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Zusammenfassung 
 
 

Dünne durch Spin Coating abgeschiedene Filme des ferroelektrischen Copolymers P(VDF-

TrFE) sind attraktiv für viele Anwendungen. Für diese Filme stellt sich die Frage, ob eine 

Abhängigkeit der ferroelektrischen Funktionalität von der Schichtdicke des ferroelektrischen 

Materials existiert. In dieser Arbeit wurden erfolgreich ultradünne P(VDF-TrFE)-Schichten 

herunter bis zu einer Dicke von 0.35 nm abgeschieden, was als sehr aussichtsreich für „low-

cost“-Ansätze in der elektronischen Industrie anzusehen ist. 

Diese Arbeit fokussiert auf die Präparation und Charakterisierung von ultradünnen P(VDF-

TrFE)-Schichten, um eine wissenschaftliche Orientierung für mögliche nichtflüchtige 

Speicheranwendungen zu erarbeiten.  

 

Anfangs wird zunächst die Präparation dargestellt. Dabei wird speziell auf die Optimierung der 

Temperparameter eingegangen. Die Bestimmung der Schichtdicke des Copolymers kann sehr 

präzise für die untersuchten ultradünnen Schichten durchgeführt werden. 

 

Ausführlich wurde in der Arbeit die Charakterisierung der Filme mit der 

Photoelektronenspektroskopie durchgeführt. Dabei wurde zusätzlich festgestellt, dass für längere 

Röntgenstrahlungsexpositionszeiten der Filme eine Phasenumwandlung von der 

ferroelektrischen zur paraelektrischen Phase stattfinden kann. Deshalb wurde die 

Bestrahlungszeit hinsichtlich der unverfälschten Auswertbarkeit der spektroskopischen 

Ergebnisse optimiert. 

 

Mit der Photoelektronenspektroskopie wurde die Grenzflächenchemie zwischen P(VDF-TrFE) 

und verschiedenen Elektrodenmaterialien untersucht. Die Grenzflächen von Aluminium/P(VDF-
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TrFE) und PEDOT:PSS/P(VDF-TrFE) wurden verglichen. PEDOT:PSS (Poly(3,4-

Ethylendioxithioph):Poly(Styrensulfonat) ist ein leitfähiges Polymer. Die Daten zeigen, dass sich 

eine Grenzflächenschicht bei Aluminiumelektroden bildet, eine Grenzflächenreaktion zeigt sich 

sowohl für Top- als auch für Bottomelektroden. Im Gegensatz dazu zeigt das organische 

PEDOT:PSS keine chemische Wechselwirkung mit dem P(VDF-TrFE). Dies zeigt eine 

verbesserte Funktionalität von dünnen organischen ferroelektrischen Filmen. 

 

Für “low-cost”- Ansätze der Elektronik, die auf organischen Bauelementen basiert,  ist die 

Einführung von organischen nichtflüchtigen Speichern von großer Bedeutung. P(VDF-TrFE) 

Copolymer ist ein Material mit einer sehr hoffnungsvollen Perspektive.  

Ergebnisse elektrischer Messungen an P(VDF-TrFE)-Schichten werden in einem weiteren 

Abschnitt dieser Arbeit dargestellt. Mit Kapazitäts-Spannungsmessungen (CV) bei erhöhten 

Temperaturen wird der Curie-Punkt untersucht. Bei der Benutzung von Aluminiumelektroden 

wird eine Abnahme der Polarisation für Schichten kleiner 100 nm gefunden. Mit inerten 

Elektroden war eine Herunterskalierung bis zu 10nm mit einem kleinen Koerzitivfeld möglich. 

Das ist wichtig, da das relativ hohe Koerzitivfeld des P(VDF-TrFE) (>50 MV/m) eine ultradünne 

Schichtdicke für geringe Betriebsspannungen erfordert. Eine Voraussetzung für 

Speicheranwendungen ist eine hohe Retentionszeit, dies wurde auch gezeigt. 

 

Die ferroelektrische Dipolorientierung wurde mit NEXAFS-Untersuchungen (Near edge X-ray 

Absorption Spectroscopy) untersucht. Bei Benutzung eines PEDOT:PSS-Substrates konnte auch 

für 0.35 nm dicke P(VDF-TrFE)-Filme eine durchschnittliche Dipolorientierung senkrecht zur 

Substratoberfläche) nachgewiesen werden. 

 

Die ferroelekrischen Eigenschaften wurden für Filme bis zu 10 nm mit spektroskopischen (F1s 

NEXAFS) und elektrischen (CV) Methoden untersucht. Die Resultate zeigen, dass ein 

extrinsischer Schaltmechanismus vorliegt, der bei einer wesentlich kleineren Spannung als beim 

kollektiven intrinsischen Effekt stattfindet. Beide unabhängigen Methoden zeigen, dass keine 

kritische Dicke für Spincoating-Filme bis herunter zu 10 nm gefunden wird, wenn adaptierte 

Elektroden benutz werden. 
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Abstract 
 

 

Spin-cast films of the ferroelectric copolymer P(VDF-TrFE) are attractive for various 

applications. For such films the question arises whether there exists a depending on film 

thickness of ferroelectric functionality. In this work, ultra-thin films of P(VDF-TrFE) up to 

0.35nm of thickness have been successfully spin coated, which is quite promising in respect of 

low cost approach in the electronic industry. 

This thesis focuses on the preparation of the ultra-thin P(VDF-TrFE) copolymer film and its 

characterizations to find out a scientific guideline for the suitable application as a non-volatile 

memory element. Therefore, the ultra-thin film preparations have been investigated initially. 

Optimization of annealing parameters has been done to get the ferroelectric beta phase and 

thickness determination is also done carefully. The copolymer layer thickness could be 

determined down to about 0.35 nm. 

 

Photoelectron spectroscopy is used extensively for the characterization of the thin film. 

Eventually, longer time X-ray irradiation of the P(VDF-TrFE) sample may cause a phase change 

from ferroelectric to paraelectric. Therefore the X-ray irradiation time was also optimized.  

 

With photoelectron spectroscopy, the interface chemistry of the P(VDF-TrFE) copolymer and 

different electrode materials was studied. The interfaces aluminum/P(VDF-TrFE) and 

PEDOT:PSS/P(VDF-TrFE) are compared. PEDOT:PSS is a conducting polymer, Poly(3,4-

ethylenedioxidethiophene): poly(styrenesulfonate). This data suggested that an interface layer is 
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formed for electrodes, made of aluminum. An interface reaction occurs in both cases: for 

aluminum as top and as bottom electrode. In contract, the organic PEDOT:PSS electrode shows 

no chemical interaction with the P(VDF-TrFE) copolymer. The much lower reactivity of organic 

electrode, compare to aluminum, gives a direct hint to improved functional properties of thin 

organic ferroelectric films. 

 

In terms of a low cost approach for electronics, based on organic devices, the introduction of 

organic non volatile memories is of great importance.  P(VDF-TrFE) copolymer is the material 

with a very hopeful perspective.  

In next part electrical measurements with P(VDF-TrFE) have been done. By capacitance voltage 

measurements, the ferroelectric behavior of the polymer by measurements at elevated 

temperatures (Curie-Point) is confirmed, a threshold for remanent poalrization for films below 

100 nm is found, if aluminum electrodes are used, but with inert electrodes, a downscaling of a 

low coercitive field was possible down to ten nm. This is very important, because due to the high 

coercitive field of the copolymer (>50 MV/m), ultrathin films for low operation voltages are 

needed. A prerequisite for memory applications is a high retention time, this was also confirmed. 

 
By the help of Near edge X-ray Absorption Spectroscopy (NEXAFS) the possible ferroelectric 

dipole orientation have been also investigated. The average dipole orientation (perpendicular to 

the substrate) is observed up to 0.35 nm P(VDF-TrFE) copolymer films when PEDOT:PSS/Si 

substrate is used.  

 

The ferroelectric properties of ultrathin films down to a layer thickness of 10nm were 

characterized using spectroscopic (F1s NEXAFS) and electrical methods (Capacitance voltage). 

The results indicates an extrinsic switching mechanism with a much lower operation voltage than 

for a collective intrinsic switching. Both independent methods agree that there is no critical 

thickness for spincoated copolymer films down to 10 nm, if an adapted system of electrodes is 

used. 
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Chapter 1.                           Introduction 

 

Ferroelectric polymer polyvinylidene fluoride (PVDF) and its copolymer P(VDF-TrFE), both 

of them have attracted due to excellent properties and for their utility. Since last 30 years, 

P(VDF-TrFE) is mostly extensive studied ferroelectric polymer [1]. It has tremendous 

applications in electronic industry such as soft transducers, infrared imaging, and compact 

capacitors and most promisingly as a non volatile memory.  

 

1.1. P(VDF-TrFE) copolymer : background 

Ferroelectrics are the field of interest among researcher since almost 80 years [2]. This class 

of materials belongs to the pyroelectric family of which the direction of spontaneous 

polarization can be reversed by an electric field. In 1894, Pockels reported the anomalously 

large piezoelectric constant of Rochelle salt. From initial investigations of Rochelle salt by 

Valasek in the early 1920s [2, 3], ferroelectric materials are focus on research area. Starting 

from Rochelle salt, typical examples include potassium dihydrogen phosphate (KH2PO4), 

sodium nitrite (NaNO2), and barium titanate (BaTiO3). Most of them are stiff crystalline 

solids. In the last decade, some new ferroelectric members have been introduced those are 

somewhat different from the traditional ones in various points of view. One of them is a series 

of liquid crystalline ferroelectrics those are non-solid and rod like structure. Mayer et al. have 

synthesized a liquid crystal, called DOMAMBC, and have demonstrated ferroelectric 

polarization reversal behavior [4].  

PVDF is not a newly synthesized polymer and it has been known over almost 50 years. 

Initially it was familiar as a polymer having a large dielectric constant and diverse crystalline 

polymorphs phase. Strong piezoelectricity was discovered by Kawai in 1969 for uniaxially-

drawn and poled film [5]. Thereafter, in 1971, Bergman, McFree and Crane have accounted 

finding of pyroelectricity and non-liner optical behaviour in the same polymer [6]. These 

effects lead the idea that PVDF is not only a chemically stable structural material but also a 

functional polymer which perform as energy transducer. An extensive effort has been mature 

to basic understanding and the technical applications of PVDF [7-11]. After commercialize 

the product of PVDF as piezoelectric and pyroelectric flexible transducers, there had been 

continuing arguments regarding the origin of these effect, especially, whether they arises from 

oriented molecular dipoles or trapped space charges. 

In the late 1970s, however, evidence for possible reorientation of crystalline dipoles induced 

by poling was demonstrated by means of X-ray and IR techniques [9, 12-14]. First switching 
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phenomena and hysteresis loops were demonstrated and explain by Furukawa et al., which 

gave much clear picture in this field that PVDF is a ferroelectric polymer [15, 16]. In 1980s, 

the existence of a Curie point, which is one of the evidence of ferroelectricity has been 

observed in copolymer of PVDF, namely, poly (vinylidene–trifluorethylene) (P(VDF-TrFE)) 

[15, 17, 18]. Afterwards, many scientific observations, interpreted as ferroelectric behavior of 

P (VDF-TrFE) were published [16, 19-23]. 

 

1.2. Structures of PVDF and its co-polymer: P (VDF-TrFE) 

PVDF, a nonconjugated linear fluorinated hydrocarbon consists of a repeating unit of 

CH2CF2. It has a polar structure associated with positive hydrogen and negative fluorine 

atoms. The value of net dipole moment (µν) is about 7 × 10-30 Cm in vacuum [24, 25].  The 

orientations of dipoles are directly controlled by the conformation and packing of molecules, 

as the dipoles are rigidly attached to main backbone of the carbon chain. Figure 1.1 shows the 

unit structure (I), the molecular conformation (II), the crystalline structure (III), and the bulk 

structure (IV) of PVDF in its ferroelectric phase. In the all-trans conformation the CH2CF2 

dipoles are aligned in the zigzag plane and perpendicular to the chain axis. In this case, all-

trans molecules prefer to be packed in a parallel fashion to form a crystal called β phase. To 

generate the highest spontaneous polarization value, the molecular dipoles in the β phase are 

entirely aligned in one direction. If one consider µν is 7 × 10-30 Cm, then crystalline 

polarization for unit volume becomes P0 = 2µν/abc = 130 mC/m2, where a, b, and c are 

orthorhombic lattice constants and the typical value in this case, a = 0.858 nm, b = 0.491 nm 

and c = 0.256 nm. The β phase is responsible for the ferroelectricity of PVDF, as the direction 

of P0 has been shown to be switchable by action of the electric field. The bulk sample of 

PVDF is a mixture of crystalline and amorphous regions. It was found that ferroelectricity 

comes from the crystalline region, but the noncrystalline region is also more or less influenced 

[26]. 
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(I) Polar unit 

 

 
(II) All-trans conformation 

 

 
(III) Parallel packing 
 

 
     (IV) Polycrystalline bulk 
 

Figure 1.1. Unit (I), molecule (II), crystal (III), and bulk (IV) structure of PVDF [1, 35]. 
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Molecular and crystalline structure 

PVDF have usually four different types of polymorphs. The all-trans (TTTT) β phase (phase 

I) is one of the diverse crystalline structure. The most common polymorph is the α phase 

(phase II) which consists of alternating trans-gauche GTGT molecules packed in antiparallel 

fashion [27, 29, 37]. There is an intermediate conformation T3GT3G which favors a parallel 

packing to generate the γ phase (phase III) [28]. The parallel version the α phase is known as δ 

phase (phase αp or IV) [30, 31]. Figure 1.2 shows the molecular conformations and crystalline 

forms of PVDF. The polymer chain confirmations can be explained in the sequence of 

dihedral bond angles. The trans bond (T) has a dihedral angle of approximately ~ 1800 and the 

left and right gauche bonds (G and G ) have dihedral angles of approximately ± 600. Therefore 

in summary, the most common conformations are all-trans TTTT (figure 1.2a), alternating 

left-right trans-gauche GTGT  (figure 1.2b) and helical TGTG or GTGT . All three 

conformations form straight cylindrical chains that crystallize in a quasi-hexagonal packing.  

 
In the β phase, the all-trans (TTTT) conformation crystallizes in an orthorhombic m2m 

structure with chains along the crystal c-axis and the dipoles aligned approximately along the 

crystal b-axis as shown in figure 1.2 [32-36]. The β phase is polar and uniaxial ferroelectric, 

as the polarization can be repeatably switched between opposite but energetically equivalent 

directions along the 2-fold b-axis. The β phase unit cell nominally consists of two 

−(CH2−CF2)− formula units, one along the c-axis parallel to the chains (see figure 1.2a). The 

unit cell dimension is approximately: c = 0.256 nm along the chain axis, b = 0.491 nm along 

the polarization direction which is the 2-fold axis and a = 0.858 nm perpendicular to the chain 

axis and to the polarization [35]. It is possible that the unit cell is twice as big, containing two 

monomers along the chain, because a ± 70 dihedral tilt-ordering would make the c-axis period 

two monomers long or c ≈ 0.512 nm [34]. 

 
The complete crystalline α phase structure shown in figure 1.2 (d) consist of opposing polar 

sublattices of the trans-gauche chains, resulting no net polarization in both parallel and 

perpendicular to the chain axis. The α phase unit cell nominally consists of four −(CH2−CF2)− 

units, two along the c-axis parallel to the chains and two in the plane perpendicular to the c-

axis. The unit cell dimensions are approximately: a = 0.964 nm, b = 0.496 nm, c = 0.462 nm 

[37]. 
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Figure 1.2. Diagram of crystalline forms of PVDF (a) in the all-trans conformation (inset, 

end view of a chain); (b) in the alternating trans-gauche conformation (inset, end view of 

a chain); (c) end-on view of the crystal structure of the ferroelectric β phase, composed of 

close-packed all-trans chains; (d) end-on view of the crystal structure of the paraelectric 

α phase, composed of close-packed trans-gauche chains [32,36]. 

 
 
 
 
It is possible that the α phase structure is antiferroelectric but published reports proposed only 

direct conversion to the all-trans conformation in the β phase on the application of an electric 

field [38-41], no rotation of the trans-gauche dipoles into the polar alternating trans-gauche 

αp, or phase IV, which may be only metastable [34, 35, 42].  
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The paraelectric phase is composed of chains with the alternating trans-gauche ( GTGT ) 

conformation (figure 1.2 b), packing with no macroscopic polarization. The crystal structure 

of the paraelectric phase has been variously described as orthorhombic mmm [37, 43], 

monoclinic 2/m [34, 44, 46], and hexagonal [45, 47]. It has been proposed that the 

macroscopic paraelectric phase is composed of a random packing of the trans-gauche chain or 

a mixture of microcrystalline regions, each with different packing [42]. The paraelecteric 

phase structure includes a helical conformation in hexagonal packing [42], though infrared 

and Raman spectroscopes indicate a preponderance of trans-gauche conformation [48, 50]. 

Some observations pointed out, that especially PVDF and its copolymer exhibit a number of 

metastable crystalline phases that are difficult to separate from the true equilibrium phase [35, 

51, 52]. 

It was found that 3-6 % unavoidably introduce monomer reversal defects with structure 

−(CH2−CF2)−(CF2−CH2)−(CH2−CF2)− by the standard synthetic methods [53-55]. PVDF can 

also be copolymerized, apparently in random sequence, with trifluoroethylene (TrFE) –(CHF–

CF2)– and tetrafluoroethylene (TeFE) –(CF2–CF2)–. The reversed monomers and the 

intentionally incorporated TrFE or TeFE units function as defects, tending to lower the 

melting and ferroelectric phase transition temperatures, as can chain ends, bends, and folds. 

The copolymer also has a slightly larger unit cell and a smaller average dipole moment than 

pure PVDF, owing to the replacement of some of the hydrogen atoms by the larger fluorine 

atoms. A molecular modeling of PVDF and its copolymers have determined stable 

conformations, crystal structures, band structures and other physical properties [57, 58]. 

Farmer et al. investigated the stability of crystal structures of the two main conformations, all-

trans and alternating trans-gauche, finding that at least 14 % defects (e.g., TrFE monomers, 

head-head defects, chain ends) are needed to stabilize the α phase [34]. This was a reasonable 

agreement with experimental observations which showed that to produce a stable paraelectric 

α phase at below the melting point, the minimum requirement of TrFE was 20 % [53, 56]. 

Karasawa and Goddard found that the trans-gauche conformation could crystallize in four 

different packing arrangements with nearly identical energies, and proposed that the actual 

paraelectric α phase is a statistical mixture of these four packing arrangements [42]. The 

microscopic models have so far proven not sufficient enough for studying the ferroelectric-

paraelectric phase transition because they neglect dipole-dipole interactions and treat 

interchain interactions only in the mean field approximation. Modern computers and codes are 

much more powerful and will likely produce greatly improved models of the structure and 

dynamics of ferroelectric polymers [59]. It was observed that PVDF essentially does not 
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crystallize from the melt and crystallizes only poorly from solution [60]. Films must be 

treated mechanically by stretching to align the polymer chains, and electrically to align the 

polarization axes of the crystallites. A mechanical and electrical alignment process leads to 

macroscopic behavior, although  the film still having almost 50 % amorphous material and the 

crystallites are incompletely oriented [53, 60, 61]. On the other hand, copolymers of PVDF 

with trifluoroethylene (TrFE) and tetrafluoroethylene (TeFE) crystallize readily from the melt 

and can be stretched and electrically polarized to over 90 % crystallinity [53, 61, 62]. Films 

formed by spinning on texture Teflon have shown particularly good crystallinity and 

orientation which allow to detailed studies of intrinsic elastic anisotropy [63]. Several 

attempts (such as uniaxially drawing, annealing) successfully showed the significantly 

improved crystallinity in copolymer films, apparently eliminating amorphous material and 

lamellae, and producing a single crystalline phase with highly oriented crystallites [45, 47, 

64]. Although much has been learned about the fundamental nature of ferrolectricity and 

related properties of PVDF copolymers, due to limit of processing of crystallization and as 

well as accuracy of measurements, many questions relating the fundamental properties are 

still not clear.  

 

1.3. Basic properties of P(VDF-TrFE) 

Ferroelectricity  

The most promising property of P(VDF-TrFE) co-polymer is ferroelectricity, which is 

eventually useful for the application as non-volatile memory element. The evidence of the 

ferrolectricity arises due the presence of the component of TrFE with PVDF [24], which do 

exhibits a clear ferroelectric-paraelectric phase transition. P(VDF-TrFE) crystallize into 

various crystal forms depending on their molar content rations of VDF (x) and TrFE (1-x), and 

on crystallization conditions [25, 26, 32]. Under ordinary pressure, the α crystal form 

consisting of TGTG chains is stable for the VDF homopolymer (PVDF), while the β phase 

crystal consisting of all-trans chains becomes more stable on introducing TrFE sequences into 

VDF chains [34]. The β phase crystal is well known to be ferroelectric from its D-E hysteresis 

loops [15, 40], polarization switching [65], temperature behavior of the dielectric constant 

[15, 65-67], and anomalous X-ray dispersion [68]. Addition of the larger and less molar ratio 

of TrFE ruined the transition temperature by reducing the average dipole moment of the 

chains, expanding the lattice, and introducing defects. This ruined of ferroelectricity on 

addition of TrFE which indicates the resulting decrease in transition temperature [56]. In our 

study we choose the composition of 70% VDF and 30 % TrFE molar ratio, because it has the 
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most distinct ferroelectric properties and can be made mostly crystalline without stretching 

treatments. As the crystallinity is increased, the depolarization field is much reduced and 

therefore reasonably hysteresis loops occurs, a result from the 65 % VDF and 35 % TrFE 

molar ratio of P(VDF-TrFE) copolymer which has a crystallinity of ca. 80% [60]. 

