached. If this termina-
tion condition is fulfilled, the flag done is set to prevent further handling of
the outline point.

v:OutlinePoint(owner, false) ::>

i f ((v[position].length() < 20)

&& empty((* o:Obstacle(oo, d),

((owner != oo) && (distance(v, o) < d)) *))) {

v[x] :*= 1.1;

v[y] :*= 1.1;

} else {

v[done] := true;
}

The second growth rule refines the list of outline points by the insertion of new
outline points where the distance of neighbouring outline points has exceeded
a threshold of 10.

v:OutlinePoint(owner, vdone) w:OutlinePoint(, wdone),

(!(vdone && wdone) && (distance(v, w) > 10)) ==>>

v

OutlinePoint(owner, false)
.(setTransform((v[position]+w[position])*0.51))

w;

Figure 10.33 on the following page shows a result of the model from different
perspectives and with different lighting.

10.8 AGTIVE ’07 Tool Contest

This section presents two applications which were developed for the tool con-
test of the AGTIVE ’07 conference [164], and it shows a benchmark of the
solutions of the third task of the contest, Sierpinski triangles, whose XL-
based implementations were already described in Sect. 9.2.1 on page 253 and
Sect. 10.1.2 on page 272. Although the domains of the two applications, game
specification and UML-related model transformation, are quite different from
the primary domain of plant model specification, the XL programming lan-
guage and GroIMP allowed to concisely solve the tasks of the contest. This is
further evidence that our system is useful for a quite general range of appli-
cations, given that we can take advantage of the graph structure and trans-
formation rules.

10.8.1 Ludo Game

The goal of this case study was to model the German variant “Mensch ärgere
dich nicht” of the Ludo game [163]. We do not give a description of the

348 10 Applications within GroIMP

Figure 10.33. Result of city generator. Note how buildings grew into gaps

10.8 AGTIVE ’07 Tool Contest 349

.

���������� ��Field

OO OO OO OO �� ��GoalField

OO �� ��Field

���������� ��HomeField

##FFFFFF
�� ��HomeField

{{xxxxxx

�� ��Pawn

next

��

�� ��Field
+oo

OO OO OO OO

�� ��GoalField

OO

�� ��Field

��������

© //© //© //©

���� ��HomeField

<<xxxxxx

+

��

�� ��HomeField

+

��

bbFFFFFF
© //

�� ��EntryField

OO OO OO OO

�� ��Field

OO

oooo
oo

+

��

�� ��Fieldoooo
oooo

+

���� ��Pawn
next //

�� ��Pawn
next //

�� ��Pawn

next

RR

�� ��Pawn

next ��������� ��Die
�� ��Player

>oo

next
��

tryNext

OO �� ��Player
next
oo

tryNext

55

.

next

OO

�� ��Player
next //

tryNext

��

�� ��Player

next

OO

tryNext

��
.

Figure 10.34. Part of graph of the Ludo game. Yellow shown as black

Figure 10.35. Rendered view of Ludo board

350 10 Applications within GroIMP

specification of the case study as it can be found in the cited literature, but
show the main rule of our implementation and explain which rules of the game
are expressed by this single rule.

But at first, let us consider the structure. Figure 10.34 on the previous page
shows a part of the structure, the meaning of the components is described in
the following. We represent the four players by nodes of class Player and
assign indices from 0 to 3 to them. Players are organized in a cyclic list via
edges of type next.

const int next = EDGE_4;

module Player(int index);

There is a single Die node with a linear congruential pseudorandom number
generator as specified by the case study. A die is also drawn in 3D, but we
omit the discussion of geometry-related aspects.

module Die extends Null {

int rand;

int score() {

return (rand >> 8) % 6 + 1;

}

void nextScore() {

do {

this[rand] = 1664525 * rand + 1013904223;

} while ((rand < 0) || ((rand >> 8) >= 0x7ffffe));

... // computation of rotation matrix

}

} ==> ... ; // representation by geometry

At every point in time, it is the turn of one player. This is indicated by a
successor edge from the player to the single die.

The board is represented by Field nodes. These are connected by edges
of the types redEdge, blueEdge, yellowEdge, greenEdge.

const int redEdge = EDGE_0;

const int blueEdge = EDGE_1;

const int yellowEdge = EDGE_2;

const int greenEdge = EDGE_3;

const int[] edges = {redEdge, blueEdge, yellowEdge, greenEdge};

module Field(super.shader)
extends Cylinder(0.001, 0.4).(setShader(shader)) {

{ ... } // initialize transformation properties

}

An edge for player p exists from field a to field b if and only if p may move
its own pawns from a to b. I. e., normally edges of all four types are present
between neighbouring fields, but the field immediately in front of the entry
field of a player acts as a junction where this player may only move pawns to

10.8 AGTIVE ’07 Tool Contest 351

the goal fields, whereas other players have to move pawns to the neighbouring
entry field. Also the home fields, where pawns are initially placed, are rep-
resented as nodes. From these there is a path of six edges to the entry field
(see Fig. 10.34 on page 349). Entry, goal and home fields are represented by
special classes:

abstract module PlayerField(Player player)

extends Field(colors[player.index]);

module EntryField(super.player) extends PlayerField;

module GoalField(super.player) extends PlayerField;

module HomeField(super.player) extends PlayerField;

Pawns are nodes of class Pawn. Each pawn is located at a single field, indicated
by a branch edge from the field to the pawn. Like players, the pawns of each
player are organized in a circular list of next edges. There is an edge of type
tryNext from each player to one of his pawns. This edge specifies the pawn
which the player should try to move at first when it is his turn. The case study
defines also variants of the game with more sophisticated strategies, but we
do not describe their implementation here. Nevertheless, they are part of the
Ludo game in the example gallery.

const int tryNext = EDGE_5;

module Pawn(Player player, HomeField home)

extends NURBSSurface(surface("Pawn"))

.(setShader(colors[player.index]));

The initialization of the model creates the complete board including pawns,
players and the die according to Fig. 10.34 on page 349. The main rule of the
game is responsible for the movement of a pawn and looks as follows:

(* d:Die < p:Player *) -tryNext-> (* t:Pawn *) (-next->){0,3} : (

(* f:Pawn [-next-> n:Pawn] *)

<+ (* a:Field *) (-edges[p.index]->){d.score()} b:Field

(? +> g:Pawn(gp,h)), ((g == null) || (gp != p))

), n|t

==>>

b [f], p -tryNext-> n, i f(g != null) (h [g]);

Its left-hand side is quite complex. In order to understand it, we can ignore
the starred parentheses (* *) for the moment as they only indicate which
part of the left-hand side shall be in the context, but have no influence on the
structure of the left-hand side (Sect. 6.5.8 on page 154). The pattern starts
with the die to which a successor edge shall point from a player. The matching
player p is thus the current player which has to move a figure. Via a tryNext
edge we find the pawn t which shall be tried at first for a legal move. However,
this pawn is not necessarily the one which is actually moved: for the latter we
may have to traverse up to three next edges in the circular list of pawns until
we find a pawn which can move legally. This search for a movable pawn is
implemented by (-next->){0,3} : (...) (see Sect. 6.5.6 on page 152): this
pattern traverses up to three next edges and stops when it finds a match for

352 10 Applications within GroIMP

the subpattern in parentheses, which specifies a legal move. For a legal move,
the pawn f to be moved has to have a next pawn n in the circular list, which is
always the case, and it has to be located on a field a from which we can reach
a field b by traversing exactly d.score() edges of the corresponding player
edge type. Then an optional (indicated by ?) pattern follows in parentheses:
there may be a pawn g on b. Finally, we have the condition that if such a pawn
g has been found, it must not belong to the same player (namely, because such
a pawn is kicked and returns to its home field, but a player cannot kick his
own pawns). We also have to specify the folding clause n|t (Sect. 6.5.9 on
page 155) because it may happen that the pawn n following the moved pawn
f coincides with the first tried pawn t, i. e., the match may be noninjective
with respect to n, t.

Now if there is a match, its non-context parts are replaced by the right-
hand side. b [f] creates a branch edge from field b to pawn f in order to
move the pawn. Then we establish a tryNext edge from player p to the pawn
n which follows f in the circular list, and finally we move g to its home field
h if a match for g was found. The commas separate parts of the right-hand
side so that no implicit successor edge is created between them. In total, the
single rule, together with the used graph structure, implements the following
rules of the Ludo game:

1. A player may move one of its pawns in the game (i. e., not on a home
field) forward by the exact score.

2. If the score is six, a player may move a pawn on a home field to the entry
field. This rule is implemented by the special path of six edges from home
fields to the entry field. Its intermediate nodes are not of class Field but
of class Node so that a forbidden stay of a pawn on such a node cannot
occur.

3. The target field of a move must not be occupied by a pawn of the moving
player. If it is occupied by a pawn of another player, this pawn is kicked
and returns to a home field of its player.

4. After a complete round, a pawn is not moved to the entry field, but enters
the goal fields. This is implemented by the player edges defining possible
moves for the individual players.

5. If a player can move legally, he must do so.

The movement rule is completed by a rule which moves the die to the next
player unless the score is six, and by a rule which throws the die:

d:Die < (* p:Player -next-> q:Player *), (d.score() != 6) ==>> q d;

d:Die ::> d.nextScore();

Rule application is controlled by control flow statements:

this[move]++;
[

... // rule for pawn movement

]

10.8 AGTIVE ’07 Tool Contest 353

derive();

i f(count((* Die < p:Player, GoalField(p) [Pawn] *)) == 4) {

println("Player " + p.index + " won after " + move + " moves.");

} else [

... // die rules

]

Figure 10.35 on page 349 shows a rendered view of the Ludo board after
several rounds.

Besides the described fully automatic game simulation, we also imple-
mented a human player. The code can be seen in the example gallery of
GroIMP. Here we only show a feature useful for games and other interactive
applications: methods can be annotated with @de.grogra.rgg.Accelerator
to associate a shortcut key to the invocation of the method as in

@Accelerator("F12")

public void run() {

...

}

I. e., the user can fully and quickly control an application within GroIMP by
pressing suitable keys.

10.8.2 Model Transformation from UML to CSP

This example implements a model transformation from UML activity dia-
grams [136] to communicating sequential processes (CSP) [79] as specified
in [193]. A UML activity diagram typically describes the low-level behaviour
of software components, for an example see Fig. 10.36(a) on the following
page. The verification of such behaviour is an important issue. Communicat-
ing sequential processes are useful for this purpose [193]: an activity diagram is
transformed into equivalent communicating sequential processes which can be
used for verification as there is a formal semantics for CSP. Processes are given
by equations, Fig. 10.36(b) shows the equivalent of the activity diagram. But
equations can of course be represented as trees, so the transformation from
activity diagrams to CSP can be implemented as a graph transformation.

The meta models for activity diagrams and CSP are shown in Fig. 10.37,
they are explained in more detail together with all required transformations
in [193]. The most important transformation is that UML activity edges like
the edge S1 from the initial node to the action named serverReceiveAlert are
represented by process identifiers in CSP. Each such identifier appears on
the left-hand side of a process equation. As more complex examples, con-
sider the transformation for actions in Fig. 10.38(a) and for decision nodes in
Fig. 10.38(b).

The starting point for the implementation of the transformation using the
XL programming language is the definition of the meta models. As neither
the XL programming language nor GroIMP currently allow to specify type

354 10 Applications within GroIMP

(a)

⇔

S1 = serverReceiveAlert → S2

S2 = getDriverPhoneData → S3

S3 = callDriver → S4

S4 = M1 6< nohelp 6> (D2 6< askhelp 6> D1a)

M1 = C1

D2 = DM

D1a = assessDescription → D1b

D1b = DM

DM = D3 6< real 6> M2

M2 = C1

C1 = cancelAlert → C2

C2 = SKIP

D3 = F1 ‖ F2 ‖ F3

F1 = getMapLocation → J1

F2 = processAlert → J2

F3 = getServiceFormat → J3

J1 = processJoin → E1

J2 = processJoin → SKIP

J3 = processJoin → SKIP

E1 = createServiceDescription → E2

E2 = SKIP

(b)

Figure 10.36. Model transformation (from [193]): (a) UML activity diagram; (b)
equivalent list of communicating sequential processes

(a) (b)

Figure 10.37. Meta models (from [193]): (a) (subset of) UML activity diagram
meta model; (b) (subset of) CSP meta model

graphs, i. e., to define restrictions on the allowed source and target types as
well as multiplicities of edge types, the definition of a meta model amounts
to the definition of suitable types for nodes and edges. By using module dec-
larations for node types and definitions of int-constants for edge types, the
translation to XL code is straightforward. One exception is that we represent
activity edges of UML activity diagrams as nodes within the graph of GroIMP,
although they stand for edges in the diagram:

10.8 AGTIVE ’07 Tool Contest 355

(a) (b)

A
�� ��Process�� ��ProcessAssignment

identifier

OO

process
���� ��Prefix

event //

targetProcess
��

action
�� ��Event

B
�� ��Process

A
�� ��Process�� ��ProcessAssignment

identifier

OO

process
��

x
�� ��Condition

lhs

wwooooooo rhs

''PPPPPPPP

B
�� ��Process y

�� ��Condition
lhs

wwnnnnnnnn rhs

$$IIIIII

C
�� ��Process D

�� ��Process

(c) (d)

Figure 10.38. Rules for model transformation [193]: (a) UML actions are trans-
formed to CSP events; (b) UML decision nodes are transformed to (possibly nested)
CSP conditions; (c) tree of CSP expression of (a); (d) tree of CSP expression of (b)

module ActivityEdge(String n return getName(), String guard)

extends Node.(setName(n)) {

ActivityEdge(String name) {

this(name, null);
}

}

But this implementation detail is hidden by the syntax. Already for the ant
simulation (Sect. 10.3.2 on page 288) we used nodes as if they were edges.
In Sect. B.7 on page 401 it is discussed that such an auxiliary node together
with an incoming edge of the special type EDGENODE IN EDGE and an outgoing
edge of the special type EDGENODE OUT EDGE can be addressed by the syntax
for edges. Here we define shortcuts for these edge types as we will frequently
need them:

const int o = Graph.EDGENODE_OUT_EDGE;

const int i = Graph.EDGENODE_IN_EDGE;

Another difference to the original meta model is that we introduce an abstract
node class BranchNode as a superclass of ForkNode and DecisionNode.

The transformation for actions (Fig. 10.38(a)) is specified by the following
rule:

356 10 Applications within GroIMP

a:ActivityEdge -o-> x:Action -i-> b:ActivityEdge ==>>

^ -processAssignments-> ProcessAssignment [-identifier-> a]

-process-> Prefix [-event-> Event(x.getName())] -targetProcess-> b;

Its right-hand side already has the complete structure of the corresponding
CSP expression (see Fig. 10.38(c) on the preceding page). However, instead of
CSP process identifier nodes there are still UML activity edges a, b. As these
are in a one-to-one correspondence, we may keep activity edges in the graph
and replace them only at the end by process identifier nodes.

The rule for branch nodes (i. e., fork and decision nodes) only creates an
interim structure with the branch node at the location where an expression
tree should be at the end (see Fig. 10.38(d) and Fig. 10.38(b)):

a:ActivityEdge -o-> b:BranchNode ==>>

^ -processAssignments-> ProcessAssignment [-identifier-> a]

-process-> b;

In order to construct a correctly nested binary tree for the (arbitrary) number
of children of branch nodes, we have to sequentially apply the two rules

b:DecisionNode -i-> a:ActivityEdge, (!"else".equals(a.guard)) ==>>

c:Condition(a.guard) [-lhs-> a] -rhs-> b

moveIncoming(b, c, -1);

b:ForkNode (* [-i-> ActivityEdge] *) -i-> a:ActivityEdge ==>>

c:Concurrency [-lhs-> a] -rhs-> b

moveIncoming(b, c, -1);

Both rules pick an arbitrary child a of the branch node b with the condi-
tion that this must not be the else-branch in case of a decision node or that
there must be another child (placed in context parentheses) in case of a fork
node. Note that although there is a non-determinism regarding the order of
picked children, all possible CSP expressions are semantically equivalent as
guard conditions of decision nodes shall be disjoint [193]. Then a condition or
concurrency node, respectively, is created with the chosen a as left-hand side
and the still intermediate b as right-hand side, and it replaces b by invoking
moveIncoming, i. e., by moving all incoming edges from b to c on derivation
(see also the explanation on page 314). This sequential replacement is done as
long as possible, i. e., until all branch nodes have only one child. Then branch
nodes can be removed:

BranchNode -i-> a:ActivityEdge ==> a;

The procedure is illustrated in Fig. 10.39 on the next page. In Fig. 10.39(f) we
also see the final step where activity edges are replaced by process identifiers:

a:ActivityEdge ==> Process(a.getName());

The whole transformation is specified as a sequence of blocks of the pre-
viously described rules. Each block leads to parallel or sequential production,
depending on the derivation mode (see Sect. 9.1.5 on page 245).

10.8 AGTIVE ’07 Tool Contest 357

A
�� ��ActivityEdge

o ���� ��DecisionNode

i ��
i
uukkkk i

))SSSS
B
�� ��ActivityEdge C

�� ��ActivityEdge D
�� ��ActivityEdge

A
�� ��ActivityEdge�� ��ProcessAssignment

identifier
OO

process ���� ��DecisionNode

i ��
i
uujjjj i

))TTTT
B
�� ��ActivityEdge C

�� ��ActivityEdge D
�� ��ActivityEdge

(a) (b)

A
�� ��ActivityEdge�� ��ProcessAssignment

identifier
OO

process ���� ��Condition
lhs
uullll rhs

((RRRR
B
�� ��ActivityEdge

�� ��DecisionNode
i
''PPPPi

vvmmmm
C
�� ��ActivityEdge D

�� ��ActivityEdge

A
�� ��ActivityEdge�� ��ProcessAssignment

identifier
OO

process ���� ��Condition
lhs
uullll rhs

''PPPP
B
�� ��ActivityEdge

�� ��Condition
lhs
wwoooo rhs

&&NNNN
C
�� ��ActivityEdge

�� ��DecisionNode

i ��
D
�� ��ActivityEdge

(c) (d)

A
�� ��ActivityEdge�� ��ProcessAssignment

identifier
OO

process ���� ��Condition
lhs
uullll rhs

''PPPP
B
�� ��ActivityEdge

�� ��Condition
lhs
wwoooo rhs

&&NNN
C
�� ��ActivityEdge D

�� ��ActivityEdge

A
�� ��Process�� ��ProcessAssignment

identifier
OO

process ���� ��Condition
lhs
vvmmmm rhs

((PPPP
B
�� ��Process

�� ��Condition
lhs
vvnnnn rhs

%%KKK
C
�� ��Process D

�� ��Process

(e) (f)

Figure 10.39. Transformation from UML decision node to CSP expression: (a)
initial UML structure; (b) first rule created process assignment with decision node
as interim child; (c), (d) sequential creation of binary tree; (e) deletion of decision
node; (f) final replacement of activity edges by process identifiers

setDerivationMode(PARALLEL_MODE);

[

... // main transformation rules

]

derive();

setDerivationMode(SEQUENTIAL_MODE);

for (applyUntilFinished()) [

... // sequential creation of binary tree for decision/fork nodes

]

derive();

setDerivationMode(PARALLEL_MODE);

[BranchNode -i-> a:ActivityEdge ==> a;]

derive();

[a:ActivityEdge ==> Process(a.getName());]

derive();

358 10 Applications within GroIMP

For a concrete model transformation, we need an activity diagram as input.
This can be either specified as fixed part of the source code, which is not very
useful but simple and concise due to the convenient syntax. For the example
of Fig. 10.36(a) on page 354, we initialize the graph with

Axiom ==>>

^ InitialNode

-ActivityEdge("S1")-> Action("serverReceiveAlert")

-ActivityEdge("S2")-> Action("getDriverPhoneData")

... ;

Alternatively and more useful from a practical point of view is the input of the
activity diagram by a file in a common data format for graphs. The GraphML-
import of GroIMP (Sect. A.6.1 on page 388) can be used for this purpose. For
the example diagram, we specify the graph like

<graphml xmlns=”http://graphml.graphdrawing.org/xmlns”>
<key id=”ntype” attr.name=”type” for=”node”/>
<key id=”nval” attr.name=”value” for=”node”/>
<key id=”etype” attr.name=”type” for=”edge”/>
<key id=”eval” attr.name=”value” for=”edge”/>
<node id=”i”>
<data key=”ntype”>UMLToCSP$InitialNode</data>

</node>
<edge source=”i” target=”sra”>
<data key=”etype”>UMLToCSP$ActivityEdge</data>
<data key=”eval”>name=”S1”</data>

</edge>
<node id=”sra”>
<data key=”ntype”>UMLToCSP$Action</data>
<data key=”nval”>name=”serverReceiveAlert”</data>

</node>
<edge source=”sra” target=”gdpd”>
<data key=”etype”>UMLToCSP$ActivityEdge</data>
<data key=”eval”>name=”S2”</data>

</edge>
<node id=”gdpd”>
<data key=”ntype”>UMLToCSP$Action</data>
<data key=”nval”>name=”getDriverPhoneData”</data>

</node>
...

</graphml>

To obtain a textual output of all CSP process equations, we equip CSP classes
with expr methods that return a String representation of the expression. As
an example, a BinaryOperator searches for its two children and combines
their textual representation with the operator symbol:

abstract module BinaryOperator extends ProcessExpression {

abstract String op();

10.8 AGTIVE ’07 Tool Contest 359

String expr() {

for((* this [-lhs-> l:ProcessExpression]

-rhs-> r:ProcessExpression *))

{

return ’(’ + l.expr() + op() + r.expr() + ’)’;

}

return toString(); // lhs, rhs not found (incomplete structure)

}

}

This example for a model transformation differs from all other presented ex-
amples. We do not model the growth of a structure out of a seed or the dy-
namics of a structure, we rather take a given graph as input and translate this
input into another graph as output. Thus, this example is not related to the
principal application domain of the XL programming language. Nevertheless,
it is easily possible to implement the transformation.

10.8.3 Sierpinski Triangles Benchmark

We already presented two implementations of the relational growth grammar
of Ex. 5.23 on page 113: the implementation in Sect. 9.2.1 on page 253 on the
basis of a lightweight custom graph and the implementation in Sect. 10.1.2
on page 272 on the basis of the graph of GroIMP. Both were developed for
the Sierpinski triangle case study of the AGTIVE ’07 tool contest. The aim of
this case study was to provide a simple benchmark for graph transformation
tools with respect to both space and time efficiency [191].

The benchmark allows us to compare both the different XL-based solu-
tions, but also the XL-based solutions with other graph transformation tools.
To perform the required measurements, we extended the examples by auto-
matic invocations of the method System.nanoTime() which returns the value
of the system timer in nanoseconds, and added textual output of the elapsed
time per step. Furthermore, we prepended a warm-up round of ten steps so
that the JIT compiler of the Java virtual machine is triggered for the most
frequently used methods. For the GroIMP-based solution, we used the pure
topological variant without 3D geometry as the latter introduces both a space
and time overhead. Furthermore, we created a variant where the change log of
GroIMP, which is normally active and supports graph change listeners and an
undo function, is deactivated in order to reduce the space and time overhead.

Each benchmark variant was executed ten times on a 3 GHz Intel Xeon
5160 with 16 GiB RAM, JRE 1.6.0 06, SUSE Linux 10.0 and GroIMP 0.9.8.1
by the command line java -server -Xms2048m -Xmx2048m -jar core.jar.
Note that although the computer has 16 GiB RAM installed, the 32-bit Java
virtual machine can only use about 2.6 GiB RAM, and we set the maximum
size of the heap to 2 GiB by the shown command line options. The average of
the measured running times per step is shown in Table 10.2 and Fig. 10.40.