 

Ferroelectric switching 

The ferroelectric switching process gives the information about the dynamic characteristic of 

the polarization reversal. 

The switching time of a ferroelectric follow the flowing relations 

 

• )/exp(0 EEass ττ = , an exponential law                                                                     1.1 

• m

s AE=τ , a power law                                                                                               1.2 

where E is the applied electric field, Ea is the activation field, τs0 is the switching time at 

infinite field, know as ‘time factor’. The experimental observation showed that ferroelectric 

polymers such as PVDF and the copolymer P(VDF-TrFE) follow the exponential law up to a 

sustainable field [23, 86, 87, 88], whereas BaTiO3 follows the exponential law for fields from 

0.3 to 3.0 MV/m, while it follow the power law at higher fields up to 10 MV/m [89, 90]. Most 

importantly, it is not found such a transition in P(VDF-TrFE) copolymers over a broad range 

of the applied field. It is noted that the applied sustainable field is much lower than that for the 

copolymer. The copolymers, especially in their very thin films, allow the application of a very 

high electric field.  

For low fields where the nucleation of domains persists, the switching time is 

phenomenologically described by equation 1.1. A switching kinetic like this is called extrinsic 

switching.  For extrinsic switching process two mechanisms are play the most important role. 

One is nucleation of domains with opposite polarization when a reverse field is applied and 

another is growth of these small domains accompanied by domain wall motion.  

In the higher field strengths, the nucleation of the new domains is so fast that the switching 

time is primarily determined by the time it takes to move the domain walls. In this case, τex is 

described by  

                                              
( )EE

ex ′−
=

µ
τ

1
                                                                           

1.3                                                               
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Where µ  is the mobility of the domain walls and E′  is a limiting field defining the range of 

validity of equation 1.3 and it is similar to coercive field strength. Therefore, in this case, a 

minimum critical size for ferrolectricity should exist, and a thermally activated process might 

be expected [94]. 

Some studies using P(VDF-TrFE) copolymer Langmuir-Boldgett films [95, 96] the switching 

kinetics follows different rules. This type of switching is called intrinsic switching. For ultra-

thin Langmuir Blodgett ferroelectric films of P(VDF-TrFE) with a thickness below 15 nm, the 

kinetics of polarization switching exhibit a critical behavior characterized by a pronounced 

slowing just above the coercive field [95, 96]. This phenomenon is called the intrinsic 

switching mechanism and the associated threshold field the intrinsic coercive field. Apart 

from the nucleation driven process of ferroelectricity, this field shows an enormous 

magnitude. In such a system, the dipoles in the crystal are highly interconnected and intended 

to switch coherently or not at all. Due to a reduced film thickness the nucleation volume limits 

and that does not allow nucleation. As a result extrinsic switching is inhibited. 

 
Piezoelectricity and pyroelectricity 

A change in polarization can occur through changes in either the moment or the volume. 

Piezoelectricity and pyroelectricity arises due to mechanical and thermal stresses respectively. 

PVDF has large (relative to inorganic and metallic materials) compressibility and thermal 

expansion coefficients, and with aligned dipoles present, can yield large polarization changes 

through changes in volume [69, 70]. Since the discovery of PVDF, several investigations have 

been done on piezoelectric and pyroelectric properties of uniaxially drawn PVDF [7, 8, 71-

74]. As PVDF is a ferroelectric polymer as well which have switchable dipoles [14, 75-77], 

the piezoelectric and pyroelectric activities can be naturally ascribed to the cooperative 

orientation of crystalline dipoles. PVDF is a complicated material in the context that samples 

used for the measurements are subjected to uniaxial drawing before poling. Uniaxial drawing 

results in a strong mechanical anisotropy, especially in large Poisson’s ratios [78]. In 

analogous to PVDF, the P(VDF-TrFE) copolymer basically adopt an all-trans structure of β 

phase in melt-crystallized or solution cast films [33, 79, 80]. As a result P(VDF-TrFE) 

copolymer shows piezoelectric and pyrolectric properties in undrawn samples [81]. This 

arises due to aligned crystalline dipoles. The degree of dipole orientation, equivalently the 

remanent polarization Pr, is the most crucial quantity determining the magnitudes of these 

activities. Furukawa and Wen have proposed a model to explain the possibility that stress 

induces the changes in dipole orientation due to an electrostrictive coupling in the crystalline 

phase of P(VDF-TrFE) cast film [85]. Some observations reported that the poled copolymers 
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with higher PVDF contains (70-80 mole %) exhibit strong piezoelectric effects and 

conspicuous ferroelectric phenomena [82]. In uniaxial constrained films, the effective 

pyroelectric coefficient depends on the pyroelectric coefficients and also on the piezoelectric 

and elasticity tensors, because the thin film constrained on a rigid substrate is stress-free 

normal to the film, but strain-free in the film plane [83, 84]. 

 

1.6. Motivation of the work 

 

This work addresses the possibility of using organic materials to make nonvolatile memory 

device by combining a ferroelectric and conducting polymer. It is conceivable that such a 

memory device could be made by solution-processing techniques, which would enable its use 

in ultra-low-cost applications. One of the main applications that one can conceive for such 

polymer memory devices in low-cost mass data storage. For this application it would have to 

compete with Flash memory technology by offering lower production costs. Another major 

application is the integrated memory. For the merit of such kind of research, it is expected that 

it is unattaionable by traditional Si-technology. Therefore, there are many challenges to 

understand the basic properties of the behavior of the ferroelectric polymer in the contest of 

‘non-volatile memory’ element.  

Therefore, we have much concentrated to make ultra thin film of the P(VDF-TrFE) copolymer 

and understand the ferroelectric dipole orientation mechanism by the use of NEXAFS 

spectroscopy. 
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Chapter 2.                             Experimental 

 

 

In this chapter we introduce the experimental techniques used to study for P(VDF-TrFE) 

copolymer films. 1
st
 we discuss about Fourier Transformed Infrad-Red Spectroscopy (FTIR) 

in respect of principle and merit of the technique. Then we address about the principle of X-

ray diffraction (XRD) technique. For morphological investigation, we used Atomic force 

microscopy (AFM), therefore we have discussed about the principle of the technique and 

merit of the different modes. Out of them, most of our experimental results based on 

photoemission spectroscopy, such as X-ray photoelectron spectroscopy (XPS), Near Edge X-

ray Absorption Fine Structure (NEXAFS). Therefore we address the principle and realization 

of XPS of P(VDF-TrFE) copolymer. Furthermore, we concentrate on the interplay of 

NEXAFS spectroscopy. In NEXAFS spectroscopy, we discuss about the principle of the 

molecular transition associated from core level to the empty states. The description about 

instrumentation for NEXAFS measurements is also described. And we concentrate the 

principle and necessity of curve fitting of NEXAFS spectrum. In the next step, details of the 

sample preparations are described. Sample preparations involve the thin film preparation 

procedure, thickness determination of the films, surface morphology, identification of the 

ferroelectric phase, effect of annealing and the optimization of the X-ray irradiation time for 

the P(VDF-TrFE) copolymer film. Finally we demonstrate the experimental setup for external 

application of the electric field. 
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Experimental techniques and their interpretation 

 

2.1. Fourier Transformed Infra-Red Spectroscopy (FTIR) 

 

Infrared (IR) spectroscopy is one of the versatile techniques for the organic and inorganic 

field of research [1]. FTIR is measurement technique where spectra are collected based on 

measurements of the temporal coherence of a radiative source, using time-domain 

measurements of the electromagnetic radiation or other type of radiation. 

 

A Fourier transform spectrometer is a Michelson interferometer with a movable mirror. By 

scanning the movable mirror over some distance, an interference pattern is produced that 

encodes the spectrum of the source, in fact, it turns out to be its Fourier transform. In its 

simplest form, a Fourier transform spectrometer consists of two mirrors located at a right 

angle to each other and oriented perpendicularly, with a beamsplitter placed at the vertex of 

the right angle and oriented at a 45o angle relative to the two mirrors. Radiation incident on 

the beamsplitter from one of the two ports is then divided into two parts, each of which 

propagates down one of the two arms and is reflected off one of the mirrors. The two beams 

are then recombined and transmitted out the other port. When the position of one mirror is 

continuously varied along the axis of the corresponding arm, an interference pattern is swept 

out as the two phase-shifted beams interfere with each other. A simplified optical layout of 

FTIR interferometer is shown in figure 2.1. 

 

Infrared spectroscopy exploits the fact that molecules have specific frequencies at which they 

rotate or vibrate corresponding to discrete energy levels. In vibrational mode, a molecule is IR 

active because of changes in the permanent dipole. Simple diatomic molecules have only one 

bond, which may stretch. More complex molecules have many bonds and vibration can be 

conjugated, leading to infrared absorptions at characteristic frequencies that are related to 

chemical groups. For example, the atoms in a CH2 group, commonly found in organic 

compounds can vibrate in six different ways: symmetrical and antisymmetrical stretching, 

scissoring, rocking, wagging and twisting [3]. As each molecule has its own distinct quantized 

vibrational and rotational energy level and any transition within these levels is sensitive to 

electromagnetic energy corresponding to the mid-infrared region (4000 cm-1 – 400 cm-1). 

Therefore, this technique is based on the principle that a molecule absorbs infrared radiation 

of the appropriate frequency to excite it from one vibrational or rotational level to another.   
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Figure 2.1. Schematic layout of a typical FTIR interferometer [2] 

 

In this investigation, we used FTIR spectroscopy for distinguished different existing phases 

(i.e. ferroelectric, paraelectric phase) of P(VDF-TrFE) thin films. In figure 2.2, a typical FTIR 

spectrum is shown. It shows clearly visible peaks at 470 cm-1, 848 cm-1, 1184 cm-1 and 1292 

cm-1 which are typical for the all-trans ferroelectric phase [4, 5]. 
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In this thesis, infared spectra were recorded with Bio-Rad FTS-60A Spectrometer, equipped 

with deuterated triglycine sulfate (DTGS) detector and Thermo-Nicolet Impact 410 

Spectrometers. Spectra were taken at 4 cm-1 resolution and 100 scans are recorded. 

 

 

2.2. X-Ray Diffraction 

 

X-Ray Diffraction (XRD) has been used for the identification of the phases of the co-polymer 

P(VDF-TrFE) films, because generally P(VDF-TrFE) contains both, a  ferroelectric and a 

paraelectric phase [6]. 

 

The principle of XRD is discussed shortly as follows: The atomic spacing of most of 

crystalline materials is of the same order as the wavelength of X-rays (0.5 Å – 2.5 Å). When a 

sample is illuminated with incident X-rays, the specimen’s lattice spacing, its lattice shape, 

and the atom type all cause the incident X-rays to be diffracted in a characteristic manner. 

After penetration deep into the specimen, a typical diffraction pattern is build up by the X-

rays. From this pattern it is possible to identify the crystal structure and we are able to 

distinguish the type of phase of the specimen. When a monochromatic X-ray beam is partially 

reflected from the specimen i.e. lattice plane, the interference of the reflected beam can be 

constructive only in specific directions. 

 

The interference of the reflected beam would be constructive when the path difference AB + 

BC (see figure 2.3) is integral multiple of the wavelength of X-rays, given by the Bragg’s 

equation:  

                                                 θλ sin2dn =                                                                           2.1 

 

where λ is the incident wavelength, θ is the angle of incidence, d is the interplanar spacing of 

atomic planes. 
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Figure 2.3. X-ray diffraction of Bragg’s law 

 

X-ray diffraction analysis was carried out in a “XRD 3000 TT” device (Seifert-FPM 

Ahrendsburg, Germany) in Bragg Brentano geometry. We used Co-Kα radiation (λ = 1.7902 

Å) as the source at the X-ray operating voltage 40 kV and 30 mA emission current. 

 

 

2.3. Atomic Force Microscopy 

 

Atomic force microscopes (AFMs) belong to the family of scanning probe techniques [7] 

which probes the surface topography of a sample with a sharp tip scanned across the surface. 

The tip is located at the free end of a cantilever that is 100 to 200 µm long and less than 100 Å 

in diameter. The cantilever is usually made of silicon and exhibits a very low spring constant. 

Forces between the tip and the sample surface cause the cantilever to bend, or deflect. A 

detector measures the cantilever deflection as the tip is scanned. These deflections allow a 

computer to generate a map of the surface topography [8]. AFMs can be used to study 

insulators and semiconductors as well as electrical conductors. 

Several forces typically contribute to the deflection of an AFM cantilever. The force most 

commonly associated with atomic force microscopy is an interatomic force as the van der 

Waals force. Discussion of the dependence of the van der Waals force upon the distance 

between the tip and the sample is important as it is determine the choice of mode of AFM 

operation. The force vs. distance curve is shown in figure 2.5 where two distinct regimes are 

distinguished: (1) the contact regime; and (2) the non-contact regime. In the contact regime, 
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the cantilever is held less than a few angstroms from the sample surface, and the interatomic 

force between the cantilever is held on the order of tens to hundreds angstroms from the 

sample surface and the interatomic force between the cantilever and sample is attractive 

(largely a result of the long-range van der Waals interactions).  

In our experimental study mostly we used non-contact image techniques, because we 

investigate soft polymeric surfaces. 

Contact mode 

In contact mode, also know as repulsive mode, an AFM tip makes soft “physical contact” 

with the sample. The tip is attached to the end of a cantilever with a low spring constant, 

lower than the effective spring constant holding the atoms of the sample together. As the 

scanner gently traces the tip across the sample (or the sample under the tip), the contact force 

causes the cantilever to bend to accommodate changes in topography.  

Most AFMs detect the position of the cantilever with optical techniques. In most common 

scheme, shown in figure 2.4, a laser beam bounces off the back of the cantilever onto a 

position-sensitive photodetector (PSPD). As the cantilever bends, the position of the laser 

beam on the detector shifts. The PSPD itself can measure displacements of light as small as 

10 Å. The ratio of the path length between the cantilever and the detector to the length of the 

cantilever itself produces mechanical amplification. As a result, the system can detect sub-

angstrom vertical movement of the cantilever tip. 

Other methods of detecting cantilever deflection rely on optical interference. Once the AFM 

has detected the cantilever deflection, it can generate the topographic data set by operating in 

one of the two modes- constant-height or constant-force mode. In constant-height mode, the 

spatial variation of the cantilever deflection can be used directly to generate the topographic 

data set because the height of the scanner is fixed as it scans. In constant-force mode, the 

deflection of the cantilever can be used as input to a feedback circuit that moves the scanner 

up and down in z, responding to the topography by keeping the cantilever deflection constant. 

In this case, the image is generated from the scanner’s motion. With the cantilever deflection 

held constant, the total force applied to the sample is constant. This mode often used for 

taking atomic-scale images of atomically flat surfaces, where the cantilever deflections and 

thus variations in applied force are small. This mode is also essential for recording real-time 

images of changing surfaces, where high scan speed is essential. 
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Figure 2.4.  Basic lay-out of an AFM (right side). VECCO Digital Instruments CP-II AFM 

(left side). 

 

Non-contact mode 

The non-contact mode AFM (NC-AFM) is one of several vibrating cantilever techniques in 

which an AFM cantilever is vibrated near the surface of a sample. The spacing between the tip 

and the sample for NC-AFM is on the order of tens to hundreds of angstroms. This spacing is 

indicated on the van der Waals curve of figure 2.5 as the non-contact regime. 

NC-AFM is desirable because it provides a means for measuring sample topography with 

little or no contact between the tip and the sample. Like contact mode AFM, non-contact 

mode AFM can be used to measure the topography of insulators and semiconductors as well 

as electrical conductors. The total force between the tip and the sample in the non-contact 

regime is very low, generally about 10-12 N. This low force is advantageous for studying soft 

or elastic samples [9]. A further advantage is that samples like silicon wafers or polymer thin 

films are not contaminated through contact with the tip. 
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              Figure 2.5. Interatomic force vs. distance curve. 

 

Because the force between the tip and the sample in the non-contact regime is low, it is more 

difficult to measure than the force in the contact regime, which can be several orders of 

magnitude greater. In addition, cantilevers used for NC-AFM must be stiffer than those used 

for contact AFM because soft cantilevers can be pulled into contact with the sample surface. 

The small force values in the non-contact regime and the greater stiffness of the cantilevers 

used for NC-AFM are both factors that make the NC-AFM signal small, and therefore 

difficult to measure. Thus, a sensitive, AC detection scheme is used for NC-AFM operation. 

In non-contact mode, the system excites a stiff cantilever near its resonant frequency 

(typically from 100 to 400 kHz) with amplitude of a few tens to hundreds of angstroms. Then, 

it detects changes in the resonant frequency or vibration amplitude as the tip comes near the 

sample surface. The sensitivity of this detection scheme provides sub-angstrom vertical 

resolution in the image, as with contact mode AFM. 

For the AFM measurements presented in this thesis, VECCO Digital Instruments CP-II AFM 
is used. 
 

Force 

               distance 
(tip-to-sample separation) 

intermittent 
contact 

contact 

non-contact 

attractive force 

repulsive force 



Chapter 2 

 

 26 

 

 

2.4. X-ray Photoelectron Spectroscopy (XPS) 

 

The history of XPS can be considered to begin in 1887 with the discovery of the photoelectric 

effect by H. Herz [9]. In 1907, P.D. Innes [11] described a kinetic-energy spectrum of 

photoelectrons excited by radiation of an X-ray tube with a platinum anode and registered by 

a spectrometer consisting of a magnetic analyzer and photographic detection. After 

development by Kai Siegbahn with colleagues of a high-resolution spectrometer, which 

allowed measuring accurately the binding energy levels of photoelectron peaks [12], the goal 

of using XPS for electronic structure investigation had been realized. Subsequently the same 

group observed the chemical shift effect for binding energy of core-level electrons [13, 14], 

which led to development of the whole field of electron spectroscopy named ESCA (electron 

spectroscopy for chemical analysis) [15, 16]. The work of K. Siegbahn was awarded by Nobel 

Prize in 1981 "for his contribution to the development of high-resolution electron 

spectroscopy". In 1969-70 commercial XPS instruments began to appear thanks to developing 

routine methods of obtaining UHV conditions. Starting from that time XPS can be considered 

as a widely used method for investigation of the surface of a solid sample. The possibility of 

estimation of chemical composition and of chemical state of elements together with a small 

information depth makes XPS an important method for microelectronics, polymer technology 

and metallurgy [17]. Therefore, it has wide range of practical implications in various scientific 

fields like surface chemistry, material science and solid state physics. 

 

The basic elements of an XPS instrument are a light source, an electron energy analyzer and 

an electron detector as it is drawn on figure 2.6. 

In this technique, the chemical analysis of the first few atomic layers of the sample is carried 

out by irradiating the sample with mono-energetic X-rays and analyzing the kinetic energies 

of the emitted electron. The X-rays (photon), possessing limited penetration depth, interact 

with atoms in the surface causing electron emission by the photoelectric effect.  
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Figure 2.6.  Basic elements of the XPS equipment [18]. 

 

 

The physical principle of the photoemission process is demonstrated by figure 2.7. 

In a laboratory XPS system, an X-ray tube usually with Al and Mg cathode are used. 

Development of synchrotrons made available the wide range of excitation energies between 

hard X-ray to visible light. Furthermore, the use of synchrotron light has several advantages 

comprising common laboratory X-ray sources. Besides a high photon flux and the possibility 

of focusing of an X-ray beam into a small spot, synchrotron light has the property of 

excitation energy tenability, which allow the changing the information depth and the 

photoelectric cross-section. 

If no surface charge is present, the kinetic energy EK of the photoelectron can be obtained 

from the Einstein equation for the photo effect:  

                                                             WFEhE BK −−= υ                                                    2.2 

 

Where υh  is the energy of the X-ray photon, EB is the binding energy of the core level and 

WF is the work function of the sample. In the case of charging, the potential energy of the 

electron in the electromagnetic field should be subtracted from the right side of the equation. 

One should note that the value of the EB is a difference of the initial and final atomic energies, 

which in general includes the relaxation component. The value of EB is always lower than the 

energy of the orbital from where the photoelectron was emitted. Nevertheless, EB is suitable 

for element analysis and chemical state identification. 
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As far as every chemical element has a characteristic XPS spectrum, the chemical 

composition can be identified. A binding energy of a core-level electron depends also on the 

surroundings of atoms. Non-equivalence of binding energies for an element in different 

chemical compounds can arise from various reasons: difference in a formal oxidation state, 

different molecular environment, and different lattice parameters for example.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2.7. Schematic diagram of a core-level-photoelectron emission process. 

 

 

A binding energy shift due to environment effects, which is usually chemical shift, can be 

described by the simple equation [19]: 

 

                                                    EB-EB(0) = IA + EA                                                             2.3 

                                                   

Where EB(0) is the binding energy of the core-level electron in the isolated atom. The intra-

atomic part IA can be described in terms of the effective charge q of the atom in a molecule or 

crystal as IA = kq, where k is a constant for the chemical element. The extra-atomic part EA is 
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the potential energy produced by the surroundings. This part is often referred as Madelung 

potential. The parts IA and EA acting opposite each other and the dependence of EA on type of 

solid sometimes makes problematic the identification of the chemical state of an atom by its 

chemical shift. 

After escape from an atom, a photoelectron travels some distance inside the solid before 

escape to vacuum or relax. On the way it collides elastically or inelastically with lattice atoms. 

Elastic collisions do not change the electron kinetic energy while inelastic lead to a decrease 

in energy. Inelastically scattered electrons will form a spectrum background or will not escape 

from solid and thus, these electrons can be counted as lost for XPS analysis. It is assumed that 

there is constant probability of an inelastic scattering event in the depth per unit length and the 

probability of photoelectrons from the escape depth L is proportional to exp (-L/λ), where λ is 

usually named the inelastic mean free path and represents the first momentum of a probability 

distribution.  