360 10 Applications within GroIMP

Table 10.2. Running times per step in milliseconds (average of ten runs). Missing
data indicates an OutOfMemoryError

step GroIMP graph GroIMP graph without log custom graph int graph

1 0.49 0.39 0.17 1.23
2 0.43 0.34 0.30 0.15
3 0.55 0.41 0.33 0.19
4 0.92 0.64 0.50 0.37
5 2.05 1.26 0.96 1.04
6 5.55 3.21 2.54 2.69
7 15.93 9.01 8.12 9.96
8 45.30 26.25 22.80 24.70
9 141.46 76.99 56.41 51.53

10 561.13 255.31 91.77 95.39
11 1,471.80 830.22 284.33 286.01
12 5,151.97 2,770.05 879.73 851.56
13 16,491.18 8,697.52 2,711.16 2,583.74
14 29,184.79 8,761.59 7,412.75
15 26,271.45 22,208.07
16 66,328.92
17 199,097.41

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16 18

R
un

ni
ng

 ti
m

e
(m

s)

Step

GroIMP graph
GroIMP graph without log

custom graph
int array

Figure 10.40. Plot of Table 10.2 with logarithmic y-axis. Dashed line depicts an
exact exponential law with base 3

The number of executed steps is limited by the available memory, i. e., the
next step would result in an OutOfMemoryError. Note that the plot uses a
logarithmic y-axis, which results in a roughly linear graph. This is as expected
as the number of nodes after n steps is 3

2 (3n + 1) and the number of edges
3n+1, i. e., we have an exponential growth. Furthermore, the comparison with

10.8 AGTIVE ’07 Tool Contest 361

the straight dashed line shows that the factor for the increase of running times
is roughly 3, which is also as expected.

For all variants, the limiting factor in the end is the available memory.
Therefore, an even more lightweight representation of the graph than that
of the example of Sect. 9.2.1 is desirable. On a 32-bit Java virtual machine,
an instance of its class Vertex requires 12 bytes for the three pointers, 4
bytes for the index-variable of the superclass Node and 8 bytes for internal
information of the Java virtual machine, i. e., 24 bytes in total. A closer look at
the grammar shows that each vertex has at most two outgoing edges, so that
two pointers suffice given that we know the type of their edge. In languages
like C++ we could store the type information in unused bits of the pointers,
and we could also get rid of the 8 bytes for internal information if we used
a final class. The Java programming language does not allow such low-level
tricks, but we can simulate a low-level access to memory by storing the graph
in a large int-array where two consecutive values represent the two pointers of
a vertex, together with their type information. A vertex is then addressed by
its index into this array. In our implementation of this trick, we use the two
least significant bits of an int-value to encode the type of the edge (none, e0,
e120, e240), while the remaining 30 bits encode the index of the target vertex.
This allows up to 230 vertices or 18 steps, and each vertex consumes 8 bytes
on a 32-bit machine.

The remaining problem is how to implement the XL interfaces for such
a graph representation. This can be done in a relatively straightforward way
by using the simple implementation again and proxy objects for vertices. I. e.,
whenever there is need to pass a vertex to the XL run-time system, the original
representation as an int-valued index into the large array is wrapped into
a Node object whose methods operate on the array. But then the problem
is that due to the parallel derivation mode all modifications of the current
step are collected in queues using these proxy objects, and that the number
of modifications is of the same magnitude as the size of the graph. Thus,
the modification queues and proxy objects occupy more memory than the
graph itself. This problem would not occur if we had a sequential derivation
mode, and in fact for this specific grammar we obtain the same result if we
immediately apply changes for each match of the original graph. Our solution
is a mixture: it collects changes of a relatively small number of 1,000 matches
and applies them to the graph in one go by invoking the derive method
within the execution of a right-hand side. The result of this variant is also
shown in the table and figure. We can achieve two further steps within 2 GiB
RAM due to the compact graph representation and the negligible size of the
queue collection. For the reached 17 steps, the required size of the int-array
on a 32-bit machine is 8 · 3

2

(
317 + 1

)
bytes ≈ 1.44 GiB.

More interesting than the comparison of different XL-based implemen-
tations is the comparison of these implementations with solutions based on
other graph transformation tools. Figure 10.41 on the following page shows
the result of the case study [191], where we have replaced our own measure-

362 10 Applications within GroIMP

ments by the newer and faster ones of Table 10.2. The LIMIT solution is a
hand-coded implementation in the C programming language and uses a graph
representation similar to our int-array. This solution can be regarded to be
(nearly) the fastest possible. Like the second fastest solution, the Fujaba im-
plementation, matches are not found automatically, but have to be provided
by the developer. The third fastest solutions in the figure are our custom
graph and int-array solutions, which find their matches automatically. The
same holds for the following group of GrGen.NET, Two Tapes and the two
GroIMP-based solutions of comparable running times. Note that an objec-
tive comparison is not possible as the measurements shown in the figure were
carried out on different machines. It might even be the case that if the Gr-
Gen.NET or Two Tapes solutions would be executed on the same machine as
our fastest solutions, we would obtain comparable running times. Although
this seems to be unlikely given the factor of about 6, we cannot conclude that
our implementations are the fastest ones except Fujaba and LIMIT, but we
can conclude that they belong to the group of fastest ones with automatic
pattern matching. This group is several orders of magnitude faster than the
least efficient solutions, whose time complexity is not even of the form O(3n).

0.1

1

10

100

1000

10000

100000

1000000

 0 2 4 6 8 10 12 14 16 18

R
un

ni
ng

 ti
m

e
(m

s)

Step

MOMENT 2-GT
Tiger EMF (Bisztray)

AGG
GReAT
VMTS

Tiger EMF (Biermann)
Viatra

Groove
GP

Two Tapes
GrGen.NET

GroIMP graph
GroIMP, no log

custom graph
int array
Fujaba
LIMIT

Figure 10.41. Running times of solutions of the Sierpinski case study (carried out
on different machines). Data from Table 10.2 and [191]

11

Discussion

In this chapter, we give some concluding remarks on the present work, and
indicate possible future extensions at the end. This discussion shall clarify
the achievement of this work: how it builds on the well-established parts L-
systems, graph grammars and the Java programming language to define a
variant of graph grammars and a new programming language, and why this
is a suitable basis for current and future functional-structure plant modelling.

11.1 Relational Growth Grammars

The main result of the first part of this work, relational growth grammars, can
be seen as a combination of L-systems and graph grammars. More precisely,
we integrated the operator approach to parallel graph grammars within the
mechanism of parallel single-pushout derivations, and showed which special
connection transformations are required for an embedding of L-systems which
is equivalent to the original L-system formalism. As a consequence, relational
growth grammars inherit the proved strength of L-systems for plant modelling.
But being based on graphs and graph grammars, they are able to represent
even more structures and their dynamics in a natural, convenient way as it
was shown by the diverse collection of examples.

The theory behind relational growth grammars is not new. The single-
pushout approach is known since more than a decade, the operator approach
even longer. The motivation for the development of the single-pushout ap-
proach was its dispensation with implicit gluing conditions, this yields (from
a practical point of view) a very convenient and efficient, but nevertheless
clean and well-founded algebraic derivation mechanism. The development of
the parallel variant of the operator approach was in the wake of the enthu-
siasm for L-systems, but has not been used afterwards for the modelling of
biological systems. In this work we revitalized the operator approach by show-
ing how it can be used as an add-on to parallel single-pushout derivations.
The precise definition uses two-level derivations, which were first studied in

364 11 Discussion

the context of amalgamation, but turn out to be also very suitable for the
inclusion of the operator approach.

Relational growth grammars introduce dynamic right-hand sides, i. e., an
instantiation of actual rules on the basis of given matches. This is exclusively
motivated by practical considerations as it reduces the necessary amount of
rules in cases where, depending on some conditions like attribute values, only
the right-hand sides differ. On the other hand, this expressive power reduces
the strength of the formalism from a theoretical point of view, i. e., less can
be proved when dynamic right-hand sides are used. But the definition of
relational growth grammars was always guided by the usefulness as a basis
for functional-structural plant modelling with the focus on simulation, not on
proving properties. Nevertheless, using the formal description of a model to
prove general statements about its development is an interesting challenge.
An example thereof in the context of botany and L-systems is [158].

11.2 The XL Programming Language

The main practical result of this work is the design and implementation of the
XL programming language. Although relational growth grammars guided the
design of this language by their requirements, the XL programming language
is completely independent of relational growth grammars or any other con-
crete rule-based formalism. It is only the abstract rule-based paradigm which
is inherent in the XL programming language, namely by the dedicated rule
syntax. Its semantics is sufficiently abstract to allow for a variety of concrete
rule-based approaches, including but not restricted to algebraic graph rewrit-
ing or vertex-vertex algebras. In order to achieve this high level of abstraction,
we did not reinvent the wheel, but built on the well-known technique of oper-
ator overloading. Likewise, for the whole programming language we used the
Java programming language as a well-designed foundation. This means that
we do not only inherit the strength of the Java programming language, but
also of its numerous run-time libraries. Extending a widely used and clean
programming language, we felt committed to do this in a careful way, and we
believe that this was achieved to a large extent.

An important step in the development of the XL programming language
was the split between left-hand sides and right-hand sides of rules. Left-hand
sides are queries, right-hand sides are production statements, and both queries
and production statements can also be used on their own right. This is of
special importance in the case of queries as these can be used to evaluate
arbitrary context in a convenient way. The split also follows the principle of
separation of concerns and helps to develop, implement and optimize both
parts separately.

For left-hand sides and queries, a versatile textual syntax was designed.
This does not only cover the specification of conventional graph patterns,
but also of applications conditions and of path expressions composed of, e. g.,

11.2 The XL Programming Language 365

method invocations and transitive closures, and of optional patterns. The
expressiveness can be seen in the Ludo example where the legal movement of
a pawn was implemented by a single rule. Besides expressiveness, also the issue
of generality was an important design goal for queries, and it was addressed
by means of the XL interfaces through which the pattern matching algorithm
accesses the actual data structure. The implementations for commercial 3D
modellers as well as the implementation for the minimalistic Sierpinski graph
document the fitness of the mechanism for a variety of data structures.

The pattern matching algorithm of the run-time system is implemented in
a recursive way. This allows the usage of normal and generator expressions,
which yield values via call-back consumer interfaces, in patterns, and it also
makes possible a natural implementation of transitive closures. On the other
hand, when transitive closures are applied to deep structures, the deep recur-
sion may lead to a stack overflow. The usual solution of such a problem by
a non-recursive implementation with the help of a stack-like data structure
is not compatible with the mechanism of generator expressions, so up to now
there is no solution except for the allocation of a sufficiently large stack space.

The order in which the matching algorithm processes the components of
a pattern has a major effect on its efficiency with respect to time. Therefore,
an optimal order is computed based on a heuristic cost model. This compu-
tation is performed only once, namely when the pattern is used for the first
time for matching, and it does not yet use information about the graph in
which matches shall be found. This could clearly be improved by a mecha-
nism which detects when the structure of the graph has changed enough so
that a computation of a new order pays off.

For right-hand sides and production statements, even less properties of
the underlying data structure are prescribed by the XL programming lan-
guage. There is no data interface for some standardized modifications, only
a producer is used which may offer an arbitrary set of modifications by the
implementation of operator methods. Thus the definition of production state-
ments is rather minimal, but exactly this allows a rather maximal freedom
in the possible semantics of these statements. This was shown by the ease
and usability of the implementation of parallel vertex-vertex algebras, which
originally was not intended when designing the XL programming language.

From the examples in Sect. 10.5 on page 296 we can see that the aim
of this work, the design and implementation of a language for functional-
structural plant modelling, was achieved to a satisfactory extent. Utilizing
the possibility of the XL programming language to operate on graphs, we
can concisely represent plant structure and its dynamics in the framework of
graphs. This is of course a more natural representation than words as it is
implicit within L-systems. The advantages can best be seen at examples like
the ABC model where a regulatory network is represented by a graph, the ant
model with its grid structure of the world and its representation of memory by
edges, and the beech model where the possibility to navigate within the graph
in an arbitrary direction is utilized in order to implement both a basipetal and

366 11 Discussion

an acropetal transport through the whole structure in a single step. But even if
we do not make any use of the representation of the topology by a true graph,
there are still advantages: Nodes are objects in the sense of object-oriented
programming. Their classes can be equipped with methods and attributes,
and they define an inheritance hierarchy of which one can take advantage in
modelling. Equally important, nodes have an identity by which they can be
addressed. This allows to reference them globally at any place in the model,
regardless of a “cursor” in the structure like the current derivation position of
an L-system interpreter. Contrary to L-systems, nodes of the graph may not
only be created or deleted like L-system symbols, but may also be kept and
modified with respect to their parameters.

Graph queries can be seen as an extension of local context of L-systems.
They greatly simplify the specification of functional-structural models as they
allow to search for nodes that fulfil certain conditions in an arbitrarily large
context (namely, the whole graph). As a consequence, every node can have an
influence on any other node within a single rewriting step, whereas L-systems
restrict this influence to a finite local context (or, depending on direction of
derivation, to symbols to either the left or right [91]). Thus, queries can be
used to implement arbitrary environmental interactions. An example thereof
is shown on page 159 where a globally-sensitive function of the GROGRA soft-
ware is implemented by a combination of a query expression and an aggregate
method.

In general, when the XL interfaces are implemented according to rela-
tional growth grammars, we have a natural translation of nearly any type of
L-systems presented in Chap. 3 to the XL programming language. Stochas-
tic L-systems are emulated by using some pseudorandom methods. Context-
sensitive L-systems are covered by the possibility to specify arbitrary graph
patterns on left-hand sides. The control flow of table L-systems is a special
case of the control flow of imperative programming. Pseudo L-systems allow
more than one symbol on the left-hand side of productions, this corresponds
to graph rules with more than a single node as left-hand sides and the nonde-
terministic parallel derivation mode. However note that there is a difference as
the definition of pseudo L-systems in [153] includes processing of the current
word from left to right, which is not possible in the graph setting as there is no
intrinsic ordering from left to right. Parametric L-systems perfectly fit into the
framework of typed attributed graph grammars and object-oriented program-
ming. Interpretive productions can be obtained by special graph structures
and derivation modes, but the XL programming language also provides the
mechanism of instantiation rules which generally is preferable. The special-
ity of growth grammars, a dedicated set of globally sensitive functions, can
be obtained by implementing the sensitive functions on the basis of queries,
aggregate methods and, where necessary, some general elementary sensitive
functions. Likewise, environmentally sensitive L-systems only require elemen-
tary sensitive functions related to the local coordinate system of a node. The
general mechanism of open L-systems, i. e., the communication between an

11.2 The XL Programming Language 367

L-system and some external environment, is also a special case of the possi-
bilities of the XL programming language: we divide a model into a rule-based
structural part, generalizing the notion of L-systems, and a functional part
for the environment which is typically implemented following the imperative
paradigm. However, the concrete mechanism of open L-systems based on the
cpfg software, where environments are defined by library files and a binary
interface, is not supported. Anyhow, this mechanism is rather a legacy of the
strict separation between structural and functional parts, which to resolve is
the aim of this work.

Differential L-systems are not yet supported to a satisfactory extent: while
it is possible to incorporate numerical solvers for differential equations by com-
puting the required data and invoking some methods, a more direct integration
into rules is desirable. For example, for a system of differential equations with
respect to time one may want to specify the current rates for some quantities
within a set of rules, and a sophisticated solver then integrates the equations
until some event like a reached threshold happens. By specifying the rates
within rules, we automatically take into account the current structure and
its topology, which may change at discrete points in time, thus arriving at a
dynamical system with dynamical structure [66] on the basis of differential
equations and a precise solver.

In the field of plant modelling, there currently is to our knowledge only one
comparable approach, the L+C programming language as part of the L-Studio
software (see Sect. 3.14 on page 33 and [91, 92, 159]). It is an implementa-
tion of parts of the proposal for an L-system based plant modelling language
called L [160]. As mentioned in Sect. 3.14 on page 33, the L+C program-
ming language uses a source-code preprocessor which translates the special
production syntax of L+C into valid C++ code. Therefore, where the L+C pro-
gramming language allows imperative blocks, it inherits the full strength of
C++, and the comparison between the L+C and XL programming languages
amounts to a comparison between C++ and Java. But the locations where im-
perative blocks are allowed are very restricted: following the traditional cpfg
syntax of L-systems with imperative programming statements (Sect. 3.10 on
page 29), blocks are allowed only as part of right-hand sides and as the spe-
cial blocks Start, StartEach, End, Each which are executed at distinct points
of the derivation process. This means that the overall structure adheres to
the declarative, rule-based character at the expense of versatility concerning
control of rule application. In the L+C programming language, this control
is only possible via a mechanism similar to table L-systems [159]. Contrary,
the XL programming language reverses the overall application logic: this is
governed by the imperative part which may choose to execute a set of rules.
Thus, loops, switches between rule sets, rule application as long as possible
and any other control of rule application is possible.

Both the L+C and XL programming languages allow a dynamic construc-
tion of the successor on right-hand sides. But here, the situation concerning
the declarative or imperative character is inverted. For the L+C programming

368 11 Discussion

language, a right-hand side is an imperative block, and the successor has to
be specified by special produce and nproduce statements. For the XL pro-
gramming language, a right-hand side specifies the successor immediately, and
imperative code may be inserted in braces. As an example, the L+C production

X(t): {

float x = pow(t, exp);

nproduce F(1) SB();

i f ((t & 1) == 0)

nproduce Left(60);

else
nproduce Right(60);

produce Flower((int) x) EB() X(t+1);

}

translated to XL code looks like

X(t) ==> {float x = Math.pow(t, exp);}

F(1) [i f ((t & 1) == 0) (RU(60)) else (RU(-60))

Flower((int) x)

]

X(t+1);

In our opinion, the syntax of the XL programming language is more natural
in this respect, especially when considering simple rules.

For functional components of plant models, local and global context is of
great importance. The XL programming language allows the convenient con-
sideration of context both directly on the left-hand side and by the usage of
queries, possibly combined with aggregate methods. The L+C programming
language follows the traditional cpfg syntax, which only allows local context
specified on the left-hand side, but adds a mechanism for new context to
enable a fast unidirectional information transfer (Sect. 3.14 on page 35). Ad-
hering to the traditional notion of context has drawbacks. We can only specify
single patterns for left and right context, which fails, for example, when we
need several unrelated entities like the nearest internode and the nearest car-
rier of some substance. We cannot specify context of an unknown size like all
internode children. The XL programming language provides solutions to these
problems: left-hand sides may contain several context patterns, and we may
also use queries on the right-hand side to process context of unknown size, typ-
ically in combination with aggregate methods. E. g., think of the computation
of the total cross section of all internode children. The original specification
of the language L also proposed two solutions to the first problem by the
alternatives

i f (lcontext(A(s, t))) {...}

i f (A(s, t) < se l f) {...}

This is a simple kind of query expression, but is not part of the L+C program-
ming language.

11.2 The XL Programming Language 369

But the major difference between the XL and L+C programming languages
is definitely the range of supported data structures. The L+C programming
language makes an explicit reference to a fixed data structure, namely a lin-
ear sequence of modules which may be parameterized by C++-structures. Con-
trary, the XL programming language defines the data structure through its
interfaces. This allows linear sequences, trees, graphs, graph rotation systems,
nearly any custom data structure as the target of rules, with instances of
Java classes as basic components, and the performed modifications may con-
form to a variety of formalisms like parallel or sequential graph rewriting or
vertex-vertex algebras. The typical data structure is a graph, this enables to
represent plant topology in a natural way. It also makes possible a flow of
information along arbitrary paths in the structure, while the processing of
the current word in the L+C programming language only allows local context
to be considered, plus the part of the word either to the left or to the right,
depending on derivation direction.

Components of the structure being instances of Java classes, we have a
convenient inclusion of the object-oriented principles of inheritance and poly-
morphism. Therefore, it is possible to specify common behaviour of a set of
related classes by a common superclass, and to specialize the behaviour in its
subclasses. We used this technique in several examples like the beech model
with the class Organ being the superclass of all organ classes. Such a concept
of inheritance is not yet available in the L+C programming language, but it is
already mentioned in [91] and also in the specification of the language L [160]
as a desirable feature.

Concerning general graph rewriting software, there exists a diverse range
of tools with different strengths and weaknesses, depending on the specific
aims of the tools. The AGTIVE ’07 tool contest (Sect. 10.8 on page 347)
with its three case studies, the Sierpinski triangle, the Ludo game and the
UML-to-CSP conversion, was a good opportunity to compare a wide range of
tools along several dimensions of features. Given that virtual plant structures
quickly become large, efficiency concerning time and space is crucial. The
Sierpinski case study provides a benchmark to test this efficiency, and imple-
mentations based on the XL programming language turn out to be among the
fastest and most lightweight solutions, particularly if a specially tailored graph
representation was used. The Ludo case study also shows that the XL imple-
mentation is relatively fast, but here the focus is rather on the expressiveness
of the tools – how concise is the representation of the game rules? Taking
advantage of the possibility of transitive closures and optional patterns, the
XL implementation is short and concise. At the same time, it provides a nice
3D visualization using the facilities of GroIMP. The solution of the UML-to-
CSP case study shows the usefulness of the XL programming language and
GroIMP to implement a translator for graph languages. It utilizes the possi-
bility to have different derivation modes in succession. But this solution also
shows some shortcomings of the XL programming language and of the im-
plementations of its interfaces. Namely, some other tools allow to check the

370 11 Discussion

compliance of graphs with their graph model (i. e., their type graph), and there
are also tools like AGG which can analyse the transformations themselves to
detect dependences of the final result on the order of sequential production
application. The first issue could be solved at the level of implementations
of the XL interfaces by the inclusion of validation of graphs with respect to
their model. But the second issue is intrinsic to the design of the XL program-
ming language. Rules are just special statements which are executed when the
control flow reaches them. At no point in time there is knowledge of all rules
which comprise a single rewriting step, and even if we know a single rule, there
is no knowledge of the structure of its right-hand side as this is a dynamic
property, to be constructed by the producer on execution. This is yet another
manifestation of the typical trade-off between a rigorous framework which al-
lows proving a lot of properties and a practically convenient framework which
allows to express complex behaviour by only a few statements in compact
notation. The XL programming language clearly belongs to the second kind.

Concerning efficiency, the graph transformation tool GrGen.NET is com-
parable to the XL programming language and, thus, can principally and prac-
tically also be used to describe plant growth. It also provides a versatile means
to specify graph patterns, application conditions, right-hand sides and compu-
tation of new attribute values. But in the current version, optional patterns or
transitive closures are not supported, and there is no direct embedding of rules
in an outer imperative programming language. Theses features are intended
for a future version of GrGen.NET. Also a parallel derivation mode and a
connection mechanism to simulate L-systems are not built into GrGen.NET.

Of course, efficiency can and should also be compared with L-system soft-
ware. Due to the simple string representation, data management in L-system
software is easy and fast, while graph-based tools have some overhead in this
respect. Therefore, we expect that L-system software can outperform graph-
based tools if most of the time is spent in changing the data structure. This
is the case for pure structural models without complex computations like the
following RGG code for a ternary branching:

const float ANGLE = 60;

const float FACTOR = 0.6;

module X(float s);

protected void init()[

Axiom ==> X(1);

]

public void run() [

X(s) ==> F(s) [RU(ANGLE) X(s*FACTOR)] [RU(-ANGLE) X(s*FACTOR)] X(s);

]

On an Intel Pentium 4 CPU with 2.8 GHz, 11 steps take about 4.76 seconds
and create a final graph of 442,866 nodes. A corresponding implementation in

11.3 Outlook 371

the L+C programming language, executed within L-Studio, takes only about
0.34 seconds, while the equivalent growth grammar, executed within GRO-
GRA, needs about 6.74 seconds (note that GROGRA is an interpreter, while
L+C and XL code is compiled). Similar to the Sierpinski grammar, we can
reduce the computation time by using a custom graph based on the simple
implementation of the XL interfaces. With such a custom graph, the 11 steps
require only about 1.17 seconds. Clearly, this is still less efficient than the L+C
solution, but we have to keep in mind that graphs are more complex to handle
than strings. This is the price we have to pay for the gain in expressiveness
and versatility. On the other hand, really complex functional-structural plant
models are not dominated by the time for the creation of structure, but by the
time for computations within existing structure, for example a radiation model
as in the example of a spruce-beech stand in Sect. 10.5.6 on page 326. Then
the overall efficiency mainly depends on the efficiency of these algorithms.

11.3 Outlook

Although we have shown the usefulness of the formalism of relational growth
grammars and of the XL programming language for functional-structural
plant modelling at several examples, it is now the time to develop further,
more elaborated functional-structural plant models in order to validate the
usefulness. This should be done by different research groups with different
aims, so that a variety of dimensions of the formalism and the language are
explored, possibly leading to suggestions for improvements or new features.
Also the applicability for other purposes than plant modelling could be further
investigated. In conjunction with the GroIMP software, this seems to be most
promising in the field of algorithmic 3D modelling, the architectural examples
being first hints into this direction.

One useful extension, to which some of the examples already point, is
the inclusion of differential equations. A precise functional part of a plant
model typically contains systems of differential equations, e. g., for transport
or metabolism. A built-in feature to specify and solve these equations in a
numerically stable way is desirable. It should use the ideas of differential L-
systems, especially the idea that certain thresholds can be defined which when
reached trigger some discrete action like the creation of a new organ when
some hormone concentration is reached (see also the ABC model of flower
morphogenesis, Sect. 10.5.1 on page 296). Ideally, the existing features of the
XL programming language like operator overloading and properties already
suffice to implement such an extension.

The ease of the implementation of a parallel vertex-vertex algebra for the
specification of the dynamics of polygonal surfaces gives rise to the question if
and how this can be extended to polyhedral volumes. By its very nature, this
is not trivial, especially when the extension shall still be practically useful and
convenient for plant modelling, e. g., for the modelling of tissues represented

372 11 Discussion

by polyhedral cells. There exist some formalisms, but none has established
itself to an extent comparable with L-systems for modelling of plant topology.

Another interesting topic for future research is the specification of rules by
graphs, so that we may have meta-rules transforming rules. A typical applica-
tion is the modelling of evolution like in genetic algorithms. The implementa-
tion should not require any extension of the XL programming language, but
the specification of special node classes representing rules, and the implemen-
tation of an algorithm which takes graphs of such nodes as input and modifies
the structure accordingly. This algorithm could re-use the built-in matching
algorithm of the run-time system of the XL programming language.

The matching algorithm itself is also a target for improvement. A substan-
tial enhancement concerning efficiency would be the dynamic generation of a
new search plan if the graph has changed sufficiently. The problem is to find a
good definition of a “sufficient change” so that the required time for the gener-
ation of the new search plan is less than the saved time for matching. Further
improvements could be achieved by caching occurrences of frequently used
subpatterns, similar to the extent lists of GroIMP which store all occurrences
of a given node type.

A further possibility to speed up model execution is to compute in par-
allel. This can be done either on a single multi-processor machine, or on a
network of several connected machines. The radiation model already makes
use of multiple processors, and we started some investigations to use multi-
ple processors for rule execution. In principle, the framework is well-suited for
parallel computation: if modifications to the structure are done exclusively via
modification queues, the main part of model execution is to fill these queues
with corresponding entries, but it does not change the structure. Thus, we
can construct one queue for each processor of each connected machine, and
combine these partial queues to a single queue (i. e., a parallel production)
at the end of a step when the parallel derivation is applied. The necessary
communication amounts to the transfer of partial queues and resulting graph
changes. The second part, the synchronization of several GroIMP instances
connected over the network by transferring graph changes, is already imple-
mented in the GroIMP system, but not yet the first part and a mechanism to
partition rule execution among available processors.

Finally, the nature of the XL programming language as an extension of
the Java programming language could be exploited in a better way and with a
broader reach by an integration into popular development tools like the Java
compiler javac or the Eclipse platform. When this work was started, javac
was a closed-source program, and the Eclipse platform in its infancy, so that
a usage of them as basis for the XL compiler was not considered. Nowadays,
both tools are established open-source projects, and we could extend their
existing compilers by features of the XL programming language. Through the
Kitchen Sink Language project [186], which provides an official central point
for suggestions of new language features, this could even have some influence
on the evolution of the Java programming language.

Acknowledgements

The main part of this research was done at the Chair for Graphics Systems at
the Brandenburg Technical University. I thank my adviser Prof. Dr. Winfried
Kurth for giving me a very interesting and challenging task for my doctoral
thesis. His comprehensive and precise support and suggestions helped a lot in
carrying out this task.

Prof. Dr.Winfried Kurth used his contacts to make possible my stay of
one and a half year at the institute for Ecoinformatics, Biometrics and Forest
Growth of the University of Göttingen. I am very grateful to Prof. Dr.Dr. h.c.
Branislav Sloboda, the director of the institute, for kindly affiliating me as a
guest researcher and providing the necessary infrastructure.

I also want to thank my colleagues in Cottbus and Göttingen for the
nice working atmosphere and fruitful discussions. Dr. Gerhard Buck-Sorlin
provided his profound biological expertise without which the presented work
would not have been possible. As a GroIMP and XL user from day one, his
feedback was a major contribution to the usability of the software. Reinhard
Hemmerling was a constant source for new ideas. He included operator over-
loading in the XL programming language, which then became the foundation
for right-hand sides and their versatility. He also made possible my stay in
Göttingen by a swap of our positions. Jan Dérer improved the software by
a lot of useful analysis functions, and he established new contacts. Dr. Dirk
Lanwert as an expert user of GroIMP and XL made a lot of suggestions and
bug reports. His knowledge of tree growth helped a lot to implement the beech
model. Kataŕına Smoleňová developed several plant models and created nice
visualizations.

A lot of students have contributed to the presented work by their theses. I
thank Udo Bischof, Benno Burema, Birka Fonkeng, Bernd Gräber, Christian
Groer, Michael Henke, René Herzog, Oliver Huras, Thomas Huwe, Daniel
Klöck, Ralf Kopsch, Ralf Kruse, Sandy Lobe, Uwe Mannl, Mathias Radicke,
Stephan Rogge, Sören Schneider, Hagen Steidelmüller, Michael Tauer, Stefan
Willenbacher and Dexu Zhao for their work.

374 11 Discussion

As a tutor of a course in Computer Graphics and Software Engineering
at BTU Cottbus, I got helpful insights into the field of software design from
Prof.Dr. Claus Lewerentz. These definitely improved the design of GroIMP
and XL, and will also help in the future.

I thank Prof. Dr. Hans-Jörg Kreowski, head of the research group Theo-
retical Computer Science at the University of Bremen, for his interest in my
work and for inviting me to Bremen. With him and his research assistant
Caroline von Totth I had a fruitful discussion about this thesis.

The more complex models presented in this work would not have been
possible without the computing power which Dr. Reinhold Meyer from the
institute for Ecoinformatics, Biometrics and Forest Growth made available to
me. I also want to thank Andreas Hotho and Jörn Dreyer from the Knowledge
and Data Engineering Group of the University of Kassel for kindly providing
me with an account for their powerful computer.

Part of this work was funded by the Deutsche Forschungsgemeinschaft
under grant Ku 847/5 and Ku 847/6-1 in the framework of the research group
“Virtual Crops”.

Last but not least, I would like to thank Anja and Hannes for their support
and patience during the last years. Sharing my home life with them is an
important pleasure.

A

The Modelling Platform GroIMP

In this appendix, we briefly describe the modelling platform GroIMP – the
growth-grammar related interactive modelling platform. The design and im-
plementation of the XL programming language and the modelling platform
GroIMP happened in parallel. In fact, in the early stage of development both
were inseparably tied together, but by the introduction of the XL interfaces,
this coupling was removed. Now it is only the RGG plug-in of GroIMP which
establishes an explicit link between both parts, but there are several further
“soft” links implied by a convenient and useful implementation of the XL
interfaces, for example the requirement to be able to efficiently handle very
large graphs (more than a million of nodes, say) which may be very deep (like
a linear chain).

GroIMP being composed of more than 3,000 classes, we cannot describe
everything in detail in this appendix. We rather give an overview of the ap-
plication, its structure and the most important features from a user’s per-
spective. For more information, we refer the user to the online help, the API
documentation and additional material available at [101].

A.1 Overview

GroIMP is designed as an integrated platform which incorporates modelling,
visualization and interaction. It exhibits several features which make it suit-
able for functional-structural plant modelling, but also for other tasks:

• The “modelling backbone” consists in the XL programming language. It is
fully integrated, e. g., the source code is edited in an integrated text editor
and automatically compiled by the XL compiler. Errors reported by the
compiler are shown in a message panel and contain hypertext links to their
source code locations.

• GroIMP provides a complete set of 3D-geometric classes for modelling
and visualization. This includes turtle commands, primitives like spheres,

376 A The Modelling Platform GroIMP

cones and boxes, height fields, spline surfaces, and polygon meshes. Spline
surfaces are in fact NURBS surfaces and can be constructed by several
techniques, among them surfaces of revolution and swept NURBS (gener-
alized cylinders) [149].

• In addition, GroIMP provides a shader system for the definition of 3D
shaders. Shaders can be built by combining image textures and procedural
textures in a flexible, data-flow oriented way as it is known from up-to-date
3D modellers like Maya [5].

• The outcome of a model is visualized within GroIMP by several options
including a real-time display based on OpenGL and the built-in raytracer
Twilight.

• In the visual representation of the model output, users can interact with
the dynamics of the model, e. g., by selecting, modifying or deleting ele-
ments.

• GroIMP contains a 2D view on graphs that shows their structure. A set of
layout algorithms can be applied to arrange the nodes in this view [60, 199].

GroIMP is open-source software implemented in Java; it is licensed under the
terms of the General Public License, version 3. The latest version and infor-
mation can be found at the web page http://www.grogra.de/. Figure A.1
shows a screenshot displaying the Ludo example of Sect. 10.8.1 on page 347.

Figure A.1. Screenshot of GroIMP window displaying the OpenGL-based 3D view,
a 2D view on the graph structure, the source code editor, the Shader explorer with
a list of shaders, the Image explorer with a single image, and the message panel

A.2 Plug-In Architecture 377

A.2 Plug-In Architecture

At a global level, GroIMP has a plug-in architecture very similar to the Eclipse
platform [40]. A relatively small core part loads a list of plug-ins on start-up of
the application. Each plug-in is described by an XML file plugin.xml which
defines, among others, its capabilities and a list of other plug-ins that are pre-
requisites. Capabilities are represented as a hierarchical structure, addressed
by names, which is merged for all plug-ins into a single registry. Each plug-in
is loaded by its own class loader which ensures that, besides the own classes of
the plug-in, only classes from plug-in prerequisites can be loaded. By carefully
dividing the functionality into different plug-ins, this enforces a clean design
without cyclic dependences at the global level of plug-ins.

In the source distribution of GroIMP 0.9.8.1, the core is split into four
projects:

• The project XL-Core contains the basic packages de.grogra.xl.lang and
de.grogra.xl.util. The specification of the XL programming language
relies on all types of de.grogra.xl.lang, while de.grogra.xl.util con-
tains several basic utility classes.

• Utilities contains a miscellaneous set of utility classes.
• Graph defines both a graph interface and an implementation thereof, see

Sect. A.3 on page 379.
• Platform-Core is the actual core of GroIMP. It defines the classes for the

registry and the main class de.grogra.pf.boot.Main which starts the
application.

The version 0.9.8.1 of GroIMP contains the following plug-ins which are also
shown in Fig. A.2 on page 380 with their dependences.

• Platform is the basic plug-in of GroIMP and is referenced (directly or
indirectly) by most other plug-ins. It contains an abstraction of a graphical
user interface around the interface Workbench.

• Platform-Swing implements the user interface for the standard Swing
toolkit of Java. jEdit replaces the default editor of Swing by the sophisti-
cated editor jEdit.

• Vecmath contains an implementation of the javax.vecmath library and an
implementation of 3D geometry (primitives, polygon meshes, constructive
solid geometry, octree) with the focus on ray-object intersections for the
purpose of ray-tracing.

• Math defines interfaces and implementations for simple functions, vertex
lists, B-spline curves and surfaces. This includes non-uniform rational B-
splines, i. e., NURBS [149]. A lot of algorithms of [149] like the computation
of swept surfaces are also provided.

• IMP adds facilities to display and edit graphs as defined by the Graph
project from above. Furthermore, it defines support for images, fonts and
some other data types. Finally, it contains a simple implementation of an

378 A The Modelling Platform GroIMP

HTTP server. This is an interesting feature and enables GroIMP models to
serve as dynamic content providers for web applications. For an example,
see Sect. 10.5.8 on page 330.

• TexGen contains several texture generators, i. e., algorithms for the creation
of synthetic images.

• IMP-2D provides node classes for 2D geometry. Such a 2D scene graph can
be displayed in a 2D view, but there is also the option to display a 2D
view on the topology of an arbitrary graph.

• IMP-3D plays a central role as we can see in Fig. A.2 on page 380. It
defines node classes for all kinds of 3D geometry from primitives like points,
spheres and boxes to complex objects like NURBS surfaces and polygon
meshes. Cameras, light sources and sky objects are defined, and physically
valid shaders can be constructed from procedural textures and images.
This plug-in also provides a 3D view with the option to use OpenGL for
rendering, and manipulation tools for translation, rotation and scaling.

• Raytracer is used by IMP-3D to integrate the raytracer Twilight (Sect. A.7.1
on page 392), which is a subproject of the whole GroIMP project but in-
dependent of the GroIMP application. This raytracer implements both a
conventional ray-tracer and a path-tracer based on [195]. For the repre-
sentation of geometry, it relies on the plug-in Vecmath. Its algorithms are
also used for the radiation model outlined in Sect. B.14 on page 412.

• Sunshine is an implementation of a ray-tracer which uses the GPU of the
graphics card [81].

• POV-Ray, DXF, X3D, PDB and CPFG define import and export filters for
various (mostly 3D) data formats. POV-Ray also embeds the POV-Ray
ray-tracer so that it can directly render in the 3D view.

• Billboard facilitates the creation of snapshots from different perspectives
for the usage in billboards, see Sect. 10.5.9 on page 332.

• XL contains the classes and interfaces of Chap. 6 which are not al-
ready contained in XL-Core, i. e., the packages de.grogra.xl.query,
de.grogra.xl.property and de.grogra.xl.modules.

• XL-VMX implements the extension of the virtual machine as presented in
Sect. 8.4 on page 212.

• XL-Compiler contains the compiler of Chap. 8.
• Grammar is used by XL-Compiler, it provides a general-purpose lexical anal-

yser as described in Sect. 8.1 on page 207.
• XL-Impl contains the base implementation of the XL interfaces, see Chap. 9.
• RGG is the most important plug-in for rule-based modelling with GroIMP

as it defines a versatile implementation of the XL interfaces for the graph
of GroIMP and with the semantics of relational growth grammars. This
plug-in is described in detail in Chap. B.

• 3D-CS contains a construction set similar to Xfrog [121, 37] which was
designed as part of a Diploma thesis [77].

• There are also some further plug-ins without source code or with only
some helper classes. RGG-Tutorial is a short tutorial to introduce the usage

A.3 Graph Component 379

of relational growth grammars to the novice. API-Doc provides a single
menu entry which opens the API documentation of GroIMP (generated
by javadoc). Examples also provides a single menu entry, this shows a
list of examples. Platform-Swing-LookAndFeels contains a collection of nice
non-standard look-and-feels for the Swing toolkit.

A.3 Graph Component

The Graph component of the core classes contains three packages. The package
de.grogra.graph defines an abstraction of graphs. de.grogra.persistence
provides a mechanism to manage objects and their attributes including stor-
age, reading in, logging of changes, and grouping several changes in single
transactions which can be undone. de.grogra.graph.impl uses both pack-
ages and implements an efficient graph representation which is also used for
the implementation of relational growth grammars of the RGG plug-in.

A.3.1 Graph Interface

The graph interface in the package de.grogra.graph is defined around the
interface Graph. The latter has a lot of methods to query information about the
topology and attributes of nodes and edges, which are passed as parameters.
Some methods are shown in the class diagram in Fig. A.3 on page 381. For
example, a loop over all edges e of a node n of a graph g is written as

for (Object e = g.getFirstEdge(n); e != null; e = g.getNextEdge(e, n)) {

... // do something with edge e

}

But there is also the method accept which passes the topology of the graph
to the specified Visitor by invoking the callback methods of the latter. The
mechanism follows the hierarchical visitor pattern.

An important property of the interface is that it does not restrict the actual
types of nodes and edges: any Object can be used as long as the methods of the
Graph can handle the requested operations. The converse solution would be
to define interfaces for nodes and edges with topological operations directly
provided by them. But then the actually used classes for nodes and edges
are required to implement these interfaces, which excludes the possibility of
externally defined graph structures. In our setting, such structures can be
integrated easily by the implementation of the Graph interface which serves
as a facade (a design pattern presented in [62]). A similar approach (but
only for trees) is taken by the interface javax.swing.tree.TreeModel of the
Swing toolkit.

The method getAttributes returns, for a given node or edge, an array of
its attributes. Thus, the interface does not yet restrict edges to be of a simple

380 A The Modelling Platform GroIMP

RGG

���
�
�
�
�
�
�

''OOOOOO

(
(

'
'

&
%

%
$

#
#

"
"

!

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

3D-CSoo_ _ _ _ _

XL-VMX

���
�
� XL-Compiler //____oo_ _ _ _ _ _ _ _ _ _

���
�
�
�
�
�
�
�
�
� Grammar

zzu
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

XL

���
�
�
�
�
�
� XL-Imploo_ _ _ _ _

���
�
�
�
�
�
�

Core classes

XL-Core Utilitiesoo_ _ _ _ Graphoo_ _ _ _ _ Platform-Coreoo_ _ _ _ _

Vecmath

OO�
�
�

Platform

OO�
�
�

Raytracer

OO�
�
�

Math

ffM M M M M M

33ffffffffffffff
Platform-Swing

OO�
�
�

Sunshine

&&MMMMMM X3D

���
�
� IMP

ggN N N N N N

66mmmmmmm

=={
{

{
{

{
{

{
{

{
{

jEdit

OO�
�
�

POV-Ray //___ IMP-3D

77pppppp

KK

'

&

%

#

"

!

�
�

�

�

�

�

�

�

]];
;

;
;

;
;

;
;

;

IMP-2D

OO�
�
�

TexGen

hhQ Q Q Q Q Q Q

Billboard

88qqqqqq
DXF

OO�
�
�

PDB

ggO O O O O O
CPFG

kkX X X X X X X X X X X X X X

VV

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

!
"

#
#

$
%

&
'

(
)

*
+

+
,

Figure A.2. Core classes and plug-ins of GroIMP and their dependences. The
plug-ins above the core classes are related to relational growth grammars and the
XL programming language, the plug-ins below the core classes constitute the basic
part of GroIMP including 3D modelling support. The dependence of RGG on IMP-
3D establishes the link between relational growth grammars and 3D scene graphs.
There are two further dependences between both otherwise separated parts: IMP-3D
depends on XL-Impl because classes for primitives contain user-defined parameterized
patterns (so that we may write, e. g., Sphere(r) ==> Sphere(2*r);); CPFG depends
on Grammar since it uses the general-purpose lexical analyser of the latter (but note
that Grammar is independent of the XL plug-ins so that its assignment to the upper
part is arbitrary). The only questionable dependence is from IMP to Platform-Swing.
This is because the abstraction of the graphical user interface in Platform does not
define components for (2D or 3D) display of graphs, which is therefore added in IMP
and at the same time implemented for the Swing toolkit.

A.3 Graph Component 381

Attribute〈T〉
+ set(o: Object, node: boolean, value: Object, gs: GraphState): T
+ get(o: Object, node: boolean, gs: GraphState): T

. . .

���
�
�

GraphState

- graph: Graph

+ getGraph(): Graph
. . .

0..n

�
1

�interface�

Graph

+ getRoot(key: String): Object)
+ getFirstEdge(node: Object): Object)
+ getNextEdge(edge: Object, node: Object): Object
+ getSourceNode(edge: Object): Object
+ getTargetNode(edge: Object): Object
+ getEdgeBits(edge: Object): int
+ getInstantiator(node: Object): Instantiator
+ accept(startNode: Object, visitor: Visitor, path: ArrayPath)
+ getAttributes(o: Object, node: boolean): Attribute[]

. . .

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�interface�

Visitor

+ getGraphState(): GraphState
+ visitEnter(path: Path, node: boolean): Object
+ visitLeave(o: Object, path: Path, node: boolean): boolean
+ visitInstanceEnter(): Object
+ visitInstanceLeave(o: Object): boolean

2��2

oo_ _ _ _ _

�interface�

Instantiator

+ instantiate(path: ArrayPath, v: Visitor): boolean

Figure A.3. Class diagram of graph interface

382 A The Modelling Platform GroIMP

non-attributed nature. Attribute values can be read and written by corre-
sponding getter- and setter-methods. These methods require an additional
GraphState as argument, which maintains per-thread state information of a
graph. This state is most important for object instancing as it stores the com-
plete information about the currently instantiated nodes and edges and their
attributes.

Object instancing is triggered within the method accept, i. e., when a
Graph passes its structure to a Visitor: if, for a visited node, the method
getInstantiator returns an Instantiator, this is used to (temporarily) in-
stantiate a structure by invoking the corresponding methods on the Visitor.
As a consequence, at no given point in time the complete instantiated struc-
ture exists, we rather have only information about the path from the beginning
of the instantiation to the currently instantiated object. (An exception is the
case where the instantiated structure is a linear chain, then the path to the
last object contains information about the complete chain.)

There is a single feature of the graph interface which is influenced by its
later usage for the graph of GroIMP and the base implementation of the XL
interfaces (Sect. 9.1.1 on page 235): each edge is assumed to have a set of edge
bits which is returned by the method getEdgeBits of the graph as a single int
value. Following the discussion in Sect. 9.1.1, these bits can be used to encode
up to 32 individual non-attributed edges or, and this is used here, 24 such edges
and a single additional edge whose type is encoded by the remaining 8 bits
together. The Graph interface defines constants for edges of type successor,
branch and several further ones. The special types EDGENODE IN EDGE and
EDGENODE OUT EDGE are used when a node shall play the role of an edge: such
a node has a single incoming edge of type EDGENODE IN EDGE, whose source
node is then considered as the source node of the compound edge, and a single
outgoing edge of type EDGENODE OUT EDGE, whose target node is considered
as the target node of the compound edge:�� ��A

E //
�� ��B ∧=

�� ��A
EDGENODE IN EDGE //

�� ��E
EDGENODE OUT EDGE //

�� ��B

This trick has to be used when the graph model of RGG and/or its imple-
mentation is not sufficient, i. e., when attributed edges or parallel edges of
the same type are needed, or when one needs more edge types than can be
represented in the 32 edge bits.