A typical structure of an XPS spectrum of P(VDF-TrFE) film is shown is figure 2.8, where 

Mg Kα (photon energy: 1253.6 eV) is used as an X-ray source. The spectrum consists of 

relatively narrow core-level photoelectron peaks, a broad Auger transition peak and a valence 

band spectrum. The spectrum background is formed by inelastically scattered electrons. 

The transformations of photoelectron kinetic energy into binding energy by the Einstein 

equation (2.2), implies knowledge of the analyzer work function. For metallic compounds the 

Fermi level is the suitable binding energy reference. A submonolayer gold film is often 

deposited on a sample in order to use the Au4f peak as a binding energy reference. C1s is also 

often employed for binding energy calibration. Other suitable reference peaks can be used as 

well [20]. 

The width of XPS peak is defined as a full width at half maxima (FWHM) of the peak after 

background subtraction. The width DE is a combination of the following values: 

 

                                                   ∆E = (∆E(n)
2
 + ∆E(p)

2
 + ∆E(a)

2 
)
1/2                                     2.4 

 

Where ∆E(n) is the natural width of a core level, ∆E(p) is the spectral width of photon source 

radiation, ∆E(a) is the analyzer resolution. Additionally, the peak can be broadened by sample 

inhomogeneity or by differential charging. The natural broadening and the analyzer 

broadening are described by the Lorenzian and Gaussian profiles respectively. Synchrotron X-

ray radiation has the Gaussian spectral shape because of the instrumental broadening 

introduced by a monochromator. 
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An X-ray photoelectron spectrum of a solid-state sample always contains a background, 

which is formed by inelastically scattered photoelectrons. To estimate the peak shape and the 

stoichiometry from an experimental spectrum first the background should be subtracted. 

Different models of background shape are in use. A simple linear type background can be 

used for fast spectra analysis, while for more accurate line shape and stoichiometry analysis 

more complicated background types should be used [21-23]. 
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                       Figure 2.8. Photoelectron spectrum of P (VDF-TrFE) film. 

 

 

The stoichiometry of the sample surface can be estimated from the area ratio of XPS peaks. 

The general formula for the XPS peak area [20] is 

                                                                    I = nfσθyλAT                                                       2.5 

Where n is the atomic concentration of the element, f is the X-ray flux, σ is the photoelectron 

cross-section for the atomic orbital of interest, θ is the angular efficiency factor for the 

instrumental arrangement, y is the efficiency in the photoelectronic process for formation of 

photoelectrons of the normal photoelectron energy, λ is the mean free path of the 

photoelectrons in the sample, A is the area of the sample from which photoelectrons are 

detected, T is the detection efficiency for electrons emitted from the sample. 

 

XPS survey scan   =υh  1253.6 eV (MgKα) 
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In our XPS experiment, we have calculated the stoichiometric ratio ration of two element C 

and F in the P(VDF-TrFE) film as follows [11]: 
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where SC and SF are atomic sensitivity factor of carbon and fluorine respectively. 

 

2.5. NEXAFS Spectroscopy 

Introduction 

Near-Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy is an X-ray absorption 

technique which deals with the absorption cross section near the (1s) ionization step [24]. 

Omitting a background from electrons bound to different orbitals, two fundamental types can 

occur near the 1s edge. The final states can either be discrete molecular orbitals or may 

alternatively be free vacuum states if the exciting energy is sufficient to excite the electron 

above the Fermi level. 

Although it is generally refers to the photon absorption process as an electronic transition, the 

rest of the molecule is also affected by such excitation. The hole in the inner shell of the 

molecule leaves this in an excited state which subsequently decays. Energy which is set free 

during this relaxation can either be discharge via the emission of a secondary photon 

(fluorescence) or can be transferred to another electron in a higher shell, enabling it to escape 

the molecule (Auger process). The latter is the predominant relaxation channel for atoms with 

low atomic numbers (z≤15) [25] and the number of Auger electrons is proportional to the 

number of primary excitations. For a constant flux of incoming photons the number of Auger 

electrons emerging from the sample hence quantifies the absorption cross-section in a non-

normalized fashion [24]. 

The energy of NEXAFS resonances yields information on the chemical state of atoms within 

the probe depth. Additionally, the absorption cross-section into a molecular final state 

depends on the relative orientation of the electric field vector of the photon with respect to the 

direction of the transition dipole moment, which is in turn related to the charge distribution in 

a molecular orbital. If the photons are linearly polarized, then order structures, such as C-F 

dipoles for P(VDF-TrFE) co-polymer, produce spectra that inherently depend on the angle of 

photon incidence. Several work on NEXAFS study for organic molecule has been done in the 

group of applied physics II – sensor technologies at the BTU Cottbus [26-33]. 
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For the NEXAFS technique, the differential cross-section of photon absorption by an electron 

is particularly interesting, since it is the basis of how to detect order in a molecular film. 

Fermi derived an expression for the electronic transition probability (Pfi) of a transition from 

an initial ( |i > ) to a final state (|f > ) per unit time under the influence of a time-dependent 

perturbation (V(t)), which is known as “Fermi’s golden rule” and is shown in equation 2.7. ρf 

(E) denotes the density of states in the region of the final state. 

 

                                                      ( )EiVf
h

P ffi ρ
21

><=                                                     2.7 

 

 

Although it was derived with the formalism of perturbation theory, this expression is believed 

to be universally valid and has indeed proven to be reliable experiment. Of course, the 

absorption of an X-ray photon may not strictly comply with the exact concept of mathematical 

perturbation. Within the frame of non-relativistic quantum mechanics, the absorption of the 

photon cannot be explained but its effect on an electron can nevertheless be calculated by 

inserting its electromagnetic potential into “Fermi’s golden rule” (equation 2.7) as the 

perturbing potential. Equation 2.8 shows the vector potential for a linearly polarized photon ( 

e
r

 stands for the unit vector in direction of its electric field) which propagates in the direction 

of the wave vector k
r

 and oscillates with the frequency ω/2π: 
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After several mathematical steps, this explicit form of photon potential (equation 2.8) turns 

equation 2.7 into: 
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Until now the calculation was exact apart from a possible misuse of perturbation theory. In a 

next step equation 2.9 will now be simplified by a linear approximation of the exponential 

function. This cut-off is well justified due to the very low values of xk
rr

.  (k≤ 1 nm-1, r  ≈ 1 Å 

[24]) and we end up with the “dipole” approximation of the X-ray absorption cross-section: 
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The final step is to express the momentum operator in its more intuitive spatial representation 

[24]: 
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And hence: 
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The term >< irf
r

 is known as ‘transition dipole moment’ (TDM). 

The incident photon therefore can excite an electronic transition >→> fi  if three 

conditions are all fulfilled. First of all, the density of states ( )
fρ in the energy region into 

which the photon could excite the electron has to be non-zero. Secondly, the vector of the 

transition dipole moment (TDM) has to be non-zero. This is a vectorial quantity which is 

determined by two states involved and reflects the symmetry of the system. Group theory 

states [24, 34] that the direct product of the irreducible representations of the initial and final 

states contains the irreducible representations of the x, y and z-coordinates. This requirement 

can be verified by a comparison with (readily available for standard molecular orbitals) 

character tables so that it is not necessary to analytically calculate the TDM in order to test 

whether a transition is symmetry allowed. For molecular states where the final orbital 

corresponds to a bond, the TDM normally points in a distinctive direction with respect to the 

involved atoms. (e.g. in the common transition 1s → σ it points along the intermediate axis). 

Due to this relation, the orientation of a TDM is directly related to that of its associated bond. 

The final requisite is that the vector of the TDM must have a component which is parallel to 

the electric field vector of the (linear polarized) photon in order for the scalar product to differ 

from zero. 

 

Transitions into molecular orbitals 

According to quantum mechanics, the energy spectrum of a molecular contains discrete 

levels. On the photon energy scale the individual transitions can hence be observed as a series 
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of peaks. As mentioned above, the transition dipole moment varies from zero if and only if the 

combination of initial and final moment varies exhibits the correct behavior under symmetry 

transformations. For TDMs which are fixed in space, the transition probability depends on the 

relative angle between the incident photon and the TDM. By measuring this angle dependence 

(i.e. with a series of spectra at different angles of incidence), we can hence conclude the 

absolute direction into which the TDM of an oriented molecular orbital is pointing. 

 

Transitions into vacuum states – ionization 

The energy spectrum of free particles is continuous and lacks any directional preferences due 

to the isotropy of space, so that the three requirements of six are always satisfy if the energy 

of the incoming photon is high enough to lift an electron above the Fermi level. Transitions 

into vacuum states show a relatively weak dependence (exponential decrease) on the energy 

of the photon [24] and are not influenced by the direction from which the photon hits the 

atom. They manifest themselves as step-like angular independent feature in the spectra. 

 

Angular dependence of a NEXAFS signal  

The following section is devoted to the way in which a NEXAFS signal can be analyzed to 

deliver the mean tilt angle of molecular orbitals. One can calculate the angle dependence of 

the NEXAFS signal of such a resonance for a concrete choice of coordinate system and 

partially linearly polarized light. The intensity of the experimental signal (I) is proportional to 

the transition probability (Pif) of the electronic transition. Assuming that the other conditions 

are satisfy (ρf(E) > 0, TDM ≠0
r

), the focus is turned towards the angle-dependent term in 

equation 2.12: 
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Like previously mentioned, e
r

 denotes a unit vector in the direction of the electric field vector 

and >i , >f  are the initial and final states of the transition respectively. As a direct result of 

Maxwell’s equations the electric field vector of a photon is always perpendicular to its 

propagation direction. It is decomposed into a component in the plane of the electron ( IIE ) 

and one perpendicular ( ⊥E ), the sense of which will become clear from the electromagnetic 

field of a bending magnet. For light that is partially linearly polarized in the plane of the 

electron ring, then the two components are connected via the degree of polarization [35]: 
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We now obtain a form for equation 2.13 which explicitly uses these notations: 
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 Where II
e
r

and ⊥
e
r

 are unit vectors of the in-plane and perpendicular electric field 

components. In the next step, equation 2.15 is evaluated for an explicit choice of direction for 

the incoming photon and of the TDM. This situation as well as the coordinates with which 

would subsequently describe this situation are shown in figure 2.9. 

For this coordinate system the intensities can be rewritten for the in-plane and perpendicular 

components: 

 

                       )coscossincossin2sinsincos(cos 2222 φθθααθαθ +∞+∞PI
II               

 

                        )sin)(sin1( 22 φαPI −∞⊥                                                                               2.17 

 

                                                                                                                        

These expressions are the general forms of the two intensities. For transitions on substrates 

with three or higherfold rotational symmetry, the azimuthal (φ ) dependence is, however, 

average out-thus simplifying the equation.  

After simplification, the final, most simple form of equation 3.7 for the intensity emerges: 
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The newly introduced scaling factor A contains all the physical experimental constants (e.g. 

overlap integral, detector efficiency). Molecular orbitals are sometimes divided into two 

categories called “vector” and “plane” type orbitals for practical reasons [24].  

 

Figure 2.9. A linearly polarized photon with a wave vector and electric field vector in the yz-

plane that hits the sample and the TDM-vector for the transition it excites. The attention is 

drawn to the reference axis from where the different angles are measured. 

 

The dipole selection rules related to K-shell NEXAFS resonance intensities are quite simple: 

the resonance intensity associated with the specific molecular orbital final state is largest if the 

E
r

 vector points in the direction of that molecular orbital, i.e., lies in the nodal plane of the 

orbital. The σ* resonance is most pronounced and the π* resonance is smallest when the E 

vector is parallel to the surface.  It would be useful to start with an example: In figure 2.10, 

the polarization dependence of resonances for oriented molecules CO on Mo(110) and C2H4 

on Ag(100) is shown [36-38]. Since the π* resonance is observed for E
r

 parallel to the surface 

and the σ* resonance for E
r

 nearly perpendicular to the surface, the CO molecules stands up 

on the surface, as showed in the figure. Furthermore, the observed spectra clearly show peaks 

associated with the molecular nature of CO, such that the molecule remains intact bonding to 

the surface. The same principle can be applied for ethylene, as shown in the right side of the 
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figure 7. The π* and σ* resonances in the C2H4 NEXAFS spectra are affiliated with the C−C 

core of the molecule and show the opposite angular dependence to that for CO. The π* 

resonance is observed for E
r

 nearly perpendicular to the surface and the σ* resonance for E
r

 

parallel to the surface. This clearly means that the molecule lying down on the surface, i.e., 

the C−C axis is oriented parallel to the surface. If we now consider the hydrogen atoms we 

expect another peak mentioned due to C−H* resonance associated with C−H bonds. The peak 

is observed in the spectrum when E
r

 is parallel to the surface, similar to the C−C σ* 

resonance. The fact that the peak is stronger for this polarization shows that the C−H bonds lie 

in a plane parallel to the surface, or at least close to that plane. 

 
 

 

 

 

Figure 2.10. Polarization dependence of resonances for oriented molecules, illustrated for 

vertically oriented CO on Mo(110) and lying down ethylene (C2H4) on Ag (100) [adopted 

from ref. 24]. 

 

Instrumentation 

For the all part, NEXAFS experiments were performed under UHV conditions. As a nice side 

effect of this environment, unwanted contamination is substantially reduced so that the 

integrity of the samples is retained for a significant time (e.g. measuring time per sample 

approximately 40 minutes).  
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 After synchrotron light (X-ray photon) coming from storage ring, the X-rays have to be 

guided to the sample. All optical components for X-rays are operated in reflection, because it 

is not possible to manufacture lenses for X-rays (insignificant contrast in refractive index [39]. 

Fairly stringent criteria apply to the materials that are used for the optical components. They 

have to be UHV-compatible, free from absorption features in their operational energy range 

and resistant to the intense X-ray irradiation. For an optimal throughput of the photons and in 

order to prevent an excessive heating of the optical components by refracted light, all 

instruments are operated close to or below the critical angle for total reflection, which is very 

grazing due to the high frequency of the photons [40]. From this optical arrangement, “precise 

workability” accrues as an additional requirement for the materials. The general scheme of 

their production is hence by a polishing and subsequent coating process. 

On its way to the sample, the first optical device that the light encounters is a mirror which 

focuses it onto the entrance slit of the monochromator. Due to minor changes in the position 

of the electron beam, this mirror has to be adjusted after every injection to maximize the 

intensity of light that enters the monochromator. 

In a next stage a monochromator selectively allows photons of only a single energy to pass 

through to the samples while all others are deflected. For this purpose, the incident beam is 

widened to a focused image in which the different wavelengths are spatially separated. This is 

achieved by diffraction at plane grating. In our case a special design called “plane grating 

monocromator” were used. Light emerging from the monochromator then hits a mirror which 

directs it onto the sample. Before hitting the sample the beam is collimated by a series of 

apertures and passes a nearly completely transparent gold grid. The radiation-induced electron 

signal on this grid is measured during each experiment and can be used as a situ monitor of 

the spectral transmission if the grid itself is free from (mainly hydrocarbon) contamination 

and its associated absorption features in the experimental energy region. We used the signal 

on this grid for the compensation of minor fluctuations of the photon flux (I0). As the beam 

also grazes a tungsten wire, I0 is occasionally monitored through the current of the emitted 

electrons and the associated absorption features are sending via an amperemeter to the 

experiment control unit.  

In the end-station, the compact High Energy Photon Absorption Spectroscopy (HEPAS) set-

up was installed [41], see figure 2.12. It is based on a 7 cm long cube like UHV vessel with a 

hollow sphere of 5 cm diameter with 6 flanges, where all other components like the detector, 

the manipulator, the fast load lock and the connections to the beamline and the final 

endstation are adapted to via CF 38 flanges. In figure 2.12, an outline of the set-up is 
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presented. In the HEPAS chamber, the beam hits the sample which is mounted on a 360o 

rotate-able manipulator. The electron yield mode can be measured by simple current, directed 

via amperemeter to the control unit. The impinging photons can hit the sample surface under 

variable grazing angles up to normal incidence, because in polymer samples, the molecular 

orbital orientation can be identified by varying the angle between sample and the beam [24]. 

 

 

 

 

 

Figure 2.11.  Top view of the UG49/2 PGM 2 beam line (BESSY-II, Berlin, Germany) guiding 

system. Where M1 & M2 is a platinum coated cylindrical mirror (2θ=176
o
) and plane mirror 

respectively, G1,2 is plane grating having 300/1000 lines per mm and M3 is gold coated 

cylindrical mirror (2θ=176
o
) which is vertical focusing to the exist slit. M1, M2, G is 

connected with water cooling system [Adopted from ref.41]. 

 

The combined photon and electron detector is mounted rectangular to the photon beam. It is 

based on a commercial channeltron (BURLE), placed on a liner manipulator to change the 

detector working distance. To protect the channeltron from stray fields from scattered 

electrons, inherently present in this small set-up, a first metallic mesh is installed in front and 

grounded electrically. The mesh diameter of 1.5 cm determines the cone width of emitted 

photons and electrons to angle 15o. When the fluorescence mode is used, a voltage of 0 to 4 

kV is applied to a second grid to suppress emitted electrons. For electron detection an 

acceleration voltage can be used to focus the charge carriers into the channeltron. 

The complete detector is encapsulated into a pipe with 25 mm diameter and the grids cover 

the complete area, therefore no electrons or photons can pass at the sides. The conducting 

elements of the detector were protected by a polymeric layer against electrical short circuit 

exist  
slit sample 
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with the UHV chamber. This protection can sustain back out up to 200oC and is suitable for 

UHV applications. 

 

 

Figure 2.12. Schematical drawing illustrating the main components of the XAS experiment in 

top view in (a). Central compact UHV vessel for the experiment in (b), the outer diameter is 

given. Present set-up integrated into the U49/2 PGM 2 beamline at BESSY II in (c). The 

beamline endstation is at the right hand side, the beamline with the impinging photons at the 

left. In front the moveable fluorescence and electron detector is shown [adopted from ref.42].   
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The particles were detected in the channeltron and multiplied. The signal is send via decoupler 

unit and a preamplifier to a counter in the control unit. In this control unit, which is standard 

part of all BESSY beamlines, the photon energy is set and all detector signals, I0, undulator 

and monochromator settings can be read out simultaneously. 

One UHV load lock with liner manipulator connected with cube like chamber to transfer the 

sample into measuring chamber. 

In our case, NEXAFS is mainly used to perform in Total Electron Yield (TEY) and Total 

Fluorescent Yield (TFY) mode for soft x-rays between 80 -1500 eV, but it is also possible to 

perform in higher photon energies. 

As example, an N2 absorption spectrum is shown in figure 2.13, which is taken in the gas cell 

at the undulator based U49/2 PGM2 beamline at BESSY when the photon energy scan 

through the N2 absorption edge [41]. The two main absorption peaks arise around 400.9 and 

401.15 eV which is fitted with a double Voigt profile with a Gaussian broadening of 59 meV. 

The operation photon energy resolution is found around E/∆E: 6500-7000 over the complete 

spectral range of 80-1450 eV.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13. N2 edge NEXAFS spectra from the N2 gas cell, the spectral resolution is 

determined with a Voigt profile fit (dashed line). 

 

When the energy is scanned through CK edge, it is very important to monitor the photon flux 

very precisely. In figure 2.12(b), the photon flux (I0) is measured from a tungsten wire which 

shows an intensity drop of 83 % within an interval of below 20 eV from 280 eV. Two sharp 
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peaks at 283 and 287 eV arise due to carbon contamination of the optical elements and 

mirrors in the beamline. In the case of the N-Kedge and the O-Kedge, there is a similar but 

not such severe problem observed. 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.14. NEXAFS spectra of graphite at the C-K edge (recorded at the magic angle to 

eliminate angular effects (a). The photon flux vs. photon resolution is monitored with a 

tungsten wire at the C-Kedge (b)  

 

The Normalisation and background correction for carbon based samples must be done very 

carefully [24]. It is advisable to measure I0 during each scan of measuring the sample 

simultaneously, especially at the C-Kedge. 

Graphite provides crystalline solids of well-known bonding structure. Therefore it is always 

used as a calibration sample for the C-K edge NEXAFS spectra. In figure 2.14(a), one 

calibrated spectra of graphite is illustrated. For graphite, the C-K edge NEXAFS energy range 

can be subdivided into two regions: The first π* resonance around 285 ± 0.5 eV and a broad 

σ
* region above 289 eV, as indicated in the figure. The characteristic of the π* resonance can 

serve as a fingerprint of the local bonding, in contrast, the σ* region is more complex [24, 43, 

44]. 

 

Data analysis of NEXAFS 

In most of the cases it is advantageous to use a curve fitting analysis method. In this case one 

should careful in performing the edge jump normalisation procedure. This method is 

280 284 288 292 296 300

C-K edge

σ
∗

π
∗

Graphite

In
te

ns
ity

 / 
ar

b.
 u

ni
t

Photon energy / eV

 



Experimental  

 

 43 

particularly valuable in the analysis of angular dependent NEXAFS spectra. It isolates the 

angular-dependent resonances by eliminating the isotropic components of the NEXAFS 

spectra such as the continuum step [45]. 

 

The curve fitting method provides valuable information on the existence of certain resonances 

and of their positions and line-shapes. The fit parameters of the resonance lineshapes may 

then be used in the fits of original data, which are in general, more complicated but also 

contain more information. 

 

Curve fitting procedure 

This section overviewed of the details importance and significance of the different lineshape 

of the peaks in the near edge spectrum. In particular, we consider typical lineshapes observed 

for core excitation resonances to discuss how to isolate the peaks so that the lineshape can be 

analysed. 