In principle, graphs may have an arbitrary topology. However, when they
are interpreted as 2D or 3D scene graphs, there would be a problem if a node
can be reached by more than one path from the root of the scene graph: each
such path defines its own local coordinate system by collecting all coordinate
transformations of the objects along the path, and the resulting local coor-
dinate systems for different paths might not coincide. Therefore, there is a
special convention for scene graphs which has to be obeyed: only those ob-
jects are visible which can be reached from the root of the scene graph by
traversing successor or branch edges in forward direction, and for any visible

A.3 Graph Component 383

object, there must not exist two such paths. In other words, the subgraph
spanned by successor and branch edges when starting at the root has to be
a tree. There are no restrictions concerning other edge types or branch or
successor edges between non-visible nodes. Using this convention, we can not
only define the local coordinate system for each visible object without am-
biguity, but also general derived attributes, i. e., attributes which are defined
recursively based on the value of the parent and some local attributes. E. g.,
this is used for the turtle state (Sect. B.12 on page 406).

A.3.2 Management of Objects, Attributes and Changes

The graph interface does not provide a means for persistence, i. e., for reading
from and writing graphs to durable storage like files. In principle, the stan-
dard serialization mechanism of Java can be used for that. However, for the
purposes of GroIMP a more sophisticated mechanism is required which does
not only handle the serialization of graphs into byte streams, but also provides
the following features:

• There exists knowledge about the attributes and their types and values
for any node.

• This knowledge is fine-grained in the sense that we also know how non-
primitive attribute values are composed. E. g., an attribute for a list of
locations in 3D space is composed of an array, and each array component
is composed of three floating-point values.

• Changes to the structure and attribute values are noticed and may be
logged to a protocol. Access to attribute values is fine-grained so that
we may modify only a component of an attribute value, and then only
this small change is logged. E. g., we only change the z-component of the
component with index 1 of an attribute for a list of 3D locations. Together
with the previous feature this allows a convenient implementation of XL
properties including subproperties and component properties (Sect. 6.10
on page 174).

• Change logs may be grouped to transactions which may be undone.
• Transactions may be written to streams so that they can be exchanged

with other instances of the same graph. Think of several GroIMP instances,
linked over a network, which shall work on the same graph. This has the
potential of applying RGG rules in parallel on different machines.

Java Data Objects (JDO, [184]) were specified with similar and a lot of further
goals in mind, but they do not provide a means for fine-grained access of
attribute values, and they are not able to handle edges in the way we need it,
namely as being uniquely identified by their source and target nodes (recall
the graph model of relational growth grammars (Sect. 5.2.2 on page 97) and
the variant of the base implementation (Sect. 9.1.1 on page 235), which is also
used for GroIMP).

384 A The Modelling Platform GroIMP

Therefore, we developed an own implementation of the required features
in the package de.grogra.persistence, but with several ideas adopted from
JDO. For example, there is a distinction between first-class objects and second-
class objects: first-class objects have an identity on their own, represented by
a unique identifier of type long, while second-class objects do not have such
an identity and are only addressable as attribute values of first-class objects
(or, and this extends JDO, indirectly as components of attribute values, see
the above requirement of fine-grained access). First-class objects have to im-
plement PersistenceCapable and are managed, including their life cycle, by
a PersistenceManager. In the only currently existing usage of this system,
namely the graph of GroIMP, first-class objects are exactly the nodes.

As an exception to the rule that second-class objects do not have an iden-
tity we added the interface Shareable. Shareable objects can be shared among
several first- or second-class objects, and this information is used when read-
ing from and writing to a data stream like the persistence storage in a file
or the change log. As an example, consider the list of predefined shaders
which GroIMP provides. These are second-class objects, but as they imple-
ment Shareable, they can be read from and written to streams as references
to GroIMP. Otherwise, their origin would get lost when re-reading, i. e., we
would have a new shader for each occurrence which is equal to the one pro-
vided by GroIMP, but not the same.

The implementation supports reading from and writing to both binary and
XML-based formats. The binary format is intended for the exchange of data
and transactions between connected graph instances, while the XML format
is intended for long-term storage in files.

A.3.3 Graph Implementation

The graph implementation in the package de.grogra.graph.impl is defined
on top of the previously described packages. It implements the graph interface
and uses the persistence system to handle modifications, change logs and
persistent storage. The class diagram is shown in Fig. A.4 on the next page.

Internally, the topology is stored by doubly-linked lists of incident edges for
each node. The required two links are stored within an Edge itself. A speciality
is that Node is a subclass of the abstract class Edge. This is an optimization
with respect to memory usage: given that RGG structures can quickly become
large, but usually are tree-like for the most part, we have about n edges for n
nodes, and most nodes have exactly one incoming edge. Now in our setting,
a Node can at the same time represent the information of a single incoming
edge. Thus, only for nodes with more than one incoming edge there is the need
to actually allocate memory for edge objects from the heap (which are then
of class EdgeImpl). As each Java object introduces a memory overhead and
also makes the task of the garbage collector more difficult, saving n objects is
clearly advantageous.

A.3 Graph Component 385

�interface�

PersistenceCapable

+ getPersistenceManager(): PersistenceManager
+ getId(): long

. . .

0..n

2��2
PersistenceManager

+ getObject(id: long): PersistenceCapable
. . .

Node

+ getFirstEdge(): Edge
. . .

_�2

_�2�
�
�
�
�
�
�
�
�
�

0..n

J� �J

Edge

+ getNext(n: Node): Edge
+ getSource(): Node
+ getTarget(): Node
+ getEdgeBits(): int

. . .

GraphManager

+ getExtent(type: Type): Extent
. . .

_�2�
�
�
�
�
�
�
�
�
�
�
�

_�2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

EdgeImpl

_�2

Extent

+ getType(): Type
+ getSubExtents(list: Collection)
+ getFirstNode(index: int): Node
+ getNextNode(node: Node): Node
+ totalSize(): int

1..n

�1

�interface�

Graph

. . .

de.grogra.persistence

de.grogra.graph.impl

de.grogra.graph

Figure A.4. Class diagram for graph implementation

386 A The Modelling Platform GroIMP

As required by the interface Graph, a GraphManager maintains a set of
root nodes, identified by a String. Only those nodes which can be reached
from at least one of the root nodes by a path of edges are kept in the graph. In
other words, the graph of a GraphManager consists of connected components
each of which has to contain at least one root node. As a consequence, the
deletion of a node or edge in a tree graph leads to the deletion of its whole
subtree.

A special feature of the GraphManager is the management of extents. For
each used node class in the graph, there exists an Extent which collects all
nodes of this class and also has a link to the extent of its superclass and to
the extents of its subclasses. This feature is currently only used within the
RGG plug-in for a fast processing of queries which specify node type patterns
like in the rule F(x) ==> F(2*x);. Instead of having to scan the whole graph
for nodes of class F, the corresponding extent is used together with its sub-
extents to directly iterate over all nodes of class F. The method totalSize
could be used for a graph statistics to optimize the search plan of a query (see
Sect. 7.3.1 on page 197), but this is not yet done.

An extent collects its nodes not by a single list, but by a number of (doubly
linked) lists. Currently, eight lists are used, but this can easily be changed.
This feature is used to partition the extents. An example of its usage is the
specification of a model which creates a large graph, but where the rules are
only applied to (possibly varying) parts of the graph by specifying which
extent lists shall be considered for queries. This technique was used for the
alder model of Sect. 10.5.9 on page 332 where the main stem and branches were
constructed one after another. Another application is to prevent structures
from being transformed by rules.

The persistence mechanism of the previous section requires some addi-
tional structures for node classes so that it is able to manage nodes and their
field values. Among these structures is, within each node class, the decla-
ration and initialization of a special static field $TYPE and the definition of
the method getNTypeImpl to return this $TYPE and of the factory method
newInstance to return a new instance of the class. To automatize the gener-
ation of these structures, the source distribution of GroIMP contains a source
code preprocessor which scans source files for special preprocessing instruc-
tions and then creates the required code automatically.

As structures created by relational growth grammars may be very deep
(e. g., the snowflake example of Sect. 10.1.1 on page 269 creates a linear chain
of 6 · 4n − 1 nodes after n steps), the implementation of recursive graph algo-
rithms by recursive method invocations would quickly result in a stack over-
flow. Therefore, recursive method invocations have to be avoided by using
an explicit stack-like data structure in implementations. This has been done,
e. g., in the implementation of the accept method (Sect. A.3.1 on page 379)
which provides a hierarchical visitor with the graph structure.

A.5 Graphical User Interface 387

A.4 Projects

The current state of the graph and the GroIMP workbench including lists
of interactively defined auxiliary objects (e. g., shaders), source files, images
and the layout of the graphical user interface constitutes a project of GroIMP.
All state information can be saved to and retrieved from a hierarchy of files,
where source files, images and other data intrinsically represented by a file
are stored as they are, while the graph and the state of the workbench are
stored as XML files. This hierarchy of files may either be written directly to
the file system, in which case the file name extension of the main file is gs,
or it may be written to a single ZIP archive containing all files, in which case
the file name extension is gsz. The ZIP archive follows the format of JAR
files [183], i. e., its first entry is the special file META-INF/MANIFEST.MF which
describes the MIME-type and possible further information of the other files.
Using a format based on XML and ZIP is not a new idea, this is also used by
the OASIS Open Office XML Format as it is advantageous for several reasons
[187]:

• XML is human readable and is thus accessible even without the corre-
sponding application.

• There exist a lot of standards and tools how to process XML files.
• ZIP compression yields a single small file and can handle both binary and

textual files.
• The content of ZIP files can be looked at and modified by standard ZIP

tools.

As an example, the content of the file Ludo.gsz of the Ludo model (Sect. 10.8.1
on page 347) is as follows:

Ludo.gsz
META-INF

MANIFEST.MF
data

Pawn.con.....defines profile of surface of revolution for pawns
images

Die.png................................texture image for die
project.gs....................................main project file
graph.xml.................................graph representation
Ludo.rgg...source code

A.5 Graphical User Interface

The graphical user interface of a GroIMP project consists of a set of pan-
els. There are panels for the source code editor, for the 3D view, for images,
shaders, toolbars and so on. Usually, only a subset of the available panels is

388 A The Modelling Platform GroIMP

shown at a time. This subset and its layout (i. e., the arrangement of the pan-
els) is at the discretion of the user: any not shown panel can be opened via the
menu Panels, the user may change the layout by a Drag&Drop-mechanism for
the panels. There also exists a list of predefined layouts in the menu Panels/Set
Layout, and the user may also add the current layout to this list.

An important subset of the panels consists of explorer panels which show
a list of objects of specific types. Most of them are available under the menu
Panels/Explorers. E. g., the image explorer shows all images of the current
project, the shader explorer all shaders, the object explorer all “stand-alone”
objects which in fact are nodes (or even whole graphs, referenced by an anchor
node). Objects may be added to such a list by choosing a submenu of the menu
Objects/New within the explorer panel. They may also be deleted by the key�� ��Delete or renamed by clicking twice on the object or by the key

�� ��F2 .
The file explorer manages a list of “raw” files. They can be source code,

JAR libraries, or HTML or plain text files with some information about the
project.

A.6 Import and Export Filters

GroIMP contains a lot of import and export filters. Table A.1 summarizes the
most important filters contained in version 0.9.8.1 of GroIMP. Most import
filters are used within the menu Objects/New/From File of an explorer panel
to create a new object of the specific type out of a description in a file. These
can then be referenced in the user interface where required, e. g., an image
can be referenced as texture in a shader, or they can also be referenced in the
source code of an RGG model, see Sect. B.13.5 on page 411.

A lot of import filters like GraphML, DXF or CPFG surfaces read in a
whole graph, referenced by an anchor node. Besides adding such a graph to
the object explorer, it can also be added directly to the scene graph of GroIMP
by the menu Objects/Insert File of the main window.

A.6.1 GraphML Import

The GraphML import filter reads a description of a graph conforming to the
GraphML format [14]. It defines five GraphML attributes: type and value
exist for both nodes and edges, where type specifies the class to use for the
object and value is a whitespace-separated list of assignments of values to
the instance variables. If the type-attribute is used for an edge, it is assumed
to actually refer to a node class, and a compound edge is created from the
node (see Sect. A.3.1 on page 382). Alternatively, one can use the attribute
bits to specify the edge bits of a normal edge as a comma-separated list of
edge types (see the API documentation for the exact format). The following
is an example of a scene consisting of a cylinder bearing a cone by a branch
edge (symbol +):

A.6 Import and Export Filters 389

Format Extension Import/Export Plug-in Explanation

Source code java, xl, rgg import RGG Sect. B.1
GROGRA source code lsy, ssy import RGG Sect. B.15

JAR library jar import Platform Sect. B.1
GraphML graphml import Platform Sect. A.6.1

X3D x3d both X3D
POV-Ray pov export POV-Ray

AutoCAD DXF dxf both DXF
Wavefront Object obj import DXF

GROGRA DTD, DTG dtd, dtg import RGG Sect. A.6.2
MTG mtg import Platform [172]
MSML msml both Platform [172]

CPFG function func import CPFG
CPFG surface s import CPFG
CPFG contour con import CPFG

Xfrog xfr import 3D-CS [77]
Protein Data Bank pdb import PDB

Image: any format sup-
ported by the ImageIO
API of the JRE, ad-
ditionally import from
portable pixel maps and
HGT height fields and
export to OpenEXR
HDR images

png, jpg,
gif, . . .
ppm, hgt,
exr

both IMP

Encapsulated Postscript eps export IMP

Table A.1. Supported data formats of GroIMP, version 0.9.8.1

<graphml xmlns=”http://graphml.graphdrawing.org/xmlns”>
<key id=”ntype” attr.name=”type” for=”node”/>
<key id=”nval” attr.name=”value” for=”node”/>
<key id=”etype” attr.name=”type” for=”edge”/>
<key id=”eval” attr.name=”value” for=”edge”/>
<key id=”bits” attr.name=”bits” for=”edge”/>
<node id=”s”>
<data key=”ntype”>de.grogra.imp3d.objects.Cylinder</data>
<data key=”nval”>radius=0.2 length=2</data>

</node>
<node id=”c”>
<data key=”ntype”>de.grogra.imp3d.objects.Sphere</data>

</node>
<edge source=”s” target=”c”>
<data key=”bits”>+</data>

</edge>
</graphml>

390 A The Modelling Platform GroIMP

A.6.2 DTD and DTG Import

DTD files (“descriptive tree data format”) typically contain the results of
geometric and topological measurements of plants [108, 106]. The format is
one of the input formats of the GROGRA software (Sect. 3.15.1 on page 35).
The DTG format is the native data format of the GROGRA software and
completely represents the current 3D structure.

Both formats can be imported to GroIMP and return a tree of nodes of
class de.grogra.grogra.DTGShoot, referenced by its root. A possible usage
is the analysis of tree data by XL queries, see Sect. 10.5.5 on page 314.

A.7 3D Plug-In

The plug-in IMP-3D provides 3D functionality and, thus, is one of the most
important plug-ins of GroIMP. The plug-in uses a graph given by the in-
terface of Sect. A.3.1 on page 379 and interprets this as a 3D scene graph
[59, 82, 84] in several contexts, namely when rendering it both in real-time
(AWT-based wireframe display, OpenGL-based display with surface shading)
and by ray-tracing, when exporting it to 3D data formats, and when doing
geometric computations in RGG models (e. g., computation of distance, in-
tersection tests, radiation model). A speciality of the scene graph is that each
object may specify two coordinate transformations: the first one is applied to
the inherited coordinate system of the parent and defines the local coordinate
system of the node itself, the second one is applied to this coordinate system
and defines the coordinate system which is passed to children. An application
thereof is found in the classes having an axis such as Cylinder or Cone: these
may be oriented in an arbitrary way with respect to their parent, and the
coordinate system passed to children is shifted along the axis such that its
origin coincides with the top of the axis. As a consequence, in a sequence of
nodes of these types each base point of a successor coincides with the tip of
its predecessor, which exactly conforms with the turtle interpretation of the
F command. (In fact, this is only the default behaviour, but the classes im-
plement a more general mechanism where the relative position along the axis
can be specified.)

From an RGG modeller’s perspective, two packages are of great impor-
tance: de.grogra.imp3d.objects and de.grogra.imp3d.shading. The first
one defines a lot of classes to be used for nodes in a 3D scene graph. The
hierarchy is shown in Fig. A.5 on the facing page. Its base class Null is noth-
ing but an invisible Node with a transformation attribute, i. e., it transforms
the local coordinate system of its children. The subclass ShadedNull has an
additional attribute for a shader which is used within the subclasses to shade
their surfaces. The subclasses of ColoredNull do not have a surface as they
are locally 0- or 1-dimensional, therefore a simple colour attribute is sufficient

A.7 3D Plug-In 391

Cone

.\	 nnnnn

FrustumBase

+Z� kkkkkk
Cylinder�Lr

AxisBase

9d� yyyyyyyyyyyyyyyyyyyyyyyy
Axis�Lr Frustum

�6cQQQQ

Sphere

3̀� ssssssssssssssssssss
Box

�9dSSSSSSSSS

Plane

,[� llllllllllllllllll
Parallelogram

�,[FFFFFFFFFF

NURBSSurface

&U|fffffffffffff

ShadedNull

_�2

Polygon�Lr

Patch

�BiXXXXXXXXXXXXXXXX

MeshNode

�8dRRRRRRRRRRRRRRRR

CSGNode

�0̂ KKKKKKKKKKKKKKKKKKKK

Sky

�+ZEEEEEEEEEEEEEEEEEEEEEEEE

Null

_�2

Instance3D

~'V>>>>>>>>>>>>>>>>>>>>>>>>>>>

NURBSCurve

,[� llll
Mark

+Z� kkkkkkkk

ColoredNull

�*YCCCCCCCCC
Point�Lr GRSVertex�Lr

Line

�9dSSSSSS
Vertex

�9dSSSSSSSS

SensorNode

�,[FFFFFFFFFF

Label

n�I......................
TextLabelBase�Lr NumericLabel�Lr

TextLabel

�9dSSSSS

LightNode

j�C******************************

Node

de.grogra.imp3d.objects

de.grogra.graph.impl

Figure A.5. Class diagram for 3D scene graph nodes

392 A The Modelling Platform GroIMP

for their visual representation. The illumination of a scene is done by light
sources which can be inserted either as part of a LightNode or of a Sky.

Besides geometric primitives like Sphere, Box, Line, there is also more
complex 3D geometry. NURBSSurface and NURBSCurve have an attribute of
type de.grogra.math.BSplineSurface or de.grogra.math.BSplineCurve,
respectively, and render the surface or curve in three dimensions, using the
framework of non-uniform rational B-splines (NURBS, [149]). GroIMP pro-
vides a lot of construction techniques for such surfaces and curves. Polygon
takes a de.grogra.math.VertexList as input and draws a single polygon
whose boundary passes the vertices in the list. Patch has a rectangular
de.grogra.math.VertexGrid as input and draws a corresponding polygon
mesh. Finally, MeshNode is used as the 3D scene graph node for arbitrary
polygon meshes (e. g., specified by a graph rotation system, Sect. 10.6 on
page 335).

The other important package de.grogra.imp3d.shading does not define
3D scene graph nodes, but is used for optical properties like shader or light
source attributes. Figure A.6 on the facing page shows the hierarchy of its most
useful classes. RGBAShader is a simple Lambertian shader specified by an RGB
colour and an α-value for transparency. Phong is based on the Phong model
and is controlled by several properties. For most of these properties, textures
can be used which are either procedural or based on an image. SunSkyLight
can be used as a sky background, but it also implements a light source which
realistically models the light distribution of the true sun and sky. The two
SwitchShader subclasses choose the shader to be used from a list of shaders:
SideSwitchShader chooses among two shaders, one for the front side of a
surface, the other for the back side. AlgorithmSwitchShader chooses among
three shaders, one for the visualization in the user interface, one for the use in
ray tracing, one for the radiation model. The latter then has to be physically
correct in order to obtain meaningful results from the radiation model, while
the other ones can be chosen to allow a nice visualization.

The subclasses of LightBase implement different kinds of light sources.
These are used as light attribute of a scene graph node of class LightNode.
The 3D scene graph node Parallelogram can not only specify geometry, but
may also be an area light source.

A.7.1 Built-In Raytracer

The built-in raytracer Twilight is actually implemented in the plug-in Ray-
tracer. The plug-in IMP-3D implements the geometry and shading interfaces of
the raytracer so that the latter can be used to obtain high-quality renderings
of the 3D scene graph. In fact, most renderings of Chap. 10 were rendered by
Twilight. Figure A.7 on page 394 shows a rendering of a simple scene with
diffuse reflection, an area light and a lens projection with noticeable depth
of field. All these effects are simulated by the path tracer option of Twilight,

A.7 3D Plug-In 393

SunSkyLight

.\	 nnnnnn

NNNNNNNNNNNNNNNNN
SpotLight

_�2
Material

_�2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Phong�Lr PointLight

-[� mmmmmm

RGBAShader

n n n n n
LightBase

_�2
�
�
�
�
�
�
�
�
�
�
�
�
�

DirectionalLight�Lr

SwitchShader

Pu" �
�

�
�

�
�

�
�

�
�

�
�

AlgorithmSwitchShader�Lr AmbientLight

�6cQQQQQQ

SideSwitchShader

�9dSSSSSSS

Parallelogram

Dj� �
�

�
�

�
�

�

�interface�

Shader

�interface�

Light

de.grogra.imp3d.shading

de.grogra.ray.physics

Figure A.6. Class diagram for shaders and light sources

i. e., a Monte Carlo-based approximation of the rendering equation for global
illumination [89, 195].

For an efficient Monte Carlo algorithm, the shaders implemented by the
plug-in IMP-3D (RGBAShader, Phong, SunSkyLight, see Fig. A.6) create pseu-
dorandom samples based on importance sampling [195], i. e., samples whose
contribution is likely to be more important are chosen with a higher proba-
bility than samples which are relatively unimportant.

394 A The Modelling Platform GroIMP

Figure A.7. A simple scene rendered by the path tracer option of Twilight. An
area light illuminates the scene from the right. The sphere casts a deepest shadow,
enclosed by a soft shadow due to the extent of the area light. The diffuse reflection of
yellow light can be seen on the ground under the sphere, it is also responsible for the
illumination of the sphere in the shadow of direct light. These effects are amplified
in the image for illustration purposes. The blurred chessboard pattern shows the
effect of depth of field.

B

The RGG Plug-In of GroIMP

The RGG plug-in establishes the link between GroIMP and the XL program-
ming language. It uses the base implementation of the XL interfaces (Sect. 9.1
on page 235) to make the graph of GroIMP (Sect. A.3.3 on page 384) acces-
sible to the run-time system of the XL programming language and to provide
a derivation mechanism which is compliant with relational growth grammars.
This plug-in also provides a re-implementation of some of the features of the
GROGRA software within the new framework.

B.1 Overview of Functionality

The RGG plug-in is dedicated to modelling by (rule-based) programming, so
its first task is to compile source code into executable code. For this purpose,
any source code file listed in the file explorer (extensions java, xl, rgg, lsy,
ssy) is considered to be a part of the model, and the XL compiler is invoked
to compile all source code files simultaneously. Furthermore, if there are JAR
libraries listed in the file explorer, these are implicitly added to the classpath
of source code.

To facilitate the execution of models, the plug-in handles compiled classes
which extend de.grogra.rgg.RGG specially (Sect. B.2 on the next page).
There are dedicated methods for the life cycle of such RGGs, and public
methods without argument can be invoked directly by the RGG toolbar as
they are considered to expose the basic actions of the model.

Finally, the plug-in provides a large collection of useful classes and meth-
ods. A lot of scene graph nodes with the semantics of turtle commands are
defined in the package de.grogra.turtle following the naming convention
of the GROGRA software, see Table B.2. The class Library defines utility
functions related to the topology and 3D geometry of the scene graph, to the
control of rule application and to some further tasks (Sect. B.13 on page 408).
The radiation model is also contained in this plug-in and described later in
Sect. B.14 on page 412.

396 B The RGG Plug-In of GroIMP

An easy starting point for RGG modelling within GroIMP is via the menu
File/New/RGG Project. The user is asked for the name of the main class, and
then a new project with a simple model is opened. This automatically uses
the RGG layout of panels (Sect. A.5 on page 387) which contains, among
others, the 3D view, source code editor and the RGG toolbar. But this layout
can also be obtained for any project by choosing it via the menu Panels/Set
Layout/RGG Layout.

B.2 RGG Class and Its Life Cycle

The class de.grogra.rgg.RGG stands for a relational growth grammar. When-
ever a compiled class is a subclass of RGG, a singleton instance of the class
is automatically created and added to the list of meta objects (accessible
through the meta objects explorer). The following methods are used to notify
the instance about its life cycle:

RGG

startup()
reset()
init()
shutdown()
isMainRGG(): boolean

. . .

The method startup is invoked when an RGG instance is created within
GroIMP, i. e., after the re-compilation of its source code and after loading
a project already containing the instance. Afterwards, reset is invoked if the
instance has been created due to a re-compilation of source code. It is not
invoked if the instance was loaded from a project as in this case it is assumed
that the read project data already specifies a state where the method reset
has been invoked.

Unless isMainRGG returns false, the default implementation of startup
scans the used subclass of RGG for public non-static methods without param-
eters and having return type void. Each such method is considered to be an
action of the model (e. g., a collection of rules which constitute the dynamics
of a single transformation step), and a button to invoke the method is added
to the RGG toolbar.

Again unless isMainRGG returns false, the default implementation of
reset establishes an initial structure in the graph, comparable to a fixed
start word in the context of L-systems:

B.2 RGG Class and Its Life Cycle 397�� ��Axiom

�� ��. . .
�� ��RGGRoot

>

OO

r
�� ��Node

+
88rrrrrrrrrr

...

ccGGGGGGGGGG

If there already exists an RGGRoot node connected to the main root r by a
branch edge, reset removes this node together with its subtree. Like RGG,
the classes RGGRoot and Axiom are members of the package de.grogra.rgg.
After creating the start graph, the default implementation of reset invokes
init. The default implementation of the latter does nothing, a typical im-
plementation in subclasses replaces the Axiom by some model-specific initial
structure.

The last life cycle method shutdown is invoked on the RGG instance when
it is unloaded, i. e., when a new version of its source code is compiled and the
old instance is removed.

For the example

import de.grogra.rgg.*;

import de.grogra.imp3d.objects.*;

public class Model extends RGG {

protected void init() [

Axiom ==> Box;

]

public void step() [

Box ==> Cone Box;

]

}

the structure after complete initialization is�� ��F

�� ��RGGRoot

>

OO

�� ��Node

+

OO

The RGG toolbar shows a button labelled step which invokes the correspond-
ing method when clicked. There always is a Reset button to invoke the reset
method which then re-establishes the structure after initialization. As de-
scribed above, this only removes the subgraph starting at the single RGGRoot,

398 B The RGG Plug-In of GroIMP

but does not affect nodes directly connected with the main root of the graph
(and their descendants). In other words, there is a partition of the graph in a
part which is considered to be algorithmically generated (the part reachable
via RGGRoot) and is thus removed on reset, and a part which is considered to
be created by other means (e. g., interactively like the terrain, sky and pavil-
ion in the stand model of Sect. 10.5.6 on page 326) and is thus not removed
on reset.

The default implementation of the method isMainRGG returns true. How-
ever, if there is more than one subclass of RGG in a project, one has to override
this method in the subclasses so that only one returns true. The correspond-
ing class is then used for initialization and resetting of the model, while the
others behave almost like ordinary classes, i. e., an instance of them is auto-
matically created, but the methods startup and reset do nothing, and no
menu entries for methods are created.

B.3 XL Console

The XL console is a panel of the user interface. It is used for two purposes:
some functions of the library (Sect. B.13 on page 408) write textual output
to the console, and the user may type in XL statements which are compiled
and executed immediately. A valid statement within the console is any valid
statement of the XL programming language, but the terminal semicolon may
be omitted. Variables are implicitly declared by assignments and remembered
throughout the same session of the console. The result of non-void statements
is written to the console. The automatic imports of the RGG dialect (see next
section) are also automatic for the console. Further import statements may be
given, these are then used throughout the same session. An example session
is

> count((*F*))

3

> (*F*)[length]

11.0

10.0

9.0

> sum((*F*)[length])

30.0

> x = mean((*F*)[length])

10.0

> (*F*)[length] = x

10.0

10.0

10.0

>

B.4 RGG Dialect of the XL Programming Language 399

B.4 RGG Dialect of the XL Programming Language

The XL programming language being a true extension of the Java program-
ming language, there is some syntactical overhead when specifying RGG mod-
els. For example, a possible implementation of the snowflake construction
looks like:

import de.grogra.rgg.*; // for Axiom, RGG

import de.grogra.turtle.*; // for F, RU

public class Koch extends RGG {

public void rules() [

Axiom ==> F(10) RU(120) F(10) RU(120) F(10);

F(x) ==> F(x/3) RU(-60) F(x/3) RU(120) F(x/3) RU(-60) F(x/3);

]

}

From the perspective of a user familiar with L-systems, one would ideally have
to specify only the two lines for the actual rules. To facilitate RGG modelling,
we defined a simplified dialect of the XL programming language called the
RGG dialect which is indicated by a source file having the extension rgg. This
dialect implicitly surrounds the source code by a declaration of a subclass of
RGG, and it adds several automatic imports. For a source file Model.rgg, the
equivalent XL code is

import de.grogra.xl.lang.*;

import de.grogra.annotation.*;

import de.grogra.rgg.*;

import de.grogra.turtle.*;

import de.grogra.imp3d.objects.*;

import de.grogra.imp3d.shading.*;

import de.grogra.math.*;

import javax.vecmath.*;

import de.grogra.pf.data.*;

import de.grogra.graph.impl.Node;

import de.grogra.rgg.Attributes;

import static de.grogra.xl.util.Operators.*;

import static de.grogra.rgg.Library.*;

import static de.grogra.vecmath.VecmathOperators.*;

import static de.grogra.imp3d.shading.RGBAShader.*;

import static de.grogra.pf.ui.ChartPanel.*;

import static de.grogra.turtle.TurtleState.*;

import static de.grogra.xl.impl.base.Graph.*;

imports declared in Model.rgg

@ImplicitDoubleToFloat(true)

400 B The RGG Plug-In of GroIMP

public class Model extends RGG {

public static Model INSTANCE;

{INSTANCE = this;}

declarations of Model.rgg, member classes are implicitly static

}

Thus, the imports most frequently needed are automatic, and the singleton
nature of RGG subclasses is reflected by the static field INSTANCE by which the
single instance can be accessed. Furthermore, within the RGG dialect there
is no need to cast double values to float as this is an implicit conversion.

B.5 Implicit Annotations for Source Code

When the XL compiler is invoked within the RGG plug-in, the following an-
notations are implicitly added to compilation units, i. e., to each source file:

@de.grogra.xl.query.UseModel(Compiletime.class)
@de.grogra.xl.property.UseModel(type=Node.class,

model=PropertyCompiletime.class)
@de.grogra.xl.modules.DefaultModuleSuperclass(Node.class)
@de.grogra.xl.modules.InstantiationProducerType(Instantiation.class)
@de.grogra.xl.compiler.UseExtension(CompilerExtension.class)

The RGG-specific classes used in the above annotations are defined in the
package de.grogra.rgg.model. The last annotation defines a compiler ex-
tension which is described in the next section.

B.6 Processing of Compiled Classes

The implicit annotation @UseExtension(CompilerExtension.class) makes
use of the possibility to define extensions for the XL compiler (Sect. 8.6 on
page 226). The used extension de.grogra.rgg.model.CompilerExtension
processes compiled classes by several steps:

• Types are made public.
• If a node class declares a constructor with no arguments, it is made public.

Otherwise, an implicit public constructor with no arguments is created.
• Some additional structure is added which is required by the persistence

mechanism of Sect. A.3.2 on page 383. This includes the declaration and
initialization of a special static field $TYPE. This additional structure has
to be created also for the predefined node classes of GroIMP, but as these
are implemented in the Java programming language, we cannot make use
of a comparable compiler extension, but have to specify the additional
structure in the source code itself (see Sect. A.3.3 on page 384).

B.8 Operations of the Producer 401

• For a module declaration with instantiation rule (Sect. 6.11.2 on page 182),
the method getInstantiator of class Node is overridden so that the in-
stancing mechanism of the graph interface (Sect. A.3.1 on page 382) uses
the instantiation rule.

Making node classes and their default constructors public is required by the
persistence mechanism (otherwise it would not be able to create instances of
node classes when reading their data from a stream). Making any type public
is just for convenience, as we are only then allowed to access them in the
XL console. But note that the change of accessibility to public is done as a
postprocessing step so that this is only reflected in the bytecode and then in
the classes at run-time, but the original accessibility is used throughout the
proper compilation.

B.7 Implementation of Graph Model

The XL graph interface is implemented by de.grogra.rgg.model.RGGGraph.
The implementation of the method enumerateNodes, whose task is to enumer-
ate all nodes of the graph having a given type, uses the mechanism of extents
of the graph of GroIMP to efficiently find all suitable nodes (Sect. A.3.3 on
page 386). This mechanism partitions each extent in a set of numbered lists,
and by invoking the method setVisibleExtents, one may choose those lists
which shall be considered by enumerateNodes. By default, all but the last list
are visible. I. e., by moving a node to the last list one may screen the node
from further rule applications. The extent list of a node may be changed ei-
ther by directly setting the property extentIndex of the node, or by invoking
utility methods in the Library (see Sect. B.13 on page 408).

The implementation of the method enumerateEdges, whose task is to
enumerate all edges of a given node fulfilling some conditions, is able to handle
normal edges of the graph of GroIMP (based on the encoding of types in an
int-value), but also compound edges with an interjacent node playing the
role of the edge information. Therefore, we may not only write a pattern like
A -successor-> B to find all nodes of type A with a successor edge to a node
of type B (successor is a constant defined in the Library), but also a pattern
like A -E-> B to look for compound edges with node type E, i. e., for actual
edges of type EDGENODE IN EDGE from the A-node to the E-node and of type
EDGENODE OUT EDGE from the E-node to the B-node (Sect. A.3.1 on page 382).

B.8 Operations of the Producer

The producer type for right-hand sides is specified by the query model of the
RGG plug-in and is de.grogra.rgg.model.RGGProducer. It extends the pro-
ducer of the base implementation (Sect. 9.1.4 on page 243) and implements

402 B The RGG Plug-In of GroIMP

the prefix operators for node expression shown in Table B.1. Furthermore,
the special producer method producer$getRoot (the internal meaning of the
root symbol ^, Sect. 6.7.2 on page 165) is implemented and returns the root
node of the RGG-generated part of the graph, i. e., the instance of RGGRoot
as described in Sect. B.2 on page 396. The three methods producer$push,
producer$pop and producer$separate, which are responsible for the im-
plementation of the symbols [,] and , (Sect. 6.7.4 on page 168), are also
implemented using the corresponding helper methods of the base implemen-
tation. Some examples of the usage of the producer operations are

A [B] C

A -(branch|successor)-> B

A [> B] -E-> C

Assuming that all uppercase letters stand for node classes, the first example
defines a graph with a branch edge from the A-node to the B-node and a
successor edge from the A-node to the C-node. The second example uses the
predefined constants branch, successor of the Library class and defines a
graph with both a successor and a branch edge from the A-node to the B-
node. Like the first example, the third example creates edges from the A-node
to both the B- and C-node, but the default branch edge of bracketed parts is
overridden by the operator > to be a successor edge, and the edge from the
A-node to the C-node is in fact a compound edge with an interjacent E-node,
an edge of type EDGENODE IN EDGE from the A-node to the E-node and an
edge of type EDGENODE OUT EDGE from the E-node to the B-node (Sect. A.3.1
on page 382).

To facilitate the usage of the vertex-vertex algebra implementation, the
RGGProducer also declares a method vv which returns a VVProducer, and an
overloading for the whitespace operator with a VVProducer parameter which
returns the passed argument. For an example, see Sect. 10.6 on page 335.

B.9 Properties

The implementation of properties is based on the persistence mechanism
(Sect. A.3.2 on page 383): for any field of a class which is registered with
this mechanism there is also a property according to Sect. 6.10 on page 174.
E. g., the class de.grogra.imp3d.objects.Parallelogram has the field axis
of type Vector3f. This is also available as property axis with three subprop-
erties x, y, z. For any property type, all meaningful operators for deferred
assignments are implemented (namely, the methods of the interfaces shown
in Fig. 9.5 on page 252). They append corresponding entries to a property
modification queue as suggested in Sect. 9.1.8 on page 251. Thus, deferred
assignments take effect when modification queues are processed, i. e., when
the current parallel derivation is applied (Sect. 9.1.2 on page 237).

Properties are only defined with respect to first-class objects, i. e., nodes
(Sect. A.3.2 on page 383). This means that in a property variable x[property]

B.9 Properties 403

Prefix Operator Description

whitespace add node and connect with previous node, if any, by a
successor edge

> connect node with previous by a successor edge
< connect node with previous by a reverse successor edge
<-> connect node with previous by successor edges in both

directions

--- connect node with previous by a successor edge if there
does not yet exist such an edge in either direction

+>, <+, <+>, -+- as before, but branch instead of successor edges
/>, </, </>, -/- as before, but refinement instead of successor edges
-e->, <-e-, <-e->, -e-
with an int-valued ex-
pression e

as before, but edges of type e instead of successor edges

-n-> with a node-
valued expression n

create a compound edge with n encoding the edge data
(for compound edges see Sect. A.3.1 on page 382)

<-n- with a node-
valued expression n

as before, but reverse direction

Table B.1. Prefix operators for node expressions provided by RGGProducer

the instance x has to be a node. Therefore, given an instance v of type
Vector3f, there is no property variable v[z], although we have, e. g., a prop-
erty variable p[axis][z] for a Parallelogram p. In other words, second-class
objects may only declare subproperties of properties of first-class objects.

The difference between normal instance variables like p.axis or p.axis.z
and property variables p[axis] or p[axis][z] is not only that the latter
may be used as targets of deferred assignments. When new values are as-
signed to these variables, an assignment to a normal instance variable like
p.axis.z = 1; does not trigger any further action. Contrary, an assignment
to a property variable p[axis][z] = 1; is performed through the persistence
mechanism, and this offers a lot of useful side effects to be executed on such
assignment. By default, all changes are logged to a protocol (Sect. A.3.2 on
page 383) so that they may be undone or transferred over a network to other
instances of the same graph which shall be kept consistent with each other.
Furthermore, listeners may be added to the graph which then are notified
about changes like the assignment of new values to variables. This is used by
GroIMP to automatically trigger a redraw of graph views like the 3D view.
Therefore, the following rule should be obeyed: attributes of nodes which
are already part of the graph must not be modified by assignments to their
conventional instance variables, but only by assignments to their property
variables. As setter-methods like setAxis only wrap assignments to instance
variables, these also must not be used for nodes which are already part of the
graph. However, it is perfectly legal to use conventional assignments or setter
methods on newly created nodes which are not yet part of the graph as in

404 B The RGG Plug-In of GroIMP

Axiom ==> Parallelogram.(setLength(4), setAxis(1, 0, 1));

A later enlargement of the parallelogram should then be implemented using
property variables:

p:Parallelogram ::> {p[length] :*= 1.1; p[axis][x] :*= 1.1;}

B.10 Wrappers

The XL programming language allows to include non-node types in queries
by suitable wrapper nodes (Sect. 6.5.2 on page 148). The RGG plug-in de-
fines the node classes BooleanNode, . . . , ObjectNode which wrap arbitrary
primitive values or objects in their property value, and these are integrated
into the query mechanism by the compile-time model so that one can use a
pattern x:String which finds all wrapped strings x or even x:"FSPM" to find
all strings equal to "FSPM" (together with their wrapper nodes $x). Further-
more, the two 3D node classes NURBSCurve and NURBSSurface are also con-
sidered as wrapper classes, their wrapped values being of type BSplineCurve
or BSplineSurface, respectively. Therefore, a pattern like c:Circle is valid
although a Circle is not a node by itself. Likewise, we may write a rule

c:Circle ::> c[radius] :*= 1.1;

By using the mechanism discussed in Sect. 6.10.4 on page 179, this is actually
interpreted as

b:NURBSCurve & (b[curve] instanceof Circle) ::>

((Circle) b[curve])[radius] :*= 1.1;

since properties are only defined with respect to node classes, but not with
respect to second-class objects (see the previous section).

While the compile-time and run-time interfaces have to deal with how
to unwrap values out of wrapper nodes, the wrapping of values in wrapper
nodes is not covered. As this typically happens on right-hand sides, the first
candidate where to specify wrapping is within the implementations of prefix
operators in the producer. A more convenient way is to use user-defined con-
versions from wrappable values to their wrapper nodes, these conversions are
then automatically used when the producer does not define a suitable operator
method. RGGProducer defines such conversions from any wrappable value as
static conversion methods. By the general mechanism of producers explained
in Sect. 6.7.1 on page 164, these are in scope on right-hand sides and are thus
implicitly used for conversion when required.

For the unwrapping of values there exist user-defined conversions in the
Library, see Sect. B.13.7 on page 412.

B.11 Interpretive Mode 405

B.11 Interpretive Mode

The base implementation already provides a general framework for interpre-
tive rules. It is explained in detail in Sect. 9.1.6 on page 248. There, the
type IM for interpretive marks was used; within the RGG plug-in the con-
crete class de.grogra.rgg.model.InterpretiveMark is used for this pur-
pose. The class RGGGraph defines the two methods removeInterpretiveNodes
and removeInterpretiveNodesOnDerivation to coordinate the deletion of
interpretive structures. The first one immediately deletes these structures by
looking for all interpretive marks, finding the connector nodes of the interpre-
tive structure indicated by the mark, and then removing the whole interpre-
tive structure as discussed in Sect. 9.1.6. The latter method just sets a flag
that the first method shall be invoked on derivation, namely as first action
of the derive method of RGGGraph. In effect, this adds a rule for deletion of
interpretive structures to the set of applied (generative) rules.

Using the method rggGraph of the Library which returns the currently
used RGGGraph, a possible usage of interpretive rules is the following:

rggGraph().setDerivationMode(PARALLEL_MODE);

rggGraph().removeInterpretiveNodesOnDerivation();

[

A ==> [B] X A;

]

derive();

rggGraph().setDerivationMode(PARALLEL_MODE | INTERPRETIVE_FLAG);

[

X ==> RH(180) F(1);

B ==> RU(60) F(1);

]

derive();

For the first rule block, we use the normal parallel derivation mode (see
Sect. 9.1.5 on page 245), but remove any existing interpretive structures on
derivation. After applying the resulting parallel derivation, we switch to the
interpretive mode and assign a geometric meaning to internode-like nodes of
class X and branches of class B.

To facilitate the usage of interpretive rules, the RGG class defines the helper
method applyInterpretation which basically implements the code from
above and delegates to the method interpret to invoke the actual interpre-
tive rules. This method is empty in RGG, but may be overridden in subclasses
as in this example:

public void step() [

A ==> [B] X A;

{applyInterpretation();}

]

protected void interpret() [

406 B The RGG Plug-In of GroIMP

X ==> RH(180) F(1);

B ==> RU(60) F(1);

]

Note that the instantiation rules presented in Sect. 6.11.2 on page 182 provide
a similar framework to equip nodes with a geometric meaning. As it has been
discussed there, both frameworks have advantages and disadvantages, but a
general advice is to prefer instantiation rules instead of interpretive rules,
especially for large graphs where the efficiency concerning space and time is
crucial.

B.12 Turtle Commands

In the framework of scene graphs, turtle commands of L-systems are scene
graph nodes. E. g., the turtle command RU(30) of the GROGRA software
(Sect. 3.15.1 on page 35), which performs a rotation by 30 degrees around
the local y-axis, is represented as a transformation node in the scene graph,
and the turtle command F(1), which creates a cylinder of length 1 and some
given radius, is represented as a node with the geometry of a cylinder and
a translation along the axis of the cylinder as transformation. Although the
notion of a turtle is uncommon in the context of scene graphs, we still call those
scene graph nodes turtle commands which have been adopted from the L-
system software GROGRA. They are part of the package de.grogra.turtle.

The geometry of some turtle commands of the GROGRA software is only
defined when considering the current turtle state. E. g., the sequence of turtle
commands P(15) D(1) F(2) draws a cylinder of length 2, diameter 1 and
colour 15 of the EGA colour palette (i. e., white). So while the length is ex-
plicitly specified in a parameter of the symbol, diameter and colour have to
be set by preceding turtle commands which modify the turtle state.

To implement this semantics for a scene graph, a derived attribute for
the turtle state is defined by the class de.grogra.turtle.TurtleState. As
for any derived attribute, its value is given by an evaluation along the path
(along branch or successor edges) from the root to the node in question. The
evaluation looks for nodes being a de.grogra.turtle.TurtleStateModifier
which are then asked to modify the turtle state according to their semantics.
The turtle state is queried by turtle command nodes when the latter need
additional information from the state.

Turtle commands for moving or drawing assume that the local z-direction
is the growth direction. In fact, this convention is already an intrinsic part of
the abstract class de.grogra.imp3d.objects.AxisBase defined in the IMP-
3D plug-in (Fig. A.5 on page 391). All turtle commands for moving and draw-
ing inherit from this class, but also some geometric primitives like Cylinder
or Box.

Almost all turtle commands of the GROGRA software are defined by the
RGG plug-in. Table B.2 gives a short explanation of them, more details can

B.12 Turtle Commands 407

Turtle Command Description GROGRA Notation

F(x) draw cylinder of length x F(x)

F(x, d) draw cylinder of length x and diame-
ter d

Dl(d) F(x)

F(x, d, c) draw cylinder of length x, diameter d
and colour c

Pl(c) Dl(d) F(x)

F0 draw cylinder using length of turtle
state

F

FAdd(x) draw cylinder using length of turtle
state, incremented by x

F+(x)

FMul(x) draw cylinder using length of turtle
state, multiplied by x

F*(x)

M(x), M0,
MAdd(x), MMul(x)

same as above, but only movement f(x), f,
f+(x), f*(x)

MRel(q) move to relative position q on previ-
ously created axis

@(q)

RL(a), RU(a), RH(a) rotate by a degrees around local
x/y/z-axis, respectively

RL(a), RU(a), RH(a)

Plus(a), Minus(a) rotate by a/-a degrees around local
y-axis

+, -

AdjustLU rotate around local z-axis such that
local y-axis points upwards as far as
possible

$

RV(e), RV0,
RVAdd(e), RVMul(e)

gravitropism, strength given by e

and/or turtle state (see F above)
RV(e), RV,
RV+(e), RV*(e)

RG maximal gravitropism such that local
z-direction points downwards

RG

L(x), L0,
LAdd(x), LMul(x)

modify length of turtle state: set to
x/set to default value/increment by
x/multiply by x

L(x), L,
L+(x), L*(x)

Ll(x), LlAdd(x),
LlMul(x)

modify local length of turtle state
(the length used only for the next F)

Ll(x), Ll+(x),
Ll*(x)

last two rows, but
with C, D, H, N, U, V
instead of L

modify carbon/diameter/heartwood/
parameter/internode count/tropism,
respectively, of turtle state

P(c), P0, Pl(c) modify colour of turtle state: set to
c/set to default value/set colour only
of next F to c

P(c), P, Pl(c)

OR(o) set order of turtle state to o OR(o)

IncScale increment scale counter of turtle state /

Table B.2. Turtle commands adopted from GROGRA [103, 106]

408 B The RGG Plug-In of GroIMP

Turtle Command Description

RD(v, e) directional tropism towards direction v with strength e

RO(v, e) directional tropism towards projection of current moving
direction on plane orthogonal to v with strength e

RP(p, e) positional tropism towards position p with strength e

RN(n, e) positional tropism towards location of node n with
strength e

Translate(x, y, z) translation by (x, y, z)

Rotate(x, y, z) rotation by (x, y, z) degrees (local coordinate system is
rotated around the x-axis first, then around the y-axis
and finally around the z-axis)

Scale(x, y, z) scaling by (x, y, z)

Scale(s) uniform scaling by s

Table B.3. Extended turtle commands

be found in [103, 106]. Table B.3 shows extended turtle commands which are
not available in the GROGRA software. Furthermore note that all 3D classes
of the IMP-3D plug-in shown in Fig. A.5 on page 391 can also be used in the
manner of turtle commands as “turtle command” is basically a synonym for
“scene graph node” in the new framework.