Gaussian, Lorentzian and Voigt Funcations 

In the first step of the curve fitting procedures to analyze core excitation spectra, an analytical 

function must be used. This function can identify the lineshapes of the individual peaks. If the 

monochromator resolution has dominant character then peaks will have a Gaussian lineshape, 

which describe by: 
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Where M is the maximum value of the function, TG is the FWHM of the peak, P is the 

position of the peak, E is the energy which is an independent variable and c is constant of 

value 2.355. 

Another common lineshape encountered in curve fitting procedure is the Lorentz-curve. If the 

monochromator resolution is small compared to the intrinsic lifetime-related width of a peak, 

this lineshape will be described by the Lorentzian function: 
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A third lineshape function often used is the Voigt profile which convolutes a Gaussian and a 

Lorentzian lineshape [24]. This profile is useful in cases where instrumental and lifetime 

widths are comparable and the lineshape is given by: 
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Here η is the Lorentzian fraction and Г is the FWHM of the Voigt profile. Wertheim et. al. 

have showed that it is possible to determinate the components widths ГL and ГG from the fit 

parameters η and Г. 

The most resolute peaks in the K-shell NEXAFS spectra are the bound state resonances in the 

form of π* or Rydberg resonances. An example is shown in figure 2.15, high resolution 

spectrum of N2 molecule [46]. Here both the vibrational fine structure of the π* resonance and 

various Rydberg resonances, merging into the ionization potential, are shown. In addition, the 

double excitation feature around 415 eV is found to exhibit a detailed fine structure. The 

dashed lines represent the fitted curve by Voigt functions. 

 

  

 

Figure 2.15. (a) NEXAFS spectra of the nitrogen molecule in the gas phase. (b) Vibrational 

fine structure in the π
*
 resonance, fitted profile shown dashed. (c) Blow-up of the double 

excitation feature, showing vibrational fine structure. (d) Rydberg series fitted with Voigt 
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profiles, merging into the ionisation continuum with a step-like onset at 409.938 eV [adopted 

from ref. 46]. 

 

 

 

Figure 2.16 shows an example of fits of π* resonances in lower resolution (1.1 eV), namely 

the C=C π* resonance of condensed allyl alcohol (CH2=CHCH2OH) on a Si(111) surface at 

285.0 eV [47]. It was clearly visible that the Gaussian lineshape provide a reasonable fit 

whereas the Lorentzian fit is poor because the base of the Lorentzian is too broad. As the 

intrinsic lifetime width of this peak is so narrow that the instrumental resolution imposes the 

Gaussian lineshapes upon the peak.  

 

 

   

 

 

Figure 2.16.   Fit of the C=C π
*
 resonance in the NEXAFS spectrum of condensed allyl 

alcohol [adopted from ref. 47]. 

 

Asymmetric Gaussian and Lorentzian Lineshapes 

In NEXAFS spectra, it is commonly seen that many resonances are not isolated like π* 

resonances but overlap with the ionization continuum and other resonances. The asymmetry 

increases with increasing energy, since the lowest energy peaks are well accounted for by 

symmetric Gaussians while the highest energy peak has a quite distinct high-energy tail. As 

example, a NEXAFS spectrum of a P(VDF-TRFE) film on PEDOT:PSS/Si(100) substrate is 
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shown in figure 2.17. The increase in width of resonances with increasing energy can be 

attributed to lifetime broadening. That is, the higher the energy of the final state, the shorter its 

lifetime and hence the broader the peak.  
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Figure 2.17. The C-K edge NEXAFS spectrum of P(VDF-TRFE)films on 

PEDOT:PSS/Si(100)[inset, fitted curve 1 attributed for π
*
 resonance and rest of the fitted 

curves (2-8) are arises due to σ
*
 resonances. 

 

Step function 

In addition to peaks, NEXAFS spectra contain one or more step-like features referred to as 

continuum steps. This arises due to excitation of the core electron to a continuum or quasi-

continuum of final states, e.g., to the smooth density of states. Experimentally steps are 

difficult to examine, because they are almost always obscured by other spectral features. In 

particular, the position and shape of the edge are difficult to distinguish from experiment, as is 

evident from figure 2.15 (d), where the density of Rydberg resonances becomes so high that a 

continuum-like smooth cross section is observed well below the accurately known ionisation 

potential at 409.938 eV [46], where the continuum step is located. It is also visualised by 

fitted curve in figure 2.17.  

C1s-edge 
P(VDF-TRFE) film on PEDOT:PSS/Si(100) 
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Sample preparation 

 

2.6. Thin film preparation 

Substrate cleaning prior to spin coating 

p type Si(100)-wafers (Wacker-Chemitronic GmbH) were used as main substrate for our 

experiments. Before the preparation of polymer spin coated films, pieces of Si-wafers were 

cleaned through a standard RCA-1 cleaning procedure. This wet cleaning procedure is useful 

to remove organic contamination and particles from the surface of the Si substrate [48]. The 

experimental set-up and the cleaning procedure are descried as follows: 

• Removing the photoresist from the Si-wafer if necessary by rinsing with acetone 

and iso-propanol (IPA) followed by drying with N2 blowing 

• Repeating the above step at least two times for better cleaning 

• Preparation of a mixture of NH4OH, H2O2 and di-ionized water (DI-water) with 

1:2:10 ratio respectively. The solution is called RCA-1 solution 

• Arranging of shaped pieces of wafers (size: ~15 × 15 mm2) in a sample holder and 

immersion in the RCA-1 solution (see figure 2.18) 

• Maintaining of the temperature at 70 ± 5oC for 20 minutes. The solution will 

bubble vigorously after 1-2 minutes, indicating that it is started to work 

• After 20 minutes, the Si-wafers pieces along with wafer stand need to take out and 

soak into another beaker containing DI-water. This transfer should be faster to 

prevent wafers from drying up 

• This previous step has to be done three-four times for a complete removal of the 

residual RCA-1 solution 

• Taking out the wafer one by one and rinse with DI-water followed by rinse with 

IPA and afterwards blows up by N2 flow. This step is useful to dry up the wafer 

faster and prevent water mask 

• Transfer of the whole set of wafers to the Glove box for spin coating 

 

These treatments were followed for every set of samples prior to the organic thin film making 

procedure. 
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Figure 2.18. Experimental set-up for RCA-1 cleaning for Si-wafers 

 

 

Spin coating procedure 

Spin coating is a widely used technique in the semiconductor industry for the deposition of 

polymer resist layers which take part in the lithographic patterning process [49]. 

For our ultra thin polymer film deposition, a WS-400B-6NNP/LITE spin coating unit is used 

(see figure 2.19B) which is kept inside glove box. A photograph of the glove box is shown in 

figure 2.19A. The glove box has a large antechamber and a single gas purifier with single gas 

blower, manual isolation valves, and an evacuatable glove port cover. Purifier regeneration 

and antechamber evacuation and refill are manually controlled.    

 

The purposes of the glove box are as follows: substrates need to be protected from 

contamination, especially before making thin film, and the contamination can include oxygen 

as well as moisture and particulate.  The glove box creates a mini-environment that can be 

controlled to varying the degree of purity.  

 

In the glove box, RCA-1 cleaned Si wafer pieces and necessary chemicals are inserted into an 

antechamber which is purged with argon. The atmosphere in the glove box is pure argon that 

has the oxygen and moisture removed by recirculation the argon through an absorbing 

chamber. Before any processing commences, the moisture level within the box is maintain 

less than 10 ppm, with the oxygen level less than 100 ppm.  

Glove 
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Figure 2.19 (A) Photograph of Glove-box for spin coating; (B). Photograph of spin-coating 

unit (Model: WS-400B-6NPP/LITE) 

 

Our spin coating is a process which involves depositing a small puddle of an organic solution 

onto the centre of a substrate (see figure 2.20), which is then spun around at a high speed so 

that the solution is spread out by the centrifugal force. Excess solution flies off the substrate 

and simultaneously, some of the solvent evaporates. The evaporation process raises the 

concentration and viscosity of the remaining solution. This high viscosity prevents the 

solution from exiting the substrate and a thin film of solution remains. Continued spinning 

evaporates the rest of the solvent after which a thin film of polymer is obtained. The spinning 

speed is ranging from 1000 to 6000 rpm, depending on the interest of the film thickness.  

 

 

Figure 2.20. Illustration of the spin coating technique. A solution containing a polymer is 

deposited on a substrate, which is then spun at a high speed.  
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The co-polymer, we use P(VDF-TrFE) with molar ratio of VDF and TrFE is 70:30. The 

material is supplied as film by Piezotech S.A., France. There are some selective solvent 

available for making P(VDF-TrFE) solution for spin coating. We choose 2- butanone as 

solvent for spin coating, as it allow us to make homogeneous solution and the solvent is not 

harmful for health. We prepare different concentrations of P(VDF-TrFE) as weight percent, 

say for example from 0.1 % to 2.5 % . By controlling the concentration of P(VDF-TrFE) and 

spin speed, we can able to make different film thickness on RCA-1 cleaned Si wafer. The 

calibration curve of spin coating (film thickness versus spinning speed) is shown in figure 

2.21. After spin coating, the film was annealed at 135oC for 2.0 hours to improve the 

crystallinity. But to investigate the annealing effect, we have also varied the annealing 

duration which is mentioned in the corresponding results. 

Apart from different thickness (down to 10 nm or so) of P(VDF-TrFE) films on Si-wafer, we 

also make different film with PEDOT:PSS on Si-wafer as substrate for P(VDF-TrFE) films to 

investigate interaction of P(VDF-TrFE) films with PEDOT:PSS films. The purpose and spin 

coating steps is discussed in each concerning section of result and discussion. 

To investigate interaction of aluminum layer with P(VDF-TrFE), we deposited a thin  ‘Al’ 

layer by a thermal evaporation process in UHV condition. 

For the effect of an electric field on P(VDF-TrFE) films, we prepare a layer structure on the 

Si-wafer. In this case, 1st we deposited ‘Al’ on the Si-wafer and then spin-coated PMMA 

solution on it to avoid leakage current during application of the electric field. Thereafter, the 

PMMA/Al/Si staking is annealed at 100oC for 30 minutes. And finally, different 

concentrations of P(VDF-TrFE) films are spin coated on the PMMA/Al/Si staking followed 

by further annealing at 135oC for 2.0 hours.  

 

2.7. Thickness determination 

The thickness of the spin coated P(VDF-TrFE) copolymer films is measured by Taylor 

Hobson profilometer (Talystep). The thickness below 15 nm is calculated on the based on 

XPS results.  
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Measured by Profilometer 

As mentioned in thin film preparations section, the thickness of the spun polymer can be 

varied by spin speed and concentration of the solution in a wide range. In figure 2.21 the film 

thickness versus the spinning speed is shown for different concentrations of the solution. In 

[49], [50] models for spin coating process have been developed taking into account the 

solvent evaporation and the non-Newtonian character of the rheological behavior of the 

resists. Jenekhe [50] introduced a parameter α, which is describing the influence of solvent 

evaporation on the viscosity of the fluid during spin coating. A general dependence t~ω-p with 

p=2/(2+α), where t is the final thickness and ω is the angular frequency, was described. By 

analyzing a log-log plot of the thickness versus the speed (inset of figure 2.21) we determined 

mean values of p of 0.23 in the concentration range of 0.5-2.5%, while for the thicker solution 

of 5% a value of 0.48 was found, which is in the typical range of 0.40-0.82 for resists 

discussed by Jenekhe [50]. 
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Figure 2.21. Calibration curve of thickness determination (measured by Profilometer) versus 

spinning speed of different weight concentration of P(VDF-TrFE) copolymer with 2-butanone 

as a solvent.  

 

P(VDF-TrFE) film thickness: by Profilometer 
                 
                      Spin coating film 
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Generally we find an increased slope p by increasing the concentration of the solution. This is 

in good agreement with the modulations in [49] and attributable to the increased fluid 

viscosity and therefore to the more prominent non-Newtonian behavior at higher 

concentrations [49]. 

 

Determined from XPS results 

The layer thickness of P(VDF-TrFE) copolymer ultra thin films has been determined from the 

XPS results. In this case, the P(VDF-TrFE) copolymer layer is on the substrate 

PEDOT:PSS/Si-wafer. The detail of the thickness estimation is described in XPS section of 

this thesis. The plot of layer thickness versus copolymer thickness is shown in figure 2.22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22. The determine values of layer thickness of P(VDF-TrFE) films on the based on 

XPS results. Where the weight concentration of P(VDF-TrFE) copolymer make with 2-

butanone as a solvent. 
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2.8. Surface morphology  

 

For morphological investigation, the spin coated film of P(VDF-TrFE) (100 nm thick film) is 

investigated by scanning electron microscope (SEM) of  pristine and after annealing (see 

figure 2.23). The annealing is undertaken at 135oC for 2.0 hours as mentioned in thin film 

preparations section of this thesis. First of all, we noticed that there are many pin holes are 

distributed for pristine film. After annealing, most of the pin holes are dramatically removed 

and reduces from the film. Therefore it is conformed that after annealing the film becomes 

more homogeneous. To investigate the surface roughness morphology, we have employed the 

non-contact mode AFM which gives us an opportunity to study in lower scale than SEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.23. SEM images of a 100 nm thick P(VDF-TrFE) copolymer film on Si(100) 

substrate; (a) pristine film and (b) annealed film (135
o
C for 2.0 hours). 

 

2 µm 
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pin hole 

Pristine P(VDF-TrFE) film: 100 nm 

 

2 µm 

(b) 

pin hole 

Annealed P(VDF-TrFE) film: 100 nm 
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Figure 2.24 (a) shows a non-contact mode (NC) AFM topographical image of the 100 nm 

thickness of P(VDF-TrFE) copolymer spin coated film (pristine film). A pin whole 

distribution is observed for the pristine film as expected, which is also observed in SEM 

images (see figure 2.23 a). Figure 2.24 (b) shows a NC-AFM topographical image for the 

annealed film. After annealing the pin holes are significantly removed and shows the well 

grown lamellar crystalline region, which is very typical for P(VDF-TrFE) [51-53]. In average, 

the dimensions of the lamellae, measured by AFM line profile, are around 70 nm in length 

and 60 nm in width (see figure 2.25). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.24. Non-contact mode AFM topographic images (Scan area: 2 µm × 2 µm)  of a 100 

nm P(VDF-TrFE) copolymer film on Si(100) substrate (a) pristine film (RMS surface 

roughness ~1.3 nm) and (b) annealed film,135
o
C for 2.0 hours (RMS surface roughness ~ 3.2 

nm). 
 

 

The root mean square (RMS) surface roughness is found about 1.3 nm for pristine film 

whereas RMS value of annealed film is about 3.2 nm. Thus, AFM topographic images 

confirm that our annealing steps improve the crystallinity. Although because of the long 

molecular chain structure of polymeric materials, a fully crystalline state is usually hard to 

obtain. From FTIR and XRD study shows that our spin coated P(VDF-TrFE) copolymer films 

 

(b) 
Annealed P(VDF-TrFE) film: 100 nm 

 

(a) 
Pristine P(VDF-TrFE) film: 100 nm 

pin hole 
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also show a semicrystalline structure, where the polar crystalline β phase and amorphous 

phases coexist, has been described in the next section of this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.25. Non-contact mode AFM topographic image (Scan area: 0.5 µm × 0.5 µm) of the 

annealed film. 
 

 

2.9. Beta phase identification  

From the structural point of view, we have made some attempt to investigate the existence of 

different phases of P(VDF-TrFE) copolymer film. As a part of measurement, FTIR 

spectroscopy is employed to characterize the chain confirmation of a 70/30 VDF/TrFE 

copolymer. Infra-red spectroscopy can accurately determine localized structures. When the 

vibrations are well characterized, the identification of chemical groups can be determined. 

Even though the copolymers are known to have a large fraction of amorphous phase, there are 

few vibrations which can be definitely assigned to either the amorphous phase or the 

crystalline phase [54]. The vibrational modes of the polymer chains can also be used to 

distinguish the two phases. Certain vibrational modes exist only in one conformation, either 

the all-trans conformation of the ferroelectric phase, or the alternating trans-gauche 

conformation [55-59]. It is difficult to obtain infrared data for the 9-µm thick P(VDF-TrFE) 

copolymer films (which we brought from Pizotech, France) for quantitative analysis since 

many bands show high absorbance values (see the figure 2.26 B). Therefore, we make 

different thickness of thin film until 100 nm thickness on Si-wafers followed by annealing. 
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‘Si’ is penetrable for infrared radiation. The detailed procedure of the thin film making is 

described in the sample preparations section. The analysis of vibrational spectra has been 

carried out for poly(tetrafluoroethylene) [60-64] and for PVDF [59, 65, 66]. These studies 

have proven to be enormously useful to select the vibrations in order to interpret the molecular 

structure of P(VDF-TrFE) copolymer. Due to the large mass of the fluorine atom, most 

infrared-active vibrations for the copolymer are concentrated in a rather narrow region, 1500–

400 cm-1 (see the figure 2.26 A). Several vibrational bands for the copolymer have been 

assigned to specific conformations by Tashiro et al. [55, 59, 65, 67] and these assignment are 

useful to analysis of our study. 
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Figure 2.26. FTIR spectrum of a (A) spin coated film of P(VDF-TrFE) on a Si-wafer, solvent: 

2-butanone. film thickness: 100nm (B) 9 µm thickness of P(VDF-TrFE) foil. 

 

 

The 506 cm-1 band, may correspond to the 510 cm-1 CF2 bending band observed for trans 

sequences associated with either the β or γ phases of PVDF. However, Davis et al. have 

observed a band at this position of P(TrFE) [68], making it difficult to employ for structural 

interpretation. The 1290 cm-1 band has been assigned the symmetric CF2 stretching vibration 

coupled to the backbone stretching and bending vibrations [69, 70]. It is assigned to sequences 

of four or more VDF units corresponding to trans isomer sequences four or more units long 

and is therefore characteristic of the chain extended or β structure [55, 56, 67]. This band is 

absent in the paraelectric phase. The 883, 845 (doublet), and 612 cm-1 bands, assigned to CH2 

symmetric stretching, and the CF2 bending coupled to skeletal bending, respectively, are 
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useful to structural characterization [65, 69-71]. Although not use extensively in our study, the 

802 cm-1 band assigned to the CF2 symmetric stretching vibration is extremely strong in the 

Raman spectrum of these copolymers [72, 65]. It should be emphasized that these vibrations 

are characteristic for the conformations of PVDF sequences. Strictly speaking we cannot 

directly interpret the overall chain conformation; however we feel the molecular response of 

the co-monomers cannot be separated. The two bands near 845 cm-1, similar to the 1290 cm-1 

band, are characteristic of long sequences of al least three trans isomers [55, 56, 67]. In 

contrast, the bands at 802 and 612 cm-1 are characteristic of gauche conformations [55, 56, 65, 

72]. There has been controversy regarding the assignments of the bands for the position at 883 

and 845 cm-1. Originally, the assignments of those aforesaid bands for PVDF were unclear 

[71]. Tashiro et al. showed by poling experiment and normal vibrational analysis, the new 

assignment is consistent with polarized Raman studies on rolled PVDF films, with the 883 

cm-1 band assigned to the CH2 rocking, CF2 asymmetric stretching, and CF2 rocking 

vibrations, while the 845 cm-1 band is assigned to the CF2 symmetric stretching mode [69]. 

In summary, figure 2.26 A the bands, market with arrows, at 505 cm-1, 845 cm-1, 1184 cm-1, 

1290 cm-1 gives evidence for all-trans ferroelectric phase. No indication for alternating trans-

gauche conformation is observed. For this phase, a strong absorption feature at 802, 612 and 

1196 cm-1 occurs, for example.  

 

2.10. Effect of Annealing 

FTIR results 

After conforming the ferroelectric β phase in the FTIR study for the 100 nm thickness of 

P(VDF-TrFE) films, we anneal the films at 135oC for 2.0 hrs. We have also employed to 

realize the effect of crystallinity as a function of annealing duration for the same annealing 

temperature. Care has been taken to understand the effect, after spin coating of copolymer on 

Si wafer, the samples are breaks into several pieces for different annealing durations. There 

might be effect of crystallinity if we do annealing several times for the sample and of course 

as a result it is timid to make conclusion. Figure 2.27 (A) showing the effect of annealing 

duration. In all spectra, illustrate the evidence for all-trans ferroelectric phase (see the 

previous analysis). The three arrow marked bands at 1400 1250, and 1100 cm-1 are due to 

contributions from the amorphous region of the copolymer films [73, 74]. All such three 

bands are more prominent for unannealed sample and 1250 cm-1 absorption band is 

diminishes even for 10 min. annealing. The rest two bands (1400 and 1100 cm-1) exist for all 

samples even after 240 min. annealing but the absorption intensity are changing significantly 
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until 120 min, annealing. For realizing the improvidence of the degree of crystallinity, we 

have taken 1400 cm-1 band (the most prominent absorption) as reference. Figure 2.27 (B) 

shows that after 30 min. annealing, the crystallinity improved about 40 % with respect to 

unannealed film and afterwards the change is not significant. 

 

 

1000 1100 1200 1300 1400 1500

A

Amorphous phase

240 min.

120 min.

60 min.

30 min.

10 min.

Unannealed

 

 

T
ra

ns
m

is
si

on
 / 

a.
u.

Wavenumber / cm-1

0 50 100 150 200 250

1.0

1.1

1.2

1.3

1.4

1.5

B

40 % change

Amorphous phase: 1400 cm-1

50 100 150 200 250

1.00

1.05

1.10

R
e
la

tiv
e
 F

W
H

M
 /
 a

. 
u
.

Annealing duration / min.

 

 

R
el

at
iv

e 
FW

H
M

 / 
a.

 u
.

Annealing duration / min.