B.13 Library Functions

The class de.grogra.rgg.Library provides a lot of functions and operator
overloads as static methods. They are not directly related to the formalism
of relational growth grammars, but are useful when specifying typical RGG
models. They can roughly be divided into geometric, mathematical, topolog-
ical and further miscellaneous functions. A lot of the methods are only short
helper methods which redirect to other methods spread over the GroIMP API
and thus provide easy access to the functionality of GroIMP, tailored for the
needs of RGG modelling. As the RGG dialect automatically imports the mem-
bers of Library, they can be addressed by their simple name. In this section,
we give a short overview of the library functions, details can be found in the
API documentation [101].

B.13.1 Geometric Functions

The geometric functions of Library perform several 3D computations which
often occur in typical models. All of them are defined in terms of global co-
ordinates which already introduces some kind of global sensitivity (Sect. 3.11

B.13 Library Functions 409

on page 30, Sect. 3.12 on page 32, [103, 106, 155]). location, direction
and transformation compute the corresponding 3D properties of a given
node using the global coordinate system of the node, where direction refers
to the local z-direction in global coordinates. Distinguishing the z-direction
is by convention: as mentioned in Sect. B.12 on page 406, the local z-
direction is the intrinsic growth direction of scene graph nodes extending
de.grogra.imp3d.objects.AxisBase, which includes the turtle commands
for movement and drawing.

The one-parameter method angle computes the angle of rotation which a
given node implements by its coordinate transformation. The two-parameter
method angle computes the angle between two given directions. inclination
returns the angle between the local and global z-axes of a node. distance
computes the distance between two given nodes.

The two tropism methods compute a transformation node which imple-
ments a positional or directional tropism, respectively. Contrary to the turtle
commands RP and RD, the methods return a fixed transformation which is not
recomputed if the local coordinate system changes.

The next geometric methods use the general framework of the Vecmath
plug-in to specify and execute line- and volume-related 3D computations.
Within the used framework, volumes are represented by instances of the inter-
face de.grogra.vecmath.geom.Volume. The method distanceToLine com-
putes the minimal distance of a point to a line, the method intersect inter-
sects a line with a volume, and the method intersectionLength computes
the length of the intersection between a line and a cone. The method cone
is used to create a cone-shaped volume: for a given node, it uses its location
and growth direction for the tip and axis of the cone, and the specified an-
gle determines the half opening angle of the cone. This is a useful method
for simple competition models which test for shading or otherwise competing
objects in the cone in growth direction. The method volume converts any ge-
ometric shape into the corresponding representation as a volume. ray creates
a ray to be used in intersection tests. The two user-defined conversion func-
tions toPoint3d and toTuple3d return for a given node its location, and the
user-defined conversion function toLine returns a line which corresponds to
the axis of a node, i. e., the connection line between the base point and the
tip of a node.

Four constants within 3D space are defined. The vectors LEFT, UP, HEAD
are unit vectors of the x-, y-, z-axis, respectively, their names following the
convention of turtle geometry. The point ORIGIN has the coordinates (0, 0, 0).

B.13.2 Mathematical Functions

Most of the mathematical functions of the library are related to the gener-
ation of pseudorandom numbers. random, normal and lognormal compute
uniformly, normally and log-normally distributed pseudorandom numbers,
respectively. irandom is used for discrete uniform pseudorandom numbers,

410 B The RGG Plug-In of GroIMP

distribution for a discrete distribution with given probabilities. The method
probability represents a Bernoulli variable with the two outcomes false,
true. Finally, setSeed sets the seed for the pseudorandom number generator.

Two aggregate methods mean compute the mean value of a sequence of val-
ues of Tuple3f and Tuple3d, respectively. The aggregate method statistics
computes a statistics of a sequence of values including number of values, mean
value and deviation. Of course, also the general filter and aggregate meth-
ods of the class de.grogra.xl.util.Operators can be used (Sect. 6.3.6 on
page 138, Sect. 6.4.3 on page 140), these are automatically imported by the
RGG dialect.

The two constants DEG and R2D can be used as factors to convert from
degrees to radians or from radians to degrees, respectively.

B.13.3 Topological Functions

The method graph returns the graph of the current model. The constants
successor, branch, refine, contains, mark and master are aliases for edge
type constants defined elsewhere. mark is a general-purpose edge, master is
used for edges from an Instance3D node (Fig. A.5 on page 391) to its master
node, i. e., to the node whose geometry shall be instantiated. The constants
EDGE 0 to EDGE 14 stand for edge types which are not used by GroIMP and
may serve as model-specific edge types by declarations like for the neighbour-
hood edge of the Game of Life in Sect. 10.1.3 on page 277:

const int nb = EDGE_0;

Most topological functions use axial trees encoded by successor and branch
edges as the data structure. The method ancestor returns, for a given
node, the closest ancestor of a specific type, successor the closest suc-
cessor (on the same axis, i. e., reachable by successor edges). descendants
yields all descendants of a given type, minDescendants a subset thereof,
namely only those descendants such that there is no intermediate descen-
dant of the given type. This is similar to the minimal elements variant of
transitive closures presented in Sect. 6.5.6 on page 153. Actually, all meth-
ods can also be implemented by transitive closures: ancestor(n, X.class) is
equivalent to n (: (<-(branch|successor)-)+ X), successor(n, X.class)
is equivalent to n (: (>)+ X), descendants(n, X.class) is equivalent to
n (-(branch|successor)->)+ X, minDescendants(n, X.class) is equiva-
lent to n (-(branch|successor)->)+ : (X). The methods can also be used
directly as parts of patterns as in n -ancestor-> X, in this case the type
argument is implicitly set to the required type for the corresponding query
variable (Sect. 6.5.3 on page 150). The implementation by transitive closures
is more general as we may specify arbitrary path patterns, but the usage of
the methods is more efficient with respect to time and stack space. In fact,
as the pattern matching algorithm for transitive closures is implemented by
recursive invocations (Chap. 7), deep structures may lead to a stack overflow.

B.13 Library Functions 411

Then the library methods have to be used which are implemented without
recursive invocations.

The methods removeLeaves, removeTransformationLeaves as well as
mergeTransformations and mergeNonTropismTransformations serve to sim-
plify the structure without modifying its geometry. The first ones remove
leaves from the axial tree which are irrelevant for the further development
of the model. E. g., think of rotation nodes which had born a branch until
it fell off. Now they are no longer needed and can be removed for the sake
of memory savings. The latter methods merge sequences of transformation
nodes into a single node with the product of the individual transformations
as transformation. This also helps to reduce memory usage.

The method hide can be used to hide a subgraph so that is neither dis-
played nor transformed by rules. Hiding from being displayed is achieved by
removing the subgraph from its current parent node and adding it by a mark
edge, which is not traversed on display, to the RGGRoot. Preventing transfor-
mations is achieved by moving all nodes of the subgraph to the last extent list
(Sect. B.7 on page 401) which is invisible to queries by default. The method
moveToExtent sets the extent list to use for a whole subgraph.

The methods cloneNode and cloneSubgraph clone a single node or a
complete subgraph.

B.13.4 Control of Rule Application

Control of rule application can be achieved through the RGGGraph instance
which implements the graph interface of XL (Sect. B.7 on page 401). This
instance is returned by the method rggGraph. However, for some methods of
this instance there are aliases in the library, namely for derive which marks
the end of the current parallel production and triggers the corresponding par-
allel derivation (Sect. 9.1.2 on page 237), for setDerivationMode (Sect. 9.1.5
on page 245), and for allowNoninjectiveMatchesByDefault which controls
the restriction to injective matches (Sect. 9.1.7 on page 250).

The methods apply and applyUntilFinished return disposable iterators
(Sect. 6.13.1 on page 185) to be used in for-loops. They allow the repeated
execution of code and implicitly invoke derive after each iteration to finish
the current parallel production. apply takes a single argument for the number
of iterations, applyUntilFinished executes the body as long as possible, i. e.,
as long as the body gives rise to modifications of the graph.

B.13.5 Creating References to User-Defined Objects

The methods function, curve, surface, dataset, shader, image, file, and
reference return a reference to an object defined within the object explorer
of the corresponding type (Sect. A.5 on page 387). This mechanism should be
used to refer to such objects from within the code. For example, if the user

412 B The RGG Plug-In of GroIMP

has interactively defined a shader named “bark” within the shader explorer,
the code should contain a line

const Shader barkShader = shader("bark");

This reference can be used later on:

... Cylinder.(setShader(barkShader)) ...

B.13.6 User Interface

Feedback via the graphical user interface is possible in several ways: the static
variable out is a PrintWriter and writes to the XL console panel. But there
are also print- and println- methods directly in the library which also write
to the XL console. The content of the status bar can be set with setStatus.

GroIMP maintains a current selection of nodes which the user chooses
interactively. The currently selected nodes of the graph can be queried by the
method isSelected. Vice versa, the method select can be used to select
a set of nodes. This is useful to highlight some relevant nodes which would
otherwise be difficult to find for the user.

The methods plot and chart use the built-in chart feature to plot a
function or to show a general dataset. For an example, see Sect. 10.5.5 on
page 314.

B.13.7 Operator Methods and Unwrapping Conversions

The library also contains a collection of operator methods. As the RGG dialect
automatically imports all methods of the library, these operator overloads are
automatically defined.

The operator << is overloaded so that values may be sent to PrintWriter
instances and to lists. The index operator [] is overloaded for list access
and function evaluation, but also to access the i-th node of a branch. The
comparison operators <, >, <=, >= define a total order on nodes using their
ID.

Furthermore, the class VecmathOperators, which is also automatically im-
ported by the RGG dialect, defines useful operator methods for 3D computa-
tions: addition, subtraction and multiplication are defined for points, vectors
and scalars where meaningful, the operator in is defined to test whether a
point lies within a Volume.

The methods booleanValue, . . . , doubleValue are user-defined conver-
sions which unwrap primitive values out of a wrapper node.

B.14 Radiation Model

In general, a radiation model is used to compute the amount of radiation
which is absorbed by an object or sensed by a sensor. It takes the geometry of
the whole scene, its optical properties and a number of light sources as input.

B.14 Radiation Model 413

Exact solutions can only be obtained in very simple situations. Therefore,
numerical algorithms have to be used to compute sufficiently precise approx-
imations. For radiation transport, the technique of path tracing turns out to
be suitable ([195] and manual of L-Studio software [152]): each light source
emits a number of light rays which are then traced through the scene using
the optical properties at intersection points to compute a scattered ray. The
basic problem of tracing individual light rays, namely diffuse reflection or
transmission where the direction after scattering is not a unique function of
the incoming direction, is solved by a Monte Carlo method [195], i. e., the new
direction is chosen (pseudo-) randomly, or by a Quasi-Monte Carlo method
with special regular sequences of numbers instead of pseudorandom numbers
[93].

Based on the algorithms of the built-in raytracer Twilight (Sect. A.7.1 on
page 392), a radiation model was implemented which takes into account the
complete scene of GroIMP. The radiation model is made available by the class
de.grogra.rgg.LightModel, its usage is easy:

const LightModel rad = new LightModel().(setRayCount(1000000));

void step () [

{radiation.compute();}

x:Leaf ==>

... {float p = rad.getAbsorbedPower(x).integrate(); ...} ... ;

]

In the method step, at first the radiation model is invoked to compute
the amount of radiation absorbed by each geometry node. For this pur-
pose, 1,000,000 primary light rays are shot in total from the light sources.
Afterwards, the power absorbed by a node x can be obtained by invoking
getAbsorbedPower on the radiation model with x as argument. The result
is an instance of the general interface de.grogra.ray.physics.Spectrum
which represents the spectral distribution of a radiometric quantity. The
method integrate integrates this distribution to a single value. A variant
is the usage of the method getAbsorbedPower3d which returns an instance
of de.grogra.ray.physics.Spectrum3d: this has the variables x, y, z which
usually represent the red, green, blue part of the spectrum, respectively. But
this can be re-interpreted to stand for arbitrary parts of the spectrum if the
specification of the light sources and shaders also uses the RGB channels for
other parts of the spectrum than the standard ones.

The radiation model also supports sensors which do not interfere with
radiation, but only measure the irradiance at their surface. The sensor class
de.grogra.imp3d.objects.SensorNode has a disc in the local xy-plane as
surface and weights incoming radiation according to the factor cosγ α where α
is the angle of incidence (with respect to the surface normal, i. e., the local z-
direction) and γ is an attribute of the node. After computation of the radiation
model, the sensed irradiance is queried by the method getSensedIrradiance.

414 B The RGG Plug-In of GroIMP

B.15 Support for GROGRA Models

The RGG plug-in provides support for GROGRA models: just like xl-, rgg-
and java-files of a project are automatically compiled, also lsy- and ssy-
files in the GROGRA syntax are compiled. Sect. 10.5.4 on page 314 shows
an example where an existing non-sensitive lsy-model was executed and ren-
dered within GroIMP. Currently, not all sensitive functions and methods of
GROGRA are supported, but this will be done in the near future.

The compilation of GROGRA source code makes use of the split of the
compiler in lexical, syntax and semantic analysis as shown in Fig. 8.2 on
page 207. Namely, a specific scanner and parser for the GROGRA syntax were
implemented. The result of the parser, the abstract syntax tree, is rearranged
and equipped with additional nodes for class and method declarations so that
it conforms with an abstract syntax tree of XL source code. Thus, it can
immediately be used as input to the XL compiler.

References

1. H. Abelson and A. diSessa. Turtle Geometry. MIT Press, Cambridge, Mas-
sachusetts, 1982.

2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

3. V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. L. Hors, G. Nicol,
J. Robie, R. Sutor, C. Wilson, and L. Wood, editors. Document Object Model
(DOM) Level 1 Specification. World Wide Web Consortium, 1998. Avail-
able from: http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/ [cited
04 May 2008].

4. Autodesk. Autodesk 3ds Max [online, cited 04 May 2008]. Available from:
http://www.autodesk.com/3dsmax.

5. Autodesk. Autodesk Maya [online, cited 04 May 2008]. Available from: http:
//www.autodesk.com/maya.

6. G. Barczik and W. Kurth. From designing objects to designing processes:
Algorithms as creativity enhancers. In Predicting the Future. 25th eCAADe
Conference Proceedings, Frankfurt/Main, September 26-29, 2007, pages 887–
894, 2007.

7. G. V. Batz, M. Kroll, and R. Geiß. A first experimental evaluation of search
plan driven graph pattern matching. In Schürr et al. [174], pages 471–486.

8. M. Bauderon. A uniform approach to graph rewriting: The pullback approach.
In M. Nagl, editor, Graph-Theoretic Concepts in Computer Science, volume
1017 of Lecture Notes in Computer Science, pages 101–115. Springer, 1995.

9. M. Bauderon, H. Jacquet, and R. Klempien-Hinrichs. Pullback rewriting and
applications. Electronic Notes in Theoretical Computer Science, 51, 2001.

10. U. Bischof. Anbindung der Programmiersprache XL an die 3D-
Modelliersoftware Maya über ein Plug-in. Bachelor’s thesis, BTU Cottbus,
2006.

11. H. Bisswanger. Enzymkinetik. Wiley-VCH, Weinheim, 3rd edition, 2000.
12. S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon,

editors. XQuery 1.0: An XML Query Language. World Wide Web Consortium,
2007. Available from: http://www.w3.org/TR/2007/REC-xquery-20070123/

[cited 04 May 2008].
13. I. A. Borovikov. L-systems with inheritance: An object-oriented extension of

L-systems. SIGPLAN Notices, 30(5):43–60, 1995.

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.autodesk.com/3dsmax
http://www.autodesk.com/maya
http://www.autodesk.com/maya
http://www.w3.org/TR/2007/REC-xquery-20070123/

416 References

14. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall.
GraphML progress report. In Graph Drawing, pages 501–512, 2001.

15. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, editors.
Extensible Markup Language (XML). World Wide Web Consortium, 4th edi-
tion, 2006. Available from: http://www.w3.org/TR/2006/REC-xml-20060816/
[cited 04 May 2008].

16. G. Buck-Sorlin and K. Bachmann. Simulating the morphology of barley spike
phenotypes using genotype information. Agronomie, 20:691–702, 2000.

17. G. Buck-Sorlin, R. Hemmerling, O. Kniemeyer, B. Burema, and W. Kurth.
New rule-based modelling methods for radiation and object avoidance in virtual
plant canopies. In Proceedings of the Second International Symposium on Plant
Growth Modeling and Applications, Beijing, November 13-17, 2006, pages 22–
25. IEEE, 2008.

18. G. Buck-Sorlin, R. Hemmerling, O. Kniemeyer, B. Burema, and W. Kurth.
A rule-based model of barley morphogenesis, with special respect to shading
and gibberellic acid signal transduction. Annals of Botany, 101(8):1109–1123,
2008.

19. G. Buck-Sorlin, O. Kniemeyer, and W. Kurth. Barley morphology, genetics and
hormonal regulation of internode elongation modelled by a relational growth
grammar. New Phytologist, 166(3):859–867, 2005.

20. G. Buck-Sorlin, O. Kniemeyer, and W. Kurth. A grammar-based model of
barley including virtual breeding, genetic control and a hormonal metabolic
network. In Vos et al. [197], pages 243–252.

21. H. Bunke. Programmed graph grammars. In Claus et al. [26], pages 155–166.
22. G. Busatto. An Abstract Model of Hierarchical Graphs and Hierarchical Graph

Transformation. PhD thesis, Universität Paderborn, 2002.
23. T. W. Chien and H. Jürgensen. Parameterized L systems for modelling: Po-

tential and limitations. In Rozenberg and Salomaa [169], pages 213–229.
24. J. Clark, editor. XSL Transformations (XSLT). World Wide Web Consor-

tium, 1999. Available from: http://www.w3.org/TR/1999/REC-xslt-19991116
[cited 04 May 2008].

25. J. Clark and S. DeRose, editors. XML Path Language (XPath). World
Wide Web Consortium, 1999. Available from: http://www.w3.org/TR/1999/
REC-xpath-19991116 [cited 04 May 2008].

26. V. Claus, H. Ehrig, and G. Rozenberg, editors. Graph-Grammars and Their
Application to Computer Science and Biology, volume 73 of Lecture Notes in
Computer Science. Springer, 1979.

27. E. S. Coen and E. M. Meyerowitz. The war of the whorls: genetic interactions
controlling flower development. Nature, 353:31–37, 1991.

28. A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant
colonies. In F. Varela and P. Bourgine, editors, Proceedings of the First Eu-
ropean Conference on Artificial Life, Paris, France, pages 134–142. Elsevier
Publishing, 1992.

29. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. Abstract graph
derivations in the double pushout approach. In Schneider and Ehrig [171],
pages 86–103.

30. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. Note on standard
representation of graphs and graph derivations. In Schneider and Ehrig [171],
pages 104–118.

http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

References 417

31. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe.
Algebraic approaches to graph transformation – part I: Basic concepts and
double pushout approach. In Rozenberg [167], chapter 3, pages 163–246.

32. K. Čuĺık II and A. Lindenmayer. Parallel rewriting on graphs and multidi-
mensional development. International Journal of General Systems, 3:53–66,
1976.

33. K. Čuĺık II and J. Opatrný. Context in parallel rewriting. In G. Rozenberg
and A. Salomaa, editors, L Systems, volume 15 of Lecture Notes in Computer
Science, pages 230–243. Springer, 1974.

34. J. E. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors. Graph Grammars
and their Application to Computer Science, volume 1073 of Lecture Notes in
Computer Science. Springer, 1996.

35. R. Dawkins. The Blind Watchmaker. Longman, Harlow, 1986.
36. R. Dawkins. The evolution of evolvability. In C. Langton, editor, Artificial Life,

SFI Studies in the Sciences of Complexity, pages 201–220. Addison-Wesley,
Reading, 1988.

37. O. Deussen. Computergenerierte Pflanzen, Technik und Design digitaler
Pflanzenwelten. Springer, Berlin, 2003.

38. F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge replacement graph gram-
mars. In Rozenberg [167], chapter 2, pages 95–162.

39. E. Dufrêne, H. Davi, C. François, G. le Maire, V. le Dantec, and A. Granier.
Modelling carbon and water cycles in a beech forest. Part I: Model description
and uncertainty analysis on modelled NEE. Ecological Modelling, 185:407–436,
2005.

40. Eclipse Foundation. Eclipse.org home [online, cited 04 May 2008]. Available
from: http://www.eclipse.org/.

41. ECMA. ECMA-334: C# Language Specification. European Association for
Standardizing Information and Communication Systems, Geneva, Switzerland,
4th edition, 2006.

42. ECMA. ECMA-335: Common Language Infrastructure (CLI). European As-
sociation for Standardizing Information and Communication Systems, Geneva,
Switzerland, 4th edition, 2006.

43. H. Ehrig. Introduction to the algebraic theory of graph grammars. In Claus
et al. [26], pages 1–69.

44. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. Springer, Secaucus, NJ, USA, 2006.

45. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook
on Graph Grammars and Computing by Graph Transformation, Volume 2:
Applications, Languages and Tools. World Scientific, Singapore, 1999.

46. H. Ehrig and A. Habel. Graph grammars with application conditions. In
G. Rozenberg and A. Salomaa, editors, The Book of L, pages 87–100. Springer,
Berlin, 1986.

47. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corra-
dini. Algebraic approaches to graph transformation II: Single pushout approach
and comparison with double pushout approach. In Rozenberg [167], chapter 4,
pages 247–312.

48. H. Ehrig, M. Korff, and M. Löwe. Tutorial introduction to the algebraic ap-
proach of graph grammars based on double and single pushouts. Technical
Report 90/21, Technische Universität Berlin, 1990.

http://www.eclipse.org/

418 References

49. H. Ehrig and H.-J. Kreowski. Parallel graph grammars. In Lindenmayer and
Rozenberg [118], pages 425–442.

50. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook
on Graph Grammars and Computing by Graph Transformation, Volume 3:
Concurrency, Parallelism, and Distribution. World Scientific, Singapore, 1999.

51. H. Ehrig, M. Pfender, and H. J. Schneider. Graph grammars: An algebraic
approach. In IEEE Conference on Automata and Switching Theory, pages
167–180, Iowa City, 1973.

52. H. Ehrig and G. Rozenberg. Some definitional suggestions for parallel graph
grammars. In Lindenmayer and Rozenberg [118], pages 443–468.