 

Figure 2.27. (A) FTIR spectrum (1000 – 1450 cm
-1

) of spin coated films of P(VDF-TrFE) on a 

Si-wafer (solvent: 2-butanone. film thickness: 100nm) as function of annealing duration at 

temperature 235
o
C. Arrow marks showing the amorphous phase; (B) Representation of the 

relative change of FWHM (at 1400 cm
-1

 of FTIR spectrum, from figure 6.1 A)
 
with respect to 

annealing duration, (inset: without unannealed data for showing the relative change more 

prominently, the straight line is for eye guide. 

 

 

Topographical investigations 

We have conformed from the FTIR study that the amorphous phase is not reducing 

significantly after 2 hour annealing. From the AFM topographical images, we found that the 

average size of crystalline lamellae structure is not improving significantly for longer time 

annealing. The topographical images of unannealed and annealed films are shown figure 2.24, 

the results revel that the crystalline lamellae structure improves significantly after annealing. 

The AFM topographical images for longer time annealing (4 and 40 hours) of the copolymer 

film is illustrate in figure 2.28. Here we found that the grain sizes of the crystalline region are 

not improved significantly after 2 hours annealing. 
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Figure 2.28. Non-contact mode AFM topographic images annealed P(VDF-TrFE) copolymer 

film on Si(100) substrates. Scan area: 2 µm × 2 µm (a) and (c); scan area: 0.5 µm × 0.5 µm 

(b) and (d). The annealing temperature and duration is mentioned in the figure. 
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CV measurement 

Here we will show the effect of the annealing step to our current-voltage (CV) measurements. 

Experimental set-up 

The measurements of capacitance versus voltage (CV) are carried out with an Agilent 4284A 

LCR meter at a frequency of 1 MHz with a 25mV (RMS value) test signal level while 

sweeping the DC bias with rates from 12.5 mV/s to 100 mV/s. The sample is hold in a sample 

holder under dark condition.  Measurements are mostly performed at room temperature. 

Results of CV measurement 

In our current-voltage (CV) measurements, we observed much more symmetric behavior in 

the flat-band voltage shift inside one CV loop after annealing, while the CV loops of non-

annealed samples additionally shift due to a probable charge injection [75]. We also found 

that annealing lead to a higher polarization value. The flat-band voltage shifts normalized to 

the thickness of the films deliver a polarization proportional value [75]. In figure 2.29, we 

show these values versus the applied electrical field window of the CV loop for one annealed 

and one non-annealed sample. We observe much higher values of the polarizability for the - 

 

 

 

0 20 40 60 80 100 120

0

1

2

3

4

5

6

with annealing
220nm

w.o. annealing
350nm

N
~P

 [
10

11
/c

m
2 ]

∆E
PVDF

 [MV/m]

 

 

Figure 2.29.  Polarization proportional values versus applied electrical field window of the 

CV loop for one annealed and one non-annealed sample. 
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annealed sample, while the non-annealed sample already shows saturation even here, where a 

thick SiO2 buffer layer of 235 nm is used. A strong effect of annealing for improving the 

crystallinity of P(VDF-TrFE), which results in higher polarization values by a factor of 3 to 4, 

was clearly discussed [76]. Our results are in good agreement with this statement. 

Therefore we have taken as template the annealing condition at 135oC for 120 minute for our 

further investigations. 

 

2.11. Optimization of the X-ray irradiation time 

 

We have optimized the X-ray (Mg Kα) irradiation time of XPS analysis for P(VDF-TrFE) 

copolymer film. Therefore, we have employed the effect of X-ray irradiations on P(VDF-

TrFE) copolymer films. It has been found that the fluoropolymers are sensitive to radiation 

[77- 80]. The X-ray photoelectron spectroscopy (XPS) is an extensive tool for the structural 

evaluation of P(VDF-TrFE) copolymer [81, 82] but none of investigation was reported for 

irradiation effect of the X-ray photon. For the structural evolution of the copolymer films, we 

exposed the X-ray on the copolymer sample for different duration and finally optimized the 

parameters for further investigation. 

X-ray irradiation is carried out with in-situ environment in ultra high vacuum (base pressure 

10-9 mbar) chamber using an X-ray tube (Mg Kα) with an operating voltage of 10 kV and a 

filament current of 10 mA. 

Figure 2.30 (A) shows the FTIR spectra for pristine and X-ray irradiated samples for 1.0 and 

6.0 hours. There is a significant change of some bands are noticed as shown with arrow marks 

(see figure 2.30 A). Interestingly, all such bands are the characteristic of evidence of the all 

trans ferroelectric phase [55, 56, 67]. On the other hand, the characteristic of the alternating 

trans-guache conformations are appears after 1.0 hrs of X-ray irradiation. The absorption band 

positions of trans-gauche conformations are shown in the figure 2.30 (A) with oval shape 

mark. It has been proven that alternating trans-gauche conformations are the unique evidence 

of paraelectric phase [55, 56, 65, 72]. Therefore we are suspecting that after 1.0 hrs of X-ray 

irradiation led to phase change from ferroelectric to paraelectric (F to P). To supporting such 

observation we have undertaken the adjacent investigation by the help of an X-ray diffraction 

(XRD) study.  

From the XRD measurement, it is clear that the P(VDF-TrFE) films shows the crystalline 

region with co-existance phase of amorphous region (see figure 2.30 B). As is known P(VDF-

TrFE) with a VDF/TrFE with molar ratio is a semicrystalline copolymer which consists of a 
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ferroelectric crystalline β-phase embedded in an amorphous matrix, and the β-phase has 

quasi-hexagonal close packing with orthorhombic mm2 structure [83]. As seen in the figure 

2.30 (B), the pristine copolymer sample exhibit an intense diffraction peak at 2θ = 23.4o 

which is a characteristic diffraction peak of the ferroelectric polar β-phase of the overlapping 

(110) and (200) plane reflections [83-87]. 
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Figure 2.30. (A) FTIR spectrum of 100 nm thickness of P(VDF-TrFE) thin film on Si-wafer, 

for showing the effect of X-ray irritation. (X-ray source: Mg Kα). (B) X-ray diffraction scans 

from the pristine, 1.0 hour and 6.0 hours X-ray irradiated P(VDF-TrFE) sample. 
 

 

 

In addition to the sharp peaks in the XRD pattern caused by crystalline phase, there is a broad 

peak with a much lower intensity that is caused by the amorphous phase in the films. Thus the 

XRD patterns for the pristine sample can be decomposed into one crystalline peak, which is 

from the polar β- phase, and the amorphous halo contribution. It is important to note that most 

of the reported XRD investigation for P(VDF-TrFE) copolymer films are measured by Cu Kα 

radiation of wavelength  λ = 1.5418Å [84-88]. Therefore it is obvious that the diffraction peak 

position (2θ) are different in our present study but of course the inter planner distance ( d ) of 

the crystalline plane is comparable. For example, for the (110)/(200) reflection plane at peak 

position 2θ = 23.4o , the d value is 4.41 Å for XRD with Co Kα wavelength (1.7902 Ǻ), which 

is comparable with other reported values [83-88].  
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In contrast to the pristine sample, after 1.0 hour X-ray irradiation, the diffraction peak at 2θ = 

23.4o due to the ferroelectric polar β - phase is totally diminishes and some additional 

diffraction peaks (at 2θ = 33.4 and 41.6o) arises. Furthermore, after 6.0 hours irradiation, this 

additional peaks intensity becomes more intense (see the figure 2.30 B). The peaks at 2θ = 

33.4 and 41.6o are the characteristic of the paraelectric α phase for the d value of 2.51 and 

3.12 Å, respectively [84, 85]. The peak at 2θ = 33.4 corresponds to (130) reflection and the 

diffraction plane at 2θ = 33.4 is associated with strong unresolved (210)/(040)/(200) 

reflections. 

Therefore, taking into infrared spectroscopy and XRD results, we can argue that there is a 

phase change occurs from ferroelectric to paraelectic, after 1.0 hour X-ray irradiation. These 

observations give us important information, i.e 

 

� Idea about the X-ray irradiations effect on P(VDF-TrFE) copolymer films 

� Optimization the X-ray irradiation time 

 

We have seen from FTIR and XRD analysis, P(VDF-TrFE) copolymer films shows a phase 

change after 1.0 hrs X-ray irradiation. Therefore we have elucidated the effect which is 

observable in X-ray photo electron spectroscopy (XPS) study. It is important to note that the 

phase change observation is arduous to say by XPS observation. Since our goal is to study the 

undistorted P(VDF-TrFE) surface.  

Figure 2.31 (a) and (b) shows the C1s and F1s peak of pristine P(VDF-TrFE ) copolymer film 

(100 nm thickness). Since the peak has overlapping components, the curve has been 

deconvoluted into best-fitting Gaussian components which have been indicated in the figure. 

The fact that the C1s photoelectron peak from each type of carbon is so distinctly different in 

binding energy makes XPS an excellent tool for studying these materials [89-93]. Figure 2.31 

(a) shows three major well-separated components and a small tail. The highest binding energy 

component (291.5 eV) is from the −CF2− component and the other major lowest binding 

energy peak (287.0 eV) is from the –CH2− species [89-91]. And in between these two major 

component, the C1s spectra shows a well resolved small component at 289.3 eV arises due to 

–CFH− species [89]. The low energy tail with this peak (285.5 eV) might be corresponds to 

the hydrocarbon contamination [89]. Furthermore the C1s spectrum (figure 2.31 a) consists of 

three partially resolved peaks at 291.5, 289.3, and 287.0 eV with area ratios 46: 17: 35, 

corresponding to the −CF2−, –CFH−, and –CH2− carbons, respectively. These peaks area ratio 
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value is quite consentient with theoretical calculated value for 70:30 mole % ratio mixtures 

VDF and TrFE copolymer (−CF2−, –CFH−, and –CH2− ratio: 9:3:7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.31. XPS (a) C1s core level spectra of pristine sample of P(VDF-TRFE) film (cure 

fitting shown), (b) F1s core level spectra of pristine sample of P(VDF-TrFE) film(curve fitting 

shown) (c) C1s core level spectrum of X-ray irradiated samples for different duration; (d) F1s 

core level spectra spectrum of X-ray irradiated sample for different duration. 
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Figure 2.32. The change of peak area (from figure 2.31c: C1s XPS result) due to different 

contributions of carbon component of P(VDF-TrFE) copolymer vs. X-ray irradiation time. 

 

In the figure 2.31 (b), the F1s core level XPS spectra is shown for pristine samples of P(VDF-

TrFE) copolymer films. The F1s line at 688.8 eV has a line width of 1.9 eV. The peak 

position assignment is reproducible with reported results [89, 91, 92]. 

Figure 2.31 (c) and (d) illustrate the effect of X-ray irradiation represented by C1s and F1s 

core level spectrum respectively. A higher binding energy shift is observed with respect to 

increasing X-ray irradiation duration starting from 1.0 hour. From the theoretical calculation 

the peak area contribution of CF2 and CH2 of P(VDF-TrFE 70:30) copolymer should be 1.28 

which is excellent agreement (1. 31) with our pristine film. In contrast the ratio of peak area 

from CF2 and CH2 is significantly changing after 1.0 hour irradiation (0.59) and after 6.0 

hours irradiation it reduce to 0.38. Thus the change of peak area between CF2 and CH2 fall 

dramatically (about 93 %). This is one of the huge impacts by irradiation and it is benefited 

that XPS is very extensive tool for such quantities analysis. From figure 2.31 (d), we have 

seen that the change of line width of F1s line is not so significant with irradiation. On the 

other hand, we found from C1s spectra (see figure 2.32), there is significant change of three 

different existing carbon species ( −CF2−, −CHF−, −CH2−) with respect to irradiation, 

especially after 1.0 hour. With the irradiation duration, the −CH2− species is increasing 

whereas −CHF− and −CF2− is decreasing significantly which is shown in figure 2.32.  

P(VDF-TrFE) film: Relative peak area  
of C1s vs. MgKα irradiation time 
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2.12. Experimental setup for external electric field 

 

Our aim is to investigate ferroelectric dipoles orientation, especially for ultrathin (down to 10 

nm thickness) spin coated P(VDF-TrFE) copolymer films. 

The schematic for the application of external dc electric field is shown in figure 2.33. The 

electric field is locally imposed on the copolymer ultrathin film through two conducting tips 

as illustrate in aforesaid figure. The layer structure for the sample is schematic in figure 2.33, 

with different color. The top layer (pink color) is the copolymer spin coated film; the 

underneath layer, shown by blue color is a layer of PMMA (thickness ~700 nm) on the 

aluminum evaporated Si(100) wafer. The aluminum deposited Si wafer act as a bottom 

electrode for ultrathin copolymer films and we introduce PMMA layer to prevent leakage 

current during application of the electric field [94]. We used another aluminum coated Si 

wafer externally as a top electrode. 

 

 

 

 

 

Figure 2.33. Schematic of the arrangement set-up for application of electric field in the 

ultrathin P(VDF-TrFE) copolymer film. Aluminum deposited Si-wafers are used as top and 

bottom electrodes. A non-conducting PMMA layer is used as buffer to prevent leakage 

current. 
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Chapter 3.   Aluminum and PEDOT: PSS interaction with 

P(VDF-TrFE) 
 

 

In this chapter, we focus on the properties of the ferroelectric copolymer P(VDF-TrFE) layer 

in the contest of scaling of  layer thickness. We have to find out the reason for the threshold 

thickness for aluminum electrode, in contrast we also discuss the advantage of the organic 

electrode PEDOT:PSS. 

 

 

3.1. Introduction 

 

Copolymer films P(VDF-TrFE), used as a nonvolatile memory element has became a great 

deal of interest in research area, motivated by the aspect of industrial application [1-11]. Since 

the coercive field (Ec) of P(VDF-TrFE) copolymers is extremely large (over 40 MV/m for 

>200 nm thickness of the copolymer [3]), it is necessary to fabricate them into very thin films 

(below 100 nm) for low operation voltages. Based on the reported effects of thin film fabrica-

tion of P(VDF-TrFE) copolymers by Kimura and Ohigashi [17], many studies have focused 

on low operating voltage applications [4-16]. 

In this investigations, we concentrate on the properties of the ferroelectric copolymer P(VDF-

TrFE) layer in the contest of scaling of  layer thickness. A number of studies dealing with this 

issue followed [6, 17-22]. A study regarding the thickness scaling of P(VDF-TrFE) copoly-

mer films reported an increase in both coercive field and switching time with decreasing layer 

thickness [17]. An overview of the remanent polarization (Pr) values verses ferroelectric layer 

thickness is shown in figure 3.1. It is also noted that the polarization also depends on the mo-

lar ratio of VDF and TrFE of the copolymer used [6]. 

In figure 3.1, the decline of curves 1-3 below 100 nm has been attributed to a reduction of 

crystallinity, ascertain by X-ray diffraction results [19, 20, 22]. As P(VDF-TrFE) films are 

semicrystalline and the ferroelectricity arises from the crystalline phase. Curves 3-5 indicate a 

downward shift of this apparent critical thickness from 100 to 70 nm. Using an annealing 

temperature lower than 140oC showing less decline of the remanent polarization, e.g., 30% Pr 

decline at 40 nm instead of 50% at 60 nm [22]. This observation is explained by an improved 

crystallization due to a reduction of the crystal lamellar size. In contrast of these results, 

curves 6 and 7 showed even less decline, e.g., only 10% at 50 nm [18, 21]. 
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The small decline is most likely due to different measurement procedure rather other parame-

ters [6]. Curves 6 is obtained with unusually high fields exceeding 300 MV/m. Curve 7 is 

measured using common field strengths of about 100 MV/m but with field application times 

exceeding seconds. As the switching time depends exponentially on the applied field, these 

results are mutually consistent and suggested that it is mainly the switching time that is af-

fected by the reducing layer thickness. It has been demonstrated by taking into consideration 

of retainment of the Pr in bulk material in sub-100-nm thin films and also the preservation of 

the switching time [6]. 

 

In figure 3.1, curve 1-7 are obtained on capacitors that had transition metal or aluminum bot-

tom electrode [18-22].  

By introducing a polymeric (PEDOT:PSS) bottom electrode it has been found that almost 

unaffected Pr, Ec and switching time (ts) behavior down to lowest 65 nm P(VDF-TrFE) layer 

thickness [6]. This enables switching of 65 mC/m2 with 5.2 V (80 MV/m) while the switching 

current peaks at 80 µs (the full switching event is completed within 400 µs) [18].  

 

Since we need thinner (below 100 nm) films, it is an important question, what happen at the 

interface of the ferroelectric device. From literature it is well know from several works [6, 18-

21] that we have threshold for the remanent polarization for films below 100 nm of thickness, 

if we use aluminum as electrode.  Therefore, we have to find out the reason for the threshold 

Figure 3.1. Summary of the remanent polarization 

of spin coated P(VDF-TrFE) capacitors as a func-

tion of the ferroelectric layer thickness[6]. The 

lines indicate as a guide to the eye. [1. ref. 19; 2. 

ref. 20; 3. ref. 20 (140
o
C); 4. ref. 20 (128

o
C); 5. ref. 

20 (120
o
C); 6. ref. 21; 7. ref. 18; 8. ref. 6]. 
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thickness for aluminum electrode, in contrast we also investigate the advantage the use of the 

organic electrode PEDOT:PSS. 

   

3.2. XPS results 

 

Figure 3.2 (A) shows the XPS spectrum around the C1s region of a 100 nm P(VDF-TrFE) 

copolymer sample. Here, we could identify three typical chemical states of peaks, at binding 

energies of 287.0 eV, 289.3 eV and 291.5 eV. In addition to three main peaks one low energy 

small window arises around 285.5 eV of binding energy, corresponds to the hydrocarbon con-

tamination [23].  For an assignment of the peaks, we first must point out, that all peaks are 

chemical shifted to higher binding energies due to the presence of fluorine [23-25]. For the 

binding energies, we should have the following assignments, from lower to higher binding 

energies: The first peak at 287.0 eV has to be attributed to the (H-C-H) group, the peak at 

289.3 eV should be the feature for the (H-C-F) group and the peak with highest binding ener-

gies at 291.5 eV has to be assigned to the (F-C-F) group.  
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Figure 3.2. XPS C1s (A) and F1s (B) spectra of P(VDF-TrFE) copolymer film (100 nm film 

thickness).  The C1s spectra has to be taken as reference to monitor changes induced by in-

teraction with the electrodes (Al or PEDOT:PSS). A Gaussian fit of the three main peaks is 

also shown.  
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The peak intensities reflects the copolymeric ratio of VDF:TrFE 70:30. Figure 3.2B shows the 

XPS spectrum around F1s region of the same sample. The F1s line at 688.8 eV has a line 

width of 1.9 eV. The peak assignment is quite consistent with previous reported results [24-

26]. The individual peak assignment and quantitative analysis has been discussed in previous 

section of the thesis.      

 

Top electrode Structure 

Thermally evaporated Al on P(VDF-TrFE) 

Now, we show the XPS spectrum of a P(VDF-TrFE) copolymer film after deposition of a thin 

layer (around 1nm) of thermal evaporated aluminum (figure 3.3A), as top-electrode. Com-

pared to the spectrum of the pure P(VDF-TrFE) copolymer film (figure 3.2 A), we find the 

following modifications:  

• The relative intensity between CH2 and CF2 peaks is modified towards lower fluorine 

content 

• Small shift of CH2 and CFH, and  

• A new peak at lower binding energy (~285 eV).  

This is a clear indication for a surface reaction. 

 

Figure 3.3 (B) shows the XPS spectrum of the F1s region. With reference to the copolymer 

film without aluminum deposition, as shown, we reveal a slight asymmetry, indicating a sur-

face reaction of the aluminum with fluorine. 

The Al2p spectrum (figure 3.3 C) gives a confirmation for the formation of a thin AlF3 layer 

[27]. The main peak arises of binding energy 72.5 eV, is characteristic of bulk aluminum 2p 

core level. Here, we have a second small peak with a very high binding energy of 76.8 eV. 

This is due to the presence of fluorine. An oxidized surface of aluminum would have binding 

energies of around 75.4 eV [28]. 
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Figure 3.3. (A) C1s XPS spectrum of a P(VDF-TrFE) film, after thermal evaporation of Alu-

minum (red solid line), compared to spectrum of the reference sample (black dashed line). 

The spectrum after deposition of Al is normalized with reference to the CF2 peak of the pure 

copolymer film. (B) XPS spectrum of the F1s level after evaporation of Aluminum (red solid 

line), compared to spectrum of the pure copolymer film (black dotted line). The spectrum is 

normalized with reference to the F1s peak of the bulk film. (C) Al2p XPS spectrum of copoly-

mer film, after evaporation of Aluminum. 
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Bottom electrode Structure 

P(VDF-TrFE) on thermally evaporated Al 

The next question we address: is there any surface reaction in the reversed case of a bottom 

electrode of aluminum? Therefore, we measure two times: a set of samples with aluminum as 

bottom electrode, without any annealing, just after spin coating, then we anneal the samples at 

135°C for 2 hours and measure again. The related XPS spectra for the C1s and the Al2p level 

are given in figure 3.4. Obvious is an additional peak for the C1s level, even for the sample 

without any annealing procedure. If we compare the C1s XPS results of these two geometries 

(namely, aluminum on top and at bottom), we find a similar behavior: the relative intensity 

between the CH2 and CF2 peak is modified and a new peak occurs at binding energies near 

the CH2 feature. This means: when we talk about a surface reaction for an evaporated elec-

trode, in top geometry, we have to talk about a surface reaction in the bottom electrode ge-

ometry, also. An interface layer is obviously built up even at room temperature. For elevated 

temperatures, as example the common annealing procedure (135°C, 2h), we have to expect an 

increased amount of this additional C1s feature. This is exactly the case: the relative intensity 

of the additional peak is increased after tempering (figure 3.4 A). The concentration for spin 

coating of this sample is 0.1 w% P(VDF-TrFE) in 2-butanone. For a set of samples with 0.3 

and 0.5 w% P(VDF-TrFE), we find the same behavior, but the relative intensity of the addi-

tional C1s feature is lowered proportional to concentration, indicating a layered structuring.  