53. H. Ehrig and G. Taentzer. From parallel graph grammars to parallel high-level
replacement systems. In G. Rozenberg and A. Salomaa, editors, Lindenmayer
Systems, pages 283–304. Springer, Berlin, 1992.

54. J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In Rozen-
berg [167], chapter 1, pages 1–94.

55. C. Ermel, M. Rudolf, and G. Taentzer. The AGG approach: Language and
environment. In Ehrig et al. [45], pages 551–603.

56. A. P. L. Ferreira and L. Ribeiro. Derivations in object-oriented graph gram-
mars. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors,
ICGT, volume 3256 of Lecture Notes in Computer Science, pages 416–430.
Springer, 2004.

57. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. RFC 2068:
Hypertext Transfer Protocol — HTTP/1.1, 1997. Available from: http://

tools.ietf.org/html/rfc2068 [cited 04 May 2008].
58. R. W. Floyd. The paradigms of programming. Communications of the ACM,

22(8):455–460, 1979.
59. J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics.

Principles and Practice. Addison-Wesley, Reading, Massachusetts, 1997.
60. B. Fonkeng. Layout- und Filterverfahren zur Graphdarstellung in GroIMP.

Diploma thesis, BTU Cottbus, 2007.
61. W. Fontana. Algorithmic chemistry. In C. Langton, C. Taylor, J. D. Farmer,

and S. Rasmussen, editors, Artificial Life II, SFI Studies in the Sciences of
Complexity, pages 159–209. Addison-Wesley, Reading, 1991.

62. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley, Boston, San Francisco, New York, 1995.

63. M. Gardner. Mathematical Games: The fantastic combinations of John Con-
way’s new solitaire game ‘Life’. Scientific American, 223(4):120–123, 1970.

64. R. Geiß, G. V. Batz, D. Grund, S. Hack, and A. Szalkowski. GrGen: A fast
SPO-based graph rewriting tool. In A. Corradini, H. Ehrig, U. Montanari,
L. Ribeiro, and G. Rozenberg, editors, ICGT, volume 4178 of Lecture Notes in
Computer Science, pages 383–397. Springer, 2006.

65. R. Geiß and M. Kroll. GrGen.NET: A fast, expressive, and general purpose
graph rewrite tool. In Schürr et al. [174], pages 568–569.

66. J.-L. Giavitto and O. Michel. MGS: a rule-based programming language for
complex objects and collections. Electronic Notes in Theoretical Computer
Science, 59(4), 2001.

67. C. Godin and Y. Caraglio. A multiscale model of plant topological structures.
Journal of Theoretical Biology, 191:1–46, 1998.

http://tools.ietf.org/html/rfc2068
http://tools.ietf.org/html/rfc2068

References 419

68. C. Godin, Y. Guédon, E. Costes, and Y. Caraglio. Measuring and analysing
plants with the AMAPmod software. In M. Michalewicz, editor, Plants to
Ecosystems: Advances in Computational Life Sciences, pages 53–84. CSIRO
Publishing, Australia, 1997.

69. C. Godin and H. Sinoquet. Functional-structural plant modelling. New Phy-
tologist, 166:705–708, 2005.

70. N. S. Goel and I. Rozehnal. Some non-biological applications of L-systems.
International Journal of General Systems, 18(4):321–405, 1991.

71. N. S. Goel and I. Rozehnal. A high-level language for L-systems and its appli-
cations. In Rozenberg and Salomaa [169], pages 231–251.

72. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Programming Language.
Addison-Wesley, 3rd edition, 2005.

73. C. Groer. Dynamisches 3D-Modell der Rapspflanze (Brassica napus L.)
zur Bestimmung optimaler Ertragskomponenten bei unterschiedlicher Stick-
stoffdüngung. Diploma thesis, BTU Cottbus, 2006.

74. J. Hanan. Parametric L-systems and Their Application To the Modelling and
Visualization of Plants. PhD thesis, University of Regina, 1992.

75. T. Heer, D. Retkowitz, and B. Kraft. Algorithm and tool for ontology integra-
tion based on graph rewriting. In Schürr et al. [174], pages 577–582.

76. R. Hemmerling, O. Kniemeyer, D. Lanwert, W. Kurth, and G. Buck-Sorlin. The
rule-based language XL and the modelling environment GroIMP, illustrated
with simulated tree competition. Functional Plant Biology, 35:739–750, 2008.

77. M. Henke. Entwurf und Implementation eines Baukastens zur 3D-
Pflanzenvisualisierung in GroIMP mittels Instanzierungsregeln. Diploma the-
sis, BTU Cottbus, 2008.

78. R. Herzog. Ausbau eines bereits implementierten Graphtransformationstools
zu einem Plug-in für CINEMA 4D. Bachelor’s thesis, BTU Cottbus, 2004.

79. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall Interna-
tional Series in Computer Science. Prentice Hall, 1985.

80. Á. Horváth, G. Varró, and D. Varró. Generic search plans for matching
advanced graph patterns. In Proceedings of the 6th International Workshop
on Graph Transformation and Visual Modeling Techniques (GT-VMT 2007),
Braga, Portugal, Electronic Communications of the EASST, pages 57–68, 2007.

81. T. Huwe. Stochastischer GPU-Strahlenverfolger für GroIMP. Bachelor’s thesis,
BTU Cottbus, 2008.

82. ISO/IEC. The virtual reality modeling language. ISO/IEC 14772, International
Organization for Standardization, Geneva, Switzerland, 1997.

83. ISO/IEC. Programming languages – C++. ISO/IEC 14882, International
Organization for Standardization, Geneva, Switzerland, 2003.

84. ISO/IEC. Extensible 3D (X3D). ISO/IEC 19775, International Organization
for Standardization, Geneva, Switzerland, 2004.

85. ISO/IEC. Extensible 3D (X3D) encodings. ISO/IEC 19776, International
Organization for Standardization, Geneva, Switzerland, 2005.

86. D. Janssens, G. Rozenberg, and R. Verraedt. On sequential and parallel node
rewriting graph grammars, part 1. Computer Graphics and Image Processing,
18:279–301, 1982.

87. D. Janssens, G. Rozenberg, and R. Verraedt. On sequential and parallel node
rewriting graph grammars, part 2. Computer Graphics and Image Processing,
23:295–312, 1983.

420 References

88. W. Kahl. A relation-algebraic approach to graph structure transformation. In
H. C. M. de Swart, editor, RelMiCS, volume 2561 of Lecture Notes in Computer
Science, pages 1–14. Springer, 2001.

89. J. T. Kajiya. The rendering equation. In SIGGRAPH, pages 143–150, 1986.
90. L. Kari, G. Rozenberg, and A. Salomaa. L systems. In G. Rozenberg and

A. Salomaa, editors, Handbook of Formal Languages, volume 1, chapter 5, pages
253–328. Springer, Berlin Heidelberg, 1997.

91. R. Karwowski. Improving the Process of Plant Modeling: The L+C Modeling
Language. PhD thesis, University of Calgary, 2002.

92. R. Karwowski and P. Prusinkiewicz. Design and implementation of the L+C
modeling language. Electronic Notes in Theoretical Computer Science, 86(2),
2003.

93. A. Keller. Quasi-Monte Carlo Methods for Photorealistic Image Synthesis. PhD
thesis, University of Kaiserslautern, 1998.

94. J. T. Kim. transsys: A generic formalism for modelling regulatory networks in
morphogenesis. In J. Kelemen and P. Sośık, editors, ECAL 2001, volume 2159
of Lecture Notes in Artificial Intelligence, pages 242–251. Springer, 2001.

95. O. Kniemeyer. The XL language specification [online, cited 04 May 2008].
Available from: http://www.grogra.de/xlspec/.

96. O. Kniemeyer. Rule-based modelling with the XL/GroIMP software. In
H. Schaub, F. Detje, and U. Brüggemann, editors, GWAL-6, pages 56–65,
Berlin, 2004. Akademische Verlagsgesellschaft.

97. O. Kniemeyer, G. Barczik, R. Hemmerling, and W. Kurth. Relational growth
grammars – a parallel graph transformation approach with applications in
biology and architecture. In Schürr et al. [174], pages 152–167.

98. O. Kniemeyer, G. Buck-Sorlin, and W. Kurth. Representation of genotype
and phenotype in a coherent framework based on extended L-systems. In
W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, and J. Ziegler, editors,
ECAL 2003, volume 2801 of Lecture Notes in Artificial Intelligence, pages
625–634. Springer, 2003.

99. O. Kniemeyer, G. Buck-Sorlin, and W. Kurth. A graph-grammar approach to
artificial life. Artificial Life, 10:413–431, 2004.

100. O. Kniemeyer, G. Buck-Sorlin, and W. Kurth. GroIMP as a platform for
functional-structural modelling of plants. In Vos et al. [197], pages 43–52.

101. O. Kniemeyer, R. Hemmerling, and W. Kurth. GroIMP [online, cited 04 May
2008]. Available from: http://www.grogra.de/.

102. D. E. Knuth. The Art of Computer Programming, Volume I: Fundamental
Algorithms. Addison-Wesley, 3rd edition, 1997.

103. W. Kurth. Growth grammar interpreter GROGRA 2.4 – a software tool for
the 3-dimensional interpretation of stochastic, sensitive growth grammars in
the context of plant modelling. Introduction and reference manual. Berichte
des Forschungszentrums Waldökosysteme, B 38, Göttingen, 1994.

104. W. Kurth. Morphological models of plant growth: Possibilities and ecological
relevance. Ecological Modelling, 75/76:299–308, 1994.

105. W. Kurth. Some new formalisms for modelling the interactions between plant
architecture, competition and carbon allocation. Bayreuther Forum Ökologie,
52:53–98, 1998.

106. W. Kurth. Die Simulation der Baumarchitektur mit Wachstumsgrammatiken.
Wissenschaftlicher Verlag Berlin, 1999.

http://www.grogra.de/xlspec/
http://www.grogra.de/

References 421

107. W. Kurth. Spatial structure, sensitivity and communication in rule-based mod-
els. In F. Hölker, editor, Scales, Hierarchies and Emergent Properties in Eco-
logical Models, volume 6 of Theorie in der Ökologie, pages 29–46. Peter Lang,
Frankfurt a. M., 2002.

108. W. Kurth and G. Anzola Jürgenson. Triebwachstum und Verzweigung junger
Fichten in Abhängigkeit von den beiden Einflußgrößen Beschattung und
Wuchsdichte: Datenaufbereitung und -analyse mit GROGRA. In D. Pelz,
editor, Deutscher Verband Forstlicher Forschungsanstalten, Sektion Forstliche
Biometrie und Informatik, 10. Tagung Freiburg i. Br. 1997, pages 89–108.
Ljubljana, Biotechnische Fakultät, 1997.

109. W. Kurth, O. Kniemeyer, and G. Buck-Sorlin. Relational growth grammars – a
graph rewriting approach to dynamical systems with a dynamical structure. In
J.-P. Banâtre, P. Fradet, J.-L. Giavitto, and O. Michel, editors, Unconventional
Programming Paradigms, volume 3566 of Lecture Notes in Computer Science,
pages 56–72. Springer, 2004.

110. W. Kurth and B. Sloboda. Growth grammars simulating trees – an extension of
L-systems incorporating local variables and sensitivity. Silva Fennica, 31:285–
295, 1997.

111. S. M. Lane. Categories for the Working Mathematician. Springer, New York,
2nd edition, 1998.

112. S. Lang. Algebra. Springer, New York, revised 3rd edition, 2002.
113. D. Lanwert. Funktions-/Strukturorientierte Pflanzenmodellierung in E-

Learning-Szenarien. PhD thesis, University of Göttingen, 2008.
114. L. Lapré. Lparser [online, cited 04 May 2008]. Available from: http://home.

wanadoo.nl/laurens.lapre/lparser.html.
115. L. Lapré. New Lparser [online, cited 04 May 2008]. Available from: http:

//home.wanadoo.nl/laurens.lapre/lparser2.html.
116. C. Lewerentz. Interaktives Entwerfen großer Programmsysteme. PhD thesis,

RWTH Aachen, 1988.
117. A. Lindenmayer. Mathematical models for cellular interactions in development.

part I and II. Journal of Theoretical Biology, 18:280–315, 1968.
118. A. Lindenmayer and G. Rozenberg, editors. Automata, Languages, Develop-

ment. North Holland, Amsterdam, 1976.
119. A. Lindenmayer and G. Rozenberg. Parallel generation of maps: Developmental

systems of cell layers. In Claus et al. [26], pages 301–316.
120. T. Lindholm and F. Yellin. Java Virtual Machine Specification. Addison-

Wesley, Boston, MA, USA, 2rd edition, 1999.
121. B. Lintermann and O. Deussen. A modelling method and user interface for

creating plants. Computer Graphics Forum, 17(1):72–82, March 1998.
122. M. Löwe. personal communication, 2007.
123. J. Lück and H. B. Lück. Two-dimensional, differential, intercalary plant tissue

growth and parallel graph generating and graph recurrence systems. In Claus
et al. [26], pages 284–300.

124. C. M. Macal and M. J. North. Tutorial on agent-based modeling and simulation
part 2: how to model with agents. In L. F. Perrone, B. Lawson, J. Liu, and F. P.
Wieland, editors, Winter Simulation Conference, pages 73–83. WSC, 2006.

125. U. Mannl. Anbindung der Programmiersprache XL an die 3D-
Modelliersoftware 3ds max über ein Plug-in. Bachelor’s thesis, BTU Cottbus,
2006.

http://home.wanadoo.nl/laurens.lapre/lparser.html
http://home.wanadoo.nl/laurens.lapre/lparser.html
http://home.wanadoo.nl/laurens.lapre/lparser2.html
http://home.wanadoo.nl/laurens.lapre/lparser2.html

422 References

126. MAXON. CINEMA 4D [online, cited 04 May 2008]. Available from: http:
//www.maxon.net/.

127. B. Mayoh. Another model for the development of multidimensional organisms.
In Lindenmayer and Rozenberg [118], pages 469–486.

128. Microsoft Corporation. C# version 3.0 specification. Technical report, Mi-
crosoft Corporation, 2005. Available from: http://msdn.microsoft.com/

netframework/future/linq/ [cited 04 May 2008].
129. R. Mĕch and P. Prusinkiewicz. Visual models of plants interacting with their

environment. In SIGGRAPH, pages 397–410, 1996.
130. M. Nagl. On a generalization of Lindenmayer-systems to labelled graphs. In

Lindenmayer and Rozenberg [118], pages 487–508.
131. M. Nagl. Graph-Grammatiken: Theorie, Anwendungen, Implementierungen.

Vieweg, Braunschweig, 1979.
132. M. Nagl. A tutorial and bibliographical survey on graph grammars. In Claus

et al. [26], pages 70–126.
133. M. Nagl, A. Schürr, and M. Münch, editors. AGTIVE’99 International Work-

shop on Applications of Graph Transformation with Industrial Relevance, vol-
ume 1779 of Lecture Notes in Computer Science. Springer, Berlin, 2000.

134. N. T. Nikolov, W. J. Massman, and A. W. Schoettle. Coupling biochemical and
biophysical processes at the leaf level: an equilibrium photosynthesis model for
leaves of C3 plants. Ecological Modelling, 80:205–235, 1995.

135. K. V. Nori, U. Ammann, K. Jensen, H. H. Nageli, and C. Jacobi. Pascal-P
implementation notes. In D. W. Barron, editor, Pascal – The Language and
its Implementation, pages 125–170. John Wiley, 1981.

136. Object Management Group. Unified modeling language [online, cited 04 May
2008]. Available from: http://www.omg.org/technology/documents/formal/
uml.htm.

137. Object Refinery Limited. JFreeChart [online, cited 04 May 2008]. Available
from: http://www.jfree.org/jfreechart/.

138. ObjectWeb Consortium. ASM – Home Page [online, cited 04 May 2008]. Avail-
able from: http://asm.objectweb.org/.

139. F. Parisi-Presicce, H. Ehrig, and U. Montanari. Graph rewriting with unifica-
tion and composition. In H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld,
editors, Third International Workshop on Graph-Grammars and Their Appli-
cation to Computer Science, volume 291 of Lecture Notes in Computer Science,
pages 496–514. Springer, 1987.

140. T. J. Parr. ANTLR parser generator [online, cited 04 May 2008]. Available
from: http://www.antlr.org.

141. T. J. Parr. Obtaining practical variants of LL (K) and LR (K) for K greater
than 1 by splitting the atomic K-tuple. PhD thesis, Purdue University, West
Lafayette, IN, USA, 1993.

142. M. Pastorová. A comparison of two controlled rewriting mechanisms for table
Lindenmayer systems. In Rozenberg and Salomaa [169], pages 183–189.

143. A. Paz. Multidimensional parallel rewriting systems. In Lindenmayer and
Rozenberg [118], pages 509–515.

144. H.-O. Peitgen, H. Jürgens, and D. Saupe. Bausteine des Chaos – Fraktale.
Springer-/Klett-Cotta Verlag, Heidelberg, Stuttgart, 1992.

145. Perl Foundation. The Perl directory – perl.org [online, cited 04 May 2008].
Available from: http://www.perl.org/.

http://www.maxon.net/
http://www.maxon.net/
http://msdn.microsoft.com/netframework/future/linq/
http://msdn.microsoft.com/netframework/future/linq/
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm
http://www.jfree.org/jfreechart/
http://asm.objectweb.org/
http://www.antlr.org
http://www.perl.org/

References 423

146. J. L. Pfaltz. Web grammars and picture description. Computer Graphics and
Image Processing, 1:193–220, 1972.

147. J. L. Pfaltz, M. Nagl, and B. Böhlen, editors. Applications of Graph Transfor-
mations with Industrial Relevance, AGTIVE 2003, Revised Selected and Invited
Papers, volume 3062 of Lecture Notes in Computer Science. Springer, 2004.

148. J. Pfreundt and B. Sloboda. The relation of local stand structure to photo-
synthetic capacity in a spruce stand: a model calculation. Lesnictv́ı-Forestry,
42:149–160, 1996.

149. L. Piegl and W. Tiller. The NURBS book. Springer, 2nd edition, 1997.
150. J. L. Prioul and P. Chartier. Partitioning of transfer and carboxylation com-

ponents of intracellular resistance to photosynthetic CO2 fixation: A critical
analysis of the methods used. Annals of Botany, 41:789–800, 1977.

151. PROGRES. Research: PROGRES [online, cited 04 May 2008]. Available from:
http://www-i3.informatik.rwth-aachen.de/research/progres/.

152. P. Prusinkiewicz. Algorithmic botany: Home [online, cited 04 May 2008]. Avail-
able from: http://www.algorithmicbotany.org/.

153. P. Prusinkiewicz. Graphical applications of L-systems. In Proceedings on
Graphics Interface ’86/Vision Interface ’86, pages 247–253, Toronto, Ont.,
Canada, 1986. Canadian Information Processing Society.

154. P. Prusinkiewicz. Modeling plant growth and development. Current Opinion
in Plant Biology, 7(1):79−83, 2004.

155. P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Měch. Visual models of plant
development. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal
Languages, volume 3, pages 535–597. Springer, Berlin, 1997.

156. P. Prusinkiewicz, M. Hammel, and E. Mjolsness. Animation of plant develop-
ment. In SIGGRAPH, pages 351–360, 1993.

157. P. Prusinkiewicz and J. Hanan. L-systems: from formalism to programming
languages. In Rozenberg and Salomaa [169], pages 193–211.

158. P. Prusinkiewicz and L. Kari. Subapical bracketed L-systems. In Cuny et al.
[34], pages 550–564.

159. P. Prusinkiewicz, R. Karwowski, and B. Lane. The L+C plant modelling lan-
guage. In Vos et al. [197], pages 27–42.

160. P. Prusinkiewicz, R. Karwowski, J. Perttunen, and R. Sievänen. Specification
of L – a plant-modeling language based on Lindenmayer systems. Version 0.5.
Research note, University of Calgary, Department of Computer Science, 1999.

161. P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants.
Springer, New York, 1990.

162. Python Software Foundation. Python programming language – official website
[online, cited 04 May 2008]. Available from: http://www.python.org/.

163. A. Rensink, A. Dotor, C. Ermel, S. Jurack, O. Kniemeyer, J. de Lara, S. Maier,
T. Staijen, and A. Zündorf. Ludo: A case study for graph transformation tools.
In Schürr et al. [174], pages 493–513.

164. A. Rensink and G. Taentzer. AGTIVE 2007 graph transformation tool contest.
In Schürr et al. [174], pages 487–492.

165. S. Rogge. Generierung von Baumdarstellungen in VRML für den Branitzer
Park. Bachelor’s thesis, BTU Cottbus, 2008.

166. G. Rozenberg. T0L systems and languages. Information and Control,
23(4):357–381, 1973.

167. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

http://www-i3.informatik.rwth-aachen.de/research/progres/
http://www.algorithmicbotany.org/
http://www.python.org/

424 References

168. G. Rozenberg and A. Salomaa, editors. The Book of L. Springer, Berlin, 1986.
169. G. Rozenberg and A. Salomaa, editors. Lindenmayer Systems. Springer, Berlin,

1992.
170. RULE. Rule 2007 [online, cited 04 May 2008]. Available from: http://www.

lsv.ens-cachan.fr/rdp07/rule.html.
171. H. J. Schneider and H. Ehrig, editors. Graph Transformations in Computer

Science, International Workshop, Dagstuhl Castle, Germany, January 1993,
Proceedings, volume 776 of Lecture Notes in Computer Science. Springer, 1994.

172. S. Schneider. Konzeption eines Subsystems für die GroIMP-Plattform sowie
eines zugrundeliegenden XML-Datenformats zum Austausch graphbasierter,
multiskalierter Strukturen. Diploma thesis, BTU Cottbus, 2006.

173. A. Schürr. Programmed graph replacement systems. In Rozenberg [167], chap-
ter 7, pages 479–546.

174. A. Schürr, M. Nagl, and A. Zündorf, editors. Applications of Graph Trans-
formations with Industrial Relevance, International Workshop, AGTIVE ’07,
volume 5088 of Lecture Notes in Computer Science. Springer, 2008.

175. A. Schürr, A. J. Winter, and A. Zündorf. The PROGRES approach: Language
and environment. In Ehrig et al. [45], pages 487–550.

176. A. Skusa, W. Banzhaf, J. Busch, P. Dittrich, and J. Ziegler. Künstliche Chemie.
Künstliche Intelligenz, 1/00:12–19, 2000.

177. C. Smith. On Vertex-Vertex Systems and Their Use in Geometric and Biolog-
ical Modelling. PhD thesis, University of Calgary, 2006.

178. C. Smith, P. Prusinkiewicz, and F. F. Samavati. Local specification of surface
subdivision algorithms. In Pfaltz et al. [147], pages 313–327.

179. K. Smoleňová and R. Hemmerling. Growing virtual plants for virtual worlds.
In Proceedings of the 24th Spring Conference on Computer Graphics, April
21-23, 2008, Budmerice Castle, Slovakia, 2008.

180. M. Steilmann. Morphologische Untersuchungen zur Modellierung des Wachs-
tums in Abhängigkeit von den Licht- und Konkurrenzverhältnissen von Jung-
buchen. Diploma thesis, University of Göttingen, 1996.

181. G. Stiny and J. Gips. Shape grammars and the generative specification of
painting and sculpture. In IFIP Congress 1971, pages 125–135. North Holland
Publishing, 1971.

182. J. Strobel. Die Atmumg der verholzten Organe von Altbuchen (Fagus sylvativa
L.) in einem Kalk- und einem Sauerhumusbuchenwald. PhD thesis, University
of Göttingen, 2004.