The F1s and the O1s levels are also analyzed for the same set of samples; here no relevant 

modification is visible, before and after annealing.  

The Al2p spectrum is also shown (figure 3.4 B). Here, we found a formation of an oxidized 

layer, as revealed by a peak at a binding energy of 75.4 eV. This oxidation is takes place due 

to the experimental procedure: In this case after aluminum evaporation in in-situ environment, 

we have transfer the samples into our glove box for spin coating of P(VDF-TrFE) films. 

Hence the oxidation easily takes place in air with aluminum deposited layer. 

In summary, for the bottom geometry structure, we have an obviously degenerated copolymer 

at the interface not only even at room temperature, but also, even though we have an oxidized 

surface of aluminum.  
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Figure 3.4. (A) C1s XPS spectra of a P(VDF-TRFE) film, spin coated onto a Al/Si substrate 

(bottom electrode structure). Straight line: just after spin coating. Dashed line: after thermal 

annealing at 135°C, for 2 hours. The concentration for spin coating is 0.1 w% P(VDF-TrFE) 

in 2-butanone. Spectra are corrected for 0.4eV and normalized with reference to the bulk 

film, also shown; (B) Al2p XPS spectra of a P(VDF-TrFE) film, spin coated onto a Al/Si sub-

strate (bottom electrode structure).  

 

P(VDF-TrFE)/PEDOT:PSS interface 

Thin films of P(VDF-TrFE) are spin coated on PEDOT:PSS, as described in experimental 

section (chapter 2). In figure 3.5 (A), we show the C1s spectra of four samples with thin films 

of P(VDF-TrFE), spin coated in different concentrations in 2-butanone (0.x weight %), com-

pared to a pure PEDOT:PSS spectrum (no.1). As revealed from figure 3.5 (A), no additional 

structure near the CH2 feature occurs.  

 

Like aluminum, a possible interface reaction should have an influence on the relative intensi-

ties, also (for example CF2 and CH2 of P(VDF-TrFE), here an analysis of peak attenuation is 

helpful. As we read out, also in Figure 3.5 (A), the intensity of the PEDOT:PSS (PEDOT, 

written for simplicity) -related signal at 284.8 eV is attenuated proportional to P(VDF-TrFE) 

concentration in the 2-butanone solution. The relative intensity of this PEDOT-signal is plot-

ted in figure 3.5 (B). Here we extract a linear dependence and from that, we can conclude, that 

no interface reaction with a modification of intensities occurs.  For a concentration of 0.6 w%, 

Bottom electrode structure: P(VDF-TrFE)/Al 
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the straight line intersects with the x-axis. In this case, the thickness of the P(VDF-TrFE) film 

is larger than the information depth of photoelectrons. 

 

Therefore, If we use PEDOT:PSS as the electrode, we have found clearly no interface modifi-

cation and an ideal sandwich layer. From the spectra of S2p, F1s and O1, this is also con-

firmed.  
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Figure 3.5. (A) C1s spectra of samples with thin films of P(VDF/TrFE), spin coated in dif-

ferent concentrations in 2-Buthanone (0.x weight %); (B) Relative intensities of the PE-

DOT:PSS-attributed C1s feature, versus P(VDF-TrFE) concentration in 2-buthanone solu-

tion, as I/I
0

PEDOT. (C) Relative intensities of the CF2 attributed for the P(VDF-TrFE) films 

versus P(VDF-TrFE) concentration in 2-butanone solution, as I/I 
0

(CF2). The line is only 

drawn as guide for the eyes. 
 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

C1s intensity ratio (285 eV) 
between PVDF/PEDOT and only PEDOT

B

 R
el

at
iv

e 
In

te
ns

ity
 (

I/
Io PE

D
O

T
)

2

3

4
5

1

PVDF/Butanone in weight %

 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

       C1s intensity ratio (292 eV) 
between PVDF(ref.) and PVDF/PEDOT

 R
el

at
iv

e 
In

te
ns

ity
 (

 I/
Io C

F2
) C

3

4
5

2

1

 PVDF/Butanone in weight %

 

P(VDF-TrFE) on PEDOT:PSS 



Aluminum and PEDOT:PSS interaction with P(VDF-TrFE) 

 

 83 

 

 

Layer thickness of P(VDF-TrFE)ultra thin films 

From the XRS results, we tried to the determine of the overlayer thickness (dP(VDF)) of 

P(VDF-TrFE) copolymer layer on PEDOT:PSS/Si substrates. We used a value of 1 nm as 

mean free path of photoelectron [30]. The over layer thickness of the P(VDF-TrFE) is ex-

pressed by, 

 

 

 

 

Where 9.1
2)(

0

0 ≈=
CF

PEDOT

I

I
α , calculated by dividing spectrum number 5 by spectrum number 1 in 

figure 3.5 A.  From the figure 3.5 B and C, we can substitute the rest of the two parameters 

IPEDOT and I(CF2).  

We receive the following values: 0.35 nm for 0.1 w%, 0.80 nm for 0.3 w% and 2.5 nm for 0.5 

w%. Also the film thickness corresponds linearly to the P(VDF-TrFE) concentration in 2-

butanone.  

 

3.3. Discussions 

 

 As revealed by XPS measurements under radiation damage free conditions, we show a clear 

indication for a surface reaction of P(VDF-TrFE) with Al-electrodes, not only for evaporated 

Al, but also at room temperature, for the metal as bottom electrode. The new peak at lower 

binding energy (~285eV), the relative intensity between CH2 and CF2 peaks is modified to-

wards lower fluorine content and small binding energy shift of CH2 and CFH (see figure 

3.3A) confirms that the surface reaction takes place of P(VDF-TrFE) with evaporated Al . 

Furthermore, if we look on Al2p spectra (see figure 3.3C), then we find the layer formation of 

AlF3.   In sharp contrast, for PEDOT:PSS, the XPS measurements indicates a layer by layer 

structure of PEDOT:PSS/P(VDF-TrFE) without any interface modification. This could be the 

reason for lower relaxation times, higher switching frequencies and in consequence, a better 

field dependence of the ferroelectric polarization, if we choose PEDOT:PSS as material for 

the electrode.  
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Chapter 4.   Summary of the electrical 

characterizations of the thin films 

 

In this chapter, we will discuss about the electrical characterizations of the P(VDF-TrFE) 

copolymer thin films which are useful for the non-volatile memory applications. 

 

 

 

4.1. Introduction 

 

In terms of a low cost approach for electronics, based on organic devices, the introduction of 

organic non volatile memories is of great importance.  P(VDF-TrFE) copolymer is the mate-

rial with a very hopeful perspective, in this part we will give a summary on our electrical 

measurements with P(VDF-TrFE). By capacitance voltage measurements, we confirm the 

ferroelectric behavior of the polymer by measurements at elevated temperatures (Curie-Point), 

we found a threshold for remanent poalrization for films below 100 nm, if we use aluminum 

electrodes, but with inert electrodes, a downscaling of a low coercitive field was possible 

down to ten nm. This is very important, because due to the high coercitive field of the co-

polymer (> 50 MV/m), we need ultrathin films for low operation voltages. Prerequisite for 

memory applications is a high retention time, this was also confirmed, as described later in 

detail. 

 

4.2. Results and discussion of electrical characterizations 

 

For the measurements of the ferroelectric hysteresis of P(VDF-TrFE) copolymer via the flat-

band shift, we used capacitors with oxidized p-type (doping concentration ~1015 cm-3) silicon 

substrate (10-235 nm SiO2)  to prevent large amounts of leakage current.  The copolymer film 

preparation procedure is described in thin film preparation section. We used films of thickness 

from 100 nm to 1µm. The structures are prepared in ‘top electrode geometry’, with thermal 

evaporated aluminum and for ultrathin films below 100 nm, we use Indium as contact elec-

trode, patterned via a shadow mask (see figure 4.1).   
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The measurements of capacitance versus voltage (CV) are carried out with an Agilent 4284A 

LCR meter at a frequency of 1 MHz with a 25 mV (RMS value) test signal level while sweep-

ing the DC bias with rates from 12.5 mV/s to 50 mV/s. The sample was hold in a sample 

holder under dark condition.  Measurements are mostly performed at room temperature, at 

higher temperatures the sample holder is kept in a common drying oven. 

All measurements were started in accumulation and finished there too, after driving the volt-

age in the investigated range to inversion and back (e. g. -10 V to 10 V and backwards to -10 

V; we identify this ‘± ‘10 V loop’). Due to the polarization of the ferroelectric copolymer 

layer, the CV curves show a hysteresis loop [1, 2], which depends on the maximum voltage in 

the CV mode (see figure 4.2, right panel). 

 

 

 

Figure 4.1. The schematic of the top electrode geometry structure. 

 

 

 

-10 -8 -6 -4 -2 0 2 4 6 8 10

24

28

32

36

40

44

48

20 40 60 80 100

0.0

0.4

0.8

1.2

1.6

?
U

F
B

T [°C]

100°C

25°C

C
 [

p
F

]

Voltage [V]

-8 -6 -4 -2 0 2 4 6 8

15

18

21

24

27

30

33

36 30nm t
FE

=100nm

Flatband

C
 [

p
F

]

V [V]

 -3..3V
 -5..5V

 -10..10V

 -15..15V
 -20..20V

and back

 

Figure 4.2. Left panel: Capacitance-voltage characteristic of a 100 nm SiO2/110 nm P(VDF-

TrFE) sample at room temperature and at 100
o
C. The inset shows the flatband shifts depend-

ent on temperature. Right panel: capacitance-voltage characteristic of 100 nm P(VDF-

TrFE)/30 nm SiO2/Si sample at room temperature. Different voltage (±3, ±5, ±10, ±15, ±20 V 

) loop are shown. 
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In figure 4.2 (left panel), a typical CV characteristic of a Si/100 nm SiO2/110 nm P(VDF-

TrFE) capacitor is shown. The CV plot shows sections of the ± 10 V loop measurement at 

room temperature (RT) and at 100oC. The inset shows the flatband shift ∆VFB (memory win-

dow) versus temperature. The calculation of ∆VFB value is according to as described in the 

literature [3]. In the right panel of figure 4.2, CV characteristics of Si/30 nm SiO2/100 nm 

P(VDF-TrFE) capacitor at different voltage loops are shown.  We note in the RT line a clear 

hysteresis for the measurement loop. The hysteresis of the CV line indicates the presence of 

polarization charges and a ferroelectric behavior of the P(VDF-TrFE) copolymer, resulting in 

a shift of the CV line along the voltage axis (flatband voltage shift), as is known for fixed 

charges in the insulator for MIS devices [4]. The shift of the flatband voltage is a result of 

ferroelectric polarization of the copolymer. This is conformed by CV measurements at ele-

vated temperature. The reported Curie temperature of P(VDF-TrFE) is in the region of 100oC 

[5]. Figure 4.2 also summarized these investigations. We note the disappearance of the hys-

teresis at 100oC. Furthermore, in the CV data we find an increased permittivity value at 100oC 

by 80%, signified by a higher capacitance in accumulation (see figure 4.2, left panel). This is 

in agreement with observation in literature, the permittivity is increasing up to the Curie point 

[4, 6].  

We calculate a permittivity value of P(VDF-TrFE) of 6.7 ± 0.9 at room temperature and at a 

frequency of 1 MHz, which is in the same range as in other works [7, 8]. This value is used 

for a calculation of the charge density, which is proportional to the ferroelectric polarization. 

The flatband voltage shift (∆VFB) is also needed to calculate this ‘fixed’ charge (Nfix) using  

                        

 

                                                                  
PVDF

PVDFFB

fix
qt

V
N

εε 0∆
=

 

 

 

Where 0ε is the permittivity of vacuum, PVDFε  is the relative permittivity value for P(VDF-

TrFE), PVDFt  is the thickness of P(VDF-TrFE) and q is the elementary charge. 

 

We also study the flatband shift, e.g. the polarization, as a function of copolymer film thick-

ness. For the measurements, a relatively thick SiO2 buffer layer of 235 nm was used and the 

result revel a clear thickness dependence of the ferroelectric polarization. We calculated 
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∆EPVDF as the voltage drop only over the P(VDF-TrFE) layer. For accumulation, negative 

voltages, the voltage is divided into two parts: 
2111 SiOPVDF UUU += . For depletion, we have to 

calculate an additional voltage drop over the depletion layer, according 

to DSioPVDF UUUU 2222 2
++= . The field, applied only at the P(VDF-TrFE) layer, is calculated 

as filed amplitude PVDFPVDFPVDFPVDF EtUU ∆=− /)( 12 , with a layer thickness PVDFt . 

 

Figure 4.3(a) shows the calculated fixN  values versus the total field amplitude PVDFE∆ . We 

find an almost linear dependence of the ‘fixed’ charges versus the electric field strength ap-

plied. For the remanent polarization, which is proportional to the amount of the ‘fixed’ 

charges, saturation at relatively high field strength is to be expected. For our samples, even at 

high applied fields, no saturation occurs. However, we should refer to the fact that here the 

sum of the electric field in both branches of the polarization loop is shown, so it might be 

plausible that the field is not yet hight enough for saturation. Indeed, it is found that by reduc-

ing buffer layer thickness (see figure 4.3b) or using high-k material the saturation occurs [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. (a) Calculated ‘fixed’ charges versus the electric field change of the ferroelectric 

layer inside one CV loop for SiO2/P(VDF-TrFE) stacks with different thickness of the ferro-

electric layer. Thickness of the buffer layer is 235 nm and thickness of the P(VDF-TrFE) is as 

indicated. (b) Calculated ‘fixed’ charges versus input voltage of the CV curve for 

SiO2/P(VDF-TrFE) stacks with different thickness of the buffer layer where ferroelectric layer 

is 120 nm. 
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Retention investigations are performed using capacitance-time measurements at a fixed bias 

voltage after applying a programming pulses. For the definition of the fixed bias value, a ±5V 

capacitance-voltage loop is performed before. The result of this measurement is plotted in 

figure 4a. It shows, that after applying of a negative voltage pulse the CV curve is moving to 

right along the voltage-axis, while after applying of a positive pulse the CV curve moves to 

left.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. (a) capacitance-voltage characteristic of a 30 nm SiO2/100 nm P(VDF-TrFE) 

sample for a voltage loop of ± 5 Volt, (b) data retention measurement obtained after applying 

different negative programming pulses as mentioned in the legend, comparison to a value 

taken from literature [11] data retention after applying either a negative or a positive pro-

gramming pulse, (c)retention of the high capacitance state and low capacitance state. 
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Thus, at a voltage of  –1 V two different states of the capacitance can be distinguished, which 

can be defined as high capacitance state (HCT) or low capacitance state (LTC) or in terms of 

a memory as “1” and “0” or “On” and “Off”. Therefore further capacitance-time measure-

ments are performed at this fixed bias voltage value. Figure 4.4(b) summarizes measurements 

after applying negative pulses of different height and duration. A comparison to a LB film 

taken from literature [11] is shown too (blue curve). After applying –30 V for 5 minutes a 

sufficient retention of the HCT is found (green curve). This state is found to be stable up to 

the investigated time of 18 days. In figure 4.4 c the retention of both the HCT and the LCT is 

reported. In the very beginning of the measurement both states are changing there value 

quickly, but after approximately 5 hours the difference between the two states is much more 

stable, but still decreasing. Here especially the LCT is increasing its value. This might be sup-

ported by the applied fixed value of the bias of negative sign which is opposite of that of the 

necessary programming pulse of this state. 

 

We also recognize a significant reduction of polarization for the P(VDF-TrFE) thickness be-

low 100 nm, while between 200 nm and 950 nm the dependence is very similar. Generally it 

has been postulate that the corrective filed increases with decreasing of its thickness [9]. It 

must be pointed out here that a critical thickness is found for electrodes made of aluminium, 

not for polymer electrode PEDOT:PSS [10]. We have already shown in the chapter 3, the re-

active interactions occurs between P(VDF-TrFE) and aluminium, not for P(VDF-

TrFE)/PEDOT:PSS interface. This become even more important when the thickness of 

P(VDF-TrFE) film is further down-scaled. 
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Figure 4.5. CV measurements of a 10 nm thick P(VDF-TrFE) film on a Si/SiO2(30nm) sub-

strate, indium is used as top electrode. 
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All electrical characterizations described here are the important steps for making non volatile 

memory devices based on the P(VDF-TrFE) copolymer. 
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Chapter 5.  Orientation of the ferroelectric dipoles 

 

In this chapter we will discuss the dipole orientation effect by the help of polarization de-

pendent tool Near Edge X-ray Absorption Fine Structure (NEXAFS) Spectroscopy.  

1
st
 we focus on the decovoulation of the NEXAFS spectra and peak assignment for different 

resonances. Then we discuss the possible dipole orientation of different thickness of the 

P(VDF-TrFE) films on different substrates, namely Si (100) and PEDOT:PSS/Si(100). 

Finally, we discuss the effect of the electric field on P(VDF-TrFE) films revel from NEXAFS 

spectrum. Furthermore we have calculated   the polarization charge for different thickness 

(down to 10 nm) of P(VDF-TrFE) films. 
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5.1. Introduction 

 

The most promising property of P(VDF-TrFE) copolymer its ferroelectricity, which is even-

tually useful for the application as non-volatile memory element [1]. The evidence of the 

ferrolectricity arises due the presence of the component of trifluoroethylene (TrFE) with 

PVDF [2], which do exhibits a clear ferroelectric-paraelectric phase transition. The P(VDF-

TrFE) crystallize into various crystal forms depending on their molar content rations of VDF 

(x) and TrFE (1-x), and on crystallization conditions [3-5]. Under ordinary pressure, the α 

crystal form consisting of TGTG chains is stable for the VDF homopolymer (PVDF), while 

the β phase crystal consisting of all-trans chains becomes more stable on introducing TrFE 

sequences into VDF chains [6]. The β phase crystal is well known to be ferroelectric from its 

D-E hysteresis loops [7, 8], polarization switching [9], temperature behavior of the dielectric 

constant [7, 10, 11], and anomalous X-ray dispersion [12]. Addition of the larger and less mo-

lar ratio of TrFE ruined the transition temperature by reducing the average dipole moment of 

the chains, expanding the lattice, and introducing defects.  

 

As stated earlier, we choose the composition of 70% VDF and 30 % TrFE molar ratio, be-

cause it has the most distinct ferroelectric properties and can be made mostly crystalline with-

out stretching treatments. 

In this investigation we concentrate on the dipole orientation effect by the help of polarization 

dependent tool Near Edge X-ray Absorption Fine Structure (NEXAFS) Spectroscopy.  

 

� 1st we focus on the decovoulation of the NEXAFS spectra and peak assignment for 

different resonances. 

� Then we discuss the possible dipole orientation of different thickness of the P(VDF-

TrFE) films on different substrates, namely Si (100) and PEDOT:PSS/Si(100). 

� Finally, we discuss the effect of the electric field on P(VDF-TrFE) films revel from 

NEXAFS spectrum. Furthermore we have calculated the polarization charge for dif-

ferent thickness (150 nm to 10 nm) of P(VDF-TrFE) films. 
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5.2. Peak assignment of NEXAFS spectra 

 

We have employed polarized Near edge X-ray absorption fine structure (NEXAFS) spectros-

copy to explore the molecular structure and the dipole orientation of P(VDF-TrFE) copolymer 

spin coated films in different environments, such as different substrate effects, thickness de-

pendence, applied electric field dependence. The preparation of thin films and theoretical as-

pects of NEXAFS spectroscopy has been discussed in chapter 2 of the thesis. 

In the part of “NEXAFS spectroscopy” (in chapter 2), we have presented spectra those ap-

praised near the Carbon K-edge and Fluorine K-edge to show the necessity of the grandness 

of the analysis. First of all, it is worthful to discuss the assignment of different peaks due the 

molecular transitions. Furthermore, the deconvolution by peak fitting also plays a significant 

role for the analysis. The assignment of the spectral structure of NEXAFS for large and com-

plex molecules, the building block approach is very useful and has been widely used [13]. For 

ordered films of the organic molecules, the polarization dependence of NEXAFS spectra pro-

vides the symmetry of the π* and σ* unoccupied states. It is important to note that for our peak 

assignment, fluorine containing materials such as poly(terafluoroethylene) (PTFE), 

poly(vinylidene fluoride) (PVDF), perflurinated oligo(p-phenylene) (PF8P), fluorine-

thiophene copolymer, and fluorinated comb polymers are investigated as a reference [15-23]. 

 

Figure 5.1, shows the deconvolution of a C K-edge NEXAFS spectrum in the photon energy 

range from 275 eV to 325 eV for a 100 nm thickness of P(VDF-TrFE) copolymer spin coated 

film on a  Si(100) wafer. From the deconvolution of the curve, we can isolate the transition 

from C1s to different unoccupied molecular levels.  The transition bands from the C1s level 

are assigned as listed in the bottom table in figure 5.1. The lower energy peak arises at 287.2 

and 289 eV were assigned to transitions from the C1s to the σ*(C-H) unoccupied level [13, 

14]. The peaks at 292.6 and 294 eV can be assigned to the transitions from C1s to the σ*(C-F) 

and σ*(C-C) orbital respectively [12-24]. The rest of the peaks are only identifiable after the 

curve fitting procedure (see. figure. 5.1). Here we do not observed the sharp π* resonance 

(around 285.1 eV), as the P(VDF-TrFE) copolymer does not contain unsaturated C-C bonds. 

From the spectra we can also learn that we don’t have beam damage for our copolymer thin 

film, as mentioned that the absence of π* resonance peak. In the figure 5.1, the σ*(C-C) reso-

nances are fitted by a Lorentzian profile. The rest of the peaks are fitted with asymmetric 

Gaussian, because of the increase in width of resonances with increasing energy. This can be 

simply attributed to lifetime broadening. That is, the higher the energy of the final state, the 
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shorter its lifetime and hence the broader the peaks [25, 26]. In addition to peaks, NEXAFS 

contain one or sometime more step-like features referred as continuum steps. These steps are 

the results of the excitation of the core electron to a continuum or quasi-continuum of final 

states, e.g. to the smooth density of states [13]. 
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Figure. 5.1. Deconvolution of the C K-edge total electron yield NEXAFS spectra for the 2.5 

% P(VDF-TrFE) copolymer film (thickness ~ 100 nm) on Si(100) and their peak assignments 

in the bottom. 

 

 

 

100 nm thickness of P(VDF-TrFE): C1s edge 
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Figure. 5.2. F K-edge total electron yield NEXAFS spectra for the 2.5 % P(VDF-TrFE) co-

polymer film (thickness ~ 100 nm) on Si(100). 

 

 

Figure 5.2 shows the F K-edge NEXAFS spectrum of the same copolymer film as a continua-

tion of the previous measurement at the C K- edge. The two prominent peaks arise in the pho-

ton energy at 689.7 and 691.5 eV. In compatible with literature results, the peak assignment is 

done. The peaks at photon energy at 689.7 eV and 691.5 eV are ascribed to the transition from 

F1s to σ*(C−F) and to σ*(C−C), respectively [16, 27-29]. 

 

As part of our investigation, we have attempted angular dependence C K-edge NEXAFS spec-

troscopy for study of the influence of CF2 dipole of different thickness of P(VDF-TrFE) co-

polymer film on the organic substrate, PEDOT:PSS. The deconvoluation of the NEXAFS 

plays very significant role, especially for this kind of study. For example, here we show the 

lower coverage of P(VDF-TrFE) film (thickness ~0.35 nm) on the substrate PE-

DOT:PSS/Si(100). The building block of the layer structure and the chemical structure of 

PEDOT:PSS is illustrated in figure 5.3 (right side panel). We have employed the total electron 

mode NEXAFS measurement and for such case, the escape depth of photoelectrons is about 5 

nm [28]. Therefore, the unoccupied level transition from the PEDOT:PSS layer is obvious, 

100 nm thickness of P(VDF-TrFE): F1s edge 
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especially for the lowest coverage of the P(VDF-TrFE) copolymer layer. In figure 5.4, the 

deconvolution of the C K-edge total electron yield NEXAFS spectra is shown for the 0.35 nm 

thickness of P(VDF-TrFE) copolymer film on the PEDOT:PSS/Si(100) substrate. The details 

of the thin film procedure have been discussed in the experimental section (chapter 2) of the 

thesis. The very sharp peak at a photon energy of 285.1 eV can be assigned to the transition 

from the C1s orbital to the π* orbital [13]. This contribution is strictly arises from the double 

bond environment (C=C π* resonances) of the PEDOT:PSS structure. The rest of the individ-

ual peaks are only identifiable by a curve fitting procedure (see. figure 5.4). Likewise, a peak 

near 287.2 eV and 288.9 eV can be assigned to transitions from the C1s orbital to the σ*(C-H) 

and σ*(C-S) unoccupied orbital respectively [13, 14]. The peak at 292.4 eV arises from the 

copolymer film and the peak is assigned for the transition from the C1s orbital to the σ*(C-F) 

unoccupied orbital. The higher photon energy peaks (above 294.8 eV) are mostly due to C1s 

to σ*(C-C) orbital transitions [13]. In the curve fitting procedure, the C=C π* resonance fits to 

a Gaussian profile which match the height of the experimental peaks. The Gaussian function 

matched well because of the limitation of the instrumental resolution, while the Lorentzian fit 

is poor because the base is too broad [13]. 

 

 

 

 

 

 

Figure 5.3. The chemical structure of the polymer system PEDOT:PSS, composed of the two 

components PEDOT and PSS (left panel); The layer structure of the sample for NEXAFS 

measurement (right panel). 
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Figure. 5.4. Deconvolution of the C K-edge total electron yield NEXAFS spectra for the 0.1 

% P(VDF-TrFE) copolymer film (thickness ~ 0.35 nm) on PDOT:PSS/Si(100) (left  panel) 

and their peak assignments (right panel). 

 

 

 

5.3. Dipole Orientation Evaluation by Angular Dependent NEXAFS 

 

Introduction 

The mechanism of dipole orientation in P(VDF-TrFE) copolymer films still remains as the 

central issue of our current investigations on ferroelectricity of copolymer films. Although the 

orientation of dipoles in polar β-form crystals has often been proposed, the published results 

related to such orientation has not been conclusive [29-32]. Hence, we attempted a powerful 

technique angular dependence NEAXFS to understand the degree of average dipole orienta-

tion existing in the copolymer films. Investigations of anisotropy’s are performed with a 

P(VDF-TrFE) copolymer film on a Si(100) wafer and  PEDOT:PSS/Si(100) as substrate. The 

spin coating and annealing procedure steps is described in the thin film preparations section of 

this thesis. We have conformed that the good compatibility between the P(VDF-TrFE 70:30) 

copolymer and the 2-butanone solvents aids the formation of a monophase. Our XPS results 

revel that there is no interfacial reaction when P(VDF-TrFE) copolymer is spin coated on 

PEDOT:PSS films.   
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In the previous section we have discussed the peak assignments and curve convoulation of the 

C K- edge NEXAFS spectrum for a P(VDF-TrFE) copolymer film on Si(100) and also on a 

PEDOT:PSS/Si(100) substrate (see figure 5.1 and 5.4). Measurements of angular dependence 

NEXAFS are performed with a set of samples (Sample A to E) with different layer thickness 

(see figure 5.6). The layer thicknesses are estimated from XPS results, as described in the 

chapter 3. 

 

The C K-edge NEXAFS spectra of the spin coated films were measured as a function of the 

E
r

(electric) vector orientation relative to the surface normal in 20° intervals from 10° to 90°. 

The geometry of the sample (surface normal) and the incident photon beam ( E
r

) is illustrated 

in figure 5.5, where the angle θ is defined as the incident photon angle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

As discussed in earlier in chapter 2, the dipole selection rules related to K-shell NEXAFS 

resonance intensities are quite simple: the resonance intensity associated with the specific 

molecular orbital final state is largest if the E
r

 vector points in the direction of that molecular 

orbital, i.e., lies in the nodal plane of the orbital. The σ* resonance is most pronounced and the 

π
* resonance is smallest when the E

r
vector is parallel to the surface.  It would be more con-

venient if we look back on the angular dependent NEXAFS spectra (see figure 2.10) of ori-

ented molecules CO on Mo(110) and C2H4 on Ag(100) is described in chapter 2. In contrast, 

the polarization dependence of molecules discussed here will give clear comparison with the  

orientation of the C-H, the C-F and the C-C bond for the P(VDF-TrFE) copolymer for differ-

ent ultra-thin film thickness with different substrates, i.e. an organic substrate PEDOT:PSS 
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E
r

 

n
r

 

θ  

θ  

Figure 5.5. The relation of the E
r

 vector 

orientation relative to the surface normal n
r

 

of the sample. The incidence photon angle θ 

(angle between E
r

 and n
r

) is also shown. 
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        Sample A: tP(VDF-TRFE) ~ 100 nm 

 

 

 

 

 

 

 

 

 

 

 

 

                                                  

 

 

 

                                Sample E: tP(VDF-TRFE) ~ 0.35 nm, tPEDOT:PSS ~100 nm 

 

 

Figure 5.6. Building block of layer structure of ultrathin copolymer film on Si(100) and PE-

DOT:PSS/Si(100) substrate.  

 

 

and an inorganic substrate Si(100). In our spin coated copolymer films are semicrystalline 

copolymers that have morphology of crystallites in an amorphous matrix, had also shown 

from FTIR and XRD studies. The morphology of this copolymer is that of a long macromo-

lecular in a trans conformation as presented in figure 5.8, where the unit cell contains VDF 

 Si(100) 

P(VDF-TrFE) film 

PEDOT:PSS film 

 Si(100) 

P(VDF-TrFE) film 

PEDOT:PSS film 

 Si(100) 

P(VDF-TrFE) film 

PEDOT:PSS film 

 Si(100) 

P(VDF-TrFE) film 

PEDOT:PSS film 

 Si(100) 

P(VDF-TrFE) film 

Sample B : tP(VDF-TRFE) ~ 30 nm,                                      
tPEDOT:PSS ~100 nm 

Sample C : tP(VDF-TRFE) ~ 0.8 nm, 
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Sample D : tP(VDF-TRFE) ~ 2.5 nm, 
tPEDOT:PSS ~100 nm                                                                                                     
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(−CH2−CF2−) and trifluoroethylene TrFE (−CF2−CFH−). It may be noted that the macromo-

lecular character of these molecules is particularly advantageous because it suppresses com-

plicated fluctuation [33]. The difference in electronegativity between fluorine and hydrogen 

atoms results in dipole moments (see the figure 5.9), the direction of the dipoles is shown in 

figure 5.8. 

 

 

 

 

Figure 5.8. Schematic depiction of the molecule chain trans conformation in the P(VDF-

TrFE) copolymer. The arrow indicates the dipole direction resulting from the difference in 

electro negativity between fluorine and hydrogen atoms. 

 

 

 

 

Figure 5.9. Dipole moment of VDF and TrFE units [adopted from ref. 34]. 

 

 

5.4. Results and discussion 

The angular dependence of the C K-edge NEXAFS spectrum is shown in figure 5.10 (a) for 

sample A. The sample geometry with respect to the photon beam is illustrated in figure 5.5. 

The spectra are scaled to the same edge jump by matching their intensities at 280 eV and 325 
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eV of photon energies, clearly show the pronounced angular dependence of the three principal 

resonances. In particular, we have plotted the relative intensities for C1s to the σ*(C-F) and 

σ
*(C-H) resonances versus the incident photon angles (θ) in figure 5.10 (b), (c) respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10
 
. (a) The angular dependence of the total electron yield at the C K-edge. NEXAFS 

spectra of 2.5 % P(VDF-TrFE) copolymer film (thickness ~ 100 nm) on Si(100)(Sample A, see 

fig.5); The plot of the relative intensities for (b) C1s to σ
*
(C-F) resonance and (c) C1s to 

σ
*
(C-H) resonance versus the angle of incidence photon (θ), The intensity is normalized to the 

peak intensity at an incident photon angle of θ = 10
o
. 
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Thus the σ*(C-F), σ*(C-H) resonances showing higher intensity for the lowest grazing angle 

(θ = 10o) with respect to higher grazing angles and also for normal incidence (θ = 90o). On the 

other hand for the σ*(C-C) resonance the intensity at normal incidence is highest with respect 

to the rest of the grazing photon incidence (see figure 5.10 a). Therefore we may say that for 

sample A, probably the average main C−C backbone chain of the copolymer is oriented paral-

lel to the substrate. Although, it is important to mention that the spin coated copolymer film 

contains the polarized all-trans β- crystalline phase along with a surrounding amorphous re-

gion. Thus we can’t make the conclusion that the backbone chain of the copolymer is com-

pletely aligned parallel to the substrate. Furthermore, from the behavior of the σ*(C-F), σ*(C-

H) resonances for sample A, there is a highest probability for an average dipole alignment 

perpendicular to the substrate. This is quite salubrious to use the term ‘dipole alignment’ in-

stead of ‘CF2 dipoles’ for sample A as both σ*(C-F), σ*(C-H) resonances contributing from 

the copolymer film (see figure 5.8). 

 

On the other hand, the rest of the samples (sample B to E), we have to look for the most im-

portant ‘CF2’ dipoles orientation, as due to ultra thin thickness of the copolymer film on PE-

DOT:PSS films, there is a probability that the rest of σ*(C-H), σ*(C-C) resonance attribute to 

C-H and C-C antibonding molecular orbitals from PEDOT:PSS films as well. Furthermore, 

for supporting data we have also looked for the F K-edge NEXAFS spectra for sample A, 

shown in figure 5.11 (a) and the corresponding F1s to σ*(C-F) resonance which is illustrated 

in figure 5.11 (b). Eventually, we found that the average orientation of the‘CF2’ dipoles are 

aligned the perpendicular to the substrate.  
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Figure 5.11
 
. (a) The angular dependence of the total electron yield F K-edge NEXAFS spec-

tra of 2.5 % P(VDF-TrFE) copolymer film (thickness ~ 100 nm) on Si(100) (Sample A, see fig. 

5.6); (b) The plot of Angle of incidence photon versus relative intensity for F1s to σ
*
(C-F) 

resonance. The intensity is normalized to the peak intensity at incident photon angle θ = 10
o
. 

 

 

The figure 5.12 (a), shows that the angular dependence C K-edge NEXAFS spectrum for sam-

ple B, the sharp resonance at 285.1 eV arises due to C1s to π* resonances which is contribu-

tion from C=C double bond of PEDOT:PSS films.  

The apparent overall structure of the C K-edge NEXAFS spectrum of sample B is very similar 

in comparison to figure 5.10 (a) which is for sample A. As expected the sharp π* resonance 

peak arises at a lower photon energy (285.1 eV). The resonances contribution of C1s to σ*(C-

F) at different incidence photon angles (θ = 10o, 30o, 50o, 70o and 90o) are shown in figure 

5.10 (b). Thus the values shows that such resonance is dominated for lower grazing angle (θ = 

10o) whereas the rest of the resonances are lower value. The dotted curve indicates that the 

resonance at higher incidence photon angle is always lower than for the consecutive lower 

incidence photon angle. Furthermore, if we look to the C1s to σ*(C-C) resonances (see figure 

5.10a), the average tendency of the σ*(C-C) resonances is higher at normal incidence. There 

might be the possibility of σ*(C-C) resonances attributing from PEDOT:PSS films as well. 

Therefore, we will not consider the dependence of σ*(C-C) resonances of the rest of the sam-

680 690 700 710 720

(a)
σ

*(C-C)σ
*(C-F)

F K-edge

θ

E

X-Rays

θ

E

X-Rays

 

 

N
or

m
al

is
ed

 T
E

Y

Photon energy / eV

 θ = 90o

 θ = 70o

 θ = 50o

 θ = 30o

 θ = 10o

 

0 20 40 60 80 100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(b)

 

 

R
el

at
iv

e 
in

te
ns

ity
 / 

a.
 u

.

Angle of incidence (θ)/ deg.

 σ*(C-F) transition

 

100 nm thickness of P(VDF-TrFE)  
         (Sample A) : F1s edge 



Orientation of the ferroelectric dipoles 

 

 107 

ple (sample C and E), as here the copolymer layers thickness are significantly low (i.e. 2.5 nm 

and 0.8 nm). 

   

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 5.12
 
. (a) The angular dependence of the total electron yield C K-edge NEXAFS spec-

tra of a 1.0 % P(VDF-TrFE) copolymer film (thickness ~ 30 nm) on PE-

DOT:PSS/Si(100)(Sample B, see fig.5); The data of  relative intensities for (b) C1s to σ
*
(C-F) 

resonance versus the angle of incidence photon (θ) is shown. The intensity is normalized to 

the peak intensity at an incident photon angle of θ = 10
o
. 

 

 

The C K-edge NEXAFS spectrum for an ultra thin copolymer film (thickness ~ 2.5 nm) of 

sample D is shown in figure 5.13 (a). In comparison with figure 5.12 (a) which is for sample 

B, the π* resonance peak is more sharp indicating the prominent resonance to less attenuated 

photo electrons coming from the PEDOT:PSS films. The contribution for C1s to σ*(C-F) 

resonances (taken from the curve deconvolution of the spectra of 5.13a) is shown in figure 

5.13 (b). The curve shows the tendency of the resonance at normal incidence is lower than the 

rest of the grazing incidence. This result is also support that the average orientations of the 

CF2 dipoles are tendency to standing up with respect to the substrate. In figure 5.14 (b), for  
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Figure 5.13
 
. (a) The angular dependence total electron yield for C K-edge NEXAFS spectra 

of a 0.5 % P(VDF-TrFE) copolymer film (thickness~ 2.5 nm) on PEDOT:PSS/Si(100)(Sample 

C, see fig.5); The data of  relative intensities for (b) C1s to σ
*
(C-F) resonance versus the an-

gle of incidence photon (θ) is shown. The intensity is normalized to the peak intensity at an 

incident photon angle θ = 10
o
. 

 

 

 

sample D (copolymer film thickness ~ 0.8 nm), σ*(C-F) resonances shows that the resonance 

intensity is lower at normal incidence and gradually increases for lower incidence. This also 

evidence of the average CF2 dipoles standing up orientation on the substrate. We did not 

showed the σ*(C-C) and the σ*(C-H) resonance plot separately as there are definite contribu-

tions comes from PEDOT:PSS films in addition to copolymer films. Therefore, it is difficult 

to make stick conclusions for such a film in terms of dipole orientation. 
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Figure 5.14
 
. (a) The angular dependent total electron yield of C K-edge NEXAFS spectra of 

a 0.3 % P(VDF-TrFE) copolymer film (thickness~ 0.8 nm) on PEDOT:PSS/Si(100) (Sample 

D, see fig.5); The data of the relative intensity for (b) C1s to σ
*
(C-F) resonance versus the 

angle of incidence photon (θ) is shown. The intensity is normalized to the peak intensity at an 

incident photon angle θ = 10
o
. 

 

The angular dependence of the C K-edge NEXAFS spectrum for the lowest coverage of a 

copolymer ultra thin film (thickness ~ 0.35 nm) on PEDOT:PSS/Si(100) is shown in figure 

5.15 (a). The corresponding building block of the layer structure of the sample is illustrated in 

figure 5.6. The obvious sharp π* resonances showing that the contribution of less attenuated 

excited PEDOT:PSS photoelectrons, as there is no existence of C=C double bonds in the co-

polymer film. Here it is important to mention that we have confirmed that we don’t have 

beam damage due to synchrotron photon beam. Therefore, there is almost less chance of such 

π
* resonances attributing from the beam degraded of copolymer film. This is also revel from 

the C K-edge NEXAFS spectrum of a 100 nm thick copolymer film, shown in figure 5.10 (a). 

There is no such sharp contribution of the π* resonance at lower photon energy (285.1 eV). 

The details of peak assignments and the curve deconvoulation of the C K-edge NEXAFS 

spectrum of sample E is discussed in previous section.  Here also we find that the resonance 

contribution for C1s to σ*(C- F) resonances is relative higher for grazing incidence of the pho-

ton with respect to normal incidence (see figure 5.15 b). This fact also attributed that for low-

est coverage of copolymer films also have the average degree of dipole CF2 orientations. In 
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figure 5.15 (b), we also show that ideal case of the CF2 dipole orientation (cos2
θ dependence) 

to compare our results. A curve fitting, according to I=0.2 cos2(θ)+0.8, is also shown and 

gives a good agreement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15. (a) The angular dependence total electron yield C K-edge NEXAFS spectra of 

0.1% P(VDF-TrFE) copolymer film (thickness~0.35 nm) on PEDOT:PSS/Si(100)(Sample E, 

see fig.5);The data of  relative intensities for (b) C1s to σ
*
(C-F) resonance versus the angle of 

incidence photon (θ) is shown ,The intensity is normalized to the peak intensity at incident 

photon angle θ = 10
o
. The cos

2
θ line presents the modulation of resonances for an idealized 

alignment of CF2 dipoles (100% perpendicular to the surface of the substrate). 

 

The cos2(θ) dependence is an approximation, of course: we have to take into account  follow-

ing statements: First, the incident beam is not an idealized point, we have an rectangular area. 

Second, we need a further rotation θ inside the plane of the surface of the sample (rotation 

perpendicular to θ), because an alignment of dipoles perpendicular to the surface is an ideali-

zation. We have I=I(θ, Φ) and quantitative estimations, for example the relative amount of 

aligned dipoles, are only possible, when I(θ, Φ) under variation of the angle Φ is maximized. 

Here, further investigations are might be most conclusive. 

Nevertheless, the measurements show a clear average degree of alignment of dipoles. This is 

an additional confirmation for a well ordered copolymer without any degradation, as in the 

case of aluminum as substrate or electrode. It seems, that ferroelectric ordering occurs even 

for ultrathin and spin coated films, if we use an inert substrate like PEDOT:PSS. 
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5.5. Electric Field Induced Polarization 

 

Introduction 

The ferroelectric memory performance strongly depends on the orientation of the ferroelectric 

dipoles. The pursuit of nonvolatile random-access memory devices and nanoscale electronic 

devices has provided impetus to study of ferroelectric thin films [35-38]. Ferrolectricity is 

difficult, generally, to maintain when the size of the ferroelectric material is greatly reduced 

[39]. Furthermore, the ferroelectric co-polymer P(VDF-TrFE), provide to fabricate high-

quality ultrathin crystalline ferroelectric films [40-42]. There has been numerous research 

work investigated to study the orientation of the ferroelectric dipoles and the effect of the 

electric field in PVDF and its copolymer P(VDF-TrFE) [39, 40, 44-47] but it is yet an open 

question to reach a conclusive guideline. However it is found that the orientation of dipoles 

effectively depends on the choice of the substrates [40, 44-46].  

Here we employed a NEXAS on ultrathin films (scale down to 10 nm thickness) of P(VDF-

TrFE) copolymer, were prepared on PMMA/Al/Si(100) substrate by spin coating method. The 

details steps of the spin coating procedure for this stacking layer structure and annealing 

procedure is described in ‘chapter2’ of this thesis. The layer structure for the sample is 

schematic in figure 5.16, with different color. The top layer (pink color) is the copolymer spin 

coated film; the underneath layer, shown by blue color is a layer of PMMA (thickness ~700 

nm) on the aluminum evaporated Si(100) wafer. 