183. Sun Microsystems. JAR file specification [online, cited 04 May 2008].
Available from: http://java.sun.com/javase/6/docs/technotes/guides/

jar/jar.html.
184. Sun Microsystems. Java Data Objects (JDO) [online, cited 04 May 2008].

Available from: http://java.sun.com/jdo/.
185. Sun Microsystems. Java Native Interface Specification [online, cited 04 May

2008]. Available from: http://java.sun.com/j2se/1.5.0/docs/guide/jni/
spec/jniTOC.html.

186. Sun Microsystems. KSL: Kitchen sink language [online, cited 04 May 2008].
Available from: http://openjdk.java.net/groups/compiler/ksl.html.

187. Sun Microsystems. Advantages of the OpenOffice.org XML file format
used by the StarOffice office suite. White paper, Sun Microsystems,
2004. Available from: http://www.sun.com/software/star/staroffice/7/

whitepapers/index.xml [cited 04 May 2008].

http://www.lsv.ens-cachan.fr/rdp07/rule.html
http://www.lsv.ens-cachan.fr/rdp07/rule.html
http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html
http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html
http://java.sun.com/jdo/
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html
http://openjdk.java.net/groups/compiler/ksl.html
http://www.sun.com/software/star/staroffice/7/whitepapers/index.xml
http://www.sun.com/software/star/staroffice/7/whitepapers/index.xml

References 425

188. J. Szuba. New object-oriented PROGRES for specifying the conceptual design
tool GraCAD. In T. Mens, A. Schürr, and G. Taentzer, editors, Electronic
Notes in Theoretical Computer Science, volume 127, pages 141–156, 2005.

189. J. Szuba, A. Ozimek, and A. Schürr. On graphs in conceptual engineering
design. In Pfaltz et al. [147], pages 75–89.

190. J. Szuba, A. Schürr, and A. Borkowski. GraCAD – graph-based tool for con-
ceptual design. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg,
editors, ICGT, volume 2505 of Lecture Notes in Computer Science, pages 363–
377. Springer, 2002.

191. G. Taentzer, E. Biermann, D. Bisztray, B. Bohnet, I. Boneva, A. Boronat,
L. Geiger, R. Geiß, Á. Horvath, O. Kniemeyer, T. Mens, B. Ness, D. Plump,
and T. Vajk. Generation of Sierpinski triangles: A case study for graph trans-
formation tools. In Schürr et al. [174], pages 514–539.

192. TU Berlin. The AGG homepage [online, cited 04 May 2008]. Available from:
http://tfs.cs.tu-berlin.de/agg/.

193. D. Varró, M. Asztalos, D. Bisztray, A. Boronat, D.-H. Dang, R. Geiß,
J. Greenyer, P. V. Gorp, O. Kniemeyer, A. Narayanan, E. Rencis, and
E. Weinell. Graph transformation tools contest on the transformation of UML
models to CSP. In Schürr et al. [174], pages 540–565.

194. G. Varró, Á. Horváth, and D. Varró. Recursive graph pattern matching: With
magic sets and global search plans. In Schürr et al. [174], pages 456–470.

195. E. Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD
thesis, Stanford University, 1998.

196. H. von Koch. Une méthode géométrique élémentaire pour l’étude de certaines
questions de la théorie des courbes planes. Acta Mathematica, 30:145–174,
1906.

197. J. Vos, L. F. M. Marcelis, P. H. B. de Visser, P. C. Struik, and J. B. Evers, edi-
tors. Functional-Structural Plant Modelling in Crop Production, International
Workshop, volume 22 of Wageningen UR Frontis Series. Springer, 2007.

198. S. Wolfram. A new kind of science. Wolfram Media, Champaign, Illinois, 2002.
199. D. Zhao. Simulation und Visualisierung der Struktur und Dynamik metabolis-

cher Netzwerke mit relationalen Wachstumsgrammatiken. Diploma thesis,
BTU Cottbus, 2006.

200. A. Zündorf. Graph pattern matching in PROGRES. In Cuny et al. [34], pages
454–468.

201. A. Zündorf and A. Schürr. Nondeterministic control structures for graph
rewriting systems. In G. Schmidt and R. Berghammer, editors, Graph-
Theoretic Concepts in Computer Science, 17th International Workshop,
WG’91, Fishbachau, Germany, number 643 in Lecture Notes in Computer Sci-
ence, pages 48–62. Springer, 1991.

http://tfs.cs.tu-berlin.de/agg/

Index

Σ-algebra 75
[20
% 20
] 20
0L-system 18
2L-system 24
3D-CS (plug-in) 378, 389

AbruptCompletion (class) 219
@Accelerator (annotation) 353
agent-based modelling 15
AGG (program) 83, 362, 370
aggregate method 93, 129, 138, 159,

276, 289, 316
alphabet 17, 44
amalgamation 64, 70, 101, 105, 281
ants 15, 287
API-Doc (plug-in) 379
apical growth process 95
apical meristem 87, 95, 303, 340
application condition 26, 56, 106, 115,

147, 150, 151, 199
arithmetical-structural operator 31, 90
array (method in Operators) 140
arrow 48
artificial life 15, 282–295
AST (interface) 208
attributed graph 76
attributed graph homomorphism 76
attributed type graph with inheritance

76
Authorization (class) 216
axial tree 95
axiom 18

AxisBase (class) 406, 409

backpatching 210
basipetal (class) 323
Billboard (plug-in) 378
binary coproduct 69
bison (program) 208
BooleanAggregateState (interface)

139
BooleanConsumer (interface) 134
BooleanFilterState (interface) 136
bracketed L-system 20
branching process 95
BSplineCurve (class) 392
BSplineSurface (class) 392
bytecode 206, 224–227

carrier set 75
category 48
CClass (class) 211
cellular automaton 14, 91, 104, 178,

275
class diagram 72
codomain 48
coequalizer 53
communication module 32
CompilerExtension (class) 400
CompiletimeModel (interface) 142,

143, 175, 176
concrete closure 74
connection instruction 46
connection mechanism 60
connection production 60

428 Index

connection transformation 66, 100,
107, 108, 202, 239–244

context-free L-system 18
context-sensitive L-system 24
control of application 24, 81, 92, 112
@ConversionConstructor (annotation)

184
ConversionType (enumeration) 185
count (method in Operators) 140
CPFG (plug-in) 378, 380, 389
cpfg (program) 29, 36, 38, 128, 142,

145, 367, 368
current (method in VMXState) 213
currentGraph (method in

RuntimeModel) 144
cut-operator 20, 244, 300
Cylinder (class) 288

D0L-system 18
dangling points 51
@DefaultModuleSuperclass (annota-

tion) 180
Delete (key) 388
derivation 18

DPO 50
edNCE 47
parallel SPO 69
SPO 54
stochastic 23
typed attributed SPO derivation with

inheritance 79
deterministic L-system 18
differential L-system 27
discrete graph 44
DisposableIterator (interface) 186
dL-system 27, 89
domain 48
double-pushout approach 48
DoubleToDouble (interface) 188
DPO 48

derivation 50
production 48

DTGShoot (class) 390
DXF (plug-in) 378, 389

edge 44
EdgeDirection (class) 167
edNCE 46

derivation 47

production 46
edNCEp grammar 68
edNCEp production 68
Element (interface) 257
embedding mechanism 45
empty (method in Operators) 140
enumerateEdges (method in Graph)

144, 149
enumerateNodes (method in Graph)

144
EnumerateNodesPattern (class) 198
environmentally-sensitive L-system

32, 90
Error (class) 219
evaluateBoolean (method in

VoidToBooleanGenerator) 135
evaluateObject (method in

VoidToObjectGenerator)
135

Examples (plug-in) 379
exist (method in Operators) 140
Expression (class) 225
expression tree 211

F2 (key) 388
File/New/RGG Project (menu) 396
FilterState (interface) 136
first (method in Operators) 138,

140
first-class objects 384
folding clauses 155
forall (method in Operators) 140
Frame (interface) 201, 215

Game of Life 14, 178, 275
gene regulatory network 38
generalized Koch constructions 12
generative production 28, 248
generator expression 129
generator method 133, 213, 217, 223
getComponentProperty (method in

Property) 177
getDirectProperty (method in

CompiletimeModel) 175
getEdgeType (method in

CompiletimeModel) 144
getNodeType (method in

CompiletimeModel) 144
getRoot (method in Graph) 144, 146

Index 429

getRuntimeName (method in
CompiletimeModel) 144

getRuntimeType (method in
CompiletimeModel) 175

getStandardEdgeFor (method in
CompiletimeModel) 150

getSubProperty (method in Property)
177

getTypeCastProperty (method in
Property) 177

getWrapperTypeFor (method in
CompiletimeModel) 148

getWrapProperty (method in
CompiletimeModel) 148

gluing condition 51

gluing graph 48

Grammar (plug-in) 378, 380

Graph (source project) 377, 379

Graph (interface) 142, 143, 158

graph 44

attributed 76

discrete 44

type graph 73

typed 73

typed attributed 76

typed with inheritance 74

graph grammar 45

programmed 81

graph homomorphism 45

attributed 76

partial 52

typed 73

typed attributed 77

typed with inheritance 74

graph rewriting 43

graph rotation system 85, 335

graph schema 72

GrGen.NET (program) 85, 362, 370

GROGRA (program) 30, 35, 36, 93,
128, 142, 145, 159, 169, 199, 205,
208, 250, 258, 269, 270, 314, 371,
414

GroIMP (program) 128, 233, 269,
375–393

growth grammar 30–32, 90, 93, 105

@HasModel (annotation) 158, 175

hyperedge replacement 47

identification points 51
IMP (plug-in) 377, 380, 389
IMP-2D (plug-in) 378
IMP-3D (plug-in) 378, 380, 390, 392,

393, 406, 408
imperative programming 5, 9, 15, 29,

92, 116, 178
@ImplicitDoubleToFloat (annotation)

186
@In (annotation) 146, 157
independence

parallel 71
sequential 71

inheritance 73, 95
inheritance relation 74
instantiation rule 182, 274, 284, 382,

401
@InstantiationProducerType (annota-

tion) 183
Instantiator (interface) 182
interpretation 19
interpretive production 28, 182, 248,

405
InterpretiveMark (class) 405
Iterable (class) 133

javac (program) 226–230, 372
javadoc (program) 379
jEdit (plug-in) 377
jikes (program) 227, 229, 230

L+C 33–36, 90, 92, 105, 169, 180,
367–369, 371

L-Studio (program) 36, 37, 199
L-system 17

context-free 18
context-sensitive 24
deterministic 18
differential 27
environmentally-sensitive 32, 90
nondeterministic 18
open 90
parametric 25, 89
pseudo 25
stochastic 23
table 24

L-transsys (program) 38, 40, 296, 302
last (method in Operators) 140
lex (program) 207

430 Index

Library (class) 273, 283, 285, 306, 309,
313, 316, 317, 339, 408

LightModel (class) 413
Local (class) 214
loop 44
Lparser (program) 38, 39
lpfg (program) 36

Main (class) 226, 377
match 45, 79, 107, 141, 173, 193
Math (plug-in) 377
max (method in Operators) 140
mean (method in Operators) 140
META-INF/MANIFEST.MF 387
metamer 95
Michaelis-Menten 39
min (method in Operators) 140
modelForName (method in

RuntimeModelFactory) 144
module 25, 179
module declarations 180
monomorphism 45
morphism 48

needsWrapperFor (method in
CompiletimeModel) 148

Neighbor (class) 241
neighbourhood controlled embedding

46
Node (class) 253
Node (interface) 257
node 44
node replacement 46
NodeData (class) 202
nondeterministic L-system 18
Null (class) 273

ObjectAggregateState (interface)
139

ObjectConsumer (interface) 134
ObjectFilterState (interface) 136
Objects/Insert File (menu) 388
Objects/New (menu) 388
Objects/New/From File (menu) 388
open L-system 32, 90
Operator (interface) 240
operator 66
operator$space (operator method)

166

Operators (class) 138, 140, 276, 410
@Out (annotation) 146, 157

Panels (menu) 388
Panels/Explorers (menu) 388
Panels/Set Layout (menu) 388
Panels/Set Layout/RGG Layout (menu)

396
parallel edges 44
parallel independence 71
parallel SPO derivation 69
parallel SPO production 69
Parallelogram (class) 402
parametric L-system 25, 89
partial graph homomorphism 52
PDB (plug-in) 378, 389
photosynthetically active photon flux

density 322
Platform (plug-in) 377, 380, 389
Platform-Core (source project) 377
Platform-Swing (plug-in) 377, 380
Platform-Swing-LookAndFeels (plug-in)

379
plugin.xml 377
Point3d (class) 273
polygon mesh 85, 335
polymorphism 72, 74, 95
POV-Ray (plug-in) 378, 389
predecessor 18
prod (method in Operators) 140
Producer (class) 243
Producer (interface) 173
producer$begin (producer method)

164, 168
producer$beginExecution (method in

Producer) 173, 174
producer$end (producer method)

164, 168
producer$endExecution (method in

Producer) 173
producer$getRoot (producer method)

165
producer$pop (producer method) 168
producer$push (producer method)

168
producer$separate (producer method)

168
production 18

DPO 48

Index 431

edNCE 46
generative 28, 248
interpretive 28, 182, 248, 405
parallel SPO 69
SPO 54
typed attributed SPO production

with inheritance 79
programmed graph grammar 81
programmed graph replacement 81, 92
PROGRES (program) 82, 149, 155
Property (interface) 175, 177
pseudo L-system 25
pullback 56
pullback rewriting 57
pushout 49, 77
pushout-star 63, 70

query module 32
Queue (interface) 239
QueueCollection (class) 239
QueueDescriptor (class) 239

Raytracer (plug-in) 378, 392
RD (class) 321
Reset (menu) 397
RGBAShader (class) 274
RGG (plug-in) 378–380, 386, 389, 400,

401, 404–406, 414
RGG (class) 254, 395, 396
RGG dialect 399
RGG-Tutorial (plug-in) 378
RGGGraph (class) 401
RGGProducer (class) 401
rooted tree 95
Routine (interface) 217
RoutineDescriptor (class) 217
RoutineDescriptor (interface) 217
RuntimeModel (class) 236
RuntimeModel (interface) 142, 143, 176
RuntimeModelFactory (class) 143,

144, 176

scanner 207
Scope (class) 211
scope 210
search plan 85, 197, 386
second-class objects 384
selectRandomly (method in Operators)

141

selectWhere (method in Operators)
141

selectWhereMax (method in Operators)
141

selectWhereMin (method in Operators)
141

sensitive function 31, 93, 159
SensorNode (class) 413
sequential independence 71
shape grammars 341
Sierpinski triangle 13, 21, 61, 63, 67,

113, 253, 272, 359
signature 75
single-pushout approach 52
snowflake curve 11, 19, 269
Spectrum (class) 321
Spectrum (interface) 413
Spectrum3d (interface) 413
Sphere (class) 274
SPO 52

derivation 54
parallel derivation 69
parallel production 69
production 54

start word 18
stencil 60
step (menu) 397
stochastic 0L-system 23
stochastic derivation 23
string (method in Operators) 140
subdivision 86
subgraph 45
subtype 74
successor 18
sum (method in Operators) 140
Sunshine (plug-in) 378
symbol tables 211

T0L-system 24
table L-system 24
term algebra 79
TexGen (plug-in) 378
TokenStream (interface) 208
transsys (program) 38–40
TreeModel (class) 379
turtle command 19
turtle interpretation 19
turtle state 19
TurtleState (class) 406

432 Index

TurtleStateModifier (interface) 406
Twilight 378
Type (interface) 151
type graph 72, 73

attributed with inheritance 76
with inheritance 74

typed attributed graph homomorphism
77

typed attributed graph with inheritance
76

typed attributed SPO derivation with
inheritance 79

typed attributed SPO production with
inheritance 79

typed graph 73
attributed with inheritance 76
with inheritance 74

typed graph homomorphism 73
attributed 77
with inheritance 74

@UseConversions (annotation) 185
@UseExtension (annotation) 226
@UseModel (annotation) 158, 175
UserDefinedCompoundPattern (class)

158, 198
UserDefinedPattern (class) 145, 157,

180
Utilities (source project) 377

Variable (interface) 201, 215

Variant (class) 257
Vecmath (plug-in) 377, 378, 409
VecmathOperators (class) 273, 275
vertex-vertex algebra 86, 335, 402
VertexGrid (class) 392
VertexList (class) 392
virtual machine 205, 213
vlab (program) 36, 37
VMXFrame (class) 214
VMXState (class) 213
VoidToBooleanGenerator (interface)

135
VoidToObjectGenerator (interface)

135
Volume (interface) 409
vv (program) 85
VVProducer (class) 336

weak parallelism theorem 71

X3D (plug-in) 378, 389
XL (plug-in) 378
XL programming language 125
XL-Compiler (plug-in) 378
XL-Core (source project) 377, 378
XL-Impl (plug-in) 378, 380
XL-VMX (plug-in) 378
XLTokenizer (class) 207

yacc (program) 208

	Introduction and Motivation
	Part I The Rule-Based Paradigm
	Introductory Examples
	Snowflake Curve
	Plant-Like Branching Structure
	Sierpinski Triangle
	Game of Life
	Artificial Ants
	Comparison of Examples

	L-Systems
	Introduction
	Turtle Interpretation of Symbols
	Stochastic L-Systems
	Context-Sensitive L-Systems
	Table L-Systems
	Pseudo L-Systems
	Parametric L-Systems
	Differential L-Systems
	Interpretive Productions
	L-Systems with Imperative Programming Statements
	Growth Grammars
	Environmentally-Sensitive L-Systems
	Open L-Systems
	L+C
	L-System Software
	GROGRA
	vlab and L-Studio
	Lparser
	L-transsys

	Graph Rewriting
	Introduction
	Embedding Mechanisms
	Neighbourhood Controlled Embedding
	Hyperedge Replacement
	Double-Pushout Approach
	Single-Pushout Approach
	Pullback Rewriting
	Relation-Algebraic Rewriting
	Logic-Based Structure Replacement Systems

	Parallel Graph Rewriting
	Explicit Connection Mechanisms
	Implicit Connection Mechanisms

	Parallelism
	Extensions of the Graph Model
	Typed Graphs
	Typed Graphs with Inheritance
	Typed Attributed Graphs with Inheritance

	High-Level Replacement Systems
	Programmed Graph Replacement Systems
	Graph Rewriting Software
	PROGRES
	AGG
	GrGen.NET
	vv

	Relational Growth Grammars
	Introduction
	Graph Model
	Axial Trees
	RGG Graph Model

	Connection Mechanism
	L-System-Style Connection
	Productions with Gluing
	Connection Mechanism: SPO Approach with Operators

	Dynamic Creation of Successor
	Rules
	Control Flow and Relational Growth Grammar
	Relations within Rules
	Incremental Modification of Attribute Values
	Appendix Proofs

	Part II The XL Programming Language
	Design of the Language
	Requirements
	Design Guidelines
	Generator Expressions
	Generator Methods
	Range Operator
	Array Generator
	Guard Operator
	Filter Methods
	Standard Filter Methods

	Aggregate Expressions
	Containment Operator
	Aggregate Methods
	Standard Aggregate Methods

	Queries
	Compile-Time and Run-Time Models for Graphs
	Node Patterns
	Path Patterns
	Composing Patterns
	Declaration of Query Variables
	Transitive Closures
	Single Match, Late Match and Optional Patterns
	Marking Context
	Folding of Query Variables
	Query Initialization
	How Patterns are Combined
	Declarations of User-Defined Patterns
	Query Expressions

	Operator Overloading
	Production Statements
	Execution of Production Statements, Current Producer
	Node Expressions
	Prefix Operators for Node Expressions
	Subtrees and Unconnected Parts
	Code Blocks
	Control Flow Statements

	Rules
	Rule Blocks
	Execution of Rules

	Stand-Alone Production Statements
	Properties
	Compile-Time and Run-Time Models for Properties
	Access to Property Variables
	Deferred Assignments
	Properties of Wrapper Types

	Module Declarations
	Syntax
	Instantiation Rules

	User-Defined Conversions
	Minor Extensions
	for statement
	Implicit Conversions from double to float
	Expression Lists
	With-Instance Expression Lists
	Anonymous Function Expressions
	const modifier
	New Operators

	Pattern Implementation and Matching Algorithm
	Common Semantics of Patterns
	Built-In Patterns
	Compound Pattern
	Search Plans and Their Cost Model
	Generating a Search Plan
	Enumeration of Nodes
	Checking Constraints

	User-Defined Patterns
	Storage of Named Query Variables
	Support for Application of Rules

	Compiler Implementation
	Lexical Analysis
	Syntax Analysis
	Semantic Analysis and Expression Tree Generation
	Passes of the Semantic Analysis
	Scopes and their Symbol Tables
	Generation of Expression Trees

	Extension of the Virtual Machine
	Stack Extension
	Descriptors for Nested Method Invocations
	Control Transfer to Enclosing Method Invocations
	Minor Issues
	Transformation for Invocations of Generator Methods

	Bytecode Generation
	Run-Time Models, Properties and Queries

	Compiler Extensions
	Invocation of the Compiler
	Current Limitations
	Comparison with Java Compilers
	Efficiency of Output
	Efficiency of Compilation Process

	Part III Applications
	Base Implementation and Its Applications
	Base Implementation
	Graph Model
	Modification Queues
	Implementation of Connection Mechanism
	Producer Implementation
	Derivation Modes
	Interpretive Structures
	Injectivity of Matches
	Implementation of Properties

	Simple Implementation
	Sierpinski Triangles

	Document Object Model Implementation
	Simple Model of Young Maple Trees

	Implementation for Commercial 3D Modellers
	CINEMA 4D
	3ds Max
	Maya

	Applications within GroIMP
	Introductory Examples
	Snowflake Curve
	Sierpinski Triangles
	Game of Life

	Technical Examples
	Derivation Modes
	Amalgamated Two-Level Derivations

	Artificial Life
	Biomorphs
	Artificial Ants

	Artificial Chemistry
	Prime Number Generator
	Polymerization Model

	Virtual Plants
	ABC Model of Flower Morphogenesis
	Barley Breeder
	Carrot Field with Rodent
	Spruce Model of GROGRA
	Analysis of Structural Data of Beech Trees with XL
	Beech Model and Tree Competition
	Canola Model for Yield Optimization
	GroIMP as HTTP Server in an E-Learning Project
	Reproducing an Alder Tree of the Branitzer Park
	Ivy Model

	Graph Rotation Systems and the Vertex-Vertex Algebra
	Architecture
	Results of Students of Architecture
	City Generator

	AGTIVE '07 Tool Contest
	Ludo Game
	Model Transformation from UML to CSP
	Sierpinski Triangles Benchmark

	Discussion
	Relational Growth Grammars
	The XL Programming Language
	Outlook

	Appendix The Modelling Platform GroIMP
	Overview
	Plug-In Architecture
	Graph Component
	Graph Interface
	Management of Objects, Attributes and Changes
	Graph Implementation

	Projects
	Graphical User Interface
	Import and Export Filters
	GraphML Import
	DTD and DTG Import

	3D Plug-In
	Built-In Raytracer

	Appendix The RGG Plug-In of GroIMP
	Overview of Functionality
	RGG Class and Its Life Cycle
	XL Console
	RGG Dialect of the XL Programming Language
	Implicit Annotations for Source Code
	Processing of Compiled Classes
	Implementation of Graph Model
	Operations of the Producer
	Properties
	Wrappers
	Interpretive Mode
	Turtle Commands
	Library Functions
	Geometric Functions
	Mathematical Functions
	Topological Functions
	Control of Rule Application
	Creating References to User-Defined Objects
	User Interface
	Operator Methods and Unwrapping Conversions

	Radiation Model
	Support for GROGRA Models

	References
	Index