 

 

 

 

 

 

 

Figure 5.16. The layer structure of the sample. 

 

Our aim is to investigate the effect of the ferroelectric dipoles, especially for ultrathin spin 

coated films. In our layer structure of the samples, the aluminum deposited Si wafer act as a 

bottom electrode for ultrathin copolymer films and we introduce PMMA layer to prevent 

leakage current during application of the electric field [43]. We used another aluminum coated 

P(VDF-TrFE) copolymer film  

‘Al- deposited’- Si wafer 
PMMA film 
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Si wafer externally as a top electrode. The experimental detail for the application of external 

dc electric field is described in the chapter 2.  

 

5.6. Results  

 

Relating to P(VDF-TrFE) copolymer layer thickness, we have deal with relative thick 

(thickness 100 nm and 80 nm) and one extremely thin (thickness ~10 nm) film. 1st of all, we 

have measured the angular dependence F K-edge NEXAFS spectrum in total electron mode 

for all samples. Here we avoid the C K-edge NEXAFS spectrum, utilizing the merit of the 

fluorine edge NEXAFS spectrum. The spectrum of all samples is measured as a function of 

the E
r

(electric) vector orientation relative to the surface normal in 20o intervals from 10o to 

90o. The definition of incidence photon angle θ is the same as described in figure 5.5. The F 

K- edge NEXAFS spectra are shown in figure 5.17 (left panel), before the application of the 

applied field. Afterwards, we have applied an electric field for each sample. Here we apply a 

dc voltage 30 volt between top and bottom electrodes for 30 minutes duration. Thereafter, the 

sample is transferred into a UHV chamber with a base pressure of 7.0 × 10-8 mbar for the 

NEXAFS measurement. The same treatment is done for all three samples. Here it is important 

to note that the sample transfer time between the ends of the application of the electric field 

into main measuring UHV chamber takes about 15 minutes. In the figure 5.17 (right panel), 

the F K-edge NEXAFS spectrum in total electron mode after the application of the electric 

field is shown. All spectra are normalized to the same edge jump by matching their intensities 

at 680 eV and 725 eV of photon energies.  

 

To analyze the degree of orientation of the CF2 dipole, we have to consider the resonance 

intensity of the F1s to σ*(C-F) antibonding orbital, revel by the most pounced peak in figure 

5.17. The plot of the σ*(C-F) resonances versus different incidence angles for each sample 

(without electric field and after application of electric field) is shown in figure 5.18. The 

specification for more clarity of presentation is described in the corresponding figure caption. 

With analogy as described in previous section, we also observed the resonance intensity 

fluctuations with respect to incidence photon angle. Here we used different substrates, i.e 

PMMA/Al/Si(100). But the interesting thing is that the resonance intensity is varying with 

incidence photon angle and most importantly the behavior of resonance is changing after and 

before the nearly magic angle (θ = 50o). As the magic angle consider as critical angle for the 

molecular orientation with respect to incidence photon [13]. The 80 nm and 10 nm thickness 
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of the copolymer films also shows the effect of dipolar orientation reveled by the average 

resonance intensity follows the same trades, shown by red and blue solid symbols in figure 

5.18. The intensity at grazing angles (θ = 10o and 30o) is higher in this case, indicating the 

possibility of average CF2 dipoles orientation is perpendicular with respect to substrates. On 

the other hand, after application of the electric field, we found the σ*(C-F) resonance intensity 

also changing with respect to different photon angle incidence and most interestingly in 

reverse way (see the figure 5.18). The all resonances for three different thicknesses of the 

copolymer films are shown with hollow symbols in figure 5.18. Therefore the results indicate 

the effect of the electric field demand that the ferroelectric dipole orientation, even in a scale 

down to ultrathin films. As we applied the negative voltage at the top electrode, therefore 

there is highly chance the electro positive hydrogen atoms attract by the top electrode and on 

the other hand the positive voltage at the bottom electrode attracts the electro negative 

fluorine atoms. Therefore, the electric field induces the dipoles to polarize into certain 

direction in some extent with parallel to the electric field. Although the percentage of the 

average dipole orientations of the spin coated films is probably depends on the percentage of 

crystallinity in the semicrystalline films and the strength of the electric field.  The figure 5.18, 

shows the change of intensity of σ*(C-F) resonance with respect to incidence photon angle, 

which is most prominent for 10 nm thickness of the copolymer films. Therefore, as a part of 

our analysis we concluded that the effect might be coming from the strength of the electric 

field. As described, we applied the external electric field (30 Volt for 30 minutes) to polarize 

the dipoles for three different thickness (100 nm, 80 nm and 10 nm) of the P(VDF-TrFE) 

copolymer films. Therefore, we employed further experiment to ensure the ferroelectric dipole 

alignments with lower applied voltage (15 Volt for 30 minutes) for 10 nm thickness of ultra 

thin P(VDF-TrFE) copolymer films.  Here in addition to total electron mode of F K-edge 

NEXAFS measurement, we also measure in another mode namely, total fluorescent yield 

(TFY) mode. As TFY mode gives more surface information depth (about 200 nm). Although 

the TEY mode is efficient enough to analyze such observation, the TFY mode should be 

better to verify if the there is any contribution coming from the bulk of the sample. In figure 

5.19, we showed the angular dependence of the TEY mode F K-edge NEXAFS spectrum for 

10 nm film thickness of the copolymer. The left side panel and right side panel of the figure 

5.19, shows the spectrum without the application of the electric field and after the application 

of the electric filed respectively. The corresponding TFY mode F K-edge NEXAFS spectrum 

are shown in figure 5.20 where the left side panel described the spectrum for without 

application of the electric field while the right side panel described the spectrum taken after 
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the application of the electric field. We found there is sharp resonance observed in TFY mode 

but the relative angular dependence resonance are littlie more prominent in TEY (see figure 

5.19 and 5.20).  

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 5.17. The angular dependence of the total electron yield F K-edge NEXAFS spectrum 

for ultra-thin copolymer films (thickness values are mentioned in the inset). All spectrums 

shown in left side panel are taken before the application of the electric field and in right side 

panel are taken after the application of the electric field (applied voltage: 30 Volt for 30 

minutes). 
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To analyze the effect of dipole orientation with the electric field, we have plotted the relative 

σ
*(C-F) resonance intensity (taken from figure 5.19 and 5.20) versus the angle of incidence 

photon angle, which is shown in figure 5.21. In both cases, TEY and TFY, we found the same 

kind of behavior of σ*(C-F) resonance, indicating that the resonance does not effect from the 

bulk of the sample. This case, we also found the effect of the electric field even for lower 

applied voltage (15 Volt) down to half of the previous measurements. Those results are shown 

in figure 5.18.  
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Figure. 5.18. The plot of relative TEY intensity of σ
*
(C-F) resonances for mentioned thickness 

of P(VDF-TrFE) copolymer films versus angle of incidence (θ) photon. All aforesaid 

resonance intensity (from figure 5.17) are normalized to the peak intensity at incident photon 

angle θ = 90
o
. The solid symbols indicate the results are taken without application of the 

electric field and hollow symbols indicate the results are taken after the application of the 

electric field (applied voltage: 30 Volt). The same color code indicates the results are for the 

same sample. 
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Therefore, we may conclude that we have observed the dipole orientation for ultrathin film 

thickness of 10 nm and the effect of electric field. To ensure the ferroelectric property in such 

ultrathin spin coated film we also employed supporting additional measurement through 

ferroelectric hysteresis measurement and found the hysteresis loop even if for 10 nm thickness 

of the copolymer films.  

 

5.7. Further results of ultra thin film (10 nm thickness) 

Here we apply lower external electric field (15 Volt for 30 minutes) for the polarized the 

ferroelectric dipoles. The electric field over the copolymer, calculated with respect to the 

resulting voltage divider, is 0.46 MV/cm, we use a relative dielectric constant of 3.0 for 

PMMA and 6.7 for P(VDF-TrFE). This value is well below the calculated field for the 

“intrinsic” switching mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19. The angular dependence of the total electron yield F K-edge NEXAFS spectrum 

for 10 nm thickness of ultra-thin P(VDF-TrFE) copolymer. Spectrum shown in left side panel 

are taken before the application of the electric field and in right side panel are taken after the 

application of the electric field (applied voltage: 15 Volt for 30 minutes). 
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Figure 5.20. The angular dependence of the total fluorescent yield F K-edge NEXAFS 

spectrum for 10 nm thickness of ultra-thin P(VDF-TrFE)copolymer. Spectrum shown in left 

side panel are taken before the application of the electric field and in right side panel are 

taken after the application of the electric field (applied voltage: 15 Volt for 30 minutes). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21. The plot of relative TEY intensity of σ
*
(C-F) resonances 10nm thickness of 

P(VDF-TrFE) copolymer films versus angle of incidence (θ) photon. All aforesaid resonance 

intensity (from figure 5.19, left side panel and from 5.20, right side panel) are normalized to 

the peak intensity at incident photon angle θ = 10
o
. The solid symbols indicate the results are 

taken without application of the electric field and hollow symbols indicate the results are 

taken after the application of the electric field (applied voltage: 15 Volt for 30 minutes).  
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5.8. Discussion 

 

In this discussion, we address the two following questions:  

First: Is there a fundamental threshold for ferroelectric functionality for ultrathin films under 

the condition of an adapted polarization procedure? 

Second: What is the quantity of the polarization with respect to thicker spincoated copolymer 

films ( > 100nm), definitely switching in an extrinsic mechanism?  

In figure 5.22, two F1s NEXAFS spectra with two different angle of incidence (θ) are drawn. 

The external electric field (15 V, 30 min) is already applied. We show the total fluorescence 

yield (TFY) with higher information depth than for the total electron yield (200 nm). A 

schematic of the beam geometry is drawn as inset. The field vector E// corresponds to an angle 

θ of 50°, and ⊥E  corresponds to θ =10°. The linear dichroism, expressed as  

)/()( //// ⊥⊥ +−= EEEE IIIIP  in percent, is also shown in figure 5.22, below. A very strong 

linear dichroism of almost 80% is observed. 
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In both cases, before and after application of the external field, a strong linear dichroism is 

found. For the pristine film, the linear dichroism is weaker and additionally carries another 

sign than after application of the field. The dipole moments of the pristine film are obviously 

ordered in another direction, with a smaller net ferroelectric moment inside the plane of beam 

direction and its field vector E
r

. After application of the external electric field, the linear 

dichroism is almost doubled, with a maximum of intensity at θ=50°. This clearly indicates a 

switching process of the C-F dipoles, respectively a remanent polarization of the copolymer.  

 

The effect of the dipole alignment on the linear dichroism is summarized in figure 5.23. Here, 

a comparison of the two series of NEXAFS spectra of the pristine and the polarized film is 

given for TFY. We plot the maximum of the σ*(C-F) resonance Max
IΘ  with reference to the 

corresponding value ⊥E
Max

I  for the field vector ⊥E , respectively the maximum intensity at 

θ=10°, as  )/()()( ⊥Θ⊥Θ +−= E
MaxMax

E
MaxMax

IIIIP θ .  

 

 

Figure 5.22. Linear dichroism of a polarized 

P(VDF/TrFE) film (10nm, 2 butanone, field: 

15V, 30min). Above: F1s NEXAFS intensities 

versus photon energy for two different angle 

of incidence. The field vector E// corresponds 

to θ=50°, ⊥E  corresponds to θ=10°. A 

schematic of the beam geometry is drawn as 

inset. Below: ratio of linear dichroism in %, 

also versus photon energy. 
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Figure 5.23. Linear dichroism as a function of incident beam direction θ, before (pristine) 

and after application of 15 V (0.46 MV/cm), 30 min. Derived from TFY. The maximum of the 

σ*(C-F) resonance (
Max

IΘ ) is plotted with reference to the maximum of the resonance for 

θ=10° ( ⊥E
Max

I ), as )/()()( ⊥Θ⊥Θ +−= E
MaxMax

E
MaxMax

IIIIP θ . 

 

 

Here, we have to conclude, that even for an ultrathin film, for a field well below the value 

necessary for a collective intrinsic switching, a ferroelectic alignment occurs, obviously due to 

an extrinsic switching process. This is also observed for the C-F bonds in the C1s NEXAFS 

data. The analysis is more complicated due to an overlap with the C-H and the C-C signals.   

 

The extrinsic switching of ultrathin films is confirmed by our electrical characterization. Now, 

we come to the quantity of the polarization, performed by an analysis of the flatband shift of a 

capacitance voltage (CV) characteristics. The measurement is carried out with copolymer 

films in different thickness, with a minimum thickness of (9.7+3) nm, measured directly by 

AFM.  

In figure 5.24 (top), we show the CV measurement with a p-Si/SiO2 substrate, and the 

thinnest copolymer film. Indium is used as top electrode. The CV measurement is started in 

accumulation of the p-silicon substrate, at negative gate bias. After driving the bias voltage 

into the range of inversion, with positive voltages and backwards to accumulation, a “gate 

bias window” is completed. The figure shows two voltage windows: the +5V and the ±15V 
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window. Here we realize a clear hysteresis for the measurement loop. This hysteresis (as flat 

band voltage shift) of the CV line indicates the presence of polarization charges and hence, a 

ferroelectric alignment [46, 47]. A reference measurement of a p-Si/SiO2/In stack without 

P(VDF/TrFE) shows no flatband shift.  

A direct extraction of the coercive field from CV measurements is difficult [48], but an 

estimation of the polarization charge is possible with a calculation of “fixed” surface charges 

(Nfix), according to   

                                       
PVDF

PVDFFB
fix

tq

V
N

εε0∆
=

                                                   5.1 

here, ∆VFB is the flat band voltage shift, measured by the CV characteristics, ε0 is the per-

mittivity value of vacuum, εPVDF is the relative permittivity value for P(VDF/TrFE), we use 

6.7, tPVDF the thickness of  P(VDF/TrFE), and q is the elementary charge.  
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Figure 5.24. Top: CV 

measurements of a 10nm thick 

P(VDF-TrFE) film on a 

Si/SiO2(30nm) substrate, 

indium is used as top electrode, 

solvent is AZ-EBR. Flatband 

capacitance is calculated from 

electrode area and doping 

density of the Si-substrate.   

Down: Surface charge NFix, 

calculated from equation 5.1, 

versus film thickness. Data are 

received from two different bias 

windows: for +5V and  +15V. 

(Solvent: for 10 and 16 nm: AZ 

EBR, others: 2 Butanone) 

 



Chapter 5 

 

 122 

This surface charge is a measure for the polarization charge. In earlier investigations of 

thicker films with a minimum thickness of 95 nm and Al top electrodes, we found exactly the 

above mentioned reduction of ferroelectric functionality, as a drop of the fixed surface charge 

Nfix at a thickness around 100 nm [49, 50]. So this value is really useful for a ferroelectric 

characterization of ultrathin (< 100 nm) and thin films.   

The number of fixed surface charges per cm2, calculated from equation 5.1, is plotted in figure 

5.24 (down). We present the results for different copolymer film thickness, from around 10nm 

to a maximum value of 150 nm.  The values for 150 nm film thickness represents the extrinsic 

switching behavior of a bulk film.    

From the diagram, we are able to extract the following two main observations:  

• First, we observe a flatband shift also for our ultrathin films in a thickness of 10 nm.  

• Second, no decline of polarization is found for ultrathin films below 100 nm, the number 

of surface charges at a certain voltage window is more or less constant and independent of 

film thickness. 

The first observation confirms the NEXAFS measurement before and after an application of 

the electric field. Even for ultrathin films of the copolymer a linear dichroism effect was 

found, which has to be attributed to a ferroelectric alignment. Further, our interpretation of the 

NEXAFS data is confirmed. The second observation leads to the conclusion, that the low 

voltage switching behavior, the so called “extrinsic” switching mechanism, is at least scalable 

down to a thickness of 10 nm. Here it has to be pointed out, that we have to calculate the field 

over the copolymer with the voltage divider SiO2/P(VDF-TrFE), in accumulation. For -15V, 

the field strength is between 2 to 0.7 MV/cm for 10 nm and 150 nm, more than the coercive 

field Ec for extrinsic switching (0.5 MV/cm). For this field strength, the value Nfix, 

respectively the polarization charge has to be saturated, as confirmed by own measurements. 

Assuming a constant value for Ec with extrinsic switching, then Nfix has to be independent of 

film thickness, as observed. For –5V, the field is stronger than Ec up to 30 nm copolymer 

thickness. Additionally, the polarization seems to be independent of pinhole density.  

Prerequisite for this low voltage switching and for minimized operation voltages is an adapted 

system of electrodes. Interactions at the interfaces during the preparation should be avoided. A 

fundamental threshold for ferroelectric switching itself does not exist down to at least 10 nm 

thickness of a spin coated copolymer film.  

This is a very promising observation for spin coated ultrathin films. Ultrathin spin coated 

organic films should be important for a low cost approach for low cost memory applications 

with low operation voltages. 
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Chapter 6.                    Summary and outlook 

 

 

 

We have successfully spin coated of different thickness P(VDF-TrFE) copolymer films. By 

this, we can able to make ultra thin copolymer films by controlling solution concentrations 

and spinning speeds. To measuring ultra thin films layer thickness we have employed a useful 

technique by the help of XPS results. Our FTIR and XRD results shows that our spin coated 

films are semicrystalline. We have improved the crystallinity by introducing the proper an-

nealing environment. Our optimized best suitable annealing parameter is 135o C for 2.0 hours. 

We have identified the ferroelectric β-phase for all thickness of the films independently by 

FTIR and XRD. By NC-AFM topographical studies we confirm that the well grown lamellar 

crystalline region appears while annealing. We have also found that the root mean surface 

roughness is improving significantly by annealing for all thickness of the copolymer films 

which good indication of the improvement of the crystallinity. We also show the effect of the 

annealing step by CV measurements, where we observed much more symmetric behavior in 

the flat-band voltage shift inside one CV loop after annealing, while the CV loops of non-

annealed samples additionally shift due to a probable charge injection. Here we found that 

annealing lead to a higher polarization value. 

 

We have optimized the X-ray irradiation time to investigate the XPS study by non disturbing 

condition. While optimization we notice that there might be phase change of the copolymer 

films from ferroelectric to paraelectric phase for longer time X-ray irradiation. This observa-

tion is conformed from FTIR and XRD results. Thus we can say that our XPS study has been 

done with proper care. 

 

It is well known that the existence threshold for the remanent polarization for films below 100 

nm of thickness, if we use aluminum as electrode.  In this work we have find out the reason 

for the threshold thickness for aluminium electrode, incontrast we also investigate the advan-

tage the use of the organic electrode PEDOT:PSS. We show a clear indication for a surface 

reaction of P(VDF-TrFE) with Al-electrodes, not only for evaporated Al, but also at room 

temperature, for the metal as bottom electrode. In sharp contrast, for PEDOT:PSS, the XPS 

measurements indicates a layer by layer structure of PEDOT:PSS/P(VDF-TrFE) without any 

interface modification. This could be the reason for lower relaxation times, higher switching 
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frequencies and in consequence, a better field dependence of the ferroelectric polarization, if 

we choose PEDOT:PSS as material for the electrode.  

 

By capacitance voltage measurements, we confirm the ferroelectric behavior of the polymer 

by measurements at elevated temperatures (Curie-Point), we found a threshold for remanent 

poalrization for films blow 100nm, if we use aluminum electrodes, but with inert electrodes, a 

downscaling of a low coercitive field was possible down to ten nm. This is very important, 

because due to the high coercitive field of the copolymer ( > 50MV/m), we need ultrathin 

films for low operation voltages. Prerequisite for memory applications is a high retention 

time, this was also confirmed. 

 

We have investigated the ferroelectric dipole orientation of the P(VDF-TrFE) films by 

NEXAFS. By this we can able to identified the ferroelectric dipole orientation properties in-

dependently by with interaction with other layer. Thus the results confirm that the effect 

strictly arises from the ferroelectric film. As per our best of knowledge, this work could not 

done before.  

 

By NEXAFS, we have also investigated that the effect of the electric field up to lowest thick-

ness of 10 nm copolymer films. Here we also verified by the total fluorescent yield mode filed 

which can cover total film thickness. We have found significant effect of dipole orientation 

even for ultra thin (10 nm) spin coated film. To conforming the ferrolectricity, we have addi-

tionally employed the CV measurements.  

 

The NEXAFS observations confirms that even for ultrathin films of the copolymer a liner 

dichroism effect was found, which has to be attributed to a ferroelectric alignment. The CV 

measurements leads to the conclusion, that the low voltage switching behavior, the so called 

“extrinsic” switching mechanism, is at least scalable down to a thickness of 10 nm (5 

monolayers). This is a very promising observation for spin coated ultrathin films. Ultrathin 

spincoated organic films should be important for a low cost approach for low cost memory 

applications with low operation voltages. 
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List of abbreviations 

 

PVDF                                 Polyvinylidene fluoride 

TrFE                                  Trifluoroethylene 

 

P(VDF-TrFE)                     Poly (vinylidene–trifluorethylene) 

FeFET                                Ferroelectric field effect transistor 

MFIS                                  Metal/ferroelectric/insulator/semiconductor 

TeFE                                  Tetrafluoroethylene 

PEDOT:PSS                       Poly(3,4- ethylenedioxidythiophene):poly(styrenesulfonicacid) 

 

FTIR                                   Fourier transformed infra-red spectroscopy 

 

FWHM                               Full width at half maxima 

 

XRD                                   X-ray diffraction 

 

AFM                                   Atomic Force Microscope 

 

CV                                      Current-Voltage 

 

XPS                                    X-ray Photoelectron Spexctroscopy 

 

NEXAFS                            Near edge X-ray Absorption Fine Structure 

 

TEY                                    Total electron yield 

 

TFY                                    Total fluorescent yield 
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